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Abstract

We solve the PBW-like problem of normal ordering for enveloping algebras of direct sums.

1 A question about the enveloping algebra of a direct sum.

This question is imported from [13]. It is linked to this one [14] in the case of semi-direct
products.
Let us consider a Lie k-algebra (k is a commutative ring) written as a (module) direct sum of
two of its subalgebras

g = g1 ⊕ g2 (⊕ = ⊕k−mod)

and the linear maps associated to this direct sum decomposition

gi g
ji

pi
such that j1p1 + j2p2 = Idg (1)

(Idg is a sum of two orthogonal projectors, remark that only ji’s are Lie morphisms in general).
We get, at once, the maps U(ji) through the universal algebra functor U (see below section 2
“Universal Constructions”) as follows.

gi g

U(gi) U(g)

σi

ji

σ

U(ji)

(2)

allowing us to multiply members of U(g1)⊗k U(g2) within U(g) by the composite map

µstate = µ ◦ (U(j1)⊗k U(j2)) : U(g1)⊗k U(g2) → U(g) (3)

where µ is the multiplication of U(g).
One can check, using generators, that µstate is surjective (and, in many usual cases [13] bijective).
Question: Is the property that µstate is bijective, true in the general case ?

Remarks 1. 1. Unless explicitly stated, all tensor products will be understood over k.
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2. All states below are elements of spaces of the form M = A1 ⊗ A2 (see Eq. 10) where,
for i = 1, 2, (Ai, ∗i) is a k-AAU (i.e. Associative Algebra with Unit). Such a space M is
naturally a A1 −A2 bimodule (A1 module by multiplication on the left and A2 module by
multiplication on the right). To avoid confusion (as tensors may appear inside A1), the
separating tensor of M = A1

⊗
A2 will, from time to time, be noted bold and oversized.

Example 1. 1. In the remarks and examples below, for any Z-algebra A and q ∈ N≥2, we
will note (A)q the quotient Z-algebra A

/
q.A (in all cases q.A is an ideal).

For example, the situation g = g1 ⊕ g2 where no factor is an ideal is frequent for Lie
algebras admitting a triangular decomposition1g = n+ ⊕ h⊕ n− for example

sl(n,Z) = T+(n,Z)⊕D(n,Z)⊕ T−(n,Z)

and one can create an example without any basis with k = Z, q ∈ N≥2 with

g = sl(n,Z) = T+(n,Z)⊕D(n,Z)⊕ T−(n,Z) then
(g)q = T+(n,Z)q ⊕D(n,Z)q ⊕ (T−(n,Z))q and, if one needs two factors,
(g)q = (T+(n,Z)⊕D(n,Z))q ⊕ (T−(n,Z))q (4)

Acknowledgements
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2 Universal Constructions

2.1 General principle.

In this subsection, we introduce the combinatorial (free) objects that we will use throughout
the manuscript and the notion of enveloping algebra of a Lie algebra. These objects (call them
G(X)) together with a map jX : X → G(X) are all solutions of universal problems. We will
recall the definition, notation and terminology about these free2 objects below (cf. in general
Bourbaki [1] Ch IV §3 or [9] and, in particular, [2] Ch I §7.1 and Lothaire [8] Prop 1.1.1 for
words and the free monoids, Bourbaki [3] Ch II §2.2 Prop 1 and Reutenauer [11] Thm 0.4 for free
Lie algebras and Bourbaki [2] for enveloping algebras i.e. towards the free associative algebras
with unit and Dinh Vu Nguyen’s thesis [5] for all these matters), but here, we state the general
principle.
The scheme is the same for all categories considered in the following list (k being a fixed ring).

Mon,Grp,k-AAU,k-Lie (5)

All objects of these categories can be considered as sets, we then have a natural “forgetful”
functor F such that, A being an object (of one of these categories), F (A) is the set underlying
the structure A. As well, any A ∈ k-AAU can be considered as a Lie algebra with the bracket
[x, y] := xy − yx

We are now in the position of stating the universal problem leading to left-adjoint of a functor
F .

Universal problem (w.r.t. F , naive version3). —
For any set X (C being one of the categories as above) does there exist a pair (jX , G(X)) (G(X)
being an object of C and jX : X → G(X) an heteromorphism) such that:
For any map f : X → A (heteromorphism), there exists a unique f̂ ∈ HomC(G(X),A) such
that f = F (f̂) ◦ jX .

1As Kac-Moody algebras [10], have also a look at [7] Ch 1 Exercise 1.8 (local Lie algebras).
2Or freely generated in the case of enveloping algebras.
3See the theory of Heteromorphisms[12]
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Remarks 2. i) It might happen that G be not defined everywhere as shows the case with C =
FinSet, F being the inclusion functor (i.e. F (X) = X for every finite set and F (f) = f for
every set-theoretical map between finite sets).
However a solution of the universal problem (6), for all X, provides a free functor G : Set →
C,X 7→ G(X) which is left-adjoint to the forgetful functor F : C → Set. The reader must
be aware that, in general, the notion of “forgetful functor” (here constructed from algebraic
structures and sets) is informal.

Set C

X A

G(X).

F

f

jX f̂

(6)

ii) We recall here that the universal enveloping algebra of a Lie k-algebra g is a pair (σ,U(g)),
where U(g) is an object in k-AAU and σ : g → U(g) is a morphism in k-Lie, which is a
solution of the following universal problem:

k-Lie k-AAU

g A

U(g).

F

f

σ f̂

(7)

From this arises that there exists the universal enveloping functor

U : k-Lie → k-AAU, g 7−→ (σ,U(g)) (8)

which is a left-adjoint to the Lie-ation functor F .

Notations 1. In the following, we will use notations as above and also

1. Identity of gi (resp. of U(gi)) will be noted, for short, Ii (resp. IUi
)

2. The maps σi gi 7→ U(gi) (resp. the map σ : g 7→ U(g)),

3. The maps deduced by universal constructions, as in the preamble, the maps U(ji)

gi g

U(gi) U(g)

σi

ji

σ

U(ji)

(9)

and ψ : T (g) → U(g) (resp. ψi : T (gi) → U(gi)) the natural (quotient) maps (see
Bourbaki [3] Ch I §2.7 p17).

4. The chaining of domains and maps involved is as follows

T (g1)⊗ U(g2) U(g1)⊗ U(g2) U(g)⊗ U(g) U(g)
ψ1⊗IU2 U(j1)⊗U(j2) µ

(10)
The upper long arrow being µstate := µUstate = µ ◦ (U(j1)⊗ U(j2)), the lower long (longer)
arrow being µTstate = µstate ◦ (ψ1 ⊗ IU2

). We will now construct the normal form calculator
and, from it, deduce a section s of µUstate which will turn out to be bijective. Knowing
already that µUstate is surjective, it will be sufficient to establish that

s ◦ µUstate = IdU(g1)⊗U(g2)

3



3 Step-by-Step construction of a normal form calculator

Having remarked that the domain and codomain of µstate (= µUstate) are U(g1)−U(g2) modules
(U(g1)− by multiplication on the left and −U(g2) by multiplication on the right for the domain
and through U(g1))⊗U(g2)) for the codomain) our strategy will be to construct a −U(g2) section
of µ (this linearity will help us to make the construction, at first defined on T (g1)⊗U(g2), pass
to quotients). We observe now, in all cases when µstate is one-to-one, there is an action on the
left (g∗U ) of U(g) on the space of states U(g1) ⊗ U(g2) provided by transport of structure [17]
as follows

g ∗U (m1 ⊗m2) = µ−1
state(g.µstate(m1 ⊗m2)) (11)

Now, we will construct this action in the general case by passing to quotients a similar action
on T (g1) ⊗ U(g2) denoted by g ∗T −. This compatibility (to be proved) is illustrated by the
following diagram

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

g∗T−

ψ1⊗I2

g∗U−

ψ1⊗I2

(12)

where ψ1 : T (g1) → U(g1) is the natural (quotient) map and I2 = IdU(g2). We will proceed in
fours steps

1. Construction

2. Compatibility with ≡ψ1

3. Action ∗U as a Lie action.

4. Section and isomorphism

3.1 Construction of the actions g∗

Let us recall that g is a Lie algebra split (k-module decomposition) as follows

g = g1 ⊕ g2 (here ⊕ = ⊕k−mod) (13)

Let ji, pi be the corresponding embeddings and projectors (see also the end of paragraph 2.1). In
addition, we will note ψ1 the morphism of k-AAU ψ1 : T (g1) → U(g1) obtained by multiplication
of factors and U(j2), the natural morphism U(j2) : U(g2) → U(g) as defined above (see diagram
9) We now have the following

Theorem 1. With the notations as above,
i) there exists a unique linear map

Φ : g⊗ T (g1)⊗ U(g2) → T (g1)⊗ U(g2). (14)

(in the sequel, Φ(g ⊗ t
⊗
m) will be alternatively noted g ∗T (t

⊗
m))

such that




g ∗T (1T (g1) ⊗m) = p1(g)⊗m+ 1T (g1) ⊗ σ2p2(g).m for all (g,m) ∈ g× U(g2)

g ∗T (x⊗ t
⊗
m) = [g, j1(x)] ∗T (t

⊗
m) + x⊗

(
g ∗T (t

⊗
m)

)

for all (g, x, t,m) ∈ g× g1 × T (g1)× U(g2)

(15)

(Nota : For the sake of clarity, we have used the blue tensor product as explained in
Remark 1.2.)
ii) This map is filtered in the following sense

Φ
(
g⊗ T≤n(g1)⊗ U(g2)

)
⊂ T≤n+1(g1)⊗ U(g2) (16)
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iii) It is compatible with
a) The U(g2) right module structure of T (g1)⊗ U(g2) as

for (g, t,m) ∈ g× T (g1)× U(g2) one has
g ∗T (t⊗m) =

(
g ∗T (t⊗ 1U(g2))

)
.m (17)

b) Multiplication of factors. Let

µTstate = µ ◦ (U(j1)⊗ U(j2)) ◦ (ψ1 ⊗ I2) (18)

(see Notation (1) and Eq. (3)) as, for all (g, t,m) ∈ g× T (g1)× U(g2), we have

µTstate(g ∗T (t⊗m)) = σ(g).µTstate(t⊗m) = σ(g).µTstate(t⊗ 1U(g2).U(j2)(m) (19)

iv) There is a unique map

ΦU : g⊗ U(g1)⊗ U(g2) → U(g1)⊗ U(g2) (20)

such that the following diagram commutes

g⊗ T (g1)⊗ U(g2) g⊗ U(g1)⊗ U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

Φ

I1⊗ψ1⊗IU2

ΦU

ψ1⊗IU2

(21)

Proof. i) and ii) We will show, by induction on n, the following statement:
For all n ≥ 0, there exists a unique linear map

Φn : g⊗ T≤n(g1)⊗ U(g2) → T≤n+1(g1)⊗ U(g2) (22)

noted g ∗
(n)
T (t⊗m) := Φn(g ⊗ t⊗m) such that,





g ∗
(n)
T (1T (g1) ⊗m) = p1(g)⊗m+ 1T (g1) ⊗ σ2p2(g).m for all (g,m) ∈ g× U(g2)

g ∗
(n)
T (x⊗ t⊗m) = [g, j1(x)] ∗

(n−1)
T (t⊗m) + x⊗

(
g ∗

(n−1)
T (t⊗m)

)

for all (g, x, t,m) ∈ g× g1 × T≤n−1(g1)× U(g2)

(23)

For n = 0, Φ0 is clearly uniquely defined by

Φ0(g ⊗ λ.1T (g1) ⊗m) := λ.
(
p1(g) ⊗m+ 1T (g1) ⊗ σ2p2(g)m

)
.

We now suppose (Φj)0≤j≤n to be uniquely defined by (23) and show the same for some4

Φn+1 : g⊗ T≤n+1(g1)⊗ U(g2) → T≤n+2(g1)⊗ U(g2) with

g ∗
(n+1)
T (t⊗m) := Φn+1(g ⊗ t⊗m) (24)

Remarking that

g⊗ T≤n+1(g1)⊗ U(g2) = g⊗ T≤n(g1)⊗ U(g2)⊕ g⊗ Tn+1(g1)⊗ U(g2)

we define Φn+1 as coinciding with Φn on the sector g⊗ T≤n(g1)⊗ U(g2).
Now for

(g, x, t,m) ∈ g× g1 × Tn(g1)× U(g2),

we observe that

(g, x, t,m) 7→ [g, x] ∗T (t⊗m) + x⊗ (g ∗T (t⊗m))

is k-quadrilinear which entails existence and unicity of a linear map

Φ̌n+1 : g⊗
(
g1 ⊗ Tn(g1)

)
⊗ U(g2) = g⊗ Tn+1(g1)⊗ U(g2) → T≤n+2(g1)⊗ U(g2)

This allows us to set Φn+1 = Φn ⊕ Φ̌n+1 which is uniquely defined due to (23)5.

4which will turn out to be unique.
5In fact, Φ is the inductive limit of the sequence Φn.
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iii) a) Again, by induction.
b) Compatibility with µTstate.
Again, we prove this by induction on n on the property that, for all (g, t,m) ∈ g×Tn(g1)×
U(g2), we have (19).
For n = 0, it suffices to remark that

µTstate
(
g ∗T (1T (g1) ⊗m)

)
= µTstate

(
p1(g) ⊗m+ 1T (g1) ⊗ σ2p2(g).m

)
=

µTstate(p1(g) ⊗m) + µTstate
(
1T (g1) ⊗ σ2p2(g).m

)
= σ(j1p1(g) + j2p2(g)).U(j2)(m) =

σ(g).m = σ(g).µTstate(1T (g1) ⊗ 1U(g2)).U(j2)(m) (25)

For n ≥ 1 we prove (19) by induction using linear generators of Tn(g1) i.e. the family
(x⊗ t)x∈g1×Tn−1(g1) then

µTstate
(
g ∗T ((x⊗ t)⊗m)

)
= µTstate

(
[g, j1(x)] ∗T (t⊗m)

)
+ µTstate

(
x⊗ (g ∗T (t⊗m))

)
=(26)

σ([g, j1(x)]).U(j1)ψ1(t).U(j2)(m) + U(j1)σ1(x).σ(g).U(j1)ψ1(t).U(j2)(m) = (27)

σ([g, j1(x)]).U(j1)ψ1(t).U(j2)(m) + σj1(x).σ(g).U(j1)ψ1(t).U(j2)(m) = (28)

(
σ(g).σj1(x)− σj1(x).σ(g)

)
.U(j1)ψ1(t).U(j2)(m) + (29)

σj1(x).σ(g).U(j1)ψ1(t).U(j2)(m) = (30)

σ(g).σj1(x).U(j1)ψ1(t).U(j2)(m) = σ(g).U(j1)ψ1(x).U(j1)ψ1(t).U(j2)(m) = (31)

σ(g).U(j1)
(
ψ1(x).ψ1(t)

)
.U(j2)(m) = σ(g).U(j1)ψ1(x⊗ t).U(j2)(m) = (32)

σ(g).µTstate((x⊗ t)⊗ 1U(g)).U(j2)(m) (33)

iv) We first construct g ∗U (t⊗m) for tensors of the type t⊗ 1U(g2) i.e. we construct the restriction of
ΦU on g⊗ U(g1)⊗ 1U(g2) and prove that the following diagram commutes

T (g1)⊗ 1U(g2) U(g1)⊗ 1U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

g∗T

ψ1⊗IU2

g∗U

ψ1⊗IU2

(34)

and use the following lemma

Lemma 1. Let Ai, B, i = 1..2 be k-AAU and s : A1 → A2, ǫ : B → k be morphisms (of k-AAU).
Then
i) Ai → Ai ⊗ B defined by x 7→ x⊗ 1B is injective (the image of it will be noted Ai ⊗ 1B).
ii) The kernel of s⊗ IdB is ker(s)⊗ 1B.

Proof. Left to the reader.

End of the proof of (iv). —
We complete the proof of diagram (34). As ψ1 is surjective, so is ψ1 ⊗ IU2

(even its retriction i.e.
from T (g1) ⊗ 1U(g2) to U(g1) ⊗ 1U(g2), let us call ξ1 this restriction) so that the diagram (34), in
fact, becomes

T (g1)⊗ 1U(g2) U(g1)⊗ 1U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

g∗T

ξ1

g∗U

ψ1⊗IU2

(35)

From Lemma 1, the kernel of σ1 is the module generated, for (p, x, y) ∈ T (g1) ⊗ g1 ⊗ g1 by the
family of tensors (s is omitted in the indexation because it will not vary throughout the proof

E(p, x, y) := (p⊗ x⊗ y ⊗ s⊗ 1U(g2))− (p⊗ y ⊗ x⊗ s⊗ 1U(g2))− (p⊗ [x, y]⊗ s⊗ 1U(g2))

then, the existence (and unicity) of g ∗U − amounts to prove that, for
(p, x, y) ∈ T (g1)⊗ g1 ⊗ g1, we have g ∗T (E(p, x, y)) = 0. Let us set T (p, x, y) := g ∗T ((p⊗ x⊗ y⊗
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s⊗ 1U(g2)). We proceed by cases.
First case : p ∈ Tn(g1) for n ≥ 1.
We check the fact for the tensors p = a ⊗ p′ (sufficient because these tensors generate T+(g1) =
⊕n≥1Tn(g1). Let us set T (p, u) := p ⊗ u ⊗ s ⊗ 1U(g2), we have to prove that g ∗T (T (p, x ⊗ y)) −
g ∗T (T (p, y ⊗ x)) ≡ g ∗T (T (p, [x, y])
where X ≡ Y stands for X − Y ∈ ker(ψ1 ⊗ IU2

).
By direct computation we get

g ∗T (a⊗ p′ ⊗ x⊗ y ⊗ s⊗ 1U(g2)) =
[g, a] ∗T (p′ ⊗ x⊗ y ⊗ s⊗ 1U(g2)) + a⊗ g ∗T (p′ ⊗ x⊗ y ⊗ s⊗ 1U(g2)) (36)

from this, we see, by induction, that all amounts to prove the fact for n = 0. Then,
Second case : p ∈ Tn(g1) for n = 0.
By homogeneity, we can suppose p = 1Tn(g1). Let us compute

g ∗T (x⊗ y ⊗ s⊗ 1U(g2)) =
[g, x] ∗T (y ⊗ s⊗ 1U(g2))︸ ︷︷ ︸

T1(x,y)

+ x⊗ g ∗T (y ⊗ s⊗ 1U(g2))︸ ︷︷ ︸
T2(x,y)

=

[[g, x], y] ∗T (s⊗ 1U(g2)) + y ⊗
(
[g, x] ∗T (s⊗ 1U(g2))

)
︸ ︷︷ ︸

T1(x,y)=T11(x,y)+T12(x,y)

+ x⊗
(
[g, y] ∗T (s⊗ 1U(g2))

)
+ x⊗ y ⊗

(
g ∗T (s⊗ 1U(g2))

)
︸ ︷︷ ︸

T2(x,y)=T21(x,y)+T22(x,y)

(37)

Then

T11(x, y)− T11(y, x) = [g, [x, y]] ∗T (s⊗ 1U(g2))

T12(x, y)− T21(y, x) = y ⊗
(
[g, x] ∗T (s⊗ 1U(g2))

)
− y ⊗

(
[g, x] ∗T (s⊗ 1U(g2))

)
= 0

T21(x, y)− T12(y, x) = x⊗
(
[g, y] ∗T (s⊗ 1U(g2))

)
− x⊗

(
[g, y] ∗T (s⊗ 1U(g2))

)
= 0

T22(x, y)− T22(y, x) = x⊗ y ⊗
(
g ∗T (s⊗ 1U(g2))

)
− y ⊗ x⊗

(
g ∗T (s⊗ 1U(g2))

)
≡

[x, y]⊗
(
g ∗T (s⊗ 1U(g2))

)
(38)

(we recall that X ≡ Y stands for X − Y ∈ ker(ψ1 ⊗ IU2
)). Then

g ∗T (x⊗ y ⊗ s⊗ 1U(g2))− g ∗T (y ⊗ x⊗ s⊗ 1U(g2)) ≡

[g, [x, y]] ∗T (s⊗ 1U(g2)) + [x, y]⊗
(
g ∗T (s⊗ 1U(g2))

)
=

g ∗T ([x, y]⊗ s⊗ 1U(g2)) (39)

then, there exists g∗U such that (34) commutes.
End of the proof of (21). —
We set, for (g, t,m) ∈ g× U(g1)× U(g2),

g ∗U (t⊗m) := g ∗U (t⊗ 1U(g2)).m (40)

Now, we remark that (g, t,m) 7→ g ∗U (t⊗m) is trilinear and this completes the proof.

Corollary 1. For all (g,m1,m2) ∈ g× U(g1)× U(g2), one has

µUstate(g ∗U (m1 ⊗m2)) = σ(g).U(j1)(m1).U(j2)(m2) (41)

Proof. From theorem (1) (iii.b, in particular (19)) and diagram (21).

3.2 g∗U is a g-action on U(g1)⊗ U(g2).

We here prove that g∗U defines a Lie g-action on U(g1) ⊗ U(g2) i.e. for all (g, h,m1,m2) ∈

g1 × g1 × U(g1)× U(g2) we have (below ∗ will stand for ∗U )

g ∗
(
h ∗ (m1 ⊗m2)

)
− h ∗

(
g ∗ (m1 ⊗m2)

)
= [g, h] ∗ (m1 ⊗m2) (42)

Let us then set T (g, h) = g ∗
(
h ∗ (m1 ⊗m2)

)
.

We have 4 cases (which can be reduced to 3 by antisymmetry)
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a) (g, h) ∈ g1 × g1

T (g, h) − T (h, g) = g ∗ (h ∗ (m1 ⊗m2))− h ∗ (g ∗ (m1 ⊗m2)) =
σ1(g).σ1(h).m1 ⊗m2 − σ1(h).σ1(g).m1 ⊗m2 ≡

σ1([g, h]).m1 ⊗m2 = [g, h] ∗ (m1 ⊗m2) (43)

b) (g, h) ∈ g2 × g1

T (g, h) − T (h, g) = g ∗ (h ∗ (m1 ⊗m2))− h ∗ (g ∗ (m1 ⊗m2)) =
g ∗ (σ1(h).m1 ⊗m2)− σ1(h).(g ∗ (m1 ⊗m2)) =
[g, j1(h)] ∗ (m1 ⊗m2) + σ1(h).(g ∗ (m1 ⊗m2))− σ1(h).(g ∗ (m1 ⊗m2)) =
[g, j1(h)] ∗ (m1 ⊗m2) (44)

c) (g, h) ∈ g1 × g2
Is true by antisymmetry.
d) (g, h) ∈ g2 × g2
For the computation of T (g, h) − T (h, g), we have two cases.
d1) m1 = 1U(g1)

T (g, h) − T (h, g) = g ∗ (h ∗ (1U(g1) ⊗m2))− h ∗ (g ∗ (1U(g1) ⊗m2)) =
1U(g1) ⊗ σ2(g).σ2(h).m2 − 1U(g1) ⊗ σ2(h).σ2(g).m2 = 1U(g1) ⊗ σ2([g, h]).m2 = [g, h] ∗ (1U(g1) ⊗m2)(45)

d2) m1 ∈ U+(g1)
We prove (42) by induction. Let m1 ∈ Un(g1).
We have n ≥ 1 and Un(g1) is generated by the products x.m with x ∈ U(g1) and m ∈ Un−1(g1)

T (g, h) − T (h, g) = g ∗ (h ∗ (x.m⊗m2))− h ∗ (g ∗ (x.m⊗m2)) =
g ∗ ([h, x] ∗ (m⊗m2)) + g ∗ (σ1(x).(h ∗ (m⊗m2)))
−h ∗ ([g, x] ∗ (m⊗m2))− h ∗ (σ1(x).(g ∗ (m⊗m2)))
= g ∗ ([h, x] ∗ (m⊗m2))︸ ︷︷ ︸

T1(g,h)

+ [g, x] ∗ (h ∗ (m⊗m2)))︸ ︷︷ ︸
T2(g,h)

+σ1(x).(g ∗ (h ∗ (m⊗m2)))︸ ︷︷ ︸
T3(g,h)

−h ∗ ([g, x] ∗ (m⊗m2))︸ ︷︷ ︸
T1(h,g)

− [h, x] ∗ (g ∗ (m⊗m2)))︸ ︷︷ ︸
T2(h,g)

−σ1(x).(h ∗ (g ∗ (m⊗m2)))︸ ︷︷ ︸
T3(h,g)

(46)

Then

T1(g, h) − T2(h, g) = [g, [h, x]] ∗ (m⊗m2) by induction
T2(g, h) − T1(h, g) = [[g, x], h] ∗ (m⊗m2) by induction
T3(g, h) − T3(h, g) = σ1(x).([g, h] ∗ (m⊗m2)) by induction
Hence T (g, h) − T (h, g) = ([g, [h, x]] + [[g, x], h]) ∗ (m⊗m2) + x.([g, h] ∗ (m⊗m2))
= [[g, h], x] ∗ (m⊗m2) + σ1(x).([g, h] ∗ (m⊗m2))
= [g, h] ∗ (x.m⊗m2) (47)

We now come to the proof that µUstate is one-to-one.

4 The linear map µ
U
state is bijective.

Theorem 2. i) From the (Lie) action ∗U , one deduces a unique U(g)− module structure on
U(g1)⊗ U(g2) (noted ∗mod) such that σ(g) ∗mod (m1 ⊗m2) = g ∗U (m1 ⊗m2).
ii) The map s : m 7→ m ∗mod (1U(g1) ⊗ 1U(g2)) and µ

U
state are mutually inverse.
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Proof. i) From Theorem (1) (iv), let us note (as above) g∗U−, the mapm1⊗m2 7→ g∗U (m1⊗m2),
we then get a linear map ϕ : g → End (U(g1)⊗ U(g2)) and, by (42), we learn that ϕ is a
morphism of k-Lie algebras. By universal property of U(g), we get

k-Lie k-AAU

g End (U(g1)⊗ U(g2))

U(g).

F

ϕ

σ ϕ̂

(48)

which means that, for all (g,m1,m2) ∈ g× U(g1)× U(g2),

ϕ(g)[m1 ⊗m2] = ϕ̂(σ(g))[m1 ⊗m2] (49)

Of course, such a morphism as ϕ̂ defines at once a structure of left U(g)-module on U(g1)⊗U(g2).
Its action will be noted ∗mod such that

σ(g) ∗mod (m1 ⊗m2) := ϕ̂(σ(g))[m1 ⊗m2]

which completes the first point.
ii) Knowing already that µUstate is surjective, it will be sufficient to establish that

s ◦ µUstate = IdU(g1)⊗U(g2)

which amounts to show that for (gi)1≤i≤p in g1 (resp. (hi)1≤i≤q in g2)

s ◦ µUstate
(
σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
= σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq) (50)

By linearity, this will prove that s ◦ µUstate = IdU(g1)⊗U(g2).
From (41), for p > 0, we get,

µUstate
(
σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
=

U(j1)σ1(g1)µ
U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
(51)

and, remarking that s is U(g)− linear we have

s ◦ µUstate
(
σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
=

s
(
U(j1)σ1(g1)µ

U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

))
=

s
(
σj1(g1)µ

U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

))
=

j1(g1).sµ
U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
=

σ1(g1). · · · .σ1(gp)⊗ σ2(h1). · · · .σ2(hq) (52)

the other case (p = 0) is straightforward. Then, by induction on p, one has s◦µUstate(m1⊗m2) =
m1 ⊗m2 which proves the claim.

QED

5 Conclusion and future

1. Quantized enveloping algebras

2. Lie superalgebras
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