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We present a tunable magnetoelastic lattice with a multistable onsite potential, focusing on a
tristable potential. Through experimental and numerical analysis, we verify the existence of three
types of transition waves with distinct amplitudes and velocities. Additionally, we establish the
presence of a scaling law that elucidates various characteristics of these transition waves. By ma-
nipulating the onsite potential, we investigate the collision dynamics of two transition waves within
the system. In chains featuring an asymmetric potential well, the collision of similar transition
waves leads to the remote nucleation of a new phase. In chains with a symmetric potential well, the
collision of dissimilar transition waves results in the formation of a stationary domain wall.

INTRODUCTION

Investigating transition waves is crucial for under-
standing dislocation dynamics [1] and phase transitions
in various advanced materials, including ferroelectric [2],
ferromagnetic [3], and shape memory alloys [4]. These
waves have been extensively studied theoretically on lat-
tices possessing nonconvex energy landscapes with mul-
tiple stable equilibria [5–13]. Within such systems, tran-
sition waves manifest as moving phase boundaries or
domain walls, facilitating the transition between stable
equilibria as they propagate through the material.

Similar phenomena have emerged in metamaterials in
recent years, where macroscopic mechanical systems ex-
hibit multiple stable equilibria [14, 15]. By finely ad-
justing potentials and degrees of freedom, precise control
over transition waves is achieved in metamaterials, en-
abling the design of reconfigurable structures with appli-
cations in soft robotics [16, 17], energy absorption [18],
deployable structures [19], and sound control [20, 21].

Initially, research into transition waves in metamateri-
als primarily focused on bi-stable unit cells with asymme-
try sufficient to compensate for the system damping and
make the transition wave robust [22–27]. However, recent
investigations have explored metamaterials with tristable
configurations featuring three stable equilibria [28, 29].
Notable findings include the observation of stationary do-
main wall formation resulting from the collision of two
transition waves [28] – a mechanism distinct from that
in bistable lattices, which require additional defects to
form a stationary domain wall [30, 31]. Additionally,
the nucleation of a new phase away from metamaterial’s
boundaries was observed following the collision of two
weakly nonlinear vector solitons [29]. These functionali-
ties promise to enhance the reconfigurability of metama-
terials in various practical scenarios. For instance, the
formation of stationary domain walls at different spa-
tial locations enables the maintenance of desired phase
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mixtures, thereby modulating the effective stiffness of
the metamaterial. Moreover, nucleating a new phase
within the metamaterial could be advantageous in sce-
narios where a single dynamic actuation from one bound-
ary is insufficient to initiate the transition. Instead, a
spatially distributed dynamic actuation could be used
for collectively inducing phase transitions by superpos-
ing their individual responses.

However, previous studies on tristable metamateri-
als relied on rotating square lattices, inducing a multi-
stable energy landscape of intersite potential [28, 29].
The comprehensive exploration of the dynamics inher-
ent in tristable metamaterials featuring onsite potential
remains largely unaddressed within current scientific lit-
erature. Moreover, stationary domain walls and remote
nucleation have not been observed in a single system, as
hinge thickness in rotating square mechanisms must be
varied to tune the energy landscape. Additionally, the
nucleation relied on the collision of two weakly nonlinear
waves, i.e., vector solitons (not transition waves); there-
fore, material dissipation and system size may diminish
their energy before the collision, leading to the absence
of nucleation. This highlights the need for designing a
metamaterial that addresses three key issues: (1) hav-
ing a tristable energy landscape for onsite potential, (2)
offering tunability in energy well for the formation of sta-
tionary domain wall and nucleation, and (3) providing a
robust way to remotely nucleate a new phase deep within
the boundaries of the metamaterial.

Therefore, we propose a magnetoelastic lattice com-
prising elastic elements and permanent magnets that pro-
vide tunable onsite potential. By adjusting the positions
of permanent magnets, we demonstrate experimentally
and numerically that the lattice can exhibit monostable,
bistable, or tristable behavior. Specifically, the tristable
lattice, with designed asymmetry, supports three types of
transition waves. Furthermore, we experimentally verify
a scaling law relating transition wave velocity to power
dissipation due to damping [32]. We also show that two
transition waves initiated from opposite ends can col-
lide within the lattice, nucleating a third phase. Finally,
by adjusting the spatial configurations of the permanent
magnets, we achieve a symmetric tristable potential and
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FIG. 1: Experimental setup. (a) One-dimensional lattice
assembly where the onsite potential is induced by fixed
magnets. Moving masses are the sliding beams. (b) Top
view of the unit cell, comprising three fixed magnets and
one moving magnet attached beneath the sliding beam.
(c) As per the discrete element model (DEM), the depths
of the fixed magnets (d1, d2, and d3) create a multi-stable
onsite potential for the moving magnet.

experimentally demonstrate that two transition waves
initiated from opposite ends collide, forming a station-
ary domain wall within the lattice.

EXPERIMENTAL SETUP

We design a lattice comprising 10 unit cells, each con-
sisting of a sliding beam (aluminum) connected to its
neighbors via axial springs (phosphor-bronze), as de-
picted in Fig. 1. The structure rests on a solid acrylic
base supported by a pair of aluminum extrusions, hous-
ing the linear guide rail and bearing assembly (MGN7C,
HIWIN). Underneath each beam is a Neodymium (N-52)
permanent magnet, referred to as a “moving magnet”, as
it moves along the x-axis with the beam. Three magnets
are affixed to the acrylic base for each unit cell, spaced
at a distance a = 20 mm between them. All the per-
manent magnets are spherical and uniformly magnetized
along the out-of-plane direction, or z-axis, with a radius
of r = 5 mm. The unit cells are adequately spaced, with
a distance l = 120 mm between them, ensuring that the

moving magnets primarily interact with the three fixed
magnets within their respective unit cells. By individu-
ally rotating the fixed magnets, we alter their depths (d1,
d2, and d3), thus adjusting the effective onsite potential
experienced by the moving magnet. For the measure-
ments, we employ a Laser Doppler Vibrometer (Poly-
tec single-point LDV) to detect the displacement of each
moving mass.

NUMERICAL MODELING

A. Nonlinear onsite potential

First, we model the magnetic interaction between mov-
ing and stationary magnets within a unit cell. Since
all magnets possess uniform magnetization ms and are
spherical with radius r, we derive the interaction energy,
a function of u, the axial displacement of the moving
mass, using Maxwell’s equations (refer to Supplemental
Material for details):

E(u) =
4πm2

s

9µ0
r6

[(
1

((u+ a)2 + d21)
3
2

− 3d21

((u+ a)2 + d21)
5
2

)

+

(
1

(u2 + d22)
3
2

− 3d22

(u2 + d22)
5
2

)

+

(
1

((u− a)2 + d23)
3
2

− 3d23

((u− a)2 + d23)
5
2

)]
,

(1)

where µ0 = 4π×10−7 Vs/Am denotes vacuum permeabil-
ity. Magnetization of all N-52 magnets are considered as
ms = 0.8T. Additionally, the depths of fixed magnets
d1, d2, and d3 are adjustable to modify the interaction
energy landscape, as illustrated in Fig. 2. We maintain
d2 constant and examine the energy landscape’s behavior
as d1 and d3 vary. Figure 2(a) demonstrates the possibil-
ity of monostable, bistable, and tristable potential land-
scapes for various depth combinations. We focus on the
tristable regime, presenting two distinct tristable land-
scapes, one asymmetric and the other symmetric about
u = 0, depicted in Figs. 2(b)(i) and 2(b)(ii) respectively.
In the later sections, we will analyze transition waves that
facilitate system switching across three different phases
(corresponding to three local minima), namely Phase 1,
Phase 2, and Phase 3.

B. Equations of motion

We employ the discrete element method (DEM) to sim-
ulate the dynamics of our system. Sliding beams with
moving magnets are treated as lumped masses intercon-
nected by linear springs. To simplify calculations, we
assume a significantly higher bending rigidity for the
beams, neglecting out-of-plane motion along the z-axis
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FIG. 2: (a) Phase diagram of the onsite potential as func-
tion of d1 and d3, for fixed a = 20 mm and d2 = 15.3
mm. (b) Two tristable onsite potentials considered for
experiments: (i) (d1, d3) = (18, 10.4) mm for an asym-
metric well, (ii) (d1, d3) = (12, 12) mm for a symmetric
well. Energy differences between different stable states
are highlighted. Arrows denote different types of transi-
tion waves between Phase 1, Phase 2, and Phase 3.

for the moving mass. The derivative of the nonconvex
onsite energy, previously calculated, serves as a measure
of the onsite force acting on the moving magnets. Con-
sequently, the equation of motion for the nth unit cell is
given by:

mun,tt − k(un−1 − 2un + un+1) + E′(un)

− c1(u(n−1),t − 2un,t + u(n+1),t) + c2 sgn(un,t) = 0,

(2)

where m represents the mass of the moving assembly, k
denotes the linear stiffness of the springs, c1 and c2 are

intersite and onsite damping parameters, respectively.
Variables following a comma in indices denote partial
derivatives. As the moving mass slides on the guide rails,
we utilize a dry friction damping model for the onsite
term and a viscous damping model for the springs.

C. Scaling law for transition wave

In this section, we derive the scaling law for transition
waves propagating in the system with velocity ν. We
thus assume un(t) = u(nl − νt) ≡ u(ξ) and substitute it
into Eq. (2) to yield

mν2u,ξξ − k
(
u(ξ − l)− 2u(ξ) + u(ξ + l)

)
+E′(u) + c1ν

[
u,ξ(ξ − l)− 2u,ξ(ξ) + u,ξ(ξ + l)

]
−c2ν sgn(u,ξ) = 0.

(3)

Equations are thus transformed into a traveling frame of
reference ξ. Multiplying Eq. (3) by u,ξ and integrating
over the real ξ axis, we obtain∫ ∞

−∞

[
mν2u,ξξ − k

(
u(ξ − l)− 2u(ξ) + u(ξ + l)

)
+E′(u) + c1ν

(
u,ξ(ξ − l)− 2u,ξ(ξ) + u,ξ(ξ + l)

)
−c2ν sgn(u,ξ)

]
u,ξdξ = 0.

(4)

If the transition wave changes the system from the ini-
tial phase ui at t → −∞ (ξ → ∞) to uf at t → ∞
(ξ → −∞), and hence we impose u(ξ → ∞) = ui and
u(ξ → −∞) = uf . Furthermore, for a dissipative system,
the wave profile would reach a steady state at t → ∞, im-
plying u,ξ(ξ → −∞) = 0. Since the system was initially
at rest, we also have u,ξ(ξ → ∞) = 0. Upon examining
the individual integrals in Eq. (4), we find∫ ∞

−∞

(
mν2u,ξξ

)
u,ξdξ =

∫ ∞

−∞

mν2

2

d

dξ

(
u,ξ

)2
dξ = 0. (5)

Next we compute the integral

I =

∫ ∞

−∞
[k (u(ξ − l)− 2u(ξ) + u(ξ + l))]u,ξdξ.

The second term of I reduced as

−2k

∫ ∞

−∞
u(ξ)u,ξdξ

= −k

∫ ∞

−∞

d

dξ

(
u(ξ)

)2
dξ = −k

(
u2
i − u2

f

)
.

(6)

We define η = ξ − l and subsequently the first term of I
can be rewritten as∫ ∞

−∞
ku(ξ − l)u,ξ(ξ)dξ =

∫ ∞

−∞
ku(η)u,η(η + l)dη. (7)
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Since, η is a dummy variable, this can be rewritten as∫ ∞

−∞
ku(η)u,η(η + l)dη =

∫ ∞

−∞
ku(ξ)u,ξ(ξ + l)dξ. (8)

Therefore, the first and the third terms of I are deduced
to ∫ ∞

−∞
[k (u(ξ − l) + (ξ + l))]u,ξdξ

= k

∫ ∞

−∞
[u(ξ)u,ξ(ξ + l) + u(ξ + l)u,ξ(ξ)] dξ

= k

∫ ∞

−∞

d

dξ
[u(ξ)u(ξ + l)] = k

(
u2
i − u2

f

)
. (9)

Combining Eqs. (6) and (9), the integral I = 0 . Finally,
the term in Eq. (4)∫ ∞

−∞
E′(u)u,ξdξ = E(ui)− E(uf ) = ∆E. (10)

Therefore Eq. (4) reduces to

∆E =

∫ ∞

−∞

[
− c1ν

(
u,ξ(ξ − l)− 2u,ξ(ξ) + u,ξ(ξ + l)

)
+ c2ν sgn(u,ξ)

]
u,ξdξ.

(11)

Multiplying both sides with ν/l, approximating the right-
hand side by a discrete system, we obtain

ν∆e ≃
N∑

n=1

[
− c1

(
un−1,t − 2un,t + un+1,t

)
+ c2 sgn(un,t)

]
un,t ≡ Pd.

(12)

where ∆e ≡ ∆E/l represents the change in onsite energy
per unit length. The right-hand side denotes the total
power dissipated (Pd) by viscous and Coulomb damping.
Due to discreteness, Pd oscillates in time with a period
T = l/ν (see Supplemental Material for details). There-
fore, we compute the time-averaged Pd as

⟨Pd⟩ =
1

T

∫ t0+T

t0

Pd dt, (13)

and we modify the scaling law as

ν∆e ≃ ⟨Pd⟩. (14)

A similar scaling law can be found in the work of Neel
et al. [32]. However, we have validated this prediction
for both non-linear onsite damping and linear intersite
damping in our system. Since the power dissipated on
the right-hand side is always positive due to the second
law, we can conclude that ν∆e ≥ 0, which is analogous to
the entropy condition derived in Ref. [7], with ∆e acting

as the driving force on the phase boundary propagation.
In our tristable lattice, the scaling remains independent
of inter-particle stiffness. Furthermore, the specific topol-
ogy of the onsite-site potential does not affect the scaling
law; instead, it depends on the initial and final configu-
ration of the energy state.

RESULTS AND DISCUSSIONS

In this section, we present the numerical and experi-
mental results for a tristable lattice comprising 10 unit
cells.

Formation of transition waves

We perform experiments on a chain with an asymmet-
ric tristable onsite potential, as depicted in Fig. 2(b)(i).
Due to asymmetry in the well, we expect several robust
transition waves propagating in the lattice. These wave
profiles are also referred to as kinks or antikinks [33], and
manifest as localized wave packets propagating with a
constant shape. We identify three distinct types of tran-
sition waves: (i) 1 → 2, with the transition from Phase
1 to Phase 2 ; (ii) 2 → 3, with the transition from Phase
2 to Phase 3 ; and (iii) 1 → 3, with the transition from
Phase 1 to Phase 3.
First, we consider a scenario where all unit cells are

in the highest energy state, i.e., Phase 1, and both ends
of the chain are fixed. We then snap the first unit cell
to Phase 2 and fix it while holding the second unit cell.
This causes the spring between the first and the second
unit cell to compress. We then release the second unit
cell. Consequently, we observe a large-amplitude non-
linear wave propagating through the lattice, transition-
ing each unit cell from Phase 1 to Phase 2 as shown in
Fig. 3(a). The spatiotemporal map of the displacement
is plotted in Fig. 3(b), clearly indicating the propagation
of the 1 → 2 transition wave.
Similarly, we conduct experiments and observe 2 → 3

and 1 → 3 transition waves as shown in Fig. 3(c) and
3(d), respectively. To the best of the authors’ knowledge,
the 1 → 3 transition wave, which skips the intermediate
stable state, has not been documented in the literature
previously. We also observe that 1 → 2, 2 → 3, and
1 → 3 transition waves reach the end of the chain ap-
proximately at time 0.32 s, 0.42 s, and 0.27 s, respec-
tively. Therefore, we conclude that the 1 → 3 transition
wave has the highest velocity, whereas the 2 → 3 transi-
tion wave exhibits the lowest velocity.
Experimental data is utilized to fine-tune the damping

parameters of the numerical model, with values of c1 as
0.05, 0.03, and 0.1 N s/m, and c2 as 0.11, 0.2, and 0.13
N for 1 → 2, 2 → 3, and 1 → 3 transition waves, re-
spectively. The inset of Fig. 3(b)–(d) shows the compar-
ison of temporal dynamics measured experimentally and
modeled numerically. Moreover, we experimentally and
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FIG. 3: Three types of transition waves. (a) Snapshots from experiments demonstrating the 1 → 2 transition wave.
The unit cells are labeled with the phases. (b),(c),(d) Spatiotemporal plots of displacement obtained from experiments
for 1 → 2, 2 → 3, and 1 → 3 transition waves, respectively. Insets show the displacement time series of different
moving masses. (e) Experimental validation of the scaling law in Eq. (14).

numerically verify the energy transport law in Eq. (14)
for all three types of transition waves, as illustrated in
Fig. 3(e). We find that the averaged power dissipated is
the highest for 1 → 3 waves and the lowest for 1 → 2
waves.

Given the specific parameters of the system, we also
conduct numerical simulations on longer chains with 100
unit cells (see Supplemental Material for details). We
confirm that all types of transition waves are sustainable
even in longer chains. This further demonstrates the fact
that the asymmetries in the potential wells lead to energy
gain after each snapping of unit cells, which compensates
for the energy lost due to damping, and thus facilitates
a robust propagation of transition waves.

Finally, it is also interesting to evaluate the role of
boundary conditions on the transition waves. All of our
studies have been performed on chains with fixed-fixed
boundary conditions. We do not observe the reflection
of any type of transition wave as it hits the other end of
the chain. However, in our preliminary numerical study,

we find that a free boundary could enable the reflection
of transition waves (see Supplementary Material for de-
tails).

Nucleation

In this section, we study the collision of two transition
waves. We consider a chain with an asymmetric tristable
onsite potential shown in Fig. 2(b)(i) and excite the chain
from both ends. Initially, the entire chain is in Phase
1. We then trigger 1 → 2 transition waves from both
ends. We observe transition waves propagating towards
each other from the extreme ends and colliding at the
middle of the chain at about t = 0.254 s as shown in
Fig. 4(a). The collision induces larger displacements and
thereby nucleates a new phase, i.e., Phase 3, in the 5th
and 6th unit cells. Consequently, this nucleus triggers
2 → 3 transition waves from the middle of the chain that
propagate back to the boundaries.
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FIG. 4: Collision of two 1 → 2 transition waves nucleates a new phase, Phase 3. (a) Experimental snapshots highlight-
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experiments showing the nucleation phenomena. The nucleus is formed at the 5th and 6th particles. (c) Displacement
time series for the 4th and the 6th particles.

In Fig. 4(b), we show experimentally measured spa-
tiotemporal map of displacement. The formation of a
remote nucleus and the lattice transforming to Phase 3
is evident. We further show the temporal dynamics of
the 4th and 6th unit cells in Fig. 4(c). We observe that
the 4th unit cell transitions to Phase 2 (u ≈ 0) before the
6th unit cell. However, the latter transitions to Phase 3
earlier than the 4th unit cell. This is consistent with the
earlier observation that nucleation occurs at the 5th and
6th unit cells.

This phenomenon can be interpreted as the collision
of a kink and an anti-kink propagating in opposite direc-
tions [33]. After collision, they annihilate and give rise
to a new phase. This new phase leads to the formation
of a new pair of kink and anti-kink, which propagate in
opposite directions. Interestingly, the size of the nucleus
depends on the number of particles in the chain. For
example, two particles (the 5th and 6th) create the nu-
cleus in the case above. However, for an odd number of
particles in the chain, it is possible to have a nucleus of
only one particle (see Supplemental Material for details).

This implies that even if only a single particle is nucle-
ated due to the collision of a kink and an anti-kink, it
can effectively induce the propagation of the new phase
in both directions.

Such a collision of two transition waves and trigger-
ing remote nucleation of a new phase persists for even
longer chains with damping. This is because the asym-
metry in the tristable potential well helps overcome the
damping effects. Thus, both the colliding and nucleating
transition waves are robust for traveling long distances.
Moreover, it is also possible to remotely nucleate a new
phase at an arbitrary location (and not only at the cen-
ter) in the chain using a time delay of actuation from
either end (see Supplemental Material for details).

Stationary Domain Wall

In this section, we investigate the collision of two tran-
sition waves but with different onsite potentials. The tun-
ability of our magnetoelastic lattice allows us to obtain a
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symmetric onsite potential well as shown in Fig. 2(b)(ii).
The difference in the energy levels of Phase 2 with Phase
1 and Phase 3 enables two different types of transition
waves in the system. Initially, the whole lattice is kept
in Phase 2. We trigger 2 → 1 and 2 → 3 transition
waves from opposite ends and observe their collision.
This scenario can also be understood as a collision of
two kinks [33].

In Fig. 5(a), we observe two distinct propagating tran-
sition waves (moving domain walls) that collide at the
center of the chain. However, the 5th and the 6th parti-
cles in the chain continue to remain in Phase 2, forming a
stationary domain wall between Phase 1 and Phase 3. In
Fig. 5(b), we show experimentally measured spatiotem-
poral maps of displacement confirming the formation of
a stationary domain wall.

In Fig. 5(c), we plot the transient response of several
particles in the chain. We observe that the 5th and the
6th particles remain stationary, forming a stationary do-
main wall; however, their equilibrium state is slightly
perturbed from Phase 2 due to the coexistence of other
states next to them.

We also verify that stationary domain walls can form
in longer chains. Moreover, the domain wall could be
made of only one particle if the chain consists of an odd
number of particles. Finally, the location of the domain
wall can be tuned by introducing a time delay in trig-

gering the transition waves from opposite ends (refer to
Supplementary Material for details).

CONCLUSION

In summary, we investigate a one-dimensional magne-
toelastic chain with tunable onsite potential. Specifically,
our focus is on a tristable lattice, where we experimen-
tally verify the existence of different types of transition
waves. These waves robustly propagate in the lattice due
to the designed asymmetry in the potential well. We also
verify experimentally a scaling law that relates the aver-
aged power dissipated to the asymmetry in the potential
well and wave velocity for all types of transition waves.
Additionally, we explore the collision of transition

waves. In the case of an asymmetric potential well, when
two transition waves collide as a kink and anti-kink, we
observe the remote nucleation of a new phase. However,
in the case of a symmetric potential well, two transition
waves collide as kinks, resulting in the formation of a
stationary domain wall between two different phases.
These findings underscore the richness of dynamical

phenomena in multistable lattices. The design holds
promise for the development of reconfigurable materials
under external fields, where remote actuation through
transition waves can be utilized to tune the final state of
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the material.
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SUPPLEMENTAL MATERIAL

I. CALCULATION OF ONSITE POTENTIAL

A uniform magnetized sphere B, supporting a magnetization m(x) generates a magnetic field h(x) on all R3. The
magnetic field h(x) can be obtained by solving Maxwell’s equation of magnetization:

∇× h(x) = 0,

∇ · (h(x) +mχ
B
) = 0,

(1)

where χ
B
is the characteristic function defined as follows:

χ
B
=

{
1 for x ∈ B

0 for x ∈ R3\B .
(2)

For a uniformly magnetized sphere, the induced magnetic field h(x) is given as [34]

E
[J

] Phase 2

10
-3

u [mm]

0

-10

-20

Phase 1

Phase 3

-50 0 50

S

B0

N

B1

B2

B3

d1 d2 d3

𝑎 𝑎

(b)(a)

FIG. S1: (a) Schematic of the unit cell, where the fixed magnets are kept at depths d1, d2 and d3 from the the moving
magnet. (c) Onsite potential of tristable unit cell.

h(x) =


−1

3
Im for x ≤ B

−r3

3

(
I
|x|3

− 3
x⊗ x

|x|5

)
m for x ≥ B .

(3)

The magnetostatic energy of a uniformly magnetized sphere can be computed as follows

ME = kd

∫
R3

|h|2 dx = −kd

∫
R3

h.mdx = −kd

∫
B

h.mdx = −kdm.

∫
B

hdx = kdm.
I
3
m|B| (4)

where kd = m2
s/2µ0, ms being the magnetization of the uniformly magnetized sphere, µ0 = 4π×10−7 Vs/Am denotes

vacuum permeability and |B| denotes the volume of the sphere
We now write down the total magnetostatic energy of four uniformly magnetized identical spheres B0, B1, B2, and

B3 (see Fig. S1(a)) supporting magnetization m0, m1, m2 and m3 respectively, as

ME = kd

∫
R3

|h0 + h1 + h2 + h3|2dx

= kd

(∫
R3

h0
2dx+

∫
R3

h1
2 + dx

∫
R3

h2
2dx+

∫
R3

h3
2dx

)
︸ ︷︷ ︸

self-energies

+

2kd

(∫
R3

h0.h1 dx+

∫
R3

h0.h2 dx+

∫
R3

h0.h3 dx+

∫
R3

h1.h2 dx +

∫
R3

h1.h3 dx+

∫
R3

h2.h3 dx

)
︸ ︷︷ ︸

interaction energies

.

(5)
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The first four integrals represent the self energies and the last six integrals represent the interaction energies. Note
that the interaction energy is of the form

∫
hi.hj dx and represents the interaction energy of the ith magnet and the

jth magnet (i ̸= j). This interaction energy depends on the distance between the ith magnet and the jth magnet.

Since B1, B2 and B3 are fixed and uniformly magnetized spheres;
∫
h1.h2 dx,

∫
h1.h3 dx and

∫
h2.h3 dx are all

constants. Also note that since B1, B2 and B3 are uniformly magnetized, their self energies (see Eq. (4)) can be
written as ∫

R3

h0
2dx =

∫
R3

h1
2 = dx

∫
R3

h2
2dx =

∫
R3

h3
2dx = kdm.

I
3
m|B| = constant . (6)

Evaluation of the integral in Eq. (5) yields the total magnetostatic energy of the system as follows

ME = 2kd

(∫
R3

h0.h1 dx+

∫
R3

h0.h2 dx+

∫
R3

h0.h3dx

)
︸ ︷︷ ︸

interaction energies

+constant . (7)

We thus get the total magnetostatic energy (modulo a constant) as

E = 2kd

(∫
R3

h0.h1 dx+

∫
R3

h0.h2 dx+

∫
R3

h0.h3dx

)
. (8)

For the considered unit cell with three fixed magnets spaced at a distance a (i.e., their centers are located at x =
−a, 0, a) at depths d1, d2 and d3 from the moving magnet (see Fig. S1(a)), we can evaluate the above integral and
obtain the following:

E(u, a, d1, d2, d3) =
4πm2

s

9µ0
r6

[(
1

((u+ a)2 + d21)
3
2

− 3d21

((u+ a)2 + d21)
5
2

)
+

(
1

(u2 + d22)
3
2

− 3d22

(u2 + d22)
5
2

)

+

(
1

((u− a)2 + d23)
3
2

− 3d23

((u− a)2 + d23)
5
2

)]
.

(9)

The exact energy is plotted in Fig. S1(b), with numerical values: µ0 = 4π × 10−7 Vs/Am, ms = 0.8T, (d1, d2, d3) =
(18, 15.3, 10.4) mm, r = 5 mm and a = 20 mm. Therefore, we achieve a tristable onsite energy potential, and define
the three stable states as Phase 1, Phase 2, and Phase 3. The tunable depths d1, d2 and d3 help us to tailor the
energy landscape.

II. TRANSITION WAVES IN LONGER CHAINS WITH DAMPING

Considering the system parameters used in experiments, we conduct numerical simulations on longer chains con-
sisting of 100 particles. With similar initial conditions as described in the main text, we observe that all 1 → 2, 2 → 3,
and 1 → 3 transition waves are sustainable even in longer chains, as shown in Fig. S2.

We also calculate the dissipated power (Pd) for all three transitions. It is notable that the dissipated power oscillates
in time with a period T = l/ν. We compute the time-averaged Pd and utilize it to verify the scaling law (Eq. 11)
numerically and experimentally (as seen in Fig. 3(e) in the manuscript).

III. REFLECTION OF TRANSITION WAVES FROM A FREE BOUNDARY

We investigate a chain of 100 unit cells with the tristable asymmetric onsite potential depicted in Fig. 2(b) of the
main text. Unlike previously, the right end of the chain is kept free instead of fixed. Initially, all unit cells in the
chain are in Phase 1. The first element is forced to snap to Phase 2.

In Fig. S3, we observe a 1 → 2 transition wave traveling from left to right, converting the entire chain to Phase
2. Upon reaching the right (free) boundary, a new transition wave (2 → 3) reflects back, converting the entire chain
from Phase 2 to Phase 3 (the lowest energy state).
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FIG. S2: Numerical study for a chain of 100 particles. (a) (d) (g) Spatiotemporal plot of displacement (b) (e) (h)
displacement-time series, and (c) (f) (i) Dissipated power, for (a) (b) (c) 1 → 2 transition, (d) (e) (f) 2 → 3 transition,
(g) (h) (i) 1 → 3 transition.

IV. NUCLEATION IN LONGER CHAINS WITH DAMPING

We investigate longer chains comprising 100 unit cells for nucleation study. Initially, all unit cells are in Phase 1.
1 → 2 transition waves are triggered from opposite ends. Despite damping, these waves persist in longer chains, as
shown in Fig. S4(a). The collision of the kink and anti-kink occurs at the center, leading to their annihilation and
the emergence of a new phase (Phase 3 ). This new phase initiates the formation of a new pair of kink and anti-kink,
propagating in opposite directions as 2 → 3 transition waves shown in Fig. S4(b). Thus, the current configuration,
with asymmetric potentials and the collision dynamics of kink and anti-kink, presents a robust method for remotely
nucleating a new phase even in longer chains and damped systems.

Note that the nucleus of the new phase shown in Figs. S4(c),(d) consists of the two middlemost particles in chains
with an even number of unit cells. However, for an odd number of particles (n = 199) in the chain, the collision of a
kink and anti-kink from either side of the chain results in only the central (singular) element acquiring Phase 3. The
nucleus formed by this single element (the 100th particle) effectively initiates the propagation of the new phase in
both directions of the chain, as shown in Fig. S5(a).

Moreover, we can tailor the spatial location of nucleation using a time delay of actuation from either end, as
demonstrated in Fig. S5(b). We consider a chain consisting of 100 unit cells. We apply similar initial conditions at
both ends (Phase 1 to Phase 3 ), but the right end of the chain is actuated with a delay of 1 s. Consequently, a
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FIG. S3: Reflection of transition wave from a free boundary. (a) Spatiotemporal plot of displacement, (b)
displacement-time series, (c) spatial profiles at time 2.7085 s and 6.8755 s
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FIG. S4: Collision of a kink and and an anti-kink resulting in the formation of a new phase in longer chains. (a)-(b)
spatial profiles at time 1.1041 s and 3.6041 s respectively. (c) Spatiotemporal plot of displacement for the formation
of a Phase 3 upon collision of two transition fronts 1 → 2, (d) displacement-time series.

nucleus is formed upon the collision of two waves, but not precisely at the center of the chain. Instead, the nucleus
is biased towards the right end of the chain. Nonetheless, this nucleus can effectively trigger 2 → 3 transition waves
in both directions of the chain. Hence, the time-delayed actuation from either end provides a convenient method to
tailor the spatial location of remote nucleation within the lattice.
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plot of displacement for 199 particles. Tunable spatial location of nucleation using time delay of actuation, (b)
spatiotemporal plot of displacement when the right end of the chain is actuated at delay of 1 s.

V. STATIONARY DOMAIN WALLS IN LONGER CHAINS WITH DAMPING

We perform numerical simulations on longer chains of length 100 (and 99) with opposite initial conditions, i.e. we
trigger 2 → 3 and 2 → 1 transition waves from opposite ends. Upon collision of two kinks, we clearly observe the
formation of domain wall in both the cases as shown in Figs. S6 and S7. It is intriguing to note that in odd chain
lengths, a single particle forms the stationary domain wall, while in even chain lengths, the stationary domain wall is
shared by two particles. Note that the steady state of the stationary domain wall is different in odd and even number
of particles. When we have a chain made of odd number of unit cells, the stationary domain wall remains exactly at
Phase 2 (u ≈ 0), as shown in Fig. S7(b). However, when the number of elements in the chain is even, the domain wall
is shared by the middlemost two elements, having their equilibrium state slightly perturbed from Phase 2, as shown
in Fig. S6(d).

Furthermore, by adjusting the timing of actuation from each end, as illustrated in Fig. S8, we can customize the
spatial position of the stationary domain wall. We examine a chain comprising 100 unit cells. While triggering 2 → 1
and 2 → 3 transition waves from opposite ends, we introduce a 1-second delay in actuation at the right end of the
chain. Consequently, upon the collision of these waves, a stationary domain wall forms, not exactly at the chain’s
center. Instead, it biases towards the right end. Thus, employing time-delayed actuation from either end offers a
convenient means to adjust the spatial location of stationary domain wall within the lattice.
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FIG. S6: Collision of two kinks resulting in a stationary domain wall in longer chains. (a)-(b) spatial profiles at time
1.4999 s and 3.4999 s respectively. (c) spatiotemporal plot of dsplacement and (d) displacement time series, for the
case when the chain is constituted of even (100) number of particles. The stationary domain wall is formed of two
unit cells.
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FIG. S7: Formation of domain walls in case of odd number of particles (a) spatiotemporal plot of displacement and
(b) displacement time series for the case when the chain is constituted of odd (99) number of particles. The stationary
domain wall is formed of one unit cell.
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FIG. S8: Spatially tunable domain wall. The right end of the chain is actuated at a delay of 1 s. (a) spatiotemporal
plot of displacement and (b) displacement time series of 100 particles. The SDW is formed of 58th and 59th particle.
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