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ULRICH SUBVARIETIES AND THE NON-EXISTENCE OF LOW RANK ULRICH

BUNDLES ON COMPLETE INTERSECTIONS

ANGELO FELICE LOPEZ AND DEBADITYA RAYCHAUDHURY

Abstract. We characterize the existence of an Ulrich vector bundle on a variety X ⊂ PN in terms of
the existence of a subvariety satisfying some precise conditions. Then we use this fact to prove that a
complete intersection of dimension n ≥ 4, which if n = 4 is very general and not of type (2, 2), does not
carry any Ulrich bundles of rank r ≤ 3 unless n = 4, r = 2 and X is a quadric.

1. Introduction

It is a well-known principle, in algebraic geometry, that the geometry of a given variety X is often
governed by its subvarieties. In a similar fashion, also vector bundles on X give important information
on its geometry. In many cases these two aspects have met, giving rise to deeper understanding. A
celebrated example of this is the Hartshorne-Serre correspondence.

It is the first purpose of this paper to highlight another instance of the above in the case of Ulrich
vector bundles.

Let X ⊂ PN is a smooth irreducible variety of dimension n ≥ 1. A vector bundle E on X is called
Ulrich if H i(E(−p)) = 0 for all i ≥ 0 and 1 ≤ p ≤ n. While the importance of Ulrich vector bundles
is well-known (see for example [ES1, Be2, CMRPL] and references therein), the main general problem
about them is their conjectural existence.

With this in mind, the starting point of this research was to study which subvarieties of X one can
associate to an Ulrich bundle. This is of course not a new idea, as it has been proposed several times by
many authors (in fact already for aCM bundles), see for example [AK, Be1, Be2, C, CH, CKL, HH] and
references therein. A more systematic approach was recently given in [CFK], where the existence of an
Ulrich bundle on a threefold X was related to the existence of a curve on X satisfying some properties.

Our first task has been to generalize, essentially in the same way, the above result [CFK, Thm. 3.1]
to any n-dimensional variety. In order to state it, we need to introduce some notation.

Let Z ⊂ X be a Cohen-Macaulay, pure codimension 2 subvariety and let D be a divisor on X. The
short exact sequence

0 → JZ/X(KX +D) → OX(KX +D) → OZ(KX +D) → 0

determines a coboundary map

γZ,D : Hn−2(OZ(KX +D)) → Hn−1(JZ/X(KX +D))

whose dual, by Serre duality, is

(1.1) γ∗Z,D : Ext1OX
(JZ/X(D),OX) → H0(ωZ(−KX −D)).

Moreover, assume that either Z is as above or is empty. For any subspace W ⊆ Ext1OX
(JZ/X(D),OX)

and for any line bundle L on X, one can define a natural map (see (4.2))

δZ,W,L : Hn−1(JZ/X(D)⊗ L) → W ∗ ⊗Hn(L).

Then we have
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Theorem 1. Let X ⊂ PN be a smooth irreducible variety of dimension n ≥ 2, degree d ≥ 2 and let D
be a divisor on X. Then (X,OX (1)) carries a rank r ≥ 2 Ulrich vector bundle E with det E = OX(D)
if and only if there is a subvariety Z ⊂ X such that:

(a) Z is either empty or of pure codimension 2,
(b) if Z 6= ∅ and either r = 2 or n ≤ 5, then Z is smooth (possibly disconnected),
(c) if Z 6= ∅ and n ≥ 6, then Z is either smooth or is normal, Cohen-Macaulay, reduced and with

dimSing(Z) = n− 6,

and there is a (r − 1)-dimensional subspace W ⊆ Ext1OX
(JZ/X(D),OX ) such that the following hold:

(i) If Z 6= ∅, then γ∗Z,D(W ) generates ωZ(−KX −D) (that is the multiplication map

γ∗Z,D(W )⊗OZ → ωZ(−KX −D) is surjective).

(ii) H0(KX + nH −D) = 0.
(iii) H0(JZ/X(D −H)) = 0.

(iv) If n ≥ 3, then H i(JZ/X(D − pH)) = 0 for 1 ≤ i ≤ n− 2, 1 ≤ p ≤ n.

(v) (−1)n−1χ(JZ/X(D − pH)) = (r − 1)χ(KX + pH), for 1 ≤ p ≤ n.

(vi) δZ,W,−nH : Hn−1(JZ/X(D − nH)) → W ∗ ⊗Hn(−nH) is either injective or surjective.

Moreover the following exact sequences hold

0 → W ∗ ⊗OX → E → JZ/X(D) → 0

and, if Z 6= ∅,

0 → OX(−D) → E∗ → W ⊗OX → ωZ(−KX −D) → 0.

With this result at hand, one can start exploring the existence problem for Ulrich bundles in geometric
terms, by using subvarieties. We thus give the following

Definition 1.1. Let r ≥ 2 and let X ⊂ PN be a smooth irreducible variety of dimension n ≥ 2, degree
d ≥ 2 and let D be a divisor on X. An Ulrich subvariety of X is a subvariety Z ⊂ X carrying a
(r − 1)-dimensional subspace W ⊆ Ext1OX

(JZ/X(D),OX ) such that properties (a)-(c) and (i)-(vi) of
Theorem 1 hold.

A priori, an Ulrich subvariety can be empty. In that case the conditions of the theorem hold with
JZ/X = OX . On the other hand, several simple hypotheses can be given to check that Z is nonempty,
irreducible and to apply the conditions in Theorem 1, see Remarks 4.3 and 4.4.

Now, Theorem 1 says that a variety X carries an Ulrich bundle if and only if X contains an Ulrich
subvariety. Hence the question becomes: when do Ulrich subvarieties exist on a given X?

According to the references given before, several examples can be given. To give an explicit, probably
well-known example (see, e.g. [Be1, Prop. 8.2]), consider a smooth hypersurface X ⊂ Pn+1 of degree
d ≥ 2 and dimension n ≥ 2. Then we prove in Corollary 5.3 that, in rank 2 (if n = 2 we also
need to assume that det E = OX(d − 1)), an Ulrich subvariety of X is a smooth (n − 2)-dimensional
arithmetically Gorenstein subvariety Z ⊂ X, irreducible when n ≥ 3, with minimal free resolution

0 → OPn+1(−2d+ 1) → OPn+1(−d)⊕(2d−1) → OPn+1(−d+ 1)⊕(2d−1) → JZ/Pn+1 → 0.

As a consequence, for example if n ≥ 5, one sees very quickly that an Ulrich subvariety cannot be
contained in a smooth hypersurface of degree d. More generally, we recover in the case of Ulrich bundles,
in a unified way, several facts known for aCM bundles (see [Be1, Prop. 7.6(b)], [CM, Thm. 1.3], [KRR1,
Main Thm.]), [KRR2, Thm. 1.1(2)(b)], [HK, Prop. 3.2], [KRR2, Thm. 1.1(1)]) (as a matter of fact, by
the above results, (i) below holds also for d = 16 and (iii) also for d = 3. The latter is also shown for
very general in Theorem 2).

Corollary 1. Let n ≥ 2 and let X ⊂ Pn+1 be a smooth hypersurface of degree d ≥ 2. Then X does not
carry rank 2 Ulrich vector bundles if any of the following holds:

(i) X is very general, n = 2 and d ≥ 17.
(ii) X is general, n = 3 and d ≥ 6.
(iii) X is general, n = 4 and d ≥ 4.
(iv) n ≥ 5.
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Previously, these results have been proved, as far as we know, using the crucial fact that, in rank 2,
if a hypersurface X carries an Ulrich subvariety, then it is Pfaffian. But as soon as one considers other
simple varieties, such as complete intersections, or higher rank, this algebraic property is not available
any more and the question of existence of low rank Ulrich bundles has remained open, so far (except
when X is a hypersurface and r = 3 [RT1, RT2, Tr], or a complete intersection of degrees di ≫ 0 and
r = 2 [BR], or a complete intersection of low degree [C, Fi] and r = 2; see also [HH, Er, Ma1, Ma2]).

Using Theorem 1, we show that, in low-rank, there are no Ulrich subvarieties on complete intersec-
tions. In fact, we have

Theorem 2. Let c ≥ 1, n ≥ 4 and let X ⊂ Pn+c be a smooth complete intersection of hypersurfaces of
degrees (d1, . . . , dc) with di ≥ 2, 1 ≤ i ≤ c. Assume that one of the following holds:

(a) n ≥ 5, or
(b) n = 4, X is very general and is not of type (2, 2).

Then X does not carry Ulrich vector bundles of rank r ≤ 3, unless n = 4, r = 2 and X ⊂ P5 is a
quadric.

Note that, in the case n = 4, X of type (2, 2) of Theorem 2, Ulrich bundles of rank 2 do exist by
[ES2, Thm. 5.5].

In a forthcoming paper [LR3] we will apply Theorem 1 to study low rank Ulrich bundles on Veronese
varieties.

2. Notation and conventions

Throughout the paper we work over the complex numbers.
We henceforth establish the following

Notation 2.1.

• X ⊂ PN is a smooth irreducible variety of dimension n ≥ 1.
• H ∈ |OX(1)| is a very ample divisor.
• d = Hn is the degree of X.
• If Y ⊆ PN is a closed subscheme, IY is its saturated homogeneous ideal.
• We say that X is subcanonical if −KX = iXH, for some iX ∈ Z.
• We write aCM for arithmetically Cohen-Macaulay and aG for arithmetically Gorenstein.

• We use the convention
( ℓ
m

)
= ℓ(ℓ−1)...(ℓ−m+1)

m! for m ≥ 1, ℓ ∈ Z. Note that
(−ℓ
m

)
= (−1)m

(ℓ+m−1
m

)

and χ(OPm(ℓ)) =
(ℓ+m

m

)
.

3. Generalities on Ulrich vector bundles

We will often use the following well-known properties of Ulrich bundles.

Lemma 3.1. Let X ⊂ PN and let E be a rank r Ulrich bundle. We have:

(i) E is globally generated.
(ii) E is aCM.
(iii) c1(E)H

n−1 = r
2 [KX + (n+ 1)H]Hn−1.

(iv) E|Y is Ulrich on a smooth hyperplane section Y of X.

(v) det E is globally generated and it is non trivial, unless (X,H, E) = (Pn,OPn(1),O⊕r
Pn ).

(vi) H0(E∗) = 0, unless (X,H, E) = (Pn,OPn(1),O⊕r
Pn ).

(vii) OX(l) is Ulrich if and only if (X,H, l) = (Pn,OPn(1), 0).

(viii) If n ≥ 2, then c2(E)H
n−2 = 1

2 [c1(E)
2 − c1(E)KX ]Hn−2 + r

12 [K
2
X + c2(X) − 3n2+5n+2

2 H2]Hn−2.

(ix) χ(E(m)) = rd
(m+n

n

)
.

Proof. See for example [LR1, Lemma 3.2] for (i)-(iv) and (viii), (ix), [Lo, Lemma 2.1] for (v), [CFK,
Lemma 2.1] for (vi) and [ACLR, Lemma 4.2] for (vii). �

The following construction will be fundamental in the paper.

Lemma 3.2. Let n ≥ 2, let X ⊂ PN and let E be a rank r ≥ 2 Ulrich bundle with det E = OX(D).
Then there is a subvariety Z ⊂ X such that:
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(a) Z is either empty or of pure codimension 2.
(b) If Z 6= ∅, then [Z] = c2(E).
(c) If Z 6= ∅ and either r = 2 or n ≤ 5, then Z is smooth (possibly disconnected).
(d) If Z 6= ∅ and n ≥ 6, then Z is either smooth or is normal, Cohen-Macaulay, reduced and with

dimSing(Z) = n− 6. Moreover, if Sing(Z) 6= ∅, then [Sing(Z)] = c3(E)
2 − c2(E)c4(E) ∈ A6(X).

(e) There is an effective Cartier divisor Y ∈ |det(E)|, possibly empty, such that Z ⊂ Y,Sing(Z) ⊆
Sing(Y )∩Z. Also, if Y 6= ∅, then Y is smooth if n ≤ 3, while, if n ≥ 4, then Y is either smooth
or dimSing(Y ) = n− 4 and [Sing(Y )] = c2(E)

2 − c1(E)c3(E) ∈ A4(X).

Also, the following hold:

(i) If Z 6= ∅, then deg(Z) = 1
2D

2Hn−2− 1
2DKXHn−2− rd

24(3n
2+5n+2)+ r

12K
2
XHn−2+ r

12c2(X)Hn−2.
(ii) There is an exact sequence

(3.1) 0 → O
⊕(r−1)
X → E → JZ/X(D) → 0

(with the convention that JZ/X = OX if Z = ∅).
(iii) If D = uH, we have for any m ∈ Z:

χ(OZ(m)) =

(
m+N

N

)

−rd

(
m− u+ n

n

)

+(r−1)

(
m− u+N

N

)

−χ(JX/PN (m))−(r−1)χ(JX/PN (m−u))

(with the convention that χ(OZ(m)) = 0 if Z = ∅).

Moreover assume that Z is nonempty and smooth. Then there exists a rank r− 2 vector bundle FZ on
Z sitting in the exact sequence

(3.2) 0 → FZ → E(−D)|Z → N∗
Z/X → 0

and satisfying:

(iv) If r = 2, then FZ = 0, that is NZ/X
∼= E|Z and ωZ

∼= OZ(KX +D).
(v) If r = 3, then FZ = ωZ(−KX − 2D).
(vi) If r ≥ 4, then det(FZ) = ωZ(−KX − (r − 1)D) and we have an exact sequence

(3.3) 0 → ω−1
Z (KX) → OZ(−D)⊕(r−1) → FZ → 0.

(vii) If r = 2 or r ≥ 4, then c2(Z) = c2(X)|Z − c2(E)|Z +K2
Z −KZKX |Z.

(viii) If r = 3, then
c2(Z) = c2(X)|Z − c2(E)|Z − c1(E)

2
|Z +KZKX |Z −K2

X |Z + 2KZc1(E)|Z − 2KX |Zc1(E)|Z .

Proof. By Lemma 3.1(i) we can choose a general subspace V ⊂ H0(E) such that dimV = r − 1, thus
giving rise to a general morphism ϕ : V ⊗OX → E . It is well known (see for example [Ba, Statement
(folklore)(i), §4.1] and [ACGH, Ch. VI, §4, page 257]) that there is an exact sequence

0 → V ⊗OX → E → JZ/X(D) → 0

where Z = Dr−2(ϕ) is the degeneracy locus, so that Z is either empty or is of pure codimension 2 and
in the latter case [Z] = c2(E). Moreover, Sing(Z) = Dr−3(ϕ) that is either empty or of codimension
6. Hence Z is smooth if r = 2 or if n ≤ 5, while, if Sing(Z) 6= ∅, then dimSing(Z) = n − 6 when
n ≥ 6 and in that case Z is normal, Cohen-Macaulay and reduced (see for example [Tt, Prop. 2.4]).
Also, if Sing(Z) 6= ∅, then [Sing(Z)] = c3(E)

2 − c2(E)c4(E) by Porteous’ formula (see for example [EH,
Thm. 12.4]). This proves (a)-(d) and (ii). To see (e) choose a general subspace V ′ ⊂ H0(E) such that
dimV ′ = r and V ⊂ V ′. Then we get a general morphism ϕ′ : V ⊗OX → E and setting Y = Dr−1(ϕ

′)
we see that Y ∈ |det(E)| and Z ⊂ Y . As above, we have that Sing(Y ) = Dr−2(ϕ

′), thus it has the
required properties. This proves (e). As for (i), since [Z] = c2(E), we have that deg(Z) = c2(E)H

n−2 is
given by Lemma 3.1(viii). To see (iii), we use the exact sequences

0 → JZ/X(m) → OX(m) → OZ(m) → 0, 0 → JX/PN (m) → OPN (m) → OX(m) → 0

and the one obtained from (3.1)

0 → O
⊕(r−1)
X (m− u) → E(m− u) → JZ/X(m) → 0.
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We get, using Lemma 3.1(ix),

χ(OZ(m)) =

= χ(OX(m))− χ(JZ/X(m)) = χ(OPN (m)) − χ(JX/PN (m))− χ(E(m− u)) + (r − 1)χ(OX (m− u)) =

= χ(OPN (m))− χ(JX/PN (m))− χ(E(m− u)) + (r − 1)χ(OPN (m− u))− (r − 1)χ(JX/PN (m− u)) =

=

(
m+N

N

)

− rd

(
m− u+ n

n

)

+ (r − 1)

(
m− u+N

N

)

− χ(JX/PN (m))− (r − 1)χ(JX/PN (m− u)).

This proves (iii). To see (iv)-(vi), we use that JZ/X ⊗OZ
∼= N∗

Z/X . By (3.1) we find the exact sequence

0 → OX(−D)⊕(r−1) → E(−D) → JZ/X → 0

so that, tensoring by OZ , and we have another exact sequence

OZ(−D)⊕(r−1) → E(−D)|Z → N∗
Z/X → 0.

Setting FZ = Ker{E(−D)|Z → N∗
Z/X}, we get (3.2) and setting G = Ker{OZ(−D)⊕(r−1) → FZ} we

also have the exact sequence

0 → G → OZ(−D)⊕(r−1) → FZ → 0.

Since E(−D)|Z , N
∗
Z/X and OZ(−D)⊕(r−1) are all locally free, we see that the same holds for FZ and

G. Hence FZ has rank r − 2 and G is a line bundle. This proves (iv) and also (v)-(vi) by taking
determinants. Finally (vii) and (viii) follow computing Chern classes from (3.2), (3.3) and the exact
sequence

0 → TZ → TX |Z → NZ/X → 0.

�

Next, we study the ideal of Z as in Lemma 3.2. Even though this lemma will not be used in the
sequel, it gives some properties of the ideal of an Ulrich subvariety that could be useful in future papers.

Lemma 3.3. Let n ≥ 2, d ≥ 2, let X ⊂ PN and let E be a rank r ≥ 2 Ulrich vector bundle on X with
det E = OX(u). Let Z be a nonempty subvariety associated to E as in Lemma 3.2. If

(i) JX/PN (u) is globally generated, and

(ii) H1(JX/PN (u)) = 0,

then JZ/PN (u) is globally generated. If

(iii) IX is generated in degree u,
(iv) H1(OX(l)) = 0 for l ≥ 1, and
(v) X is projectively normal,

then IZ is generated in degree u and not in lower degree.

Proof. Since E is 0-regular, by Castelnuovo-Mumford [La1, Thm. 1.8.5] we have that

(3.4) H0(E)⊗H0(OX(l)) → H0(E(l)) is surjective for every l ≥ 0.

Assume (i)-(ii). The exact sequence

(3.5) 0 → JX/PN (u) → JZ/PN (u) → JZ/X(u) → 0

is exact in global sections by (ii). From (3.1) and Lemma 3.1(i) it follows that JZ/X(u) is globally
generated. Hence we also have a surjective morphism

H0(JZ/X(u)) ⊗OPN ։ JZ/X(u).

Therefore we get by (i) a commutative diagram

0 // H0(JX/PN (u))⊗OPN
//

����

H0(JZ/PN (u))⊗OPN
//

f

��

H0(JZ/X(u))⊗OPN
//

����

0

0 // JX/PN (u) // JZ/PN (u) // JZ/X(u) // 0

showing that f is surjective, hence that JZ/PN (u) is globally generated.
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Now assume (iii)-(v). Fix l ∈ Z with l ≥ 1. The exact sequence

0 → JX/PN (l) → OPN (l) → OX(l) → 0

and (iv) show that

(3.6) H2(JX/PN (l)) = 0.

Also, (iv) and (3.1) imply that we have a surjection H0(E(l)) → H0(JZ/X(u + l)). By (3.4) and the
commutative diagram

H0(E)⊗H0(OX(l)) // //

��

H0(E(l))

����
H0(JZ/X(u))⊗H0(OX (l)) // H0(JZ/X(u+ l))

we deduce that the map H0(JZ/X(u))⊗H0(OX(l)) → H0(JZ/X(u+ l)) is surjective. Thus, by (v), so

does the map H0(JZ/X(u))⊗H0(OPN (l)) → H0(JZ/X(u+ l)). Thus, in the commutative diagram

0

��

0

��
H0(JX/PN (u))⊗H0(OPN (l))

f ′

//

��

H0(JX/PN (u+ l))

��
H0(JZ/PN (u))⊗H0(OPN (l))

f //

��

H0(JZ/PN (u+ l))

��
H0(JZ/X(u))⊗H0(OPN (l)) // //

��

H0(JZ/X(u+ l))

��
0 0

we have that f ′ is surjective by (iii), hence so does f . Therefore IZ is generated in degree u. Finally,
tensoring (3.1) by OX(−1), we get that H0(JZ/X(u−1)) = 0, hence tensoring (3.5) by OPN (−1) shows

that H0(JX/PN (u − 1)) = H0(JZ/PN (u − 1)), that is every hypersurface of degree u− 1 that contains
Z must contain X. It follows that IZ is not generated in degree u − 1, for otherwise Z would be cut
out scheme-theoretically by hypersurfaces of degree u− 1. �

4. Ulrich of rank r ≥ 2 and codimension 2 subvarieties

In this section we will prove Theorem 1. We will then give several remarks that help and simplify
its applications.

Let Z ⊂ X be a Cohen-Macaulay, pure codimension 2 subvariety and let D be a divisor on X. The
short exact sequence

0 → JZ/X(KX +D) → OX(KX +D) → OZ(KX +D) → 0

determines a coboundary map

γZ,D : Hn−2(OZ(KX +D)) → Hn−1(JZ/X(KX +D))

whose dual, by Serre duality, is

γ∗Z,D : Ext1OX
(JZ/X(D),OX) → H0(ωZ(−KX −D)).

Moreover, assume that either Z is as above or is empty, in which case JZ/X = OX . For any subspace

W ⊆ Ext1OX
(JZ/X(D),OX ) ∼= Hn−1(JZ/X(KX +D))∗, we obtain a surjection

φW : Hn−1(JZ/X(KX +D)) ։ W ∗.
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Since, by Serre duality,

Ext1OX
(JZ/X(D),W ∗ ⊗OX) ∼= Hom(Hn−1(JZ/X(KX +D)),W ∗)

we get an extension

(4.1) 0 → W ∗ ⊗OX → E → JZ/X(D) → 0

associated to φW . This also allows to define, for any line bundle L on X, the map

(4.2) δZ,W,L : Hn−1(JZ/X(D)⊗ L) → W ∗ ⊗Hn(L)

so that, in particular, δZ,W,KX
= φW .

Note that HomOX
(JZ/X ,OX) ∼= OX by [Fr, Lemma 7(i), Ch. 2], hence HomOX

(JZ/X(D),OX) ∼=
OX(−D). Also, when Z 6= ∅, we have that

ωZ = Ext2OX
(OZ , ωX) ∼= Ext1OX

(JZ/X , ωX) ∼= Ext1OX
(JZ/X ,OX)(KX)

so that Ext1OX
(JZ/X(D)),OX ) ∼= ωZ(−KX −D). Thus, dualizing (4.1), we get an exact sequence

(4.3) 0 → OX(−D) → E∗ → W ⊗OX → ωZ(−KX −D) → Ext1OX
(E ,OX ) → 0

and a commutative diagram

(4.4) W ⊗OX

����

// ωZ(−KX −D)

γ∗Z,D(W )⊗OZ

66
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧
❧

that shows, in particular, that

(4.5) Im{W → H0(ωZ(−KX −D))} = γ∗Z,D(W ).

Also, if E is locally free, then (4.3) becomes

(4.6) 0 → OX(−D) → E∗ → W ⊗OX → ωZ(−KX −D) → 0.

Moreover, consider the map

(4.7) α := γZ,D−KX−nH : Hn−2(OZ(D − nH)) → Hn−1(JZ/X(D − nH))

and the multiplication map

(4.8) µZ,W : γ∗Z,D(W )⊗H0(KX + nH) → H0(ωZ(nH −D)).

Setting δ = δZ,W,−nH , we have a commutative diagram

Hn−1(JZ/X(D − nH))
δ // W ∗ ⊗Hn(−nH)

Hn−2(OZ(D − nH))

α

OO 55
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥
❥

that dualizes to

(4.9) W ⊗H0(KX + nH)
γ∗

Z,D
⊗id

// //

δ∗

��

γ∗Z,D(W )⊗H0(KX + nH)
µZ,W // H0(ωZ(nH −D))

Hn−1(JZ/X(D − nH))∗

α∗

11❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞❞

.

Now we prove our first main result.

Proof of Theorem 1. Let E be a rank r Ulrich vector bundle on X with det E = OX(D).
Let Z be a subvariety associated to E as in Lemma 3.2. Then Z satisfies (a)-(c) by Lemma 3.2. Also,

as in the proof of Lemma 3.2, we have an exact sequence

0 → V ⊗OX → E → JZ/X(D) → 0
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so that, setting W = V ∗, we get (4.1) and, when Z 6= ∅, dualizing it gives (4.6). Since Hn(E(KX)) =
H0(E∗) = 0 by Lemma 3.1(vi), we get by (4.1) a surjection

Hn−1(JZ/X(KX +D)) ։ Hn(W ∗ ⊗OX(KX)) ∼= W ∗

and therefore an inclusion W ⊆ Hn−1(JZ/X(KX +D))∗ ∼= Ext1OX
(JZ/X(D),OX).

We now show that (i)-(vi) hold.
First, (i) follows by (4.4) and (4.6). Next, (4.1), the fact that E is Ulrich and Kodaira vanishing

imply that

(4.10) H i(JZ/X(D − pH)) = 0 for i ∈ {0, . . . n− 2, n}, 1 ≤ p ≤ n.

and

(4.11) δZ,W,−pH : Hn−1(JZ/X(D − pH)) → W ∗ ⊗Hn(OX (−pH)) is an isomorphism for 1 ≤ p ≤ n.

Now (4.10) gives (iii) and (iv), while, together with the exact sequence

0 → JZ/X(D − nH) → OX(D − nH) → OZ(D − nH) → 0

we get that Hn(OX(D − nH) = 0, that is (ii) by Serre duality. Moreover (4.10), (4.11) and Kodaira
vanishing imply (v), while (4.11) for p = n gives (vi).

Conversely, assume that we are given a subvariety Z ⊂ X as in the statement of the theorem and a
(r− 1)-dimensional subspace W ⊆ Ext1OX

(JZ/X(D),OX ), such that the conditions (i)-(vi) hold. Then,
as explained before the theorem, there is a sheaf E arising as the extension (4.1). Our first aim is to
prove that E is locally free. As is well known, this will follow from

(4.12) ExtiOX
(E ,OX) = 0 for i > 0.

If Z = ∅, we have that ExtiOX
(JZ/X(D),OX ) = 0 for i > 0, hence (4.12) follows by applying

HomOX
(−,OX ) to (4.1). If Z 6= ∅, by (i) and diagram (4.4) we have that the map W ⊗ OX →

ωZ(−KX−D) in (4.3) is surjective and therefore Ext1OX
(E ,OX ) = 0. Moreover ExtiOX

(JZ/X(D),OX) ∼=

ExtiOX
(JZ/X ,OX)(−D) = 0 for i ≥ 2 by [Fr, Lemma 7(iv), Ch. 2]. Hence, applying HomOX

(−,OX)

to (4.1), we get ExtiOX
(E ,OX) = 0 for i ≥ 2. Thus (4.12) is proved and E is locally free.

To see that E is Ulrich, let p ∈ {1, . . . , n} and set δp = δZ,W,−pH. Now (4.1), Kodaira vanishing, (iii)
and (iv) imply that H i(E(−p)) = 0 for 0 ≤ i ≤ n − 2. Moreover, since Z is either empty or of pure
codimension 2, we have that Hn(JZ/X(D − pH)) ∼= Hn(OX(D − pH)) ∼= H0(KX + pH −D) = 0 by
(ii). Therefore (4.1) and Kodaira vanishing give the exact sequence

0 // Hn−1(E(−p)) // Hn−1(JZ/X(D − pH))
δp // W ∗ ⊗Hn(OX(−pH)) // Hn(E(−p)) // 0.

We will now prove that (4.11) holds. This will imply that Hn−1(E(−p)) = Hn(E(−p)) = 0, hence that
E is Ulrich. To see (4.11), we first observe that

(4.13) hn−1(JZ/X(D − pH)) = (r − 1)hn(OX(−pH)).

In fact, we have proved above that Hn(JZ/X(D − pH)) = 0, hence, using (iii)-(v), Kodaira vanishing
and Serre duality

hn−1(JZ/X(D − pH)) = (−1)n−1χ(JZ/X(D − pH)) = (r − 1)χ(KX + pH) = (r − 1)hn(OX (−pH))

that is (4.13). It follows by (4.13) and (vi) that δn is surjective, hence so is δp by the commutative
diagram

(4.14) Hn−1(JZ/X(D − nH))

��

δn // // W ∗ ⊗Hn(OX(−nH))

����
Hn−1(JZ/X(D − pH))

δp // W ∗ ⊗Hn(OX(−pH)).

Hence (4.13) shows that δp is an isomorphism, so that (4.11) holds. Thus we have proved that E is
Ulrich. Also (4.1) implies that E has rank r and det E = OX(D). �
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Remark 4.1. It follows by Definition 1.1 that the subvariety Z associated to E as in Theorem 1 (and
also in Corollaries 5.1, 5.2 and 5.3) is an Ulrich subvariety. In particular, by construction, Z satisfies
all properties in Lemma 3.2.

We now give a few remarks (some similar to [CFK, Lemma 3.3]), allowing to understand and use
the properties of Ulrich subvarieties. To simplify the next statements, we will give the following

Definition 4.2. Let n ≥ 2, d ≥ 2, r ≥ 2 and let D be a divisor on X. A pair (Z,W ) satisfies (∗) if
∅ 6= Z ⊂ X is a subvariety satisfying conditions (a)-(c) of Theorem 1, and W is a (r − 1)-dimensional
subspace W ⊆ Ext1OX

(JZ/X(D),OX).

Remark 4.3. Let r ≥ 2, let X ⊂ PN be a smooth irreducible variety of dimension n ≥ 2 and degree
d ≥ 2 and let D be a divisor on X. Given a pair (Z,W ) satisfying (∗), we consider the maps γ∗Z,D in

(1.1) and µZ,W in (4.8).

(i) If H2(−D) = 0,X is subcanonical, Z ⊂ X is a nonempty Ulrich subvariety and W is the
associated (r − 1)-dimensional subspace, then

γ∗Z,D(W ) = H0(ωZ(−KX −D)).

(ii) Suppose that H1(−D) = H2(−D) = Hn−2(D−nH) = Hn−1(D−nH) = 0 and (Z,W ) satisfies
(∗). Then, the condition (vi) in Theorem 1 is equivalent to µZ,W being either injective or
surjective.

(iii) If r = 2,H0(JZ/X(KX + nH)) = H1(−D) = 0, (Z,W ) satisfies (∗), Z is irreducible if n ≥ 3,

and, if n = 2, the multiplication map µ : γ∗Z,D(W )⊗H0(OZ(KX +2H)) → H0(ωZ(2H −D)) is

either injective or surjective, then the condition (vi) in Theorem 1 holds.
(iv) Assume that n ≥ 3,D = uH for some u ∈ Z and X is subcanonical. Given (Z,W ) satisfying

(∗), we have γ∗Z,uH(W ) ⊆ H0(ωZ(iX − u)) and the multiplication map

µ : γ∗Z,uH(W )⊗H0(OZ(n− iX)) → H0(ωZ(n− u)).

Then:
(iv-a) If Z ⊂ X is a nonempty Ulrich subvariety, then γ∗Z,uH(W ) = H0(ωZ(iX − u)) and µ is

either injective or surjective.
(iv-b) If u > 0, n− u− iX ≤ −1 and H i(JZ/X(n− iX)) = 0 for i = 0, 1. Then the condition (vi)

in Theorem 1 holds if and only if µ is either injective or surjective.

Proof. To see (i), observe that Theorem 1 gives an Ulrich bundle E sitting in the exact sequence (4.6).
Then H1(E∗) ∼= Hn−1(E(−iX)) = 0 by Lemma 3.1(ii). Now consider the splitting of (4.6) as

0 → OX(−D) → E∗ → Q → 0

and
0 → Q → W ⊗OX → ωZ(−KX −D) → 0.

We get that H1(Q) = 0, hence, using (4.5), we see that γ∗Z,D(W ) = H0(ωZ(−KX − D)) and (i) is

proved. As for (ii), observe that since Hn−2(KX +D) = Hn−1(KX +D) = 0, we have that γZ,D is an
isomorphism, hence so is γ∗Z,D. Moreover, Hn−2(D − nH) = Hn−1(D − nH) = 0 gives that the map α

(see (4.7)) is an isomorphism, hence so is α∗. Therefore (ii) follows by diagram (4.9). To see (iii), since
H1(−D) = 0 we have that γZ,D is surjective, hence γ∗Z,D is injective and dim(γ∗Z,D(W )) = dimW = 1.
If n ≥ 3, since Z is irreducible, it follows that the multiplication map

µ : γ∗Z,D(W )⊗H0(OZ(KX + nH)) → H0(ωZ(nH −D))

is injective. The same holds if n = 2 and µ is surjective since H0(ωZ(nH − D)) and γ∗Z,D(W ) ⊗

H0(OZ(KX +nH))) have the same dimension, namely the cardinality of Z. Thus, in all cases, we have
that µ is injective. Also H0(JZ/X(KX + nH)) = 0, so that the restriction map

H0(KX + nH) → H0(OZ(KX + nH))

is injective. Since µZ,W factorizes as

(4.15) γ∗Z,D(W )⊗H0(KX + nH) // γ∗Z,D(W )⊗H0(OZ(KX + nH))
µ // H0(ωZ(nH −D))
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we get that µZ,W is injective. Now diagram (4.9) shows that δ∗ is injective, hence δ = δZ,W,−nH is
surjective. Thus (iii) holds. To see (iv-a), let E be the Ulrich bundle given by Theorem 1. We have by

Lemma 3.1(iii) that u = r(n+1−iX )
2 . Since, as is well-known, (n+1− iX)H = KX +(n+1)H is effective,

we get that n+1−iX ≥ 0, hence n−u−iX ≤ −1. ThereforeH i(E(KX+nH−D)) = H i(E(n−u−iX)) = 0
for i = 0, 1 by Lemma 3.1(ii) and (4.1) implies that H i(JZ/X(KX + nH)) = 0 for i = 0, 1. Hence the

restriction map H0(KX + nH) → H0(OZ(KX + nH)) is an isomorphism. Note that Hj(−uH) = 0 for
j = 1, 2 by Kodaira vanishing because u > 0 by Lemma 3.1(v). Hence γ∗Z,uH(W ) = H0(ωZ(iX − u))

by (i). Moreover, for j = n − 2, n − 1, we have that Hj(D − nH) = Hn−j(OX(n − u − iX)) = 0
by Kodaira vanishing, hence we conclude the proof of (iv-a) using (ii) and the factorization (4.15).
As for (iv-b), by Kodaira vanishing, H i(−D) = H i(−uH) = 0 for i = 1, 2, Hj(D − nH) = 0 for
j = n−2, n−1 and we conclude applying (ii) and the factorization (4.15) since, as above, the restriction
map H0(KX + nH) → H0(OZ(KX + nH)) is an isomorphism. This proves (iv-b), hence (iv). �

Next, we give some conditions that allow to show that Z 6= ∅ and irreducible.

Remark 4.4. Let r ≥ 2, let X ⊂ PN be a smooth irreducible variety of dimension n ≥ 2 and degree
d ≥ 2 and let D be a divisor on X. Let Z ⊂ X be a subvariety.

Then Z 6= ∅ if one of the following holds:

(i) There is an (r − 1)-dimensional subspace W ⊆ Ext1OX
(JZ/X(D),OX) and h1(−D) ≤ r − 2.

(ii) There is an (r− 1)-dimensional subspace W ⊆ Ext1OX
(JZ/X(D),OX ) and D is semiample with

numerical dimension ν(D) ≥ 2.
(iii) Z is an Ulrich subvariety and ρ(X) = 1.
(iv) Z is an Ulrich subvariety and the associated Ulrich bundle E as in Theorem 1 is such that

(X,H, E) 6= (P(F),OP(F)(1), π
∗(G(detF)), where F is a very ample rank n vector bundle on a

smooth curve C and G is a rank 2 vector bundle on C such that H i(G) = 0 for i ≥ 0, where
π : P(F) → C.

Moreover we have

(v) If Z is an Ulrich Gorenstein subvariety, X does not contain lines, Pic(X) ∼= ZH and n ≥ 6, 3 ≤
r ≤ n− 1, then Z is nonempty and smooth.

Let Z ⊂ X be a nonempty Ulrich subvariety and let E be the associated Ulrich bundle as in Theorem
1. Then Z is irreducible if one of the following holds:

(vi) H2(−D) = H1(E(−D)) = 0.
(vii) c1(E)

3 6= 0 1 and either c1(E) = uH for some u ∈ Z or r = 2 and X is subcanonical.
(viii) n ≥ 3 and E is (n − 3)-ample (that is, by [LR2, Thm. 1], E|M does not have a trivial direct

summand for every linear space M ⊆ X ⊂ PN of dimension n− 2).

Moreover we have:

(ix) If Z is smooth and irreducible, then [KZ(−KX −D)]r−1 = 0.

Proof. To see (i), assume that Z = ∅. Then we have the contradiction

r − 1 = dimW ≤ dimExt1OX
(JZ/X(D),OX ) = h1(−D).

Now (ii) follows by (i), since h1(−D) = 0 by [Mu, Thm. 2]. As for (iv), assume that Z = ∅. We know
that det E is globally generated and non trivial by Lemma 3.1(v). It follows by (ii) that ν(det E) = 1
and therefore the image of ΦE : X → G(r − 1,PH0(E)) is a curve and any nonempty fiber is a
linear Pn−1 ⊂ X ⊆ PN by [LS, Thm. 2]. It follows by [BS, Prop. 3.2.1] and [Lo, Lemma 4.1] that
(X,H, E) = (P(F),OP(F)(1), π

∗(G(detF)), where F is a very ample rank n vector bundle on a smooth

curve C and G is a rank 2 vector bundle on C such that H i(G) = 0 for i ≥ 0. This proves (iv). To see
(iii) and (v), let E be the associated Ulrich bundle as in Theorem 1, so that c1(E) = D > 0 by Lemma
3.1(v). Let A be the ample generator of Num(X). Since D ≡ uA for some u ∈ Z, we have that u > 0,
hence H1(−D) = 0 by Kodaira vanishing and Z 6= ∅ by (i). This proves (iii). As for (v), we have that
Z 6= ∅ by (iii) and H1(−D) = H2(−D) = 0 by Kodaira vanishing. Therefore γZ,D is an isomorphism,
hence so is γ∗Z,D. Thus, dim γ∗Z,D(W ) = r − 1 and γ∗Z,D(W ) = H0(ωZ(−KX −D)) by Remark 4.3(i).

1The cases c1(E)
3 = 0 can be classified as in [LS].
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It follows by property (i) in Theorem 1 that |ωZ(−KX − D)| is base-point free of dimension r − 2.
Suppose now that Z is singular. Since Sing(Z) = Dr−3(ϕ) (see proof of Lemma 3.2), it follows by [D,
Cor. 3.4(c)] that Pic(Z) ∼= ZOZ(1). Also, Z is Gorenstein and we deduce that ωZ(−KX −D) ∼= OZ(a)
for some a ∈ Z. Since H1(E(−D)) = 0 as E is aCM by Lemma 3.1(ii), we get that Z is irreducible
by (vi). Now, h0(OZ(a)) = r − 1 ≥ 2, hence a > 0. Therefore OZ(a) is very ample and defines an
embedding of Z in Pr−2. Hence n− 2 = dimZ ≤ r − 2, a contradiction. This proves (v).

Now assume that Z ⊂ X is a nonempty Ulrich subvariety and let E be the associated Ulrich bundle
as in Theorem 1.

Under the hypotheses (vi) and (viii), we first show that Z is connected. In fact, if H2(−D) =
H1(E(−D)) = 0, we deduce from (4.1) that H1(JZ/X) = 0, hence that Z is connected. If n ≥ 3 and
E is (n − 3)-ample, then Z is connected by [Tu, Thm. 6.4(a)]. Now, either Z is smooth, therefore
irreducible or n ≥ 6 and dimSing(Z) = n− 6. In the latter case, Z is again irreducible by Hartshorne’s
Connectedness Theorem [H1, Thm. 3.4], [Eis, Thm. 18.12]. Hence (vi) and (viii) are proved. As
for (vii), observe that if c1(E)

3 6= 0, then ν(D) > 2, hence H2(−D) = 0 by [W, Thm. 1.3] and [R,
Thm. 2] (see also [La2, Rmk. 11.2.20]), because D is globally generated, hence nef and abundant.
Now, if c1(E) = uH, then H1(E(−D)) = H1(E(−u)) = 0 by Lemma 3.1(ii). Also, if r = 2 and X is
subcanonical, then H1(E(−D)) = H1(E∗) = Hn−1(E(−iX)) = 0 by Lemma 3.1(ii). Thus (vii) follows
by (vi). As for (ix), recall that γ∗Z,D(W ) is a sublinear system of |ωZ(−KX −D)|. Since |γ∗Z,D(W )| is

base-point free by property (i) of Theorem 1 and dim |γ∗Z,D(W )| ≤ dim |W | = r − 2 , it follows that

[KZ(−KX −D)]r−1 = 0. This proves (ix). �

5. Application to arithmetically Gorenstein varieties

In this section we will see how Theorem 1 can be applied to arithmetically Gorenstein varieties. This
will in turn give more specific properties of the corresponding Ulrich subvariety.

Corollary 5.1. Let X ⊂ PN be a smooth irreducible aG variety of dimension n ≥ 2 and degree d ≥ 2.
Then (X,OX (1)) carries a rank r ≥ 2 Ulrich vector bundle E with det E = OX(u) if and only if

u = r(n+1−iX)
2 ∈ Z and there is an aCM subvariety Z ⊂ PN , contained in X, such that

(a) dimZ = n− 2 and Z is irreducible if n ≥ 3,
(b) if r = 2 or n ≤ 5, then Z is smooth,
(c) if n ≥ 6, then Z is either smooth or is normal, Cohen-Macaulay, reduced and with dimSing(Z) =

n− 6,

and, if n = 2, there is a (r−1)-dimensional subspace W ⊆ Ext1OX
(JZ/X(u),OX ), such that the following

hold:

(1) |ωZ(iX − u)| is base-point free of dimension r − 2 if n ≥ 3 or γ∗Z,uH(W ) generates ωZ(iX − u)
if n = 2.

(2) H0(JZ/X(u− 1)) = 0.
(3) χ(OZ(u− p)) = χ(OX(u− p)) + (−1)n(r − 1)χ(OX (p− iX)), for 1 ≤ p ≤ n.
(4) If n ≥ 3, the multiplication map H0(ωZ(iX − u))⊗H0(OZ(n− iX)) → H0(ωZ(n− u)) is either

injective or surjective. If n = 2, then δZ,W,−2H : H1(JZ/X(u− 2)) → W ∗ ⊗H2(−2H) is either
injective or surjective.

Moreover the following exact sequence holds

(5.1) 0 → O
⊕(r−1)
X → E → JZ/X(u) → 0.

Proof. Assume that E is Ulrich with det E = OX(u). Then u = r(n+1−iX)
2 ∈ Z by Lemma 3.1(iii) and

u > 0 by Lemma 3.1(v). Let (Z,W ) be as in Theorem 1. In particular (5.1) holds. Also, (2) is Theorem
1(iii) and (3) is equivalent to Theorem 1(v). As H1(OX(−u)) = 0, it follows by Remark 4.4(i) that
Z 6= ∅. If n ≥ 3, we have that H2(OX(−u)) = 0 and H1(E(−u)) = 0 by Lemma 3.1(ii), hence Remark
4.4(vi) gives that Z irreducible. Also, when n ≥ 3, since Hn−2(OX(u− iX) = Hn−1(OX(u− iX)) = 0,
we have that γZ,uH is an isomorphism, hence so is γ∗Z,uH . Now Remark 4.3(i) implies that W ∼=

γ∗Z,uH(W ) = H0(ωZ(iX − u)), hence the latter is base-point free by Theorem 1(i) and of dimension

r − 1. Thus we get (1). Also (4) follows by Theorem 1(vi) and Remark 4.3(iv-a). It remains to prove



12 A.F. LOPEZ, D. RAYCHAUDHURY

that Z is aCM. As is well known, this holds if n = 2. If n ≥ 3, for any j ∈ Z, we get by (5.1) the exact
sequences

0 → OX(j − u)⊕(r−1) → E(j − u) → JZ/X(j) → 0.

Fix i ∈ {1, . . . , n − 2} and j ∈ Z. We have that H i(E(j − u)) = 0 by Lemma 3.1(ii) and also that
H i+1(OX(j − u)) = 0 since X is aCM, hence H i(JZ/X(j)) = 0. Now the exact sequence

(5.2) 0 → JX/PN (j) → JZ/PN (j) → JZ/X(j) → 0

shows that Z ⊂ PN is aCM.
Vice versa, assume that we have a smooth irreducible aCM subvariety Z ⊂ PN , with Z ⊂ X,

such that (a)-(c) hold and, if n = 2, a (r − 1)-dimensional subspace W ⊆ Ext1OX
(JZ/X(u),OX ),

such that (1)-(4) hold with u = r(n+1−iX)
2 ∈ Z. For n ≥ 3, let W = Ext1OX

(JZ/X(u),OX ). Since

Hn−2(OX(u − iX) = Hn−1(OX(u − iX)) = 0, we have that γZ,uH is an isomorphism, hence so is
γ∗Z,uH , so that γ∗Z,uH(W ) = H0(ωZ(iX − u)). Then Theorem 1(i) holds by (1). Since, as is well-known,

(n + 1 − iX)H = KX + (n + 1)H is effective and non trivial, we get that n + 1 − iX > 0, hence
u > 0, n− u− iX ≤ −1. Therefore H0(KX + nH −D) = H0(OX(n− u− iX)) = 0, thus Theorem 1(ii)
holds. Next, (2) is Theorem 1(iii) and (3) is equivalent to are Theorem 1(v). Since both Z and X are
aCM, we get from (5.2) that H i(JZ/X(j)) = 0 for 1 ≤ i ≤ n − 2 and for every j ∈ Z, hence Theorem

1(iv) holds. Finally, since u− 1 ≥ n− iX , we have that H0(JZ/X(n− iX)) = 0 by (2). Therefore, when
n ≥ 3, we get that the condition (vi) in Theorem 1 is equivalent to (4) by Remark 4.3(iv-b). It follows
by Theorem 1 that Z and W give rise to a rank r ≥ 2 Ulrich vector bundle E with det E = OX(u) and
satisfying (5.1). �

In the case of rank 2, Corollary 5.1 and the properties of an Ulrich subvariety drastically simplify as
follows.

Corollary 5.2. Let X ⊂ PN be a smooth irreducible aG variety of dimension n ≥ 2 and degree d ≥ 2.
Then (X,OX (1)) carries a rank 2 Ulrich vector bundle E with det E = OX(u) if and only if u = n+1−iX
and there is a smooth aG subvariety Z ⊂ PN , irreducible when n ≥ 3, with Z ⊂ X,dimZ = n−2, ωZ

∼=
OZ(n+ 1− 2iX ) such that the following hold:

(a) H0(JZ/X(n− iX)) = 0.
(b) χ(OZ(n+ 1− iX − p)) = χ(OX(n+ 1− iX − p)) + (−1)nχ(OX(p− iX)), for 1 ≤ p ≤ n.

Moreover the following exact sequence holds

(5.3) 0 → OX → E → JZ/X(n+ 1− iX) → 0.

Proof. Given E Ulrich of rank 2 with det E = OX(u), it follows by Corollary 5.1 that u = n + 1 − iX
and there is a smooth aCM subvariety Z ⊂ PN , irreducible when n ≥ 3, with Z ⊂ X,dimZ = n − 2.
By Lemma 3.2(iv) we have that ωZ

∼= OZ(n+1− 2iX ), hence Z is aG (see for example [DPZ, Prop. 3],
[Mi, Prop. 4.1.1]). Next, (a) and (b) are (2) and (3) of Corollary 5.1.

Vice versa, assume that u = n+ 1 − iX and that a subvariety Z as in the statement and satisfying
(a) and (b) is given.

We will check that (1)-(4) of Corollary 5.1 hold. Note that (a) and (b) are (2) and (3) of Corollary
5.1. As for (1) and (4), we consider two cases.

First, suppose that n ≥ 3. Since ωZ(2iX − n− 1) ∼= OZ is base-point free, (1) and (4) hold.
Next, assume that n = 2. Note that iX < 3, for otherwise, as is well known (X,H) = (P2,OP2(1))

contradicting the fact that d ≥ 2. By [HSS, Prop. 2.1 and 2.2] we have that 3− 2iX = reg(JZ/PN )− 2.

Therefore Z has the Cayley-Bacharach property with respect to |OPN (3 − 2iX )| by [Mi, Thm. 4.1.10].
Since X is projectively normal, we get that Z has the Cayley-Bacharach property with respect to
|OX(3 − 2iX)|. Now [GH, Prop. (1.33)] gives the existence of a rank 2 vector bundle E on X and a
section s ∈ H0(E) such that Z = Z(s) and det E = OX(3− iX). Thus, setting W = 〈s〉∗ we have that
the exact sequence (4.1) holds and we get an exact sequence

0 → OX(iX − 3) → E∗ → JZ/X → 0

that implies that H0(E∗) = 0. Hence, as in the proof of Theorem 1, we deduce that W ⊆
Ext1OX

(JZ/X(3 − iX),OX). Therefore, as in the beginning of Section 4, dualizing (4.1) we get (4.6).



ULRICH SUBVARIETIES AND LOW RANK ULRICH BUNDLES ON COMPLETE INTERSECTIONS 13

Hence diagram (4.4) shows that γ∗Z,(3−iX)H(W ) generates ωZ(2iX − 3) and therefore (1) of Corollary

5.1 holds. Moreover this gives that the multiplication map

µ : γ∗Z,(3−iX)H(W )⊗H0(OZ(2− iX)) → H0(ωZ(iX − 1)) = H0(OZ(2− iX))

is surjective. Therefore (4) holds by Remark 4.3(iii). �

Next, we specialize to the case of rank 2 in hypersurfaces. The following is a slight improvement of
[Be1, Prop. 8.2].

Corollary 5.3. Let n ≥ 2, let S = C[X0, . . . ,Xn+1] and let X ⊂ Pn+1 be a smooth hypersurface of
degree d ≥ 2. Then (X,OX (1)) carries a rank 2 Ulrich vector bundle E, with det E = OX(d − 1) if
n = 2, if and only if there is a smooth (n− 2)-dimensional aG subvariety Z ⊂ X, irreducible if n ≥ 3,
such that IZ has the following minimal free resolution

(5.4) 0 → S(−2d+ 1) → S(−d)⊕(2d−1) → S(−d+ 1)⊕(2d−1) → IZ → 0.

Proof. Note that iX = n + 2 − d, hence n + 1 − iX = d − 1. By Lefschetz’s hyperplane theorem we
have that Pic(X) ∼= ZH if n ≥ 3. Let E be rank 2 Ulrich vector bundle, so that det E = OX(d − 1)
if n ≥ 3 by [Lo, Lemma 3.2]. Thus Corollary 5.2 applies and we have a smooth, irreducible if n ≥ 3,
(n− 2)-dimensional aG subvariety Z ⊂ X with ωZ

∼= OZ(2d− n− 3). It follows by [BE, §3, page 466]
that IZ has the following minimal free resolution

0 → S(−f) →
s⊕

i=1

S(−bi) →
s⊕

j=1

S(−aj) → IZ → 0

where a1 ≤ . . . ≤ as, bi = f − ai, 1 ≤ i ≤ s and ωZ
∼= OZ(f − n − 2), so that f = 2d − 1 by [HSS,

Prop. 2.2]. By Corollary 5.2(a) we have that H0(JZ/X(d− 2)) = 0 and the exact sequence

(5.5) 0 → OPn+1(−2) → JZ/Pn+1(d− 2) → JZ/X(d− 2) → 0

shows that (IZ)d−2 = H0(JZ/Pn+1(d− 2)) = 0. Therefore a1 ≥ d− 1.
We now claim that ai = d− 1 for all 1 ≤ i ≤ s.
The exact sequence (5.3) and [Be2, (3.1)] show that h0(JZ/X(d − 1)) = 2d − 1, hence the exact

sequence

0 → OPn+1(−1) → JZ/Pn+1(d− 1) → JZ/X(d− 1) → 0

shows that dim(IZ)d−1 = h0(JZ/Pn+1(d− 1)) = 2d− 1. Therefore we have that a1 = . . . a2d−1 = d− 1,
hence, in particular, a2 = d− 1. It follows by [HTV, (c), page 63] that bi > as+2−i for 1 ≤ i ≤ s, hence
bi > a2 = d− 1 for 1 ≤ i ≤ s. Thus

d− 1 = a1 ≤ ai = 2d− 1− bi ≤ d− 1

that is ai = d− 1 for all 1 ≤ i ≤ s.
Hence we have proved that ai = d − 1 for all 1 ≤ i ≤ s and it follows that bi = d for all 1 ≤ i ≤ s.

This proves that (5.4) holds.
Vice versa, assume that we have a smooth irreducible (n−2)-dimensional aG subvariety Z ⊂ X such

that (5.4) holds. Hence H0(JZ/Pn+1(d − 2)) = 0, and then H0(JZ/X(d − 2)) = 0 by (5.5). Also, (5.4)
gives that χ(OZ(d − 1 − p)) satisfies Corollary 5.2(b). Thus the latter corollary applies and we get a
rank 2 Ulrich vector bundle E . �

We deduce Corollary 1 from this. A nice feature of this is that for n ≥ 5, the proof that an Ulrich
subvariety cannot exist is just one line!

Proof of Corollary 1. Assume that there exists a rank 2 Ulrich vector bundle on X. Then X contains a
subvariety Z as in Corollary 5.3 since, for n = 2, we have that Pic(X) ∼= ZH by the Noether-Lefschetz’s
theorem, hence det E = OX(d− 1) for any Ulrich of rank 2 by [Lo, Lemma 3.2].

It follows by (5.4) that JZ/Pn+1(d− 1) is globally generated, hence [OS, Thm. 1.4] gives that n ≤ 4.
This proves (iv). As for (i)-(iii), we will use that for 2 ≤ n ≤ 4, the general hypersurface of degree d
contains such a Z.
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To this end, let Hd,n be the Hilbert scheme of subschemes Z ⊂ Pn+1 with Hilbert polynomial

P (m) =

(
m+ n+ 1

n+ 1

)

− (2d− 1)

(
m− d+ n+ 1

n

)

−

(
m− 2d+ n+ 2

n+ 1

)

.

If n ≥ 3, let H′
d,n be the union of irreducible components of Hd,n containing a point that represents a

smooth irreducible (n − 2)-dimensional subvariety Z that is zero locus of a general section of a rank 2
Ulrich vector bundle on a smooth hypersurface of degree d in Pn+1. In particular IZ has a resolution
as (5.4) by Corollary 5.3. If n = 2, let H′

d,2 be the family of locally closed 0-dimensional subschemes of

P3 consisting of graded Gorenstein C[X0, . . . ,X3]-algebra quotients with Hilbert function

(5.6) h(m) = h0(OP3(m))− (2d− 1)h0(OP2(m− d+ 1)) − h0(OP3(m− 2d+ 1)).

Note that H′
d,2 is irreducible (see for example [JK, KMR]) and it contains, by Corollary 5.3, a point

that represents a smooth 0-dimensional subvariety Z that is zero locus of a general section of a rank 2
Ulrich vector bundle on a smooth hypersurface of degree d in P3. Let Ud,n ⊂ |OPn+1(d)| be the open
set of smooth hypersurfaces and consider the incidence correspondence

I = {([Z ′],X) : Z ′ ⊆ X} ⊂ H′
d,n × Ud,n

together with the two projections π1 : I → H′
d,n, π2 : I → Ud,n. By assumption we have that π2 is

dominant and that there is an irreducible component Y of I such that Y contains a pair ([Z],X) with
X general and Z is a smooth, irreducible if n ≥ 3, (n− 2)-dimensional subvariety that is zero locus of
a general section of a rank 2 Ulrich vector bundle on X. Let [Z ′] ∈ π1(Y ) be general. Since Z is aCM,
so is Z ′ by semicontinuity and we have, again by semicontinuity, that

(
d+ n+ 1

n+ 1

)

= h0(JZ/Pn+1(d)) + h0(OZ(d)) ≥ h0(JZ′/Pn+1(d)) + h0(OZ′(d)) =

(
d+ n+ 1

n+ 1

)

so that h0(JZ′/Pn+1(d)) = h0(JZ/Pn+1(d)). Therefore, using (5.4) when n ≥ 3 and (5.6) when n = 2,
we get

(5.7) h0(JZ′/Pn+1(d)) = h0(JZ/Pn+1(d)) = (n + 1)(2d − 1).

Moreover, when n ≥ 3, (5.4) gives

(5.8) h0(OZ(d− 1)) =

(
d+ n

n+ 1

)

− 2d+ 1

while, when n = 2, (5.6) gives

(5.9) h(d− 1) =

(
d+ 2

3

)

− 2d+ 1.

Since π−1
1 ([Z ′]) is an open subset in PH0(JZ′/Pn+1(d)), (5.7) gives that

(5.10) dim(π−1
1 ([Z ′])) ≤ (n + 1)(2d − 1) − 1.

If n ≥ 3, it follows by [KMR, Thm. 2.6], (5.4) and (5.8) that

h0(NZ/Pn+1) = (2d − 1)[

(
d+ n

n+ 1

)

− 2d+ 1] +

(
2d− 1

2

)(
n+ 2

n+ 1

)

− (2d − 1)

(
d+ n

n+ 1

)

=

= (2d − 1)[(n + 2)(d− 1)− 2d+ 1].

and then semicontinuity gives

dimπ1(Y ) ≤ dimT[Z′]π1(Y ) ≤ dimT[Z′]H
′
d,n = h0(NZ′/Pn+1) ≤

≤ h0(NZ/Pn+1) ≤ (2d− 1)[(n + 2)(d − 1)− 2d+ 1].

If n = 2 we get, by [KMR, Rmk. page 79] and (5.9), that dimπ1(Y ) ≤ dimH′
d,2 = (2d − 1)(2d − 3).

Therefore, in both cases, we deduce that

(5.11) dimπ1(Y ) ≤ (2d − 1)[(n + 2)(d− 1)− 2d+ 1].
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Now, using (5.10) and (5.11), we get

dimY = dim(π−1
1 ([Z ′])) + dim(π1(Y )) ≤ nd(2d− 1)− 1 < dimUd,n =

(
d+ n+ 1

n+ 1

)

− 1

for the given values of d and n, contradicting the fact that Y dominates Ud,n. This proves (i) and
(ii). �

We end the section with the following sample result. It shows that, in the case of hypersurfaces, in
many cases, Ulrich subvarieties must be singular and in fact non-Gorenstein.

Corollary 5.4. Let n ≥ 6, r ≥ 3 and let X ⊂ Pn+1 be a smooth hypersurface of degree d ≥ 2n. Let
Z ⊂ X be an Ulrich subvariety and suppose that one of the following holds:

(i) X is general, n ≥ 7.
(ii) X is very general and n = 6.

Then Sing(Z) 6= ∅ and dimSing(Z) = n− 6. Moreover, if r ≤ n− 1, then Z is not Gorenstein.

Proof. Note that Z is as in Corollary 5.1. First, assume that Z is smooth. We have that Pic(Z) ∼=
ZOZ(1) by Barth-Larsen’s type theorems (see for example [H2, Thm. 2.2]) if n ≥ 7 and by [A, Prop. 8] if
n = 6. On the other hand, in both cases (i)-(ii), we have that X does not contain lines, hence the Ulrich
bundle associated to Z as in Corollary 5.1 is ample by [LS, Thm. 1]. It follows by [Ein, Thm. 2.2(b)]
(or [D, Cor. 3.4(c)]) that ρ(Z) ≥ 2, a contradiction. Thus Sing(Z) 6= ∅ and dimSing(Z) = n − 6 by
Corollary 5.1. Finally, assume that r ≤ n− 1. We know that Pic(X) ∼= ZH by Lefschetz’s theorem and
then Z is not Gorenstein by Remark 4.4(v). �

6. Complete intersections

The goal of this section is to study Ulrich vector bundles on complete intersections. We first compute
the necessary quantities related to Ulrich bundles on them and to Ulrich subvarieties.

We henceforth establish the following notation.
Let s ≥ 1, n ≥ 2 and let X ⊂ Pn+s be a smooth complete intersection of hypersurfaces of degrees

(d1, . . . , ds) with di ≥ 1, 1 ≤ i ≤ s and degree d =
s∏

i=1
di ≥ 2. Let

S =
s∑

i=1

di and S′ =







0 if s = 1
∑

1≤i<j≤s
didj if s ≥ 2 .

Lemma 6.1. Let s ≥ 1, n ≥ 3, r ≥ 2 and let X ⊂ Pn+s be a smooth complete intersection of hypersur-

faces of degrees (d1, . . . , ds) with di ≥ 1, 1 ≤ i ≤ s and degree d =
s∏

i=1
di ≥ 2. Let H ∈ |OX(1)|. Let E be

a rank r Ulrich vector bundle on X and let Z ⊂ X be the associated Ulrich subvariety, as in Theorem
1. Then Z is irreducible, of dimension n− 2, smooth when r = 2 or when n ≤ 5 and:

(i) KX = (S − s− n− 1)H.

(ii) c2(X) =
[(n+s+1

2

)
+ S(S − s− n− 1)− S′

]
H2.

(iii) c1(E) =
r
2 (S − s)H.

(iv) deg(Z) = rd
24

[
(3r − 2)S2 − 6(r − 1)sS + 3(r − 1)s2 − s− 2S′

]
.

(v)

χ(OZ(m)) =

(
m+ n+ s

n+ s

)

+ (−1)n+1rd

( r
2(S − s)−m− 1

n

)

+ (−1)n+s(r − 1)

( r
2(S − s)−m− 1

n+ s

)

+

+
s∑

k=1

(−1)k+n+s
∑

1≤i1<...<ik≤s

[(
di1 + . . . + dik −m− 1

n+ s

)

+ (r − 1)

(
di1 + . . .+ dik +

r
2 (S − s)−m− 1

n+ s

)]

Moreover suppose that one of the following holds:

(1) n ≥ 5, or
(2) n = 4, X is hyperplane section of a smooth complete intersection X ′ ⊂ P5+s and E = E ′

|X ,

where E ′ is a vector bundle on X ′, or
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(3) n = 4, X is very general and (d1, . . . , ds) 6∈ {(2, 1, . . . , 1
︸ ︷︷ ︸

s-1

), s ≥ 1; (2, 2, 1, . . . , 1
︸ ︷︷ ︸

s-2

), s ≥ 2} (up to

permutation).

Then

(vi) c2(E) = eH2 with e = r
24

[
(3r − 2)S2 − 6(r − 1)sS + 3(r − 1)s2 − s− 2S′

]
∈ Z.

(vii) If r = 3, then

c2(Z) =−
1

8
[49S2 − 104sS − 32(n + 1)S + 52s2 + 32ns + 35s+ 4n2 + 12n+ 8 + 6S′]H2

Z+

+ (4S − 4s− n− 1)KZHZ .

Proof. (i) and (ii) follow from the tangent and Euler sequence of X ⊂ Pn+s. By Lefschetz’s theorem
(see for example [H2, Thm. 2.1]), we have that Pic(X) ∼= ZH. Now the properties of Z and (iii) follow
by Corollary 5.1, while (iv) follows by (i)-(iii) and Lemma 3.2(i). Also, (v) follows by Lemma 3.2(iii)
together with the Koszul resolution of JX/Pn+s . As for (vi), we claim that under any of the hypotheses
(1), (2) or (3), the following holds:

(6.1) ∃e ∈ Z such that c2(E) = eH2.

In fact, if n ≥ 5, we have by Lefschetz’s theorem (see for example [H2, Thm. 2.1]) that H4(X,Z) ∼= ZH2.
Hence (6.1) holds under hypothesis (1), and under hypothesis (2) we have that c2(E

′) = e(H ′)2 on X ′,
for some e ∈ Z and H ′ ∈ |OX′(1)|. Hence also c2(E) = c2(E

′
|X) = eH2, so that (6.1) holds under

hypothesis (2). Also, under hypothesis (3), we know again by Noether-Lefschetz’s theorem (see for
example [S, Thm. 1.1]) that every algebraic cohomology class of codimension 2 in X is in ZH2. Since
[Z] = c2(E) by Lemma 3.2(b), we have that (6.1) holds under hypothesis (3).

Now, using (iv), we deduce by (6.1) that

e =
r

24
[(3r − 2)S2 − 6(r − 1)sS + 3(r − 1)s2 − s− 2S′]

that is (vi). Finally (vii) follows by (i)-(iii), (vi) and Lemma 3.2(viii). �

We now prove our second main result.

Proof of Theorem 2. We can assume, from the start, that X is not a quadric, since it is well-known
that a quadric does not carry any rank 3 Ulrich bundle (all Ulrich bundles are direct sums of spinor

bundles, that have rank 2⌊
n−1

2
⌋) and that there are rank 2 Ulrich bundles, namely the spinor bundles,

only if n = 4.
Set s = c if c ≥ 4, while s = 4 if 1 ≤ c ≤ 3 and, in the latter case, we see X ⊂ Pn+4 as smooth

complete intersection of hypersurfaces of degrees (d1, . . . , d4) with dj = 1, c + 1 ≤ j ≤ 4. In this way
we also have that X ⊂ Pn+s is a smooth complete intersection of hypersurfaces of degrees (d1, . . . , ds)
with s ≥ 4, di ≥ 1, 1 ≤ i ≤ s and d =

∏s
i=1 di ≥ 2.

Assume that we have an Ulrich vector bundle of rank r on X. If n ≥ 5, taking hyperplane sections
and using Lemma 3.1(iv), it will be enough to show that, on the 4-dimensional section of X4 of X,
there are no Ulrich bundles of rank r ≤ 3.

With an abuse of notation, let us call again X the above 4-dimensional section. Hence we have that
X ⊂ P4+s is a smooth complete intersection of hypersurfaces of degrees (d1, . . . , ds) with s ≥ 4, di ≥
1, 1 ≤ i ≤ s and d =

∏s
i=1 di ≥ 2.

Let E be an Ulrich bundle of rank r on X. Since Pic(X) ∼= ZH by Lefschetz’s theorem, it follows by
Lemma 3.1(vii) that r ≥ 2. Let Z ⊂ X be the associated smooth irreducible surface, as in Lemma 6.1.

Observe that, under hypothesis (a) of the theorem we have that condition (2) of Lemma 6.1 holds,
while under hypothesis (b) of the theorem we have that condition (3) of Lemma 6.1 holds. In any case,
we deduce that Lemma 6.1(vi)-(vii) hold.

Suppose first that r = 2.
Setting HZ = H|Z , Corollary 5.2 gives

(6.2) KZ = (2S − 2s− 5)HZ

and Lemma 3.2(vii), (6.2) together with Lemma 6.1(i), (ii) and (vi) give

(6.3) c2(Z) =
1

12

[
120 + 115s + 27s2 − 120S − 54sS + 32S2 − 10S′

]
H2

Z .
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By Lemma 6.1(v) we see that

χ(OZ) = 1− 2d

(
S − s− 1

4

)

+ (−1)s
(
S − s− 1

s+ 4

)

+

+

s∑

k=1

(−1)k+s
∑

1≤i1<...<ik≤s

[(
di1 + . . .+ dik − 1

s+ 4

)

+

(
di1 + . . .+ dik + S − s− 1

s+ 4

)]

.

In the notation (A.1) of the appendix, this is just

(6.4) χ(OZ) = fs,2,0(d1, . . . , ds).

On the other hand, Noether’s formula Z, χ(OZ) =
1
12 [K

2
Z + c2(Z)] gives, using (6.2), (6.3) and Lemma

6.1(iv), that

χ(OZ) =
5d

1728
[45s4 − 180s3S+288s2S2− 216sS3 +64S4 +198s3− 612s2S− 36s2S′+700sS2 +72sSS′

−288S3 − 40S2S′ + 181s2 − 432sS − 140sS′ + 336S2 + 144SS′ + 4(S′)2 − 84s − 168S′].

In the notation (A.9) of the appendix, this is just

(6.5) χ(OZ) = g4,s(d1, . . . , ds).

Then, (6.4) and (6.5) give that

g4,s(d1, . . . , ds)− fs,2,0(d1, . . . , ds) = 0.

In the notation of the appendix, this means, by Lemma A.9(1), that

m1s(s)(d1, . . . , ds)qs,8(d1, . . . , ds) = 0

or, equivalently,
dqs,8(d1, . . . , ds) = 0

contradicting Lemma A.10.
This concludes the proof in the case r = 2.
Next, assume that r = 3.
By Riemann-Roch we see that

(6.6) KZHZ = −2χ(OZ(1)) + 2χ(OZ) + deg(Z).

Now Lemma 6.1 gives, in the notation (A.1) and (A.9) of the functions in the appendix, that

(6.7) χ(OZ(m)) = fs,3,m(d1, . . . , ds) and deg(Z) = δs(d1, . . . , ds)

and therefore, in the notation (A.9), (6.6) becomes

(6.8) KZHZ = −2fs,3,1(d1, . . . , ds) + 2fs,3,0(d1, . . . , ds) + δs(d1, . . . , ds) = hs(d1, . . . , ds).

On the other hand, we have by Remark 4.4(ix) that [KZ − 5
2(S − s − 2)HZ ]

2 = 0, so that, using (6.8)
and the notation (A.9), we get

(6.9)
K2

Z = 5(S − s− 2)KZHZ −
25

4
(S − s− 2)2 deg(Z) =

= 5(S − s− 2)hs(d1, . . . , ds)−
25

4
(S − s− 2)2δs(d1, . . . , ds) = ks(d1, . . . , ds).

Next, we get by Lemma 6.1(vii), using also the notation (A.9), that
(6.10)

c2(Z) = (4S − 4s− 5)KZHZ −
1

8
[49S2 − 104sS − 160S + 6S′ + 52s2 + 163s + 120]H2

Z =

= (4S − 4s− 5)hs(d1, . . . , ds)−
1

8
[49S2 − 104sS − 160S + 6S′ + 52s2 + 163s + 120]δs(d1, . . . , ds) =

= cs(d1, . . . , ds).

Hence (6.9), (6.10) and Noether’s formula, using also the notation (A.9), give

(6.11) χ(OZ) =
1

12
(K2

Z + c2(Z)) =
ks(d1, . . . , ds) + cs(d1, . . . , ds)

12
= χ′

s(d1, . . . , ds).
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Thus we get, by (6.7) and (6.11) we have that

χ′
s(d1, . . . , ds)− fs,3,0(d1, . . . , ds) = 0

that is, using Lemma A.9(2),

m1s(s)(d1, . . . , ds)qs,9(d1, . . . , ds) = 0

or, equivalently,

dqs,9(d1, . . . , ds) = 0

contradicting Lemma A.10.
This concludes the proof in the case r = 3 and therefore also ends the proof of the theorem. �
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no. 2, 283-308. 11, 15
[DPZ] P. De Poi, F. Zucconi. On subcanonical Gorenstein varieties and apolarity. J. Lond. Math. Soc. (2) 87 (2013),

no. 3, 819-836. 12
[Ein] L. Ein. An analogue of Max Noether’s theorem. Duke Math. J. 52 (1985), no. 3, 689-706. 15
[Eis] D. Eisenbud. Commutative algebra. Grad. Texts in Math., 150. Springer-Verlag, New York, 1995, xvi+785 pp.

11
[EH] D. Eisenbud, J. Harris. 3264 and all that - a second course in algebraic geometry. Cambridge University Press,

Cambridge, 2016. xiv+616 pp. 4
[Er] D. Erman. Matrix factorizations of generic polynomials. Preprint arXiv:2112.08864. 3
[ES1] D. Eisenbud, F.-O. Schreyer. Resultants and Chow forms via exterior syzygies. J. Amer. Math. Soc. 16 (2003),

no. 3, 537-579. 1
[ES2] D. Eisenbud, F.-O. Schreyer. Hyperelliptic curves and Ulrich sheaves on the complete intersection of two

quadrics. Preprint arXiv:2212.07227. 3
[Fi] M. Filip. Rank 2 ACM bundles on complete intersection Calabi-Yau threefolds. Geom. Dedicata 173 (2014),

331-346. 3
[Fr] R. Friedman. Algebraic surfaces and holomorphic vector bundles. Universitext. Springer-Verlag, New York,

1998, x+328 pp. 7, 8
[GH] P. Griffiths, J. Harris. Residues and zero-cycles on algebraic varieties. Ann. of Math. (2) 108 (1978), no. 3,

461-505. 12
[H1] R. Hartshorne. Complete intersections and connectedness. Amer. J. Math. 84 (1962), 497-508. 11

h


ULRICH SUBVARIETIES AND LOW RANK ULRICH BUNDLES ON COMPLETE INTERSECTIONS 19

[H2] R. Hartshorne. Varieties of small codimension in projective space. Bull. Amer. Math. Soc. 80 (1974), 1017-1032.
15, 16

[HH] T. L. Hoang, Y. N. Hoang . Stable Ulrich bundles on cubic fourfolds. Manuscripta Math. 174 (2024), no. 1-2,
243-267. 1, 3

[HK] H. Kleppe. Deformation of schemes defined by vanishing of Pfaffians. J. Algebra 53 (1) (1978), 84-92. 2
[HSS] R. Hartshorne, I. Sabadini, E. Schlesinger. Codimension 3 arithmetically Gorenstein subschemes of projective

N-space. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 6, 2037-2073. 12, 13
[HTV] J. Herzog, N. V. Trung, G. Valla. On hyperplane sections of reduced irreducible varieties of low codimension. J.

Math. Kyoto Univ. 34 (1994), no. 1, 47-72. 13
[JK] J. O. Kleppe. The smoothness and the dimension of PGor(H) and of other strata of the punctual Hilbert scheme.

J. Algebra 200 (1998), no. 2, 606-628. 14
[KMR] J. O. Kleppe, R. M. Miró-Roig. The dimension of the Hilbert scheme of Gorenstein codimension 3 subschemes.

J. Pure Appl. Algebra 127 (1998), no. 1, 73-82. 14
[KRR1] N. Mohan Kumar, A. P. Rao, G. V. Ravindra. Arithmetically Cohen-Macaulay bundles on three dimensional

hypersurfaces. Int. Math. Res. Not. IMRN(2007), no. 8, Art. ID rnm025, 11 pp.. 2
[KRR2] N. Mohan Kumar, A. P. Rao, G. V. Ravindra. Arithmetically Cohen-Macaulay bundles on hypersurfaces. Com-

ment. Math. Helv. 82 (2007), no. 4, 829-843. 2
[La1] R. Lazarsfeld. Positivity in algebraic geometry, I. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge

48, Springer-Verlag, Berlin, 2004. 5
[La2] R. Lazarsfeld. Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals. Ergebnisse

der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 49. Springer-
Verlag, Berlin, 2004. 11

[Lo] A. F. Lopez. On the positivity of the first Chern class of an Ulrich vector bundle. Commun. Contemp. Math.
24 (2022), no. 9, Paper No. 2150071, 22 pp. 3, 10, 13

[LR1] A. F. Lopez, D. Raychaudhury. On varieties with Ulrich twisted tangent bundles. Preprint 2023,
arXiv:2301.03104. To appear on Ann. Mat. Pura Appl. 3

[LR2] A. F. Lopez, D. Raychaudhury. On partially ample Ulrich bundles. Preprint 2024, arXiv:2403.18928. 10
[LR3] A. F. Lopez, D. Raychaudhury. Non-existence of low rank Ulrich bundles on Veronese varieties.

http://ricerca.mat.uniroma3.it/users/lopez/Veronese.pdf https://rcdeba.github.io/research.html.
3

[LS] A. F. Lopez, J. C. Sierra. A geometrical view of Ulrich vector bundles. Int. Math. Res. Not. IMRN(2023), no. 11,
9754-9776. 10, 15

[Ma1] C. G. Madonna. ACM vector bundles on prime Fano threefolds and complete intersection Calabi-Yau threefolds.
Rev. Roumaine Math. Pures Appl. 47 (2002), no. 2, 211-222. 3

[Ma2] C. G. Madonna. Rank 4 vector bundles on the quintic threefold. Cent. Eur. J. Math. 3 (2005), no. 3, 404-411. 3
[Mi] J. C. Migliore. Introduction to liaison theory and deficiency modules. Progr. Math., 165, Birkhäuser Boston,
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Appendix A. Symmetric functions associated to complete intersections

Given a smooth complete intersection X ⊂ Ps+4 of hypersurfaces of degrees (d1, . . . , ds), a rank r ≥ 2
Ulrich vector bundle E on X and an Ulrich subvariety Z, we have some natural symmetric functions
of (d1, . . . , ds) as in Lemma 6.1 and in the proof of Theorem 2. In this section we will lay out the
necessary calculations related to them. Several calculations have been performed by Mathematica.
The corresponding codes can be found in [LR].

Definition A.1. Given integers s ≥ 1, r ≥ 2,m, consider the polynomials in Q[x1, . . . , xs] given by

as(m,x1, . . . , xs) =

(
m+ s+ 4

s+ 4

)

+
s∑

k=1

(−1)k+s
∑

1≤i1<...<ik≤s

(
xi1 + . . .+ xik −m− 1

s+ 4

)

and

bs(x1, . . . , xs) = −r(

s∏

i=1

xi)

( r
2 (

s∑

i=1
xi − s)−m− 1

4

)

.

Next we set

fs,r,m = as(m,x1, . . . , xs) + (r − 1)as(m−
r

2
(

s∑

i=1

xi − s), x1, . . . , xs) + bs(x1, . . . , xs).

Explicitly we have

fs,r,m =

(
m+ s+ 4

s+ 4

)

− r(

s∏

i=1

xi)

( r
2(

s∑

i=1
xi − s)−m− 1

4

)

+

+ (−1)s(r − 1)

( r
2(

s∑

i=1
xi − s)−m− 1

s+ 4

)

+
s∑

k=1

(−1)k+s
∑

1≤i1<...<ik≤s

(
xi1 + . . .+ xik −m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=1

(−1)k+s
∑

1≤i1<...<ik≤s

(xi1 + . . .+ xik +
r
2 (

s∑

i=1
xi − s)−m− 1

s+ 4

)

.

We observe that the Koszul resolution of JX/Ps+4 gives

(A.1) χ(OX(m)) = as(m,d1, . . . , ds)

hence also

χ(OX(m−
r

2
(

s∑

i=1

di − s))) = as(m−
r

2
(

s∑

i=1

di − s), d1, . . . , ds).

The following properties of these function will be useful.

Lemma A.2.

(1) fs,r,m is symmetric in x1, . . . , xs.
(2) For any 1 ≤ k ≤ s, the following identity holds in Q[x1, . . . , xk]:

(A.2) fk,r,m(x1, . . . , xk) = fs,r,m(x1, . . . , xk, 1, . . . , 1).

Proof. It is clear that bs(x1, . . . , xs) is symmetric and satisfies bk(x1, . . . , xk) = bs(x1, . . . , xk, 1, . . . , 1)
for any 1 ≤ k ≤ s. Let π ∈ Ss be a permutation. We have by (A.1) that as(m,d1, . . . , ds) =
χ(OX(m)) = as(m,dπ(1), . . . , dπ(s)), hence the polynomial as(m,x1, . . . , xs) − as(m,xπ(1), . . . , xπ(s))
vanishes on all (d1, . . . , ds) and therefore it is zero. Thus a(m,x1, . . . , xs) is symmetric and so is

a(m − r
2(

s∑

i=1
xi − s), x1, . . . , xs). It follows that fs,r,m is symmetric and (1) is proved. Also, again by

(A.1),

as(d1, . . . , dk, 1, . . . , 1) = χ(OX(m)) = ak(d1, . . . , dk)
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and

as(m−
r

2
(

k∑

i=1

di−k), d1, . . . , dk, 1, . . . , 1)) = χ(OX(m−
r

2
(

k∑

i=1

di−k))) = ak(m−
r

2
(

k∑

i=1

di−k), d1, . . . , dk)

and therefore

fs,r,m(d1, . . . , dk, 1, . . . , 1) = fk,r,m(d1, . . . , dk).

Hence the polynomial fs,r,m(x1, . . . , xk, 1, . . . , 1) − fk,r,m(x1, . . . , xk) vanishes on all positive integer
(d1, . . . , ds), thus it is zero and this proves (2). �

Lemma A.3. xi | fs,r,m for all 1 ≤ i ≤ s.

Proof. By symmetry, it is enough to show that x1 | fs,r,m. We view fs,r,m = γ(x1) where γ ∈
Q[x2, . . . xs][x1], so that it is enough to prove that γ(0) = 0. Now

γ(0) =

(
m+ s+ 4

s+ 4

)

+ (−1)s(r − 1)

( r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

+

+

s∑

i=1

(−1)s+1






(
xi −m− 1

s+ 4

)

+ (r − 1)

(xi +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)




+

+

s∑

k=2

(−1)k+s
∑

1≤i1<...<ik≤s

(
xi1 + . . .+ xik −m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=2

(−1)k+s
∑

1≤i1<...<ik≤s

(xi1 + . . .+ xik +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

.

Since we are setting x1 = 0, in the sum in the second line the term with i = 1 is

(−1)s+1






(
−m− 1

s+ 4

)

+ (r − 1)

( r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)




 =

= (−1)s+1




(−1)s

(
m+ s+ 4

s+ 4

)

+ (r − 1)

( r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)






thus it cancels with the term in the first line

(
m+ s+ 4

s+ 4

)

+ (−1)s(r − 1)

( r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

.
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Hence we get

γ(0) =

s∑

i=2

(−1)s+1






(
xi −m− 1

s+ 4

)

+ (r − 1)

(xi +
r
2 (

s∑

i=2
xi − s)−m− 1

s+ 4

)




+

+

s∑

k=2

(−1)k+s
∑

1≤i1<...<ik≤s

(
xi1 + . . . + xik −m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=2

(−1)k+s
∑

1≤i1<...<ik≤s

(xi1 + . . .+ xik +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

=

=

s∑

i=2

(−1)s+1






(
xi −m− 1

s+ 4

)

+ (r − 1)

(xi +
r
2 (

s∑

i=2
xi − s)−m− 1

s+ 4

)




+

+

s∑

k=2

(−1)k+s
∑

2≤i2<...<ik≤s

(
xi2 + . . . + xik −m− 1

s+ 4

)

+

+ (r − 1)
s∑

k=2

(−1)k+s
∑

2≤i2<...<ik≤s

(xi2 + . . .+ xik +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

+

+
s∑

k=2

(−1)k+s
∑

2≤i1<...<ik≤s

(
xi1 + . . . + xik −m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=2

(−1)k+s
∑

2≤i1<...<ik≤s

(xi1 + . . .+ xik +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

=

=
s∑

i=2

(−1)s+1






(
xi −m− 1

s+ 4

)

+ (r − 1)

(xi +
r
2 (

s∑

i=2
xi − s)−m− 1

s+ 4

)




+

+
s∑

i2=2

(−1)2+s






(
xi2 −m− 1

s+ 4

)

+ (r − 1)

(xi2 +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)




+

+
s∑

k=3

(−1)k+s
∑

2≤i2<...<ik≤s

(
xi2 + . . . + xik −m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=3

(−1)k+s
∑

2≤i2<...<ik≤s

(xi2 + . . .+ xik +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

+

+

s∑

k=2

(−1)k+s
∑

2≤i1<...<ik≤s

(
xi1 + . . . + xik −m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=2

(−1)k+s
∑

2≤i1<...<ik≤s

(xi1 + . . .+ xik +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

.
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While the first two sums above cancel with each other, notice that in the last two sums the case k = s
is not possible, hence, rescaling it, we get

γ(0) =
s∑

k=3

(−1)k+s
∑

2≤i2<...<ik≤s

(
xi2 + . . .+ xik −m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=3

(−1)k+s
∑

2≤i2<...<ik≤s

(xi2 + . . .+ xik +
r
2(

s∑

i=2
xi − s)−m− 1

s+ 4

)

+

+

s∑

k=3

(−1)k−1+s
∑

2≤i1<...<ik−1≤s

(
xi1 + . . . + xik−1

−m− 1

s+ 4

)

+

+ (r − 1)

s∑

k=3

(−1)k−1+s
∑

2≤i1<...<ik−1≤s

(xi1 + . . . + xik−1
+ r

2(
s∑

i=2
xi − s)−m− 1

s+ 4

)

and the latter is 0. �

We will now express the symmetric polynomials fs,r,m in terms of monomial symmetric polynomials.
For this we will use some properties of them, for which we refer for example to [Eg, §1].

Definition A.4. Let s ≥ 1 be an integer and let x1, . . . , xs be indeterminates. Given a partition
λ = {λ1, . . . , λk} with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1, if k ≤ s we let mλ(s) be the monomial symmetric
polynomial in x1, . . . , xs corresponding to λ, while if k > s we set mλ(s) = 0.

We will also write mλ(s) = mλ1...λk
. We denote by {1k} the partition {1, . . . , 1} of k and we set

m10(s) = 1. For example

mh(s) =
s∑

i=1

xhi for h ≥ 1 and m1s(s) =
s∏

i=1

xi.

We will consider below the following Q-basis of the vector space of symmetric polynomials with
rational coefficients and of degree at most 4 in s variables:

(A.3) {m4(s),m31(s),m22(s),m211(s),m1111(s),m3(s),m21(s),m111(s),m2(s),m11(s),m1(s), 1}.

We will need some elementary relations among the mλ(s)’s.

Lemma A.5. The following identities hold:

(1) m1(s)
2 = m2(s) + 2m11(s).

(2) m1(s)
3 = m3(s) + 3m21(s) + 6m111(s).

(3) m1(s)
4 = m4(s) + 4m31(s) + 6m22(s) + 12m211(s) + 24m1111(s).

(4) m1(s)m11(s) = m21(s) + 3m111(s).
(5) m1(s)

2m11(s) = m31(s) + 2m22(s) + 5m211(s) + 12m1111(s).
(6) m11(s)

2 = m22(s) + 2m211(s) + 6m1111(s).
(7) m1(s)m3(s)) = m4(s) +m31(s).
(8) m1(s)m21(s) = m31(s) + 2m22(s) + 2m211(s).
(9) m1(s)m111(s) = m211(s) + 4m1111(s).

(10) m1(s)m2(s) = m3(s) +m21(s).
(11) m1(s)

2m2(s) = m4(s) + 2m31(s) + 2m22(s) + 2m211(s).
(12) m2(s)

2 = m4(s) + 2m22(s).
(13) m2(s)m11(s) = m31(s) +m211(s).

Proof. Follows by straightforward computations. �

The next lemma will be very useful.
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Lemma A.6. Let G = G(x1, . . . , xs) be a symmetric polynomial in s ≥ 4 variables with degG ≤ 4.
Then there are ai ∈ Q such that

G =a1m4(s) + a2m31(s) + a3m22(s) + a4m211(s) + a5m1111(s) + a6m3(s) + a7m21(s) + a8m111(s)+

+ a9m2(s) + a10m11(s) + a11m1(s) + a12

(A.4)

and the following identity holds:

G(x1, x2, x3, x4, 1, . . . , 1) = a1m4(4) + a2m31(4) + a3m22(4) + a4m211(4) + a5m1111(4)+

+ [a6 + (s − 4)a2]m3(4) + [a7 + (s − 4)a4]m21(4) + [a8 + (s− 4)a5]m111(4)+

+

[

a9 + (s− 4)(a3 + a7) +

(
s− 4

2

)

a4

]

m2(4) +

[

a10 + (s− 4)(a4 + a8) +

(
s− 4

2

)

a5

]

m11(4)+

+

[

a11 + (s − 4)(a2 + a7 + a10) +

(
s− 4

2

)

(2a4 + a8) +

(
s− 4

3

)

a5

]

m1(4) + a12+

+ (s− 4)(a1 + a6 + a9 + a11) +

(
s− 4

2

)

(2a2 + a3 + 2a7 + a10) +

(
s− 4

3

)

(3a4 + a8) +

(
s− 4

4

)

a5.

(A.5)

Proof. The fact that G can be written as (A.4) follows by using the basis (A.3). Then (A.5) follows by
the straightforward identities:

mi(s)(x1, x2, x3, x4, 1, . . . , 1) = mi(4) + s− 4, 1 ≤ i ≤ 4

m1i(s)(x1, x2, x3, x4, 1, . . . , 1) =
i∑

j=0

(
s− 4

j

)

m1i−j (4), 1 ≤ i ≤ 4

m31(s)(x1, x2, x3, x4, 1, . . . , 1) = m31(4) + (s− 4)m3(4) + (s− 4)m1(4) + (s− 4)(s − 5)

m22(s)(x1, x2, x3, x4, 1, . . . , 1) = m22(4) + (s − 4)m2(4) +

(
s− 4

2

)

m211(s)(x1, x2, x3, x4, 1, . . . , 1) = m211(4) + (s− 4)m21(4) +

(
s− 4

2

)

m2(4) + (s − 4)m11(4)+

+(s− 4)(s − 5)m1(4) + (s− 4)

(
s− 5

2

)

m21(s)(x1, x2, x3, x4, 1, . . . , 1) = m21(4) + (s− 4)m2(4) + (s− 4)m1(4) + (s− 4)(s − 5).

�

We can now express some fs,r,m in terms of monomial symmetric polynomials.

Lemma A.7. For all s ≥ 4 the following identities hold:

(1) fs,2,0 =
m1s(s)

360

[
66m4(s) + 225m31(s) + 320m22(s) + 600m211(s) + 1125m1111(s)

− 75(3s + 4)m3(s)− 150(4s + 5)m21(s)− 225(5s + 6)m111(s)+

+ 10(30s2 + 73s + 35)m2(s) +
75(15s2 + 35s + 14)

2
m11(s)

−
75s(s+ 1)(5s + 12)

2
m1(s) +

s

8
(375s3 + 1650s2 + 1505s − 698)

]
.

(2) fs,3,0 =
m1s(s)

1920
[1683m4(s) + 6060m31(s) + 8770m22(s) + 16860m211(s) + 32400m1111(s)

− 60(101s + 95)m3(s)− 60(281s + 255)m21(s)− 3600(9s + 8)m111(s)

+ 10(843s2 + 1496s + 490)m2(s) + 60(270s2 + 469s + 140)m11(s)

− 60s(90s2 + 229s + 125)m1(s) + s(1350s3 + 4470s2 + 3305s − 698)].
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(3) fs,3,1 =
m1s(s)

1920
[1683m4(s) + 6060m31(s) + 8770m22(s) + 16860m211(s) + 32400m1111(s)

− 60(101s + 133)m3(s)− 60(281s + 357)m21(s)− 720(45s + 56)m111(s)+

+ 10(843s2 + 2108s + 994)m2(s) + 60(270s2 + 661s + 284)m11(s)

− 60s(90s2 + 325s + 263)m1(s) + s(1350s3 + 6390s2 + 7265s − 1418)].

Proof. Let f ∈ {fs,2,0, fs,3,0, fs,3,1}. Since Q[x1, . . . , xs] is a UFD, using Lemma A.3, we see that there
exists a ps = ps,r,m ∈ Q[x1, . . . , xs] such that

f =
m1s(s)

360
ps if f = fs,2,0, and f =

m1s(s)

1920
ps in the other cases.

Moreover all ps’s are symmetric by Lemma A.2(i) and have degree at most 4 since deg f ≤ s+4. Thus,
we can express all ps’s through the basis (A.3) as follows:

ps =a1m4(s) + a2m31(s) + a3m22(s) + a4m211(s) + a5m1111(s) + a6m3(s)+

+ a7m21(s) + a8m111(s) + a9m2(s) + a10m11(s) + a11m1(s) + a12
(A.6)

with a1, . . . , a12 ∈ Q.
Now observe that, applying Lemma A.2(2), we have in Q[x1, . . . , x4] the similar identity

(A.7) p4(x1, . . . , x4) = ps(x1, . . . , x4, 1 . . . , 1).

On the other hand, direct calculations show that:

f4,2,0(x1, x2, x3, x4) =
m14(4)

360
[66m4(4) + 225m31(4) + 320m22(4) + 600m211(4) + 1125m1111(4)

− 1200m3(4) − 3150m21(4)− 5850m111(4) + 8070m2(4) + 14775m11(4)

− 24000m1(4) + 27861]

f4,3,0(x1, x2, x3, x4) =
m14(4)

1920
[1683m4(4) + 6060m31(4) + 8770m22(4) + 16860m211(4) + 32400m1111(4)

− 29940m3(4)− 82740m21(4)− 158400m111(4) + 199620m2(4) + 380160m11(4)

− 595440m1(4) + 681768]

f4,3,1(x1, x2, x3, x4) =
m14(4)

1920
[1683m4(4) + 6060m31(4) + 8770m22(4) + 16860m211(4) + 32400m1111(4)

− 32220m3(4)− 88860m21(4)− 169920m111(4) + 229140m2(4) + 434880m11(4)

− 720720m1(4) + 865128].

so that

p4,2,0 =66m4(4) + 225m31(4) + 320m22(4) + 600m211(4) + 1125m1111(4)− 1200m3(4)

− 3150m21(4)− 5850m111(4) + 8070m2(4) + 14775m11(4) − 24000m1(4) + 27861

p4,3,0 =1683m4(4) + 6060m31(4) + 8770m22(4) + 16860m211(4) + 32400m1111(4)

− 29940m3(4)− 82740m21(4) − 158400m111(4) + 199620m2(4) + 380160m11(4)

− 595440m1(4) + 681768

p4,3,1 =1683m4(4) + 6060m31(4) + 8770m22(4) + 16860m211(4) + 32400m1111(4)

− 32220m3(4)− 88860m21(4) − 169920m111(4) + 229140m2(4) + 434880m11(4)

− 720720m1(4) + 865128.

(A.8)

Now replacing x5 = . . . = xs = 1 in (A.6) and using (A.5) for G = ps we get an expression for
ps(x1, . . . , x4, 1 . . . , 1) in terms of the basis (A.3) whose coefficients must coincide, by (A.7), with the
ones in (A.8). Solving the corresponding linear system in the aj ’s, we get (1)-(3). �
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Consider now the following polynomials in Q[x1, . . . , xs]:

g4,s =
5m1s(s)

1728
[45s4 − 180s3m1(s) + 288s2m1(s)

2 − 216sm1(s)
3 + 64m1(s)

4 + 198s3 − 612s2m1(s)

− 36s2m11(s) + 700sm1(s)
2 + 72sm1(s)m11(s)− 288m1(s)

3 − 40m1(s)
2m11(s) + 181s2

− 432sm1(s)− 140sm11(s) + 336m1(s)
2 + 144m1(s)m11(s) + 4m11(s)

2 − 84s − 168m11(s)]

δs =
m1s(s)

8
[7m1(s)

2 − 12sm1(s)− 2m11(s) + 6s2 − s]

hs =− 2fs,3,1 + 2fs,3,0 + δs

ks =5(m1(s)− s− 2)hs −
25

4
(m1(s)− s− 2)2δs

cs =[4m1(s)− 4s− 5]hs −
1

8
[49m1(s)

2 − 8(13s + 20)m1(s) + 6m11(s) + 52s2 + 163s + 120]δs

χ′
s =

ks + cs
12

.

(A.9)

Then we have

Lemma A.8. For all s ≥ 1 the following identities hold:

(1) g4,s =
5m1s(s)

1728
[64m4(s) + 216m31(s) + 308m22(s) + 576m211(s) + 1080m1111(s)

− 72(3s + 4)m3(s)− 144(4s + 5)m21(s)− 216(5s + 6)m111(s)+

+ 4(72s2 + 175s + 84)m2(s) + 36(15s2 + 35s + 14)m11(s)− 36s(s+ 1)(5s + 12)m1(s)+

+ s(3s− 1)(3s + 7)(5s + 12)].

(2) δs =
m1s (s)

8 [7m2(s) + 12m11(s)− 12sm1(s) + 6s2 − s]

(3) hs =
m1s(s)

8
[19m3(s) + 51m21(s) + 96m111(s)− (51s + 35)m2(s)− 12(8s + 5)m11(s)+

+ 3s(16s + 19)m1(s)− s(16s2 + 27s − 5)]

(4) ks =
5m1s(s)

32
[41m4(s) + 150m31(s) + 218m22(s) + 422m211(s) + 816m1111(s)

− 2(75s + 76)m3(s)− 2(211s + 204)m21(s)− 48(17s + 16)m111(s)+

+ (211s2 + 401s + 140)m2(s) + 2(204s2 + 377s + 120)m11(s)

− 2s(68s2 + 185s + 108)m1(s) + s(s+ 2)(34s2 + 53s− 10)].

(5) cs =
m1s(s)

64
[265m4(s) + 924m31(s) + 1330m22(s) + 2524m211(s) + 4800m1111(s)

− 4(231s + 190)m3(s)− 4(631s + 510)m21(s)− 960(5s + 4)m111(s)+

+ 2(631s2 + 986s + 280)m2(s) + 4(600s2 + 929s + 240)m11(s)

− 4s(200s2 + 449s + 210)m1(s) + s(200s3 + 578s2 + 363s − 80)]

(6) χ′
s =

m1s(s)

768
[675m4(s) + 2424m31(s) + 3510m22(s) + 6744m211(s) + 12960m1111(s)

− 24(101s + 95)m3(s)− 24(281s + 255)m21(s)− 1440(9s + 8)m111(s)+

+ 2(1686s2 + 2991s + 980)m2(s) + 24(270s2 + 469s + 140)m11(s)

− 24s(90s2 + 229s + 125)m1(s) + s(540s3 + 1788s2 + 1323s − 280)].

Proof. Immediate from Lemmas A.5 and A.7. �

We now wish to compare all of the above functions.
In order to do this, for any b ∈ Z, define the polynomial qs,b ∈ Q[x1, . . . , xs] by

qs,b = bm4(s) + 10m22(s)− 10sm2(s) + s(5s− b+ 5).

We have
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Lemma A.9. For all s ≥ 4 the following identities hold:

(1) g4,s − fs,2,0 =
m1s (s)
4320 qs,8.

(2) χ′
s − fs,3,0 =

m1s (s)
3840 qs,9.

Proof. Immediate from Lemmas A.7 and A.8. �

We will also need the following crude estimate:

Lemma A.10. Let b ∈ {8, 9} and let s ≥ 2 be an integer. Then for all integers di ≥ 1, 1 ≤ i ≤ s with
s∏

i=1
di ≥ 2 we have that qs,b(d1, . . . , ds) > 0.

Proof. We proceed by induction on s. Since the case s = 2 is easily verified, we assume that s ≥ 3.
Note now the identity:

qs+1,b = qs,b + bx4s+1 + 10x2s+1[m2(s)− s− 1]− 10m2(s) + 10s − b+ 10.

Set
rb(t) = bt4 + 10t2[m2(s)(d1, . . . , ds)− s− 1]− 10m2(s)(d1, . . . , ds) + 10s − b+ 10

so that

(A.10) qs+1,b(d1, . . . , ds+1) = qs,b(d1, . . . , ds) + rb(ds+1).

There are two possible cases.
The first one is when

∏s
i=1 di ≥ 2, whence qs,b(d1, . . . , ds) > 0 by induction hypothesis. Observe that

in this case (d/dt)rb(t) > 0 when t ≥ 1 and rb(1) = 0. It follows that rb(ds+1) ≥ 0 for all ds+1 ≥ 1, and
consequently qs+1,b(d1, . . . , ds+1) > 0 by (A.10).

The second case is when
∏s

i=1 di = 1, in which case (d1, . . . , ds) = (1, . . . , 1). We have that
qs,b(1, . . . , 1) = 0 and rb(ds+1) = bd4s+1−10d2s+1−b+10 > 0 since ds+1 ≥ 2. Thus qs+1,b(d1, . . . , ds+1) > 0
by (A.10), which completes the proof. �
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