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GENERIC TORELLI WITH DENOMINATORS FOR ELLIPTIC

SURFACES

N. I. SHEPHERD-BARRON

Abstract

We show that a very general Jacobian elliptic surface is determined

by its polarized Q-Hodge structure, subject to various constraints on the

irregularity and the geometric genus.

AMS classification: 14C34, 32G20.

1 Introduction

We consider the stack JEh,q of Jacobian elliptic surfaces f : X → C over C of
geometric genus h and irregularity q, provided that 8h > 10(q−1) and h ≥ q+3.
If all the singular fibres are of Kodaira type I1 then the datum of such a surface
is equivalent to the datum of a classifying morphism Φ : C → Eℓℓ from C to the
stack Eℓℓ of generalized elliptic curves.

In [SB] we showed that then the derivative of the period map associated to the
primitive cohomology H2

prim(X), which is defined as the orthogonal complement
of a fibre and the zero section, determines the base curve C, the ramification
divisor Z = RamΦ in C of Φ and the copy of C in Ph−1 that arises as the image
of X under the linear system |KX | = f ∗|KC + Φ∗M |. (Here M is the bundle of
weight one modular forms on Eℓℓ and, under our assumptions, |KX | has no base
points, so that the infinitesimal Torelli theorem holds for these surfaces.) We
went on to show that if also q ≥ 2 and the pair (C,Z) is generic (as we assume
for the rest of this paper) then these data determine Φ modulo the automorphism
group Gm of Eℓℓ. We then proved, without the assumption that q ≥ 2, that the
generic Torelli theorem holds for these surfaces. In this paper we consider such
surfaces under the assumptions that

8h > 10(q − 1), h ≥ q + 3 and q ≥ 2 (1.1)

and we show that a very general such surface f : X → C is determined by its
polarized Q-Hodge structure. To do so it is enough, given the results that we have
just described, to assume that the base curve C and the line bundle L = Φ∗M
on C are fixed and to consider only surfaces in the Gm-orbit of the point defined
by f : X → C in the closed substack J EC,L of the stack J E = J Eh,q of these
surfaces.

http://arxiv.org/abs/2405.01129v1


2 N. I. SHEPHERD-BARRON

Recall ([Mir89], p. 28) that X is embedded as a divisor in the P2-bundle

π : P = PC,L = P(O ⊕ L2 ⊕ L3) → C

and is linearly equivalent to the line bundle π∗(L6)⊗ OP(3). It is defined by an
equation

Y 2Z = 4X3 + g4XZ
2 + g6Z

3

where gn ∈ H0(C,L⊗n). If g6 = 0 then X is a Gauss surface and if g4 = 0
then X is an Eisenstein surface because in that case X has an action by Z/4
or Z/6, respectively. In the Eisenstein case the action of 〈α〉 = Z/6 is given by
α∗(X, Y, Z) = (ζ26X, ζ

3
6Y, Z).

The closure of the Gm-orbit through X is the pencil {X(λ,µ)}(λ,µ)∈P1 given by
the equation

Y 2Z = 4X3 + λg4XZ
2 + µg6Z

3,

where λ, µ are homogeneous co-ordinates on the copy of P1 that is the closure
of Gm. We call this the Gauss–Eisenstein pencil through X and regard it as a
canonically defined pencil through X that is generated by the Eisenstein surface
X6 defined by λ = 0 and the Gauss surface X4 defined by µ = 0. The surfaces
X6 and X4 are determined by X, since they are the fixed points in the closure
of the Gm-orbit through X. When g6 has isolated zeroes then X6 is smooth and
when g6 has a double zero then X6 has a singularity of type A2.

Until now we have only considered general surfaces in J E . The condition
that the surface be general excludes Gauss and Eisenstein surfaces. To include
them, we consider the stack J ERDP whose geometric points are relative canonical
models of Jacobian elliptic surfaces. (These are the surfaces with RDPs that arise
from contraction of the vertical (−2)-curves that are disjoint from the zero section.
For such surfaces there might be no classifying morphism Φ : C → Eℓℓ, but there
is still a zero section and its conormal bundle, so it makes sense to speak of the
closed substack J ERDP

C,L of J ERDP .) The Gauss–Eisenstein pencils are in these
stacks J ERDP

C,L . If D is the relevant period domain (in the context of this paper it
classifies Hodge structures on H2

prim(Y,Z) when Y is a Jacobian elliptic surface
of geometric genus h and irregularity q) and Γ the relevant arithmetic group then
the period map exists as a morphism

per : [J ERDP ] → [D/Γ]
of geometric quotients; here, and for the rest of this paper, [X ] denotes the
geometric quotient of the Deligne–Mumford stack X in either of the algebraic or
the analytic contexts.

2 Eisenstein surfaces

Fix both a curve C (of genus q ≥ 0) and a line bundle L on it of degree h+1−q >
0. We consider Jacobian elliptic surfaces X → C such that pg(X) = h and L is
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the conormal bundle of the zero section. Note that L also the pull-back Φ∗M of
the bundle of weight 1 modular forms.

Lemma 2.1 If L is generic then 6L is very ample.

PROOF: This follows from the assumptions that 8h > 10(q − 1) and h ≥ q + 3.

We shall consider more particularly the corresponding family {Xt} of Eisen-
stein surfaces defined by g4 = 0; the parameter space is the linear system |6L|.
We put V = H2

prim(Xη,Q), where Xη is the geometric generic member of this
family, and let G denote the monodromy group acting on V . The action of
γ = α2 on Xη makes V into a Q[T ]/(T 3 − 1)-module and then G is a group
of Q[T ]/(T 3 − 1)-linear transformations of this module. In this section we re-
write that part (4.4) of [Del80] that is concerned with monodromy in even fibre
dimension in this context.

Take a general pencil Π in |6L|. Since 6L is very ample this gives a family

a : X → Π ∼= P1

whose total space X is a smooth blow-up of PC,L and whose geometric generic
member Xη is smooth. Moreover, again because 6L is very ample, each of the
finitely many singular fibres has a single A2-singularity. Note that V is identified
with the orthogonal complement of the image of H2(X ,Q) in H2(Xη,Q).

Let F denote a local Milnor fibre in this family, so that H2(F,Q) is the Q-
module spanned by roots δ1, δ2 such that δ2i = −2 and δ1.δ2 = 1. Then the
local monodromy operator σ on H2(F,Q) is a Coxeter element in the Weyl group
W (A2), so is of order 3. We shall refer to these roots δi as the basic cycles and
to the Coxeter elements σ as basic transformations.

By letting Π move in the Grassmannian of lines in |6L| we see, as in [SGA7 II]
XVIII, that the basic transformations form a single conjugacy class in G and they
generate G.

Lemma 2.2 V G = 0.

PROOF: Since the fibres of X → Π all have only du Val singularities, they satisfy
the hypotheses of Théorème 1.1 of [SGA7 II] XVIII, so that the Leray spectral
sequence

Epq
2 = Hp(Π, Rqa∗Q) ⇒ Hp+q(X ,Q)

degenerates at E2. From this it follows that H2
prim(Xη,Q)G consists of classes

that come from the threefold X and the lemma is proved.

Lemma 2.3 The action of γ on H2(F,Q) is non-trivial.

PROOF: F is the affine surface defined by the equation xy + z3 = 1 and γ acts
as γ∗(x, y, z) = (x, y, ζ46z). So the fixed locus of γ in F is C − {0}, whose Euler
characteristic is zero. We conclude by the Lefschetz fixed point theorem.
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It follows that the action of γ on H2(F,Q) is given by γ = σ±.
Recall that Z/3 = 〈γ〉 has just two irreducible representations over Q, namely,

the trivial representation V0 = Q and the 2-dimensional representation V1 =
Q(ζ3), on which γ acts as multiplication by ζ3. In particular, H2(F,Q) is isomor-
phic to V1; in other words, H2(F,Q) is a 1-dimensional Q(ζ3)-vector space and
as such is generated by a basic cycle.

The next lemma is well known.

Lemma 2.4 If A and B are groups, k is a field and W is a representation of
A×B defined over k on which the action of A is completely reducible, then there
is a decomposition

W = ⊕j (Vj ⊗k Uj)

of k[A × B]-modules, where Vj runs over the irreducible representations of A
defined over k and Uj is the representation of B given by Uj = HomA(Vj ,W ).

Taking k = Q, A = 〈γ〉, B = G and W = V gives V = (V0 ⊗ U0)⊕ (V1 ⊗ U1)
for some representations U0, U1 of G.

Lemma 2.5 V0 ⊗ U0 = V γ = 0.

PROOF: That V0 ⊗ U0 = V γ follows from the definition of U0 and V0, while
V γ is also the primitive cohomology of the geometric quotient [X/γ]. This is a
P1-bundle over C, so that its primitive cohomology is zero.

Corollary 2.6 V is naturally a representation of G defined over Q(ζ3).

PROOF: We already know that V is a Q[T ]/(T 3 − 1)-module and we have just
shown that the eigenspace belonging to T = 1 is zero.

The intersection pairing b : V × V → Q is Q-bilinear, non-degenerate and
γ ×G-invariant. Write θ = ζ3 − ζ23 =

√
−3 and define B : V × V → Q(ζ3) by

B(u, v) = θ−1 (ζ3b(u, v)− b(u, ζ3v)) ;

then B is a non-degenerate G-invariant Hermitian Q(ζ3)-sesquilinear form and
b = trQ(ζ3)/QB.

Let us say that the signature of B is (p, r); then the signature of b is (2p, 2r).
We are dealing with elliptic surfaces of geometric genus h and irregularity q, so
that p = h and r = 4(h+1−q). So p ≥ 0 and r ≥ 4. In particular, dimQ(ζ3) V ≥ 4.

Define a root to be any G-conjugate of a basic cycle. Then, for every root
δ, B(δ, δ) = −1 and the corresponding complex reflexion σ = σδ is given by the
formula

σδ(x) = x+ (1− ζ3)B(x, δ)δ.

This shows that σδ acts as a unitary reflexion of order 3. The unitary group UB

is an algebraic group defined over Q and has a determinant homomorphism

det : UB → R1
Q(ζ3)/QGm
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that is also defined over Q; here R1
Q(ζ3)/Q

Gm is the kernel of the norm homo-
morphism RQ(ζ3)/QGm → Gm. The kernel of det is SUB. The centre of UB is
isomorphic to R1

Q(ζ3)/Q
Gm. Since each σδ lies in UB it follows that G ⊆ UB and

that therefore M ⊆ UB.

Lemma 2.7 V is an absolutely irreducible Q(ζ3)[G]-module. Moreover, V is
spanned, as a Q(ζ3)-vector space, by the G-orbit of any root.

PROOF: Put
VR = V ⊗Q R = V ⊗Q(ζ3) C.

Note first that (VR)
G = (V G) ⊗Q(ζ3) C = 0, by Lemma 2.2, and that B extends

to a Hermitian form on VR.
Suppose that V ′ is a non-zero sub-C[G]-module of VR. If there is a root δ such

that V ′ ⊆ Fix(σδ), then

V ′ = g(V ′) ⊆ Fix(gσδg
−1)

for all g ∈ G, so that, since the G-conjugates of σδ generate G, V ′ ⊆ (VR)
G = 0.

So every σδ acts non-trivially on V ′.
Fix a root δ and choose x ∈ V ′ such that σδ(x) 6= x. Then the formula

defining σδ shows that δ ∈ V ′. Let P be the C-subspace of VR spanned by the
cycles δ; then P is a non-zero C[G]-module and P is contained in every non-zero
sub-C[G]-module V ′ of VR. In particular, P is irreducible.

Now suppose that P⊥ 6= 0. Then P ⊆ P⊥. However, δ ∈ P and B(δ, δ) 6= 0,
so P⊥ = 0. Therefore P = VR and the lemma follows.

Now let M denote the algebraic subgroup, over Q, of the unitary group UB

that is generated by G. Since G is generated by a single conjugacy class of unitary
reflexions of order 3, the same is true of M . Let µ̃n ⊂ R1

Q(ζ3)/Q
Gm be the n-torsion

subgroup; this is the quadratic twist of µn determined by Q(ζ3)/Q. So det−1(µ̃3)
is an extension of µ̃3 by SUB; we denote this group by SUB.µ̃3.

Theorem 2.8 Either M = SUB.µ̃3 or G is finite.

PROOF: Observe first that M ⊆ SUB.µ̃3 since G is generated by elements of
order 3.

We set up some notation, as follows.

(1) M̃ = R1
Q(ζ3)/Q

Gm.M ⊂ UB.

(2) Σ ⊂ VR is the real quadric hypersurface in VR defined by B(x, x) = −1.

(3) Take any root δ0 and let R̃ denote its M̃(R)-orbit and R its M(R)-orbit;
these orbits are independent of the choice of δ0 and are real semi-algebraic
subsets of Σ.
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(4) Given δ, η ∈ R̃ that are not C-proportional, let Lδ,η denote the complex
2-plane that they span and let Hδ,η denote the real algebraic subgroup of
MR generated by σδ, ση.

Note that if δ ∈ R̃ then δ = λη for some η ∈ R and λ ∈ C with |λ| = 1, so
that we can define σδ by σδ = ση. So σδ is defined for all δ ∈ R̃ and is a unitary
reflexion of order 3. Also Hδ,η acts on Lδ,η as a group of unitary transformations
and projects to a subgroup PHδ,η of the corresponding projective unitary group
acting on P(L∨

δ,η) = (Lδ,η − {0})/Gm.

Lemma 2.9 Assume that δ, η ∈ R̃ and are not C-proportional.
(1) If |B(δ, η)| > 1 then PHδ,η = PSU(1, 1) ∼= PSL2(R).
(2) If |B(δ, η)| < 1 then, except for finitely many values of |B(δ, η)|, PHδ,η =

PSU(0, 2) ∼= SO3(R).
(3) If |B(δ, η)| = 1 then PHδ,η is a non-trivial split extension C⋊Z/3, regarded

as a 2-dimensional real algebraic group.
(4) There is a finite subset C of the interval [0, 1) such that, if |B(δ, η)| 6∈ C,

the group PHδ,η is either PSU(1, 1) or PSU(0, 2) or C⋊ Z/3.

PROOF: We start with the classification of the real algebraic subgroups K of
PSUβ, where β is a non-zero Hermitian form on a 2-dimensional complex vector
space of signature (0, 2), (1, 1) or (0, 1), that are generated by elements of order
3. In turn, this derives from the classification of the algebraic subgroups H of
the algebraic group PSL2,C over C. The fact that 3 is odd simplifies matters.

The algebraic subgroups H of PSL2,C are: PSL2,C itself; subgroups of the
normalizer of a maximal torus; subgroups of a Borel subgroup B; the polyhedral
subgroups A4,S4 and A5. So if H is the Zariski closure of a group generated by
elements of order 3 then H is one of: PSL2,C; Z/3; a non-trivial split extension
of Z/3 by the unipotent radical U ∼= C of B; A4 or A5.

(1) It follows that any real algebraic subgroup K of PSU(1, 1) ∼= PSL2(R)
that is the Zariski closure of a group generated by elements of order 3 is
either Z/3 or PSL2(R). The fact that δ and η are not proportional shows
that PHδ,η 6= Z/3.

(2) The analogous subgroups of PSU(0, 2) ∼= SO3(R) are SO3(R), Z/3, A4 and
A5. The cases of A4 and A5 are excluded by excluding finitely many values
of |B(δ, η)| because we need to consider the situation where δ, η are vertices
of a spherical triangle with angles π/3, π/3 at δ, η. The exceptional cases are
those where the third angle is a rational multiple aπ/b of π, 1/3 < a/b < 1
and b ≤ 5. It is clear that this can only happen for finitely many values of
|B(δ, η)|, all of which lie in [0, 1). As before, Z/3 is excluded by the fact
that δ, η are not proportional.

(3) In the degenerate case where |B(δ, η)| = 1, we see similarly that PHδ,η is a
non-trivial split extension of U by Z/3.
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Finally, (4) follows from (1)–(3).

If δ, η ∈ R̃ are C-proportional then σδ = σ±
η , so they generate a copy of Z/3.

Lemma 2.10 Suppose that |B(δ, η)| 6∈ C and that δ, η are not C-proportional.
Define Oδ,η to be the Hδ,η orbit of δ in the complex 2-plane Lδ,η. Then L0

δ,η =

C∗.Oδ,η is a dense semi-algebraic subset (in the real sense) of Lδ,η and L0
δ,η∩Σ ⊆ R̃.

PROOF: This follows at once from Lemma 2.9.

Suppose that W ⊆ VR = V ⊗Q(ζ3)C is a sub-C-vector space containing a dense
semi-algebraic subset W 0 such that

(1) W 0 ∩ Σ is non-empty,

(2) W 0 ∩ Σ is dense in W ∩ Σ and

(3) W 0 ∩ Σ is contained in R̃.

In particular, W is spanned by W ∩ R̃.
For example, the one-dimensional such subspaces are exactly the lines Cδ,

where δ ∈ R, and, provided that δ, η are not proportional and |B(δ, η)| 6∈ C , the
complex 2-plane Lδ,η is another.

Assume until the end of the proof of Theorem 2.8 that W is maximal with
respect to these properties. So certainly W 6= 0.

Proposition 2.11 Assume that W 6= VR. Then G is finite.

PROOF: Note first that R̃ \W is not empty, since R̃ generates VR.
We proceed to establish Lemmas 2.12 and 2.13.

Lemma 2.12 Suppose that δ ∈ R̃ \W . Then the function βδ : W → R defined

by βδ(x) = |B(x, δ)| only takes values in C when restricted to W ∩ R̃.

PROOF: Suppose that η ∈ W ∩ R̃ (so that, in particular, η is not C-proportional
to δ) and that |B(δ, η)| 6∈ C. Then L0

δ,η ∩ Σ ⊆ R̃. Now let η vary over the subset

S1 of W ∩R̃ defined by the conditions that |B(δ, η)| 6∈ C and η is not proportional
to δ. This is a semi-algebraic set. Put S2 = ∪η∈U1

L0
δ,η, so that

S2 ∩ Σ ⊆ R̃.

Moreover, S2 is semi-algebraic; this can be seen by defining the semi-algebraic
subset S3 of S1 ×M(R) by

S3 = {(η,m)|η ∈ S1 and m ∈ Hδ,η}
and observing that S2 is the image of C∗ × S3 under the map

C∗ × S3 → V : (z, η,m) 7→ z.m(η).

Since L0
δ,η is dense in Lδ,η, it follows that S2 is dense in ∪η∈U1

Lδ,η and so is dense
in W⊕Cδ. Therefore we can enlarge W to W⊕Cδ and then take (W⊕Cδ)0 = S2

to contradict the maximality of W .
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Lemma 2.13 (1) Suppose that δ ∈ R̃ \W . Then either δ ∈ W⊥ or W ∩W⊥ is
of C-codimension one in W . In both cases δ is orthogonal to W ∩W⊥.

(2) W ∩W⊥ = 0.

PROOF: (1)
W ∩ R̃ ⊇ W ∩W 0 ∩ Σ =W 0 ∩ Σ,

so that, by Lemma 2.12, βδ takes values only in the finite set C on the non-empty
dense semi-algebraic subset W 0 ∩ Σ of W ∩Σ. Therefore βδ takes values only in
C on the real quadric hypersurface W ∩ Σ.

Fix c ∈ C and consider the condition that βδ(w) = c for w ∈ W . There are
complex co-ordinates (zk)k∈K on W and disjoint subsets I, J of K such that J is
not empty, W ∩ Σ is given by the equation D = 0, where

D =
∑

i∈I

|zi|2 −
∑

j∈J

|zj|2 + 1,

and the condition that βδ(w) = c is given by the equation E = 0, where

E = |B(z, δ)|2 − c2.

Then dD is proportional to dE on W ∩ Σ. Say dE = φdD on W ∩ Σ for some
function φ on W ∩Σ. Write B(w, δ) =

∑
i∈I aizi−

∑
j∈J ajzj+

∑
k 6∈I∪J bkzk. Then

ākB(w, δ) = φzk

on W ∩ Σ for all k ∈ I ∪ J . This gives two possibilities: either

(a) the function w 7→ B(w, δ) is identically zero on W ∩ Σ (in which case it
vanishes on W and δ ∈ W⊥) or

(b) I is empty, J has just one element, W ∩Σ is the cone Σ̂ over a circle |z|2 = 1
and the restriction of βδ to W ∩ Σ is proportional to |z|.

In the first case δ ∈ W⊥. in the second case βδ vanishes on the vertex of Σ̂ and
this vertex has codimension 1 in W . Moreover, this vertex is W ∩W⊥, and part
(1) of the lemma is proved. (2) Note that δ is orthogonal to W ∩W⊥, from (1).
Then W ∩W⊥ is orthogonal to every root in W and to every root not in W , so
lies in V G

R . But this space vanishes, by Lemma 2.2, and the lemma is proved.

Now we finish the proof of Proposition 2.11.
First, suppose that dimCW ≥ 2. Then, by Lemma 2.13, R̃ \W ⊆ W⊥, so

that for every root in R̃ \W the reflexion σδ preserves W . Certainly σδ preserves
W for every root δ in W , so that W is G-invariant. But VR is irreducible and
W 6= VR, so we have a contradiction and dimCW = 1.

Next, since W ∩ R̃ is not empty, W ∩ R is also non-empty and then W is a
line Cδ for some δ ∈ R.
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Next, let M̃0 denote the identity connected component of M̃ and R̃0 =
M̃0(R)δ0. Then, for all δ ∈ R̃0 and for all m ∈ M̃0(R) close to the identity,
|B(δ,m(δ))| is close to 1 and so does not lie in C. Therefore δ and m(δ) are
proportional, since otherwise Lδ,η would be a 2-dimensional space W . So M̃0

preserves each complex line W . Since the lines Cδ span VR, it follows that M̃0 is
a real algebraic torus and that VR decomposes as a direct sum VR = ⊕Uχ, where
χ runs over the complex characters of M̃0 and Uχ is the χ-eigenspace of VR.

Finally, suppose that r is the number of distinct characters in this decompo-
sition and that r ≥ 2. Since M̃0 is normal in M̃ , this decomposition is a system
of imprimitivity for the action of M̃ on VR, and so for the group G. However,
if G were imprimitive then it would, since the representation VR is irreducible,
possess a surjection onto the symmetric group Sr ([ST], penultimate paragraph
of p. 276; at this point of their paper the assumptions that the group in ques-
tion be finite and unitary are not relevant). Since G is generated by elements of
odd order this is impossible, so that r = 1 and M̃0 is 1-dimensional. Since M̃0

contains S1 it is then equal to S1, which is the centre of UB. But M ⊆ SUB.µ̃3,
so M is finite and Proposition 2.11 is proved.

Proposition 2.14 Assume that W = VR. Then M = SUB.µ̃3.

PROOF: Since W = VR, it follows that V 0
R ∩Σ ⊆ R̃ ⊆ Σ, so that R̃ is dense in Σ.

Therefore M(R) equals the real algebraic subgroup N of UB(R) that is generated
by the unitary reflexions of the form

x 7→ x+ (1− ζ3)B(x, δ)δ,

as δ runs over the elements of Σ. It is clear that N is normal in UB(R) and
is contained in (SUB.µ̃3)(R). Since SUB(R) is a simple real algebraic group, it
follows that M(R) = (SUB.µ̃3)(R) and the proposition is proved.

This completes the proof of Theorem 2.8.

Proposition 2.15 If G is finite then h = q = 0 and G is the group G = W (L4)
(the group numbered 32 in the list constructed by Shephard and Todd [ST].)

PROOF: We know that G is an irreducible finite complex reflexion group. So it
is one of the groups in the Shephard–Todd list. The fact that it is generated by
reflexions of order 3 leaves only a few possibilities.

Let n denote the dimension of its defining representation, which is VR, so that

n = dimQ(ζ3) VR = h1,1prim(X)/2 = 5h+ 4(1− q) = h+ 4(h− q + 1).

Since h ≥ q ≥ 0 it follows that n ≥ h+ 4 ≥ 4. Say that G = STN , the group (or
family of groups) numbered N in the list of [ST] and consider the table on p. 412
of [Coh76], which covers the cases N ∈ [24, 34]. Taking into account the facts that
G is generated by reflexions of order 3 and that n ≥ 4 shows that, if N ∈ [24, 34],
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then N = 32 and n = 4, so that h = 0 and then q = 0. For N ≤ 23 look at the
table on p. 301 of [ST]; since n ≥ 4 we have N = 1 or 2. However, each group in
either of these families admits a surjection onto a non-trivial symmetric group,
so is not generated by elements of order 3. If N ≥ 35 then G is a Weyl group of
type E, which groups are not generated by elements of order 3.

Remark: When h = q = 0 then X is the blow-up of a del Pezzo surface S of
degree 1 at the base point of | −KS|. This shows that the case where G = ST32
does occur, and echoes the existence of an embedding W (L4) →֒ W (E8).

We continue with a fixed generic curve C of genus q ≥ 2 and a generic line
bundle L on it of degree h + 1 − q ≥ 1 and consider the Eisenstein surfaces X6

defined by these data. For a Jacobian elliptic surface Y we denote by HS(Y )
the Z-Hodge structure on H2

prim(Y,Z). The negative of the cup product defines
a polarization on this; we call it the standard polarization.

Theorem 2.16 Suppose that f : X6 → C is a very general Eisenstein sur-
face and that the assumption (1.1) holds. Then the natural homomorphism φ
from Aut(X6) to the automorphism group Aut(HS(X6)) of the polarized Z-Hodge
structure HS(X6) is an isomorphism.

PROOF: Suppose that 1 6= γ ∈ ker φ. Then γ acts trivially on |KX6
|. Since

KX6
∼ f ∗(KC +M), the assumption (1.1) ensures that |KX6

| pulls back from a
very ample class on C, so that γ acts trivially on C and the geometric quotient
Y = [X6/〈γ〉] admits a morphism to C whose generic fibre is the quotient of the
generic fibre of f by 〈γ〉. So Y is birationally ruled over C, so that pg(Y ) = 0.
On the other hand H0(X6,Ω

2
X6
) = H0(X6,Ω

2
X6
)γ, so vanishes, which is absurd.

So φ is injective.
To prove the surjectivity of φ we argue as follows. By [Del72], Proposition

7.5, the monodromy group G has a subgroup G0 of finite index that embeds
as a subgroup of the Mumford–Tate group MT (X6) of the polarized Z-Hodge
structure of a very general surface X6 in the family of Eisenstein surfaces defined
by (C,L).

(1) MT (X6) is a Q-subgroup of Ob but, because of the existence of the auto-
morphism γ, MT (X6) is in fact a Q-subgroup of UB.

(2) The identity connected component M0 of M is contained in MT (X6) since
M0 is contained in the Q-algebraic subgroup generated by G0.

(3) So MT (X6) contains SUB. Since MT (X6) contains the scalars, it equals
UB and its centralizer is Q(ζ3).

If θ is an automorphism of the polarized Z-Hodge structure HS(X6) = VZ
then θ normalizes the image of the Deligne torus S = RC/RGm in GL(VR) that
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defines HS(X6)R. Examination of the Galois module X∗(S) shows that the R-
automorphism group of S consists of the four maps

z 7→ {z, z−1, z, z−1}.

Since the weight of HS(X6) is non-zero, θ acts trivially on the copy of R∗ in S

and so its action on S is either z 7→ z or z 7→ z. Since H2,0 6= 0 it follows that θ
acts trivially on S.

Let Z denote the connected component of the fixed locus of θ in GL(V ); this
is a Q-algebraic subgroup of GL(V ) and ZR contains S. So Z contains MT (X6),
so that θ centralizes MT (X6) and lies in Q(ζ3). But also θ and θ−1 are integral
over Z, since they act on the finite Z-module HS(X6), so that they both lie in
Z[ζ3] and then θ is a power of ζ6.

Corollary 2.17 (Generic local Torelli) If X6 is a generic Eisenstein surface and
|KX6

| has no base points then the coarse period map

per : [J E ] → [D/Γ]

is injective in an analytic neighbourhood of the point corresponding to X6.

PROOF: It’s enough to allow X6 to be very general.
Since |KX6

| has no base points, the infinitesimal Torelli theorem holds for X6.
The result follows at once from the theorem.

Remark: Really the important point here is the weaker result that the automor-
phism group of the polarized Hodge structure HS is induced by the automorphism
group of the variety modulo automorphisms of HS that act trivially on the period
domain. So very general Eisenstein surfaces happen to behave like hyperelliptic
curves rather than non-hyperelliptic ones.

3 Q-Hodge structures and generic Torelli

Suppose that n is an integer. If X, Y are Jacobian elliptic surfaces then an n-
isogeny from HS(X) to HS(Y ) is a Z[1/n]-isomorphism ψ : HS(X) ⊗ Z[1/n] →
HS(Y ) ⊗ Z[1/n] of Z[1/n]-Hodge structures such that nψ(HS(X)) ⊆ HS(Y ) ⊆
n−1ψ(HS(X)) and ψ preserves the standard polarizations up to a positive rational
scalar multiple. This notion defines a correspondence Γn on D/Γ and on [D/Γ]
and then we can consider the composite

pern = Γn ◦ per : [J Eh,q] → [D/Γ] → [D/Γ].

This is multi-valued; we say that it is very generally injective if, for two points
X, Y in [J Eh,q] of which one is very general, we have X = Y if the finite set
pern(X) has non-empty intersection with pern(Y ).
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Lemma 3.1 If HS(Y ) is isogenous to HS(X6) for a very general Eisenstein
surface X6 then the automorphism group of HS(Y ), with its polarization, is
either 〈ζ6〉 or {±1}
PROOF: HS(Y )Q is isomorphic to HS(X)Q. The proof of Theorem 2.16 then
shows, first, that every automorphism θ of HS(Y ) lies in Q(ζ3) and, second, that
θ is a power of ζ6. Since −1 is always an automorphism of HS(Y ) the lemma
follows.

Theorem 3.2 Under the assumptions (1.1) the multi-valued map pern is very
generally injective.

PROOF: Assume otherwise. As recalled in Section 1 the IVHS determines the
base curve C and the ramification divisor Z of the classifying morphism Φ :
C → Eℓℓ, and then for generic Φ the pair (C,Z) determines Φ modulo the action
of the automorphism group Gm of Eℓℓ. Since the closure of such an orbit is a
Gauss–Eisenstein pencil, a generic point X of JE determines a Gauss–Eisenstein
pencil, the closure of the Gm-orbit through the point X, and any failure of pern
to be very generally injective can be detected on a very general Gauss–Eisenstein
pencil.

Suppose that X6 is a very general Eisenstein surface and that X → B ∼= P1

is the Gauss–Eisenstein pencil generated by X6 and some Gauss surface X4. Let
P ∈ B denote the point corresponding to X6, B′ the normalization of the image
of B in the coarse moduli space [J ERDP

C,L ] and P ′ ∈ B′ the image of P . In an
analytic neighbourhood of P the map B → B′ is just the geometric quotient by
the group 〈ζ6〉. (This action is not effective; the kernel is {±1}).

Consider the multi-valued map pern|B′ : B′ → [D/Γ]; by assumption, this is
not very generally injective in the sense defined above. However, Corollary 2.17
and Lemma 3.1 combine to show that pern|B′ is an isomorphism onto each of its
images Y either

(1) in an analytic neighbourhood of P ′ in B′ (when Aut(HS(Y )) = 〈ζ6〉) or

(2) in an analytic neighbourhood of P in B (when Aut(HS(Y )) = {±1}).

Since B′ is complete there is, therefore, another point Q′ ∈ B′ such that
Q′ 6= P ′ and pern(P ′) meets pern(Q′). Let Q be a pre-image of Q′ in B. Varying
the pencil B by keeping the Eisenstein surface X6 fixed and varying the Gauss
surface X4 then gives a locus L in JERDP

C,L , swept out by the points Q, that
consists of elliptic surfaces whose Hodge structure is n-isogenous to that of X6.
Since a general member of J E determines the Gauss–Eisenstein pencil on which
it lies, the point Q varies when X4 varies, so that dimL is strictly positive.
However, this contradicts the infinitesimal Torelli theorem.

Corollary 3.3 If 8h > 10(q−1), h ≥ q+3 and q ≥ 2 then a very general surface
in J Eh,q is determined by its polarized Q-Hodge structure.
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