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Kraichnan noise and Lp data

Shuaijie Jiao∗ Dejun Luo†

May 3, 2024

Abstract

We consider stochastic mSQG (modified Surface Quasi-Geostrophic) equations with mul-
tiplicative transport noise of Kraichnan type, and Lp-initial conditions. Inspired by the re-
cent work of Coghi and Maurelli [arXiv:2308.03216], we show weak existence and pathwise
uniqueness of solutions to the equations for suitable choices of parameters in the nonlinearity,
the noise and the integrability of initial data.
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1 Introduction

We consider the stochastic modified Surface Quasi-Geostrophic (mSQG) equation driven by
multiplicative noise of transport type:

{
dθ + u · ∇θ dt+ ◦dW · ∇θ = 0,

u = ∇⊥(−∆)−β/2θ,
(1.1)

where ∇⊥ = (∂2,−∂1), β ∈ (1, 2), ◦d stands for the Stratonovich stochastic differential, and
W =W (t, x) is a space-time noise which is white in time, colored and divergence free in space.
The existence of weak solutions to (1.1) with Lp-initial data is relatively classical for suitable
choices of β and p > 1. In this paper, we are mainly interested in the uniqueness of solutions
to (1.1) in the Lp-setting. Motivated by Coghi and Maurelli’s work [10] on the stochastic 2D
Euler equations, we will show that (1.1) enjoys pathwise uniquenss of weak solutions in suitable
spaces, provided that the random perturbation W (t, x) is the famous Kraichnan noise (see
[29; 30]), whose covariance matrix Q(x − y) = E(W (1, x) ⊗ W (1, y)) is characterized by its
Fourier transform:

Q̂(ξ) = (1 + |ξ|2)−1−α

(
I2 −

ξ ⊗ ξ

|ξ|2
)
, ξ ∈ R2, (1.2)

where α ∈ (0, 1) and I2 is the 2 × 2 identity matrix. We remark that, under very general
conditions on Q (see e.g. [21, Section 2.1]), the noise admits the decomposition W (t, x) =∑

k σk(x)B
k
t , where {σk}k≥1 are divergence free vector fields and {Bk}k≥1 are independent

Brownian motions; thus the first equation in (1.1) can be written more precisely as

dθ + u · ∇θ dt+
∑

k

σk · ∇θ ◦ dBk
t = 0.
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1.1 Motivations

The deterministic mSQG equation

{
∂tθ + u · ∇θ = 0,

u = ∇⊥(−∆)−β/2θ
(1.3)

serves as a bridge linking the classical 2D Euler equation in vorticity form (β = 2) and the
SQG equation (β = 1), the latter being used in meteorology and oceanography to model the
temperature θ in a rapidly rotating stratified fluid with uniform potential vorticity, cf. [25; 37].
In the influential work [11], Constantin et al. pointed out the structural similarities between the
SQG equation and the 3D Euler equation; more precisely, ∇⊥θ satisfies an equation which looks
similar to the 3D Euler equation in vorticity form. Let us briefly recall a few well-posedness
results for the SQG equation, i.e. (1.3) with β = 1. Resnick proved in his PhD thesis [38] the
existence of weak solutions to the SQG equation with L2-initial data; the result was extended by
Marchand [36] to the Lp-setting with p > 4/3, leaving open the uniqueness of solutions. Using
the techniques of convex integration, Buckmaster et al. [8] proved the nonuniqueness of weak
solutions to the SQG equation, even in the presence of fractional dissipation term.

The mSQG equation (1.3) was introduced in [12] to approach the SQG equation, and therein
the authors have shown evidence of formation of singularities in finite time. The existence of
local strong solutions for smooth initial data in Cr (r > 1) is known, but the global existence
is open. Thanks to the conservation form of (1.3), the family of equations preserve Lp-norm
of solutions, at least for smooth solutions. Chae et al. [9] introduced more general 2D inviscid
models which include the mSQG equation (1.3) and the log-Euler equation. The local existence
of vortex patch problem related to (1.3) was studied by Gancedo [22] and Kiselev et al. [28],
while the validity of point vortex description for mSQG equation was established by Geldhauser
and Romito [23]. In the recent paper [34], the second author and Saal considered the point vortex
system associated to the mSQG equation (1.3), and proved that a certain non-degenerate and
space-dependent noise prevents the collapse of vortex system, extending a previous result in [17]
on the point vortex system of 2D Euler equations. Flandoli and Saal [19] proved the existence of
stationary white noise solutions to (1.3) for β ∈ (1, 2); Luo and Zhu [35] obtained similar results
for stochastic mSQG equations with transport noise and showed, under a suitable scaling of the
noise, that the white noise solutions converge weakly to the unique stationary solution of the
dissipative mSQG equation driven by space-time white noise; see [18] for related results for 2D
Euler equations. We refer to the introduction of [19] for some other references related to the
mSQG equation (1.3).

The 2D Euler equation in vorticity form (i.e. (1.3) with β = 2)

{
∂tθ + u · ∇θ = 0,

u = ∇⊥(−∆)−1θ
(1.4)

is a fundamental model in fluid dynamics, where u and θ now represent the fluid velocity and
vorticity, respectively. The classical result of Yudovich [43] asserts that if θ0 ∈ (L1 ∩ L∞)(R2),
then (1.4) admits a unique weak solution in L∞([0, T ];L1 ∩ L∞). Since then, it has been a
challenging open problem in fluid dynamics to show the uniqueness of weak solutions to (1.4)
for (L1 ∩ Lp)-initial data with p ∈ (1,∞). In recent years, however, a number of nonuniqueness
results for (1.4) appeared. Bressan et al. [6; 7] proposed a (numerically assisted) scheme for
showing the existence of nonunique weak solutions to (1.4). By adding a carefully designed
forcing term f to (1.4), Vishik [41; 42] constructed nonunique solutions with null initial condition;
the construction was revisited by De Lellis and his group in [1] where the authors improved many
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of the arguments. Albritton et al. [2] adapted the ideas in [1] to construct nonunique Leray-Hopf
solutions of 3D Navier-Stokes equations with an external force.

On the other hand, the growing theory of regularization by noise demonstrates that the
addition of suitable noises can improve the solution theory of many systems, see [15; 24] for
surveys of some early results and the introductions of [10; 21] for more references. In the case
of fluid dynamics equations like (1.4), it is by now generally accepted that the transport noise
in Stratonovich form is a physically well motivated random perturbation (cf. [20; 26]). Thus,
the problem is to search for appropriate space-time noises W (t, x) =

∑
k σk(x)B

k
t such that the

solutions to 



dθ + u · ∇θ dt+
∑

k

σk · ∇θ ◦ dBk
t = 0,

u = ∇⊥(−∆)−1θ

(1.5)

are unique in a certain sense. Flandoli [16] proposed a simplified problem in which the nonlin-
earity is slightly regularized, namely, the relation between u and θ is replaced by

u = ∇⊥(−∆)−1−εθ,

where ε > 0 is a given small number. He also discussed possible approaches for solving the
problem; a key idea, originally due to P. Malliavin, is to use the Girsanov transform which
formally removes the nonlinearity and gives rise to a stochastic linear transport equation. This
strategy was rigorously implemented by Galeati and the second author [21], yielding the unique-
ness in law of weak solutions to the regularized stochastic 2D Euler equation with any ε > 0
and appropriately chosen noise.

In the recent work [10], Coghi and Maurelli studied the true 2D Euler equation perturbed
by Kraichnan transport noise, namely, the noise W (t, x) in (1.5) has a covariance matrix func-
tion Q characterized by (1.2). Thanks to the noise, for initial data θ0 in the homogeneous
Sobolev space Ḣ−1, they are able to show existence of weak solutions to (1.5) in the space
L∞

(
[0, T ], L2(Ω, Ḣ−1)

)
∩L2([0, T ]×Ω,H−α), Ω being the probability space where the noise W

lives (possibly different from the original one), and α ∈ (0, 1) is the parameter in (1.2). Fur-
thermore, for initial data in L1 ∩ Lp ∩ Ḣ−1 with suitable choices of p > 1 and α ∈ (0, 1), Coghi
and Maurelli successfully proved the pathwise uniqueness of solutions to (1.5), thus obtaining
existence of probabilistically strong solutions. Let us briefly discuss the origin of the additional
L2([0, T ]×Ω,H−α)-regularity, which is the key ingredient for passing to the limit in the nonlin-
ear terms of approximate equations. Let (θ, u) be a solution to (1.5). Transforming (1.5) in Itô
equations and formally applying the Itô formula to ‖θ‖2

Ḣ−1 = 〈θ,G ∗ θ〉, where G is the Green

function on R2, one obtains

d‖θ‖2
Ḣ−1 = dMt − 2〈G ∗ θ, u · ∇θ〉dt+

〈
tr[(Q(0) −Q)D2G] ∗ θ, θ

〉
dt,

where dMt is the martingale part, tr[·] means trace of matrices and the last quantity comes from
the noise term by integration by parts. It is easy to see that 〈G ∗ θ, u · ∇θ〉 = 0 after integrating
by parts. The key estimate in [10] is that

〈
tr[(Q(0) −Q)D2G] ∗ θ, θ

〉
≤ −c‖θ‖2H−α +C‖θ‖2

Ḣ−1 (1.6)

for some positive constants c, C > 0. Inserting this estimate into the above identity, taking
expectation and applying Gronwall’s inequality lead to the desired regularity estimates of the
solutions. We emphasize that, in the proof of pathwise uniqueness, the negative quantity in
(1.6) is also the key ingredient to cancel the terms arising from the nonlineaity.
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Inspired by Coghi and Maurelli’s work, we want to study the stochastic mSQG equation
(1.1) with Kraichnan transport noise. Our main purpose is to show the pathwise uniqueness of
solutions to (1.1) for suitable choices of parameters α ∈ (0, 1), β ∈ (1, 2), and p > 1 which stands
for the integrability of initial data. For this purpose, we will first provide an existence result
in the next subsection. Before going to the details, we mention a major difference between the
nonlinearities of equations (1.1) and (1.5). Indeed, we have u = ∇⊥(−∆)−1θ in (1.5), and one
easily deduces that

u · ∇θ = ∇⊥ · div (u⊗ u).

This identity simplifies the estimates of u · ∇θ in many cases, see e.g. the term S̃1 on page 37
of [10]. However, we no longer have such simple relation for the nonlinearity in equation (1.1);
this fact has several consequences, for instance, to show the existence of solutions, we need to
assume that the initial data is in Lp for some suitable p > 1.

1.2 Main results

First, we give the Itô formulation of (1.1) with Kraichnan noise W (t, x) =
∑

k σk(x)B
k
t . Thanks

to the explicit expression (1.2), one can show that (see [10, Section 2.3])

Q(0) = E[W (1, x)⊗W (1, x)] =
∑

k

σk(x)⊗ σk(x) =
π

2α
I2, x ∈ R2.

From this, some simple computations lead to the Itô equation of (1.1):




dθ + u · ∇θ dt+
∑

k

σk · ∇θ dBk
t =

π

4α
∆θ dt,

u = ∇⊥(−∆)−β/2θ.

(1.7)

In the sequel we always work with this formulation. We will often write u = Kβ ∗ θ where Kβ

is the kernel corresponding to ∇⊥(−∆)−β/2; note that Kβ reduces to the classical Biot-Savart
kernel if β = 2.

Definition 1.1. Let α ∈ (0, 1), β ∈ (1, 2) and p > 1 be given. A weak solution in Ḣ−β
2 ∩

Lp to (1.7) is a collection of objects
(
Ω,F , (Ft)t,P, (Bk)k, θ

)
where (Ω,F , (Ft)t,P) is a filtered

probability space satisfying the usual conditions, (Bk)k are independent real Brownian motions,

θ : [0, T ] ×Ω →
(
Ḣ−β

2 ∩ Lp
)
(R2) is an (Ft)t-progressively measurable process satisfying

P-a.s., θ ∈ L∞
(
[0, T ], Ḣ−β

2
)
∩ C

(
[0, T ],H−4

)
, sup

t∈[0,T ]
‖θt‖Lp ≤ ‖θ0‖Lp , (1.8)

and it holds

θt = θ0 −
∫ t

0
div (urθr) dr −

∑

k

∫ t

0
div (σkθr) dB

k
r +

π

4α

∫ t

0
∆θr dr, ∀ t ∈ [0, T ] (1.9)

as an equality in H−4.

The following result gives the existence of weak solutions to (1.7).

Theorem 1.2. Let α ∈ (0, 1), β ∈ (1, 2) satisfy 2α < β < 2 < α+β, and max
{

2
1+β/2−α ,

4
β+1

}
<

p ≤ 2, then for any θ0 ∈ Ḣ−β
2 ∩Lp, the stochastic mSQG equation (1.7) admits a weak solution

in the sense of Definition 1.1, satisfying in addition

sup
t∈[0,T ]

E

[
‖θt‖2

Ḣ−
β
2

]
+

∫ T

0
E

[
‖θt‖2

H−
β
2 +1−α

]
dt < +∞. (1.10)
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The proof of this result follows the classical compactness argument: we approximate the
initial condition, the nonlinearity and the noise with smooth objects, prove uniform estimates on
the solutions to approximate equations, which imply compactness of their laws in suitable spaces,
then we apply the Skorohod representation theorem to get almost sure convergent sequence on
some new probability space, finally we show that the limit is a weak solution to the stochastic
mSQG equation. Let us briefly explain the roles of our conditions.

Remark 1.3. (a) Note that β > 2α implies 2
1+β/2−α < 2, and β > 1 implies 4

β+1 < 2, so the
range of p is not empty. Next, the condition α + β > 2 will be used in Lemma 3.9 below

to yield the L2
(
[0, T ]× Ω,H−β

2
+1−α

)
-regularity of solutions.

(b) Uniform estimate like (1.10) on the approximate solutions {θδ}δ>0 implies that {uδ =

Kβ ∗ θδ}δ>0 are bounded in L2
(
[0, T ] × Ω,H

β
2
−α

)
, and the condition β > 2α ensures that

the space H
β
2
−α is compactly embedded in L2

loc; these facts play important roles in passing
to the limit of nonlinear terms in approximate equations.

(c) The condition p > 4
β+1 will be used to establish time continuity estimate of the nonlinear

parts of approximate equations, see the beginning of the proof of Lemma 3.11. On the
other hand, the condition p > 2

1+β/2−α ensures the convergence of A22 which comes from

the nonlinearities, see (4.5) in Step 3 of the proof of Theorem 1.2.

Now we state the main theorem of our paper which implies pathwise uniqueness of solutions
to (1.7) for suitable choices of parameters. We write a ∧ b = min{a, b} for a, b ∈ R.

Theorem 1.4. Let α ∈ (0, 1), β ∈ (1, 2) satisfy 2α < β < 2 < α+β, and p > max
{

2
1+β/2−α ,

3
β

}
.

Assume max
{
0, 2p −

β
2

}
< α < β

2 − 1
p∧2 and θ0 ∈ L1 ∩ Lp. Then the following assertions hold.

(1) There exists a weak solution in the sense of Definition 1.1 to the stochastic mSQG equation
(1.7), satisfying (1.10) and

P-a.s., sup
t∈[0,T ]

(‖θt‖L1 + ‖θt‖Lp) ≤ ‖θ0‖L1 + ‖θ0‖Lp . (1.11)

(2) Pathwise uniqueness holds for weak solutions of (1.7) in the space

X := L∞
(
Ω× [0, T ], L1 ∩ Lp

)
∩ L2

(
Ω× [0, T ],H−β

2
+1−α

)
.

More precisely, if θ1, θ2 are two weak solutions to (1.7) in the sense of Definition 1.1, on
the common filtered probability space (Ω,F , (Ft)t,P), with the same sequence of Brownian
motions (Bk)k and the same initial condition θ0, then P-a.s. for all t ∈ [0, T ], θ1t = θ2t .

Remark 1.5. Recall the Sobolev embedding in dimension 2: Lq ⊂ Ḣ
1− 2

q for any 1 < q ≤ 2,

see e.g. [3, Corollary 1.39]. By the restrictions on p, one easily sees that L1 ∩ Lp ⊂ Ḣ−β
2

and the class X is contained in L∞
(
[0, T ], L2(Ω, Ḣ−β

2 )
)
. In the same way, if we additionally

assume p ≥ 2
β/2+α in the statements of Theorem 1.4, then the class L2

(
Ω× [0, T ],H−β

2
+1−α

)
is

redundant in X .

Remark 1.6. Fix p = 2 in Theorem 1.4. Then the restrictions on α and β reduce to α ∈ (0, 1),
β ∈ (32 , 2), β > max{2α, 2−α} and 1− β

2 < α < β
2 − 1

2 . Note that β > 2−α implies 1− β
2 < α,

so the last two requirements can be combined as β > max{2− α, 1 + 2α}, which is equivalent to
2− β < α < β−1

2 . For this purpose, we need β > 5
3 .
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In summary, for β ∈ (53 , 2), we can find a Kraichnan noise W =
∑

k σkB
k with parameter

α ∈ (0, 12 ), such that the stochastic mSQG equation (1.7) admits a pathwise unique solution for
any initial data θ0 ∈ L1∩L2. Such a uniqueness result is not known for the deterministic mSQG
equation (1.3), thus the addition of noise improves the solution theory for this equation.

We finish the short introduction with the structure of the paper. In Section 2 we make some
preparations for later use, in particular, we introduce smooth approximations of the Kraichnan

covariance function Q, the Riesz kernel Gβ and the initial data θ0 ∈ Ḣ−β
2 . Then we consider

in Section 3 the approximate equations and prove several a priori estimates on their solutions.
Theorem 1.2 will be proved in Section 4 by using the classical compactness approach. Finally,
we prove Theorem 1.4 in Section 5 by following the method of Coghi and Maurelli [10].

2 Preliminaries

In this section, we present essential prerequisites used in the sequel, including some properties
of the covariance of the noise and the kernel related to the nonlinear part in the mSQG equation
(1.7). Then we follow the ideas in [10, Section 3] to smooth the irregular elements in (1.7).

To begin with, we introduce some notations that are used throughout the paper. Let
(Ω,F , (Ft)t,P) be a filterd probability space which satisfies the usual conditions and E de-
notes the expectation. For x = (x1, x2) ∈ R2, we define x⊥ = (x2,−x1) as the vector obtained

by rotating x clockwise 90 degrees and define 〈x〉 = (1 + |x|2) 1
2 . Write the open (resp. closed)

ball of center x and radius R as BR(x) (resp. B̄R(x)).
Throughout this paper, the notation 〈·, ·〉 stands both for the scalar product in a Hilbert space

and the pairing between a space and its dual. For a tempered distribution u ∈ S ′, û denotes its
Fourier transform. For s ∈ R, let Ḣs(R2) (resp. Hs(R2)) denote the usual homogeneous (resp.
inhomogeneous) Sobolev spaces, see for instance [3, Chapter 1]. For γ ∈ (0, 1) and a Banach
space B, we use the notation

‖f‖Cγ
t (B) = sup

t∈[0,T ]
‖f(t)‖B + sup

0≤s 6=t≤T

‖f(t)− f(s)‖B
|t− s|γ ,

to denote the norm of γ-Hölder continuous functions.
The symbol f . g for two functions f and g means that there exists a positive constant C

such that f(x) ≤ Cg(x) for all x. We use the symbol f ≍ g to stand for f . g and g . f .

2.1 Mollifying the covariance Q

Take 0 < α < 1, recall that the Kraichnan covariance Q : R2 → R2×2 is determined by its
Fourier transform

Q̂(ξ) = 〈ξ〉−(2+2α)

(
I2 −

ξ ⊗ ξ

|ξ|2
)
, ξ ∈ R2.

The following properties about the covariance matrix are known, see e.g. [10, Section 2] and
[33, Section 10].

Lemma 2.1. There exists a sequence of divergence-free vector fields σk ∈ H1+α(R2,R2), k ∈ N,
such that

Q(x, y) = Q(x− y) =
∑

k

σk(x)⊗ σk(y), x, y ∈ R2

(the series converge absolutely for x and y) and

sup
x,y∈R2

∑

k

|σk(x)| |σk(y)| ≤ sup
x∈R2

∑

k

|σk(x)|2 <∞. (2.1)
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Lemma 2.2. We have:

Q(x) = BL(|x|)
x⊗ x

|x|2 +BN (|x|)
(
I2 −

x⊗ x

|x|2
)
,

with

BL(R) =
π

2α
− βLR

2α − Rem1−u2(R),

BN (R) =
π

2α
− βNR

2α − Remu2(R),

βN = (1 + α)βL > βL > 0,

where the remainders satisfy |Rem1−u2(R)|+ |Remu2(R)| . R2 for all R > 0. In particular, we
have

|Q(0)−Q(x)| . |x|2α ∧ 1, ∀x ∈ R2.

Remark 2.3. Lemma 2.2 describes the behaviour of the covariance Q near x = 0, which will
play a key role in the energy bounds of θ.

Now we show how to mollify the covariance Q. For δ > 0, suppose ρδ is a function such

that ρ̂δ is real-valued, radial and smooth with 0 ≤ ρ̂δ ≤ 1 everywhere, ρ̂δ(ξ) = 1 on |ξ| ≤ 1
δ and

ρ̂δ(ξ) = 0 on |ξ| ≥ 2
δ , hence ρ

δ is rapidly decreasing. Take

σδk = ρδ ∗ σk,
Qδ,h = ρδ ∗Q,
Qδ = ρδ ∗ ρδ ∗Q.

Note that

Q̂δ(ξ) = Q̂(ξ)ρ̂δ(ξ)2 = 〈ξ〉−(2+2α)

(
I2 −

ξ ⊗ ξ

|ξ|2
)
ρ̂δ(ξ)2. (2.2)

Therefore, Qδ ∈ S(R2) satisfies ‖Qδ‖L∞ ≤ ‖Q̂δ‖L1 ≤ ‖Q̂‖L1 .
Moreover, it is easy to check Qδ,h(x − y) =

∑
k σ

δ
k(x) ⊗ σk(y) =

∑
k σk(x) ⊗ σδk(y) and

Qδ(x− y) =
∑

k σ
δ
k(x)⊗ σδk(y). Also, as δ → 0,

Qδ(0) =
1

2

(∫

R2

〈ξ〉−(2+2α)ρ̂δ(ξ)2 dξ

)
I2 =: cδI2 →

π

2α
I2 = Q(0). (2.3)

2.2 Regularizing the kernel Gβ

Our task now is to give some descriptions of the kernel corresponding to the nonlinear operator

∇⊥(−∆)−
β
2 in mSQG (1.7). We recall some fundamental facts about the Riesz potentials in R2.

For 0 < β < 2, define

Gβ(x) =
1

γ(β)
|x|−2+β , γ(β) =

2βπΓ(β2 )

Γ(2−β2 )
. (2.4)

It is known that Ĝβ(·) = (2π| · |)−β , hence we have (−∆)−
β
2 f = Gβ ∗ f for all f ∈ S ′(R2). For

more details, see [39, Chapter V, Section 1]. In this paper, we are mainly concerned with the
case 1 < β < 2. The derivative and second derivative of Gβ are

∇Gβ(x) = −2− β

γ(β)

x

|x|4−β ,

D2Gβ(x) = −2− β

γ(β)

1

|x|4−β
(
I2 − (4− β)

x⊗ x

|x|2
)
,

7



and the kernel Kβ is defined as the orthogonal derivative of Gβ :

Kβ(x) = ∇⊥Gβ(x) = −2− β

γ(β)

x⊥

|x|4−β , x 6= 0. (2.5)

Note that when β = 2, K2 is the Biot-Savart kernel on R2, which is usually denoted by K.
It is straightforward to verify that Gβ is the Green function of the fractional Laplacian

operator (−∆)
β
2 on R2, that is,

(−∆)
β
2Gβ = δ0.

To obtain ‘good’ approximation of the Riesz potentials Gβ, we exploit the relation between
Riesz potential and the corresponding fractional heat kernel. Indeed, suppose that p(t, x) is the
fundamental solution of the fractional heat equation:

{
∂tp+ (−∆)

β
2 p = 0 in (0,∞)× R2,

p(0, ·) = δ0.
(2.6)

Applying the Fourier transform to (2.6), we get p̂(t, ξ) = e−(2π|ξ|)βt, thus we have the following
relation:

Gβ(x) =

∫ ∞

0
p(t, x) dt. (2.7)

Now for 0 < δ < 1, we define the regularized kernels Gδβ , K
δ
β as follows:

Gδβ(x) =

∫ 1/δ

δ
p(t, x) dt, Kδ

β = ∇⊥Gδβ, x ∈ R2. (2.8)

The following property of Gδβ is straightforward.

Lemma 2.4. The Fourier transform of Gδβ is

Ĝδβ(ξ) =
1

(2π|ξ|)β
(
e−(2π|ξ|)βδ − e−(2π|ξ|)β/δ

)
. (2.9)

As δ → 0, for every θ ∈ Ḣ−β
2 ,

〈θ,Gδβ ∗ θ〉 →
∫

R2

(2π|ξ|)−β |θ̂(ξ)|2 dξ = 〈θ,Gβ ∗ θ〉 = (2π)−β‖θ‖2
Ḣ−

β
2
. (2.10)

Now we give pointwise estimates on Gδβ . The proof of this lemma relies on the estimate of
the fractional heat kernel, see Appendix A.

Lemma 2.5. For every nonnegative integer m, there exists a constant Cm such that for all
x ∈ R2,

|DmGδβ(x)| .m
1

|x|m+2−β
. (2.11)

Moreover, the following estimates hold:

|∇(Gβ −Gδβ)(x)| .β δ
1/21{δ1/(β+3)≤|x|≤δ−1/β}

+ |x|β−31{|x|≤δ1/(β+3)
or |x|≥δ−1/β},

(2.12)

|D2(Gβ −Gδβ)(x)| .β δ + |x|β−41{|x|≤δ1/(4+β)}.

Note that all the implicit constants are independent of δ.
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2.3 Smoothing the initial data

Given initial condition θ0 ∈ Ḣ−β
2 , we claim that there exists a family (θδ0)δ satisfying

θδ0 ∈ L1 ∩ L∞ ∩ Ḣ−β
2 ,∫

R2

θδ0(x) dx = 0,

∫

R2

|x|m|θδ0(x)|dx <∞, ∀m ∈ N,

(2.13)

and
θδ0 → θ0 in Ḣ−β

2 as δ → 0. (2.14)

Precisely, let v0 = K ∗ θ0, where K is the Biot-Savart kernel, then v0 ∈ Ḣ1−β
2 and curl(v0) = θ0.

Since C∞
c is dense in Ḣ1−β

2 , we can choose a family (vδ0)δ of C∞
c vector fields converging to

v0 in Ḣ1−β
2 and take θδ0 = curl(vδ0). Due to the smoothness, compact support of vδ0 and the

definition of θδ0 as a curl, the properties (2.13) are satisfied. The convergence (2.14) follows from
the convergence of vδ0.

If θ0 ∈ Lp ∩ Ḣ−β
2 (resp. Lp ∩ L1 ∩ Ḣ−β

2 ) for some 1 < p < ∞, then besides the properties
(2.13) and (2.14), we also claim that the approximate sequence (θδ0) satisfies

θδ0 → θ0 in Lp (resp. L1 ∩ Lp) as δ → 0. (2.15)

The proof of this claim can be found in [10, Section 3].
Without loss of generality, we can always assume that in addition to the conditions

(2.13) and (2.14), the family (θδ0)δ also satisfies the following bounds: for some 0 < 2ǭ <
min

{2α+β−2
β+4 , β−1

β+3 ,
1
4

}
, as δ → 0,

δ‖θδ0‖L1

∫

R2

|x|2|θδ0(x)|dx = o(1),

δǭ(‖θδ0‖L∞ + ‖θδ0‖L1) = o(1).

(2.16)

Indeed, we can make this possible by relabeling the parameter δ of the family (θδ0)δ.

3 A priori estimates of the regularized model

In this section, we define the regularized model for mSQG equation (1.7) using the regularized
objects in the last section and obtain a priori estimates of energy and time continuity, which are
essential in the proof of Theorem 1.2, namely the existence of weak solutions.

3.1 Regularized model

After defining the regularized objects in the last section, we can consider the regularized equation
for (1.7): for all 0 < δ < 1,





dθδ + (Kδ
β ∗ θδ) · ∇θδ dt+

∑

k

σδk · ∇θδ dBk =
cδ
2
∆θδ dt,

θδ(0, ·) = θδ0,

(3.1)

where cδ is the constant in (2.3). This is a Vlasov-type equation with smooth interaction kernel
and smooth common noise. The properties of the solution to equation (3.1) are listed in the
next lemma. For a detailed proof, we refer the reader to [10, Appendix C].
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Lemma 3.1. For all θδ0 satisfying (2.13), for every filtered probability space (Ω,F , (Ft)t,P) and
every sequence (Bk)k of independent real Brownian motions, there exists a Ḣ−β

2 solution to

equation (3.1), that is, an (Ft)t-progressively measurable Ḣ−β
2 (R2)-valued process θδ such that

P-a.s., for every t ∈ [0, T ],

θδt = θδ0 −
∫ t

0
div((Kδ

β ∗ θδr)θδr) dr −
∑

k

∫ t

0
div(σδkθ

δ
r) dB

k
r +

cδ
2

∫ t

0
∆θδr dr,

where the equality holds in distribution. The solution θδ also satisfies that for all 1 ≤ p ≤ ∞,

sup
t∈[0,T ]

‖θδt ‖Lp ≤ ‖θδ0‖Lp , P-a.s.

Moreover, the solution is unique in the space L∞
(
[0, T ];Lp(Ω;L2)

)
for every p > 2.

The following two technical lemmas illustrate that the approximation errors are small, which
will be used in the passage to the limit δ → 0.

Lemma 3.2. Assume (2.13), (2.14) and (2.16) on the initial condition θδ0. Suppose θδ is the
unique solution to the regularized model (3.1). We have

E

[
sup
t∈[0,T ]

∣∣‖θδt ‖2
Ḣ−

β
2
− (2π)β〈θδt , Gδβ ∗ θδt 〉

∣∣
]
→ 0, as δ → 0.

Proof. By the definition of Gδβ , we have

∣∣∣‖θδt ‖2
Ḣ−

β
2
− (2π)β〈θδt , Gδβ ∗ θδt 〉

∣∣∣

=

∫

R2

|ξ|−β(1− e−(2π|ξ|)βδ)|θ̂δt (ξ)|2 dξ +
∫

R2

|ξ|−βe−(2π|ξ|)β/δ|θ̂δt (ξ)|2 dξ

≤ (2π)βδ

∫

R2

|θ̂δt (ξ)|2 dξ +
∫

R2

|ξ|−βe−(2π|ξ|)β/δ|θ̂δt (ξ)|2 dξ.

Note that θ̂δt (0) =
∫
R2 θ

δ
t (x) dx =

∫
R2 θ

δ
0(x) dx = 0, we get

|θ̂δt (ξ)| ≤ |θ̂δt (0)|+ ‖∇θ̂δt ‖L∞ |ξ| ≤ 2π|ξ|
∫

R2

|x| |θδt (x)|dx.

Hence we have
∫

R2

|ξ|−βe−(2π|ξ|)β/δ|θ̂δt (ξ)|2 dξ ≤ 4π2
∫

|ξ|2−βe−(2π|ξ|)β/δ

(∫
|x| |θδt (x)|dx

)2

dξ

. δ

(∫
|x| |θδt (x)|dx

)2

.

Then we obtain
∣∣∣‖θδt ‖2

Ḣ−
β
2
− (2π)β〈θδt , Gδβ ∗ θδt 〉

∣∣∣ . δ

(
‖θδt ‖2L2 +

(∫
|x| |θδt (x)|dx

)2
)
.

By Lemma 3.1, ‖θδt ‖2L2 ≤ ‖θδ0‖2L2 ≤ ‖θδ0‖L1‖θδ0‖L∞ ; by [10, Lemma C.1], we get

E

[
sup
t∈[0,T ]

(∫

R2

|x| |θδt (x)|dx
)2]

. ‖θδ0‖L1

∫

R2

|x|2|θδ0(x)|dx+ (‖θδ0‖2L∞ + ‖θδ0‖2L1 + 1)‖θδ0‖2L1 .
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Combining the above estimates yields

E

[
sup
t∈[0,T ]

∣∣∣‖θδt ‖2
Ḣ−

β
2
− (2π)β〈θδt , Gδβ ∗ θδt 〉

∣∣∣
]

≤ δ

(
‖θδ0‖L1‖θδ0‖L∞ + ‖θδ0‖L1

∫

R2

|x|2|θδ0(x)|dx+ (‖θδ0‖2L∞ + ‖θδ0‖2L1 + 1)‖θδ0‖2L1

)
.

Then the assertion is true thanks to the assumption (2.16) on the initial condition.

Lemma 3.3. Assume (2.13), (2.14) and (2.16) on the initial condition θδ0. Suppose θδ is the
unique solution to the regularized model (3.1). We have

sup
t∈[0,T ]

∥∥|∇(Gβ −Gδβ)| ∗ |θδt |
∥∥
L∞ . δ

β−1
β+3 (‖θδ0‖L∞ + ‖θδ0‖L1).

Proof. Using the bound (2.12), we have

|∇(Gβ −Gδβ)| ∗ |θδt |(x) =
∫

R2

|∇(Gβ −Gδβ)(x− y)| |θδt (y)|dy

.

∫

|x−y|≤δ
1

β+3

|θδt (y)| |x− y|β−3 dy

+

∫

|x−y|≥δ
− 1

β

|θδt (y)| |x− y|β−3 dy

+ δ
1
2

∫

δ
1

β+3≤|x−y|≤δ
− 1

β

|θδt (y)|dy

. δ
β−1
β+3‖θδt ‖L∞ + δ

1
β ‖θδt ‖L1 + δ

1
2 ‖θδt ‖L1 .

Hence, by Lamma 3.1 and condition (2.16) we complete the proof.

3.2 A priori energy estimate

In this subsection, our goal is to establish the main energy estimate on the solution θδ to (3.1),
namely the expected value of the energy ‖θδ‖2

Ḣ−β/2 . The key point is to obtain a control of the

H−β/2+1−α norm through the special structure of the Kraichnan covariance Q.
Throughout this subsection and the next, we always fix a filtered probability space

(Ω,F , (Ft)t,P) with the usual conditions and a sequence of independent real (Ft) Brownian
motions (Bk)k on it. We take Qδ, Gδβ and Kδ

β as before, and θδ to be the solution of the

regularized equation (3.1) on (Ω,F , (Ft)t,P) with the Brownian motions (Bk)k.

We start by computing the approximate Ḣ−β
2 norm of the solution in the regularized model.

Lemma 3.4. We have P-a.s. for every t ∈ [0, T ],

〈θδt , Gδβ ∗ θδt 〉 −
∫ t

0

∫∫

R2×R2

tr
[
(Qδ(0) −Qδ(x− y))D2Gδβ(x− y)

]
θδr(x)θ

δ
r(y) dxdydr

= 〈θδ0, Gδβ ∗ θδ0〉 − 2

∫ t

0

∑

k

〈σδk · ∇θδr , Gδβ ∗ θδr〉dBk
r .

(3.2)

In particular, for every t ∈ [0, T ]:

E[〈θδt , Gδβ ∗ θδt 〉]− 〈θδ0, Gδβ ∗ θδ0〉

=

∫ t

0
E

∫∫

R2×R2

tr
[
(Qδ(0)−Qδ(x− y))D2Gδβ(x− y)

]
θδr(x)θ

δ
r(y) dxdydr.

(3.3)
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Proof. Consider the functional F : H−4 ∋ θ → 〈θ,Gδβ ∗ θ〉 ∈ R, whose Fréchet derivatives are

DF (θ)v = 2〈v,Gδβ ∗ θ〉,
D2F (θ)[v,w] = 2〈v,Gδβ ∗ w〉.

The classical Itô formula on Hilbert space (see [13, Theorem 4.17]) implies that

d〈θδ, Gδβ ∗ θδ〉 = −2
〈
(Kδ

β ∗ θδ) · ∇θδ, Gδβ ∗ θδ
〉
dt− 2

∑

k

〈σδk · ∇θδ, Gδβ ∗ θδ〉dBk

+ 〈cδ∆θδ, Gδβ ∗ θδ〉dt+
∑

k

〈σδk · ∇θδ, Gδβ ∗ (σδk · ∇θδ)〉dt.
(3.4)

Note that Kδ
β = ∇⊥Gδβ by definition, then by integration by parts, we obtain

〈(Kδ
β ∗ θδ) · ∇θδ, Gδβ ∗ θδ〉 = −〈θδ,∇⊥(Gδβ ∗ θδ) · ∇(Gδβ ∗ θδ)〉 = 0.

The quadratic variation of the martingale term is integrable, indeed,

E
∑

k

|〈σδk · ∇θδ, Gδβ ∗ θδ〉|2 = E

∫∫

R2×R2

θδ(x)θδ(y)∇Gδβ ∗ θδ(x) ·Qδ(x− y)∇Gδβ ∗ θδ(y) dxdy

≤ ‖Qδ‖L∞‖θδ0‖4L1‖∇Gδβ‖2L∞ <∞.

Hence the martingale term vanishes after taking expectation. Let us turn to the last two terms.
Notice that Qδ(0) = cδI2, then

〈cδ∆θδ, Gδβ ∗ θδ〉 = 〈θδ, cδ∆Gδβ ∗ θδ〉 =
∫∫

R2×R2

tr
[
Qδ(0)D2Gδβ(x− y)

]
θδ(x)θδ(y) dxdy,

and

∑

k

〈σδk · ∇θδ, Gδβ ∗ (σδk · ∇θδ)〉 =
∑

k

∑

i,j

〈∂i(σδ,ik θδ), ∂jGδβ ∗ (σ
δ,j
k θδ)〉

= −
∑

i,j

∑

k

〈σδ,ik θδ, ∂2ijGδβ ∗ (σ
δ,j
k θδ)〉

= −
∫∫

R2×R2

tr
[
QδD2Gδβ

]
(x− y)θδ(x)θδ(y) dxdy.

Substituting all above into (3.4), we complete the proof.

Combining Lemmas 3.2 and 3.4 and the condition (2.14), we get the following bound.

Corollary 3.5. We have, for every t ∈ [0, T ],

E

[
‖θδt ‖2

Ḣ−
β
2

]
− (2π)β

∫ t

0
E

∫∫

R2×R2

tr
[
(Qδ(0) −Qδ)D2Gδβ

]
(x− y)θδr(x)θ

δ
r(y) dxdydr

= ‖θ0‖2
Ḣ−

β
2
+ o(1),

where o(1) tends to 0 as δ → 0.
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Due to Corollary 3.5, our task now is to bound the term tr
[
(Qδ(0) − Qδ)D2Gδβ

]
. We split

this term as follows: for every x 6= 0,

tr
[
(Qδ(0)−Qδ(x))D2Gδβ(x)

]
= tr

[
(Q(0) −Q(x))D2Gβ(x)

]
ϕ(x)

+ tr
[
(Q(0) −Q(x))D2(Gδβ −Gβ)(x)

]
ϕ(x)

+ tr
[(
Qδ(0)−Qδ(x)− (Q(0) −Q(x))

)
D2Gδβ(x)

]
ϕ(x)

+ tr
[
(Qδ(0) −Qδ(x))D2Gδβ(x)

]
(1− ϕ(x))

=: A(x) +R1(x) +R2(x) +R3(x),

(3.5)

where ϕ is a radial smooth function satisfying 0 ≤ ϕ ≤ 1 everywhere, ϕ(x) = 1 for |x| ≤ 1 and
ϕ(x) = 0 for |x| ≥ 2.

As we will see, A is the key term in (3.5).

Lemma 3.6. Suppose α + β > 2, then for the term A(x) = tr
[
(Q(0) − Q(x))D2Gβ(x)

]
ϕ(x),

there exist two positive constant c, C such that

Â(ξ) ≤ −c〈ξ〉−(2α+β−2) + C〈ξ〉−β.

Proof. According to the structure of the covariance matrix Q in Lemma 2.2, we get, for every
x 6= 0,

tr
[
(Q(0)−Q(x))D2Gβ(x)

]

=− 2− β

γ(β)

1

|x|4−β tr
[(

(BN (0) −BN (|x|))I2 + (BN (|x|) −BL(|x|))
x⊗ x

|x|2
)(
I2 − (4− β)

x⊗ x

|x|2
)]

=− 2− β

γ(β)

1

|x|4−β
[
(3− β)BL(|x|)−BN (|x|) − (2− β)BN (0)

]

=− 2− β

γ(β)

1

|x|4−β
[
(βN − (3− β)βL)|x|2α +Remu2(|x|)− (3− β)Rem1−u2(|x|)

]
.

Recalling the fact βN = (1 + α)βL in Lemma 2.2 and the definition of Riesz kernel, we have

tr
[
(Q(0) −Q(x))D2Gβ(x)

]
=− 2− β

γ(β)
(α+ β − 2)βLγ(2α+ β − 2)G2α+β−2(x)

+
2− β

γ(β)

1

|x|4−β
(
(3− β)Rem1−u2(|x|)− Remu2(|x|)

)
.

(3.6)

For the control of ϕG2α+β−2 in Fourier modes, by [10, Lemma 4.3], for some constant C, we
have

ϕ̂G2α+β−2(ξ) ≥
1

2
(2π)2−2α−β〈ξ〉2−2α−β − C〈ξ〉−β.

Concerning the remainder terms, taking 2− β < ǫ < (4− 2α − β) ∧ 1 fixed, by Lemma B.2 we
get ∣∣F

(
| · |β−4Rem1−u2(| · |)ϕ

)
(ξ)

∣∣+
∣∣F

(
| · |β−4Remu2(| · |)ϕ

)
(ξ)

∣∣ . 〈ξ〉−2+ǫ.

Therefore, by Young’s inequality, for δ̄ to be determined later and a constant Cδ̄ > 0,
∣∣F

(
| · |β−4Rem1−u2(| · |)ϕ

)
(ξ)

∣∣ +
∣∣F

(
| · |β−4Remu2(| · |)ϕ

)
(ξ)

∣∣ . δ̄〈ξ〉2−2α−β + Cδ̄〈ξ〉−β .

Now choosing δ̄ = (α+ β − 2) (2−β)γ(2α+β−2)
4(2π)2α+β−2γ(β)

βL, we conclude that for some constant C > 0,

Â(ξ) ≤ −(α+ β − 2)
(2 − β)γ(2α + β − 2)βL

4(2π)2α+β−2γ(β)
〈ξ〉2−2α−β + C〈ξ〉−β .

The proof is complete.
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Now we turn to bound the terms R1 = tr
[
(Q(0) − Q(x))D2(Gδβ − Gβ)(x)

]
ϕ(x) and R2 =

tr
[
(Qδ(0) −Qδ(x)− (Q(0) −Q(x)))D2Gδβ(x)

]
ϕ(x). In fact, both of them are small.

Lemma 3.7. For any 0 < ǫ < 2α , we have

|R1(x)| . δϕ(x) + |x|2α+β−41{|x|≤δ1/(4+β)}ϕ(x),

|R2(x)| .ǫ δ
ǫ|x|2α+β−4−ǫϕ(x).

Proof. For the term R1, by Lemmas 2.2 and 2.5, we have

|R1(x)| . |Q(0) −Q(x)| |D2Gδβ(x)−D2Gβ(x)|ϕ(x)
.β |x|2α

(
δ + |x|β−41{|x|≤δ1/(4+β)}

)
ϕ(x)

. δϕ(x) + |x|2α+β−41{|x|≤δ1/(4+β)}ϕ(x).

Notice that both of the Fourier transforms of Qδ and Q are even functions, so

Qδ(0)−Qδ(x)− (Q(0)−Q(x)) =

∫
〈ξ〉−(2+2α)

(
I2 −

ξ ⊗ ξ

|ξ|2
)
(1− e2πix·ξ)

(
ρ̂δ(ξ)2 − 1

)
dξ

=

∫
〈ξ〉−(2+2α)

(
I2 −

ξ ⊗ ξ

|ξ|2
)
(1− cos(2πx · ξ))

(
ρ̂δ(ξ)2 − 1

)
dξ.

For every a ∈ R and 0 < ǫ < 2α, it holds

|1− cos(a)| ≤ 1

2
a2 ∧ 2 ≤ 2a2α−ǫ,

hence we obtain

∣∣(Qδ(0)−Qδ(x))− (Q(0) −Q(x))
∣∣ . |x|2α−ǫ

∫
〈ξ〉−(2+2α)|ξ|2α−ǫ1{|ξ|≥1/δ} dξ

. |x|2α−ǫ
∫ ∞

1/δ
ρ−1−ǫ dρ =

1

ǫ
|x|2α−ǫδǫ.

With the uniform bound on D2Gδβ in Lemma 2.5, we get

|R2(x)| . δǫ|x|2α+β−4−ǫϕ(x).

Hence the proof is complete.

We give the bound of R3 = tr
[
(Qδ(0)−Qδ(x))D2Gδβ(x)

]
(1− ϕ(x)) in Fourier modes.

Lemma 3.8. For 0 < α < 1 < β < 2, we have for all ξ ∈ R2,

∣∣R̂3(ξ)
∣∣ . 〈ξ〉−2−2α .β |ξ|−β .

Proof. By the bound (2.11), for all nonnegative integer m, we have

∥∥| · |mF
[
D2Gδβ (1− ϕ)

]∥∥
L∞ =

∥∥F
[
D2+mGδβ (1− ϕ)

]∥∥
L∞

.
∥∥D2+mGδβ (1− ϕ)

∥∥
L1

.
∥∥|x|−(m+4−β)1{|x|≥1}

∥∥
L1 .β 1.

Then letting m = 0 and m = 4, we get the bound

∣∣F
[
D2Gδβ (1− ϕ)

]
(ξ)

∣∣ . 〈ξ〉−4, for all ξ ∈ R2. (3.7)
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Now it remains to estimate the Fourier transform of the term tr
[
QδD2Gδβ

]
(1−ϕ). By (2.2) and

(3.7), it holds that for all ξ ∈ R2,
∣∣F

(
tr
[
QδD2Gδβ

]
(1− ϕ)

)
(ξ)

∣∣ =
∣∣tr

[
Q̂δ ∗ F

(
D2Gδβ(1− ϕ)

)]
(ξ)

∣∣

≤
∫

R2

∣∣Q̂δ(ξ − η)
∣∣ ∣∣F

(
D2Gδβ(1− ϕ)

)
(η)

∣∣ dη

.

∫

R2

〈ξ − η〉−2−2α〈η〉−4 dη.

For |η| ≤ |ξ|/2, we use the bound |ξ − η| ≥ |ξ| − |η| ≥ |ξ|/2 and for |η| ≥ |ξ|/2, we simply use
the bound 〈η〉−4 ≤ 〈ξ〉−4, then we have

∣∣F
(
tr
[
QδD2Gδβ

]
(1− ϕ)

)
(ξ)

∣∣ . 〈ξ〉−2−2α + 〈ξ〉−4 . 〈ξ〉−2−2α. (3.8)

Combining the estimates (3.7) and (3.8), we arrive at
∣∣R̂3(ξ)

∣∣ . 〈ξ〉−2−2α ≤ |ξ|−β ,
which completes the proof.

Now we put together the bound on the key term in Lemma 3.6 and the bounds on the
remainder terms in Lemmas 3.7 and 3.8.

Lemma 3.9. Let α ∈ (0, 1) and β ∈ (1, 2) satisfy α + β > 2. There exist constants c, C > 0
such that P-a.s., for every t ∈ [0, T ],

∫∫

R2×R2

tr
[
(Qδ(0)−Qδ(x− y))D2Gδβ(x− y)

]
θδt (x)θ

δ
t (y) dxdy

≤ −c‖θδt ‖2
H−

β
2 +1−α

+ C‖θδt ‖2
Ḣ−

β
2
+ o(1),

where o(1) tends to 0 as δ → 0 uniformly on [0, T ] × Ω.

Proof. By the property of Fourier transform, we have
∫∫

R2×R2

tr
[
(Qδ(0)−Qδ(x− y))D2Gδβ(x− y)

]
θδt (x)θ

δ
t (y) dxdy

≤
∫

R2

(
Â(ξ) + R̂3(ξ)

)∣∣θ̂δt (ξ)
∣∣2 dξ +

∫∫

R2×R2

(
|R1(x− y)|+ |R2(x− y)|

)
|θδt (x)| |θδt (y)|dxdy.

By Lemmas 3.6 and 3.8, we obtain
∫

R2

(
Â(ξ) + R̂3(ξ)

)∣∣θ̂δt (ξ)
∣∣2 dξ ≤ −c

∫
〈ξ〉−(2α+β−2)

∣∣θ̂δt (ξ)
∣∣2 dξ + C

∫
|ξ|−β

∣∣θ̂δt (ξ)
∣∣2 dξ

= −c‖θδt ‖2
H−

β
2 +1−α

+ C‖θδt ‖2
Ḣ−

β
2
.

Take some 0 < 2ǭ < min
{2α+β−2

β+4 , β−1
β+3

}
, by Lemma 3.7,

∫∫

R2×R2

(
|R1(x− y)|+ |R2(x− y)|

)
|θδt (x)| |θδt (y)|dxdy

≤ ‖θδ0‖L1‖θδ0‖L∞

(
‖R1‖L1 + ‖R2‖L1

)

. ‖θδ0‖L1‖θδ0‖L∞

∫ (
δϕ(x) + |x|2α+β−41{|x|≤δ1/(4+β)} + δǭ|x|2α+β−4−ǭϕ(x)

)
dx

. δǭ‖θδ0‖L1‖θδ0‖L∞ . δǭ
(
‖θδ0‖L1 + ‖θδ0‖L∞

)2
= o(1),
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where the last step is due to (2.16). Combining the above two bounds, we get the desired
estimate.

Proposition 3.10. Let α ∈ (0, 1) and β ∈ (1, 2) satisfy α + β > 2, then there exist constants
c, C > 0 such that, for every 0 < δ < 1,

sup
t∈[0,T ]

E

[
‖θδt ‖2

Ḣ−
β
2

]
+ c

∫ T

0
E

[
‖θδt ‖2

H−
β
2 +1−α

]
dt ≤ C‖θ0‖2

Ḣ−
β
2
+ o(1),

where o(1) tend to 0 as δ → 0.

Proof. By Corollary 3.5 and Lemma 3.9, we get, for every t ∈ [0, T ],

E

[
‖θδt ‖2

Ḣ−
β
2

]
+ c

∫ t

0
E

[
‖θδr‖2

H−
β
2 +1−α

]
dr ≤ ‖θ0‖2

Ḣ−
β
2
+ C

∫ t

0
E

[
‖θδr‖2

Ḣ−
β
2

]
dr + o(1).

Then the conclusion is clear by Grönwall inequality.

3.3 Bounds on time continuity

In this subsection, we establish the a priori bound on time continuity for a solution to (3.1),
namely we bound the expected value of ‖θδ‖2

Cγ
t (H̃

−4)
, which is needed in the compactness method

to prove the weak existence.
Following the idea of [10], we introduce a mixed homogeneous-inhomogeneous H̃−4 norm of

a scalar tempered distribution f , that is, the H−5+β norm of the associated velocity field Kβ ∗f :

‖f‖2
H̃−4 :=

∫

R2

〈ξ〉2β−10|ξ|2−2β |f̂(ξ)|2 dξ = (2π)2β−2‖Kβ ∗ f‖2H−5+β .

The space H̃−4 can be identified with the space of divergence-free H−5+β vector fields, hence it
is a separable Hilbert space.

Lemma 3.11. Let 0 < α < 1 < β < 2 and 4
β+1 ≤ p ≤ 2. Suppose that the initial data

θ0 ∈ Lp ∩ Ḣ−β
2 and (θδ0)δ satisfies the approximation conditions (2.13)–(2.15), then for every

0 < γ < 1
2 , λ ≥ 2, there exists a constant C = Cγ,λ,θ0 > 0 such that, for every 0 < δ < 1,

E

[
‖θδ‖λ

Cγ
t (H̃

−4)

]
≤ C.

Proof. We estimate the H̃−4 norm of θδt − θδs by using (3.1):

E

[∥∥θδt − θδs
∥∥λ
H̃−4

]
. E

[∥∥∥
∫ t

s
(Kδ

β ∗ θδr) · ∇θδr dr
∥∥∥
λ

H̃−4

]
+ E

[∥∥∥
∑

k

∫ t

s
σδk · ∇θδr dBk

r

∥∥∥
λ

H̃−4

]

+ E

[∥∥∥
∫ t

s
cδ∆θ

δ
r dr

∥∥∥
λ

H̃−4

]

:= S1 + S2 + S3.

Calling uδ = Kβ ∗ θδ and ũδ = Kδ
β ∗ θδ, we divide the term S1 as

S1 . E

[∥∥∥
∫ t

s
uδr · ∇θδr dr

∥∥∥
λ

H̃−4

]
+ E

[∥∥∥
∫ t

s
(uδr − ũδr) · ∇θδr dr

∥∥∥
λ

H̃−4

]

. (t− s)λE

[
sup
r∈[0,1]

‖uδrθδr‖λH−2

]
+ (t− s)λE

[
sup
r∈[0,1]

‖(uδr − ũδr)θ
δ
r‖λL2

]
.
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Note that θδ ∈ Lp and

uδ = ∇⊥(−∆)−
β
2 θδ = (−∆)−

β−1
2 (∇⊥(−∆)−

1
2 ) θδ,

then by the property of Riesz transform and Hardy-Littlewood-Sobolev inequality (see e.g. [39,
Chapter III, Section 1] and [3, Theorem 1.8]), we have uδ is in Lp∗ and ‖uδ‖Lp∗ . ‖θδ‖Lp , where
p−1
∗ = p−1 − β−1

2 . Now let q−1 = p−1 + p−1
∗ , by the condition 4

β+1 ≤ p ≤ 2, we know 1 ≤ q < 2.

Sobolev embedding implies that Lq →֒ H−2, hence together with Hölder inequality, we obtain

E

[
sup
r∈[0,T ]

‖uδrθδr‖λH−2

]
. E

[
sup
r∈[0,T ]

‖uδrθδr‖λLq

]
. E

[
sup
r∈[0,T ]

‖uδr‖λLp∗‖θδr‖λLp

]

. E

[
sup
r∈[0,T ]

‖θδr‖2λLp

]
. ‖θδ0‖2λLp . (‖θ0‖Lp + o(1))2λ.

Recall Lemmas 3.1, 3.3 and (2.16), we also have

E

[
sup
r∈[0,T ]

‖(uδr − ũδr)θ
δ
r‖λL2

]
≤ E

[
sup
r∈[0,T ]

‖uδr − ũδr‖λL∞‖θδr‖λL2

]

≤ ‖θδ0‖λL2E

[
sup
r∈[0,T ]

‖(∇Gδβ −∇Gβ) ∗ θδr‖λL∞

]

.
[
δ

β−1
β+3‖θδ0‖

1/2
L1 ‖θδ0‖

1/2
L∞(‖θδ0‖L∞ + ‖θδ0‖L1)

]λ

.
[
δ

β−1
β+3 (‖θδ0‖L∞ + ‖θδ0‖L1)2

]λ
= o(1).

(3.9)

Putting all above together, we have the estimate of S1:

S1 . (t− s)λ(‖θ0‖2λLp + o(1)).

Applying the Burkholder-Davis-Gundy inequality to the stochastic integral term S2, we have

S2 . E

[(∫ t

s

∑

k

‖div(σδkθδr)‖2H̃−4 dr

)λ/2]
≤ E

[(∫ t

s

∑

k

‖σδkθδr‖2H−3dr

)λ/2]

≤ (t− s)λ/2E

[
sup
r∈[0,T ]

(∑

k

‖σδkθδr‖2H−3

)λ/2]
.

Exploiting the Fourier transform, the integrand reads as

∑

k

‖σδkθδ‖2H−3 =
∑

k

∫
〈ξ〉−6

∣∣σ̂δkθδ(ξ)
∣∣2 dξ

=
∑

k

∫
〈ξ〉−6

∫∫
σδk(x)θ

δ(x)e−2πix·ξ · σδk(y)θδ(y)e2πiy·ξ dxdydξ

=

∫∫
θδ(x)θδ(y) trQδ(x− y)

∫
〈ξ〉−6e−2πi(x−y)·ξ dξdxdy.

(3.10)

Let ψ(x) = tr
[
Qδ(x)

] ∫
〈ξ〉−6e−2πix·ξ dξ, then

∑

k

‖σδkθδ‖2H−3 =

∫
θδ(x)(ψ ∗ θδ)(x) dx =

∫ ∣∣θ̂δ(ξ)
∣∣2ψ̂(ξ) dξ. (3.11)

17



We directly calculate the Fourier transform of ψ: for all ξ ∈ R2,

ψ̂(ξ) =

∫
trQ̂δ(ξ − η)〈η〉−6 dη ≤

∫
〈ξ − η〉−2−2α〈η〉−6 dη.

For |η| ≤ |ξ|/2, we know 〈ξ − η〉−2−2α ≤ 〈ξ/2〉−2−2α by triangle inequality; for |η| ≥ |ξ|/2, we
just use the bound ‖〈·〉−2−2α‖L∞ ≤ 1. Hence we have

ψ̂(ξ) .

∫

|η|≤|ξ|/2
〈ξ/2〉−2−2α〈η〉−6 dη +

∫

|η|≥|ξ|/2
〈η〉−6 dη

. 〈ξ〉−2−2α

∫
〈η〉−6 dη +

∫

|η|≥|ξ|/2
〈η〉−6 dη

. 〈ξ〉−2−2α + 〈ξ〉−4 . 〈ξ〉−2−2α.

(3.12)

Therefore we get

∑

k

‖σδkθδ‖2H−3 =

∫ ∣∣θ̂δ(ξ)
∣∣2ψ̂(ξ) dξ .

∫ ∣∣θ̂δ(ξ)
∣∣2〈ξ〉−2−2α dξ = ‖θδ‖2H−1−α . ‖θδ‖2Lp , (3.13)

the last inequality follows from the Sobolev embedding Lp →֒ H1− 2
p →֒ H−1−α, since 1 < p ≤ 2.

Hence, we obtain
S2 . (t− s)λ/2(‖θ0‖λLp + o(1)).

Similarly, for the term S3, we have

S3 ≤ (t− s)λE

[
sup
r∈[0,T ]

‖θδ‖λH−2

]
. (t− s)λ(‖θ0‖λLp + o(1)).

Combining the bounds of S1, S2 and S3, we arrive at

E
[
‖θδt − θδs‖λH̃−4

]
. (t− s)λ/2, for all s, t ∈ [0, T ].

By the Kolmogorov criterion (see e.g. [32, Theorem 2.9]), we conclude that, for every 0 < γ <
1/2,

E

[
‖θδ‖λ

Cγ
t (H̃

−4)

]
.β,p,λ,‖θ0‖Lp 1.

The proof is complete.

Remark 3.12. It is easy to verify that the equality (3.11) and the bound (3.13) hold true when

we replace σδk with σk and θδ with any θ in Ḣ−β
2 .

4 Weak existence

In this section we prove Theorem 1.2, namely weak existence of (1.7). Combining the a priori
bound on energy in Section 3.2 and the bound on time continuity in Section 3.3, we exploit the
classical compactness method, showing tightness of the laws of solutions (θδ)δ to the regularized
equation (3.1) and showing that any limit is a weak solution.

The key point of the argument is the uniform bound on the H
β
2
−α norm of the velocity field

uδ = Kβ ∗ θδ. Indeed, for β > 2α, the embedding H
β
2
−α →֒ L2 is compact on every bounded

domain of R2 and hence the uniform H
β
2
−α bound implies convergence in strong L2

loc topology,
which allows to pass to the limit in the nonlinear term.
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In order to prove tightness of the laws of the family (uδ)δ, we need to apply the stochas-

tic Aubin-Lions lemma to the triplet of spaces H
β
2
−α(R2) →֒ L2(R2) →֒ H−5+β(R2) and

get the compact embedding L2
t (H

β
2
−α) ∩ Cγt (H

−5+β) into L2
t (L

2). However, the embedding

H
β
2
−α(R2) →֒ L2(R2) is not compact. To overcome this technical difficulty, we introduce a

suitable weight w in the space L2.
Let w : R2 → R be a smooth function such that 0 < w ≤ 1 and

sup
Bc

R

w → 0, as R→ ∞,

where BR = {x ∈ R2 : |x| < R}. We also assume that the function w decreases at a sufficiently
slow rate, for example, we can take w(x) = (log〈x〉 + 1)−1. We define the weighted L2 space
L2(R2;w) as follows:

L2(R2;w) =

{
f ∈ L2

loc(R
2) : ‖f‖2L2(R2;w) :=

∫

R2

|f(x)|2w(x) dx <∞
}
.

The following lemma is from [10, Lemma 6.1].

Lemma 4.1. Let 0 < 2α < β < 2, the following embedding is compact:

L2
t

(
H

β
2
−α(R2)

)
∩ Cγt

(
H−5+β(R2)

)
⊂ L2

t

(
L2(R2);w

)
.

Remark 4.2. In fact, for every ǫ > 0, the space H
β
2
−α(R2) compactly embedds into

H
β
2
−α−ǫ

loc (R2). For details, see e.g. [21, Lemma A.4].

Now let us turn to the proof of our existence result Theorem 1.2. As in the previous sections,
Qδ, Gδβ and Kδ

β, θ
δ
0 satisfy the conditions in Section 2 and θδ is the solution to the regularized

model (3.1).

Step 1: Tightness

Let uδ = Kβ ∗ θδ. We will prove the tightness of the laws of the family (uδ)δ in the space
L2
t (L

2(R2;w)). Recall the following facts:

‖Kβ ∗ f‖
Ḣ−1+

β
2
= (2π)1−β‖f‖

Ḣ−
β
2
,

‖Kβ ∗ f‖H−5+β = (2π)1−β‖f‖H̃−4 .

And we have

‖Kβ ∗ f‖2
Ḣ

β
2 −α

= (2π)2−2β

∫

R2

|ξ|−β+2−2α|f̂(ξ)|2 dξ

.

∫

|ξ|≤1
|ξ|−β |f̂(ξ)|2 dξ +

∫

|ξ|≥1
〈ξ〉−β+2−2α|f̂(ξ)|2dξ

. ‖f‖2
Ḣ−

β
2
+ ‖f‖2

H−
β
2 +1−α

.

By interpolation and Young’s inequalities, we get

‖Kβ ∗ f‖L2 ≤ ‖Kβ ∗ f‖1−λ
Ḣ−1+

β
2

‖Kβ ∗ f‖λ
Ḣ

β
2 −α

≤ ‖Kβ ∗ f‖
Ḣ−1+

β
2
+ ‖Kβ ∗ f‖

Ḣ
β
2 −α

,

19



where λ = 1−β/2
1−α . Hence we obtain

‖Kβ ∗ f‖2
H

β
2 −α

= ‖Kβ ∗ f‖2L2 + ‖Kβ ∗ f‖2
Ḣ

β
2 −α

. ‖f‖2
Ḣ−

β
2
+ ‖f‖2

H−
β
2 +1−α

.

By Proposition 3.10 and Lemma 3.11, we get, for 0 < γ < 1/2 and some constant C > 0,

lim sup
δ→0

(
sup
t∈[0,T ]

E

[
‖uδt‖2

Ḣ−1+
β
2

]
+

∫ T

0
E

[
‖uδt‖2

H
β
2 −α

]
dt

)
≤ C‖θ0‖2

Ḣ−
β
2
, (4.1)

lim sup
δ→0

E

[
‖uδ‖Cγ

t (H
−5+β)

]
≤ C. (4.2)

By Lemma 4.1, for M > 0, the set

KM =
{
f ∈ L2

t (L
2(R2);w) : ‖f‖

L2
t (H

β
2 −α)

+ ‖f‖Cγ
t (H

−5+β) ≤M
}

is compact in L2
t (L

2(R2);w). We have, by Chebyshev’s inequality,

P(uδ /∈ KM ) ≤ P

(
‖uδ‖

L2
t (H

β
2 −α)

>
M

2

)
+ P

(
‖uδ‖Cγ

t (H
−5+β) >

M

2

)

≤ 4

M2
E

[
‖uδ‖2

Ḣ−1+
β
2

]
+

4

M2
E

[
‖uδ‖Cγ

t (H
−5+β)

]
.

By the bounds (4.1) and (4.2), we can chooseM such that the right-hand side is arbitrarily small.
Hence the laws of (uδ)δ are tight in L2

t (L
2(R2);w). Consequently, the laws of ((uδ)δ , (B

k)k) are
tight in L2

t (L
2(R2);w) × CN

t (with B(L2
t (L

2(R2);w)) ⊗ B(Ct)N as σ-algebra).

Step 2: P-a.s. convergence of a subsequence of copies

By Skorohod representation theorem [27, Theorem 5.31], there exists a complete probability
space (Ω̃, F̃ , P̃), a sequence of L2

t (L
2(R2);w) × CN

t -valued random variables (ũδn , (B̃k,δn)k) on
(Ω̃, F̃ , P̃), with δn → 0 as n→ ∞, and a L2

t (L
2(R2);w)×CN

t -valued random variable (ũ, (B̃k)k)
such that each (ũδn , (B̃k,δn)k) has the same law as (uδn , (Bk)k) and the sequence (ũδn , (B̃k,δn)k)n
converges P̃-a.s. in the topology of L2

t (L
2(R2);w) × CN

t to (ũ, (B̃k)k) as n→ ∞. We call

θ̃δn = (−∆)−1+β
2 (∇⊥ · ũδn), θ̃ = (−∆)−1+β

2 (∇⊥ · ũ).

We claim that θ̃ satisfies the bounds (1.8) and (1.10). Since each ũδn has the same law as
uδn , there exists a version of ũδn (still called ũδn) which has Hölder continuous paths with values
in H−5+β and satisfies the bounds (4.1) and (4.2). Observe that the norms in Cγt (H

−5+β) and

L∞
t (Ḣ−1+β

2 ) are lower semicontinuous functions in L2
t (L

2(R2);w) (see e.g. [10, Lemma B.2]),

the limit ũ (a version) has trajectories in L∞
t (Ḣ−1+β

2 ) ∩Cγt (H−5+β). The uniform Lp bound of
trajectories of θ̃ in (1.8) is verified as follows. For every t ∈ (0, T ), h > 0 sufficiently small and
ϕ ∈ C∞

c with ‖ϕ‖Lp′ ≤ 1, we have P̃-a.s.,

1

2h

∫ t+h

t−h
〈θ̃s, ϕ〉ds =

1

2h

∫ t+h

t−h
〈θ̃s − θ̃δns , ϕ〉ds+

1

2h

∫ t+h

t−h
〈θ̃δns , ϕ〉ds

≤ 1√
2h

(∫ T

0
|〈θ̃δnt − θ̃t, ϕ〉|2 dt

)1/2

+ ‖θδn0 ‖Lp .

Letting n→ ∞, from Lemma 4.3 below, we have 1
2h

∫ t+h
t−h 〈θ̃s, ϕ〉ds ≤ ‖θ0‖Lp . Next let h→ 0 and

the time continuity implies that 〈θ̃t, ϕ〉 ≤ ‖θ0‖Lp , P̃-a.s. for all t ∈ [0, T ]. Then taking supreme
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at left-hand side for ϕ ∈ C∞
c with ‖ϕ‖Lp′ ≤ 1, we have supt∈[0,T ] ‖θ̃t‖Lp ≤ ‖θ0‖Lp . Hence we

have the bound (1.8). The proof of the bound (1.10) is very similar, see also [10, Section 6].
Now by classical technique, for each n, we can construct a filtration (F̃δn

t )t such that
(B̃δn,k)k is a (F̃δn

t )t cylindrical Brownian motion and ũδn is (F̃δn
t )t progressively measurable.

The analogous statement holds for (F̃t)t, (B̃k)k and ũ. Moreover, for each n, the object(
Ω̃, F̃ , (F̃δn

t )t, P̃, (B̃
δn,k)k, θ̃

δn
)
is a weak solution to regularized model (3.1) with δ = δn.

Step 3: Passage to the limit

For simplicity of notation, we will omit the tildes and write (θ̃δn , ũδn , (B̃δn,k)k) as
(θδn , uδn , (Bδn,k)k), and (θ̃, ũ, (B̃k)k as (θ, u, (Bk)k). Let ϕ ∈ C∞

c (R2), then θδn =

(−∆)−1+β
2 (∇⊥ · uδn) satisfies the equation

〈θδnt , ϕ〉 = 〈θδn0 , ϕ〉 +
∫ t

0
〈(Kδn

β ∗ θδnr )θδnr ,∇ϕ〉dr +
∑

k

∫ t

0
〈σδnk θδnr ,∇ϕ〉dBδn,k

r

+
cδn
2

∫ t

0
〈θδnr ,∆ϕ〉dr

:= A1 +A2 +A3 +A4.

(4.3)

Now we want to let n→ ∞ in each term, possibly along a subsequence, to recover an equation
for 〈θ, ϕ〉. The following lemma is needed.

Lemma 4.3. Given a function ϕ ∈ C∞
c (R2), we have P-a.s.,

∫ T

0
|〈θδnt − θt, ϕ〉|2 dt→ 0, as n→ ∞.

Proof. Let ψ = ∇⊥(−∆)−1+β
2ϕ = G2−β ∗ (∇⊥ϕ), then we have

ψ(x) = cβ

∫

R2

∇⊥ϕ(y)

|x− y|β dy = cβ

∫

supp(ϕ)

∇⊥ϕ(y)

|x− y|β dy .ϕ,β 〈x〉−β , ∀x ∈ R2.

Hence, by Hölder inequality, we have

∫ T

0
|〈θδnt − θt, ϕ〉|2 dt =

∫ T

0
|〈uδnt − ut, ψ〉|2 dt ≤ T

∫ T

0
‖(uδnt − ut)

√
w‖2L2 dt

∫

R2

|ψ(x)|2
|w(x)| dx.

By the growth condition on w and the above estimate, we know the integral
∫ |ψ(x)|2

|w(x)| dx is finite,

then the conclusion follows from the convergence of uδn to u in the space L2
t (L

2(R2);w).

By Lemma 4.3, it is obvious that, P-a.s., the left-hand side of (4.3) converges to 〈θt, ϕ〉 in
L2([0, T ]). The same argument with the fact cδn → π

2α yields that P-a.s.,

A4 →
π

4α

∫ t

0
〈θr,∆ϕ〉dr in C([0, T ]).

The convergence of A1 follows from the condition θδn0 → θ0 in Ḣ−β
2 as n→ ∞.

Concerning the convergence of the stochastic term A3, we use a classical result (see [14,
Lemma 2.1]): if

∑

k

∫ T

0

∣∣〈σδnk θδnr ,∇ϕ− 〈σkθr,∇ϕ〉
∣∣2dr → 0 in probability, (4.4)
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then

sup
t∈[0,T ]

∣∣∣∣
∑

k

∫ t

0
〈σδnk θδnr ,∇ϕ〉dBδn,k

r −
∑

k

∫ t

0
〈σkθr,∇ϕ〉dBk

r

∣∣∣∣ → 0 in probability.

To show (4.4), we split as follows:

∑

k

∫ T

0

∣∣〈σδnk θδnr ,∇ϕ− 〈σkθr,∇ϕ〉
∣∣2 dr

.
∑

k

∫ T

0

∣∣〈σk(θδnr − θr),∇ϕ〉
∣∣2 dr +

∑

k

∫ T

0

∣∣〈(σδnk − σk)θ
δn
r ,∇ϕ〉

∣∣2 dr

=: A31 +A32.

For the term A31, we split again:

A31 =
∑

k≤N

∫ T

0

∣∣〈σk(θδnr − θr),∇ϕ〉
∣∣2 dr +

∑

k>N

∫ T

0

∣∣〈σk(θδnr − θr),∇ϕ〉
∣∣2 dr.

Note that for each N fixed, the first term in the right-hand side tends to 0 as n→ ∞ by Lemma
4.3. For each N ∈ N, take QN (x, y) =

∑
k>N σk(x) ⊗ σk(y), it is known that QN converges to

zero uniformly on each compact set (see e.g. [21, Lemma 2.3]), so we have ‖QN‖L∞(BR×BR) → 0
as N → ∞, where R > 0 such that supp(ϕ) ⊂ BR. Then we have P-a.s.,

∑

k>N

∫ T

0
|〈σk(θδnr − θr),∇ϕ〉|2dr

=

∫ T

0

∫∫
(θδnr − θr)(x)∇ϕ(x) ·QN (x, y)∇ϕ(y)(θδnr − θr)(y) dxdy dr

≤ ‖QN‖L∞(BR×BR)

∫ T

0
〈|θδnr − θr|, |∇ϕ|〉2 dr

≤ T‖QN‖L∞(BR×BR)

(
‖θδn0 ‖2Lp + ‖θ0‖2Lp

)
‖∇ϕ‖2

Lp′

.‖θ0‖Lp ,T,ϕ ‖QN‖L∞(BR×BR) → 0, as N → ∞.

Thus we get P-a.s., A31 → 0 . For the term A32, we have

A32 ≤ ‖ϕ‖2H4

∑

k

∫ T

0
‖(σδnk − σk)θ

δn
r ‖2H−3 dr.

Recalling Remark 3.12 and proceeding as the equalities (3.10) and (3.11), replacing σδk by σδnk −
σk, we get

∑

k

‖(σδnk − σk)θ
δn
r ‖2H−3 =

∫ ∣∣θ̂δnr (ξ)
∣∣2φ̂(ξ) dξ,

where

φ(x) = tr
[
Q+Qδn − 2Qδn,h

]
(x)

∫
〈ξ〉−6e−2πix·ξ dξ.

For the Fourier transform of φ, proceeding as (3.12) we have, for every ξ,

φ̂(ξ) =

∫
tr
[
Q̂+ Q̂δn − 2Q̂δn,h

]
(ξ − η)〈η〉−6 dη .

∫

|ξ−η|>1/δn

〈ξ − η〉−2−2α〈η〉−6 dη

≤ δ2α
∫

R2

〈ξ − η〉−2〈η〉−6 dη . δ2α〈ξ〉−2.
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As a consequence,

∑

k

‖(σδnk − σk)θ
δn
r ‖2H−3 . δ2αn

∫ ∣∣θ̂δnr (ξ)
∣∣2〈ξ〉−2 dξ . δ2αn ‖θδnr ‖2

Ḣ−
β
2
.

Hence we obtain, as n→ ∞,

E[A32] . ‖ϕ‖2H4δ
2α
n

∫ T

0
E

[
‖θδnr ‖2

Ḣ−
β
2

]
dr → 0.

Summarizing the above arguments, we see that (4.4) holds, so along a subsequence, we have,
P-a.s.,

A3 →
∑

k

∫ t

0
〈σkθr,∇ϕ〉dBk

r in C([0, T ]).

To cope with the nonlinear term A2, recalling that uδn = Kβ ∗ θδn , we have

∫ t

0

(〈
(Kδn

β ∗ θδnr )θδnr ,∇ϕ
〉
−

〈
urθr,∇ϕ

〉)
dr

=

∫ t

0

〈
((Kδn

β −Kβ) ∗ θδnr )θδnr ,∇ϕ
〉
dr +

∫ t

0
〈(uδnr − ur)θ

δn
r ,∇ϕ〉dr

+

∫ t

0
〈(θδnr − θr)ur,∇ϕ〉dr

=: A21 +A22 +A23.

Proceeding as the estimate (3.9), for every 1 ≤ λ < ∞, we have E
[
supt∈[0,T ]A

λ
21

]
→ 0. Hence

A21 tends to 0 in C([0, T ]) P-a.s.. For term A22, recalling Remark 4.2, we have uδn → u in
L2
t (H

s
loc) for all 0 < s < β/2−α. Suppose the support of ϕ is contained in BR, hence by Sobolev

embedding with exponent 1
q = 1

2 − s
2 and Hölder inequality, we have P-a.s.,

sup
t∈[0,T ]

A22 ≤ ‖uδn − u‖L2
t (L

q(BR))

(∫ T

0
‖θδnr ∇ϕ‖2

Lq′ dr

)1
2

≤ ‖uδn − u‖L2
t (H

s(BR))

√
T‖∇ϕ‖L∞ sup

t∈[0,T ]
‖θδnt ‖Lq′ (BR)

. ‖uδn − u‖L2
t (H

s(BR)) sup
t∈[0,T ]

‖θδnt ‖Lp

. ‖uδn − u‖L2
t (H

s(BR))‖θδn0 ‖Lp → 0,

(4.5)

Note that we have used the condition p > 2
1+β/2−α to guarantee p ≥ q′.

Because θδn and uδn are related by a nonlocal operator, it is difficult to obtain strong con-
vergence of θδn in some space from the strong convergence of uδn in L2

t (L
2(R2);w). As a

consequence, we can just obtain convergence of the term A23 in some weak sense, which is dif-
ferent from the case in [10]. Now we prove the term A23 converges weakly to zero in the space
L2(Ω× [0, T ]). Consider the map from L2(Ω× [0, T ];Lp) to L2(Ω × [0, T ]) given by

y(·) 7−→
∫ ·

0
〈yr(·), ur · ∇ϕ〉dr.

By the same trick used to deal with the term A22, we can show that this map is linear and
bounded, hence it is also weakly continuous. It is straightforward to check that θδn ⇀ θ in
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L2(Ω× [0, T ];Lp) up to a subsequence, hence we have

A23 =

∫ ·

0
〈(θδnr − θr)ur,∇ϕ〉dr ⇀ 0 in L2(Ω× [0, T ]).

From the energy bounds, time continuity bounds and the P-a.s. convergence of other terms,
we know that all terms in the regularized equation (4.3) converge in L2(Ω × [0, T ]) weakly to
the corresponding term for θ. Thus, for every X ∈ L∞(Ω), φ ∈ C∞

c ([0, T ]), we have

E

[ ∫ T

0
Xφ(t)〈θt, ϕ〉dt

]
= E

[ ∫ T

0
Xφ(t)〈θ0, ϕ〉dt

]
+ E

[ ∫ T

0
Xφ(t)

∫ t

0
〈urθδnr ,∇ϕ〉drdt

]

+ E

[ ∫ T

0
Xφ(t)

∑

k

∫ t

0
〈σkθr,∇ϕ〉dBk

r dt

]
+

α

4π
E

[ ∫ T

0
Xφ(t)

∫ t

0
〈θr,∆ϕ〉drdt

]
.

By the arbitrariness of X and φ, we obtain P-a.s., for a.e. t ∈ [0, T ],

〈θt, ϕ〉 = 〈θ0, ϕ〉 +
∫ t

0
〈urθr,∇ϕ〉dr +

∑

k

∫ t

0
〈σkθr,∇ϕ〉dBk

r +
α

4π

∫ t

0
〈θr,∆ϕ〉dr. (4.6)

Since all terms in (4.6) are continuous in time, this equation holds for every t ∈ [0, T ] on a P-null
set independent of t.

Step 4: Conclusion

To conclude that θ is a weak solution to (1.7), it is enough to remove the test function in the
formulation (4.6). For each ϕ ∈ C∞

c (R2), equation (1.9) holds tested against ϕ on a P-null set
Ω0 which might depend on ϕ. We can make the P-null set Ω0 independent of ϕ, for ϕ ∈ C∞

c (R2)
in a countable dense set of H4(R2). Then equation (1.9) holds for every t ∈ [0, T ] on the P-null
set Ω0, which completes the proof of Theorem 1.2.

5 Pathwise uniqueness

In this section, we prove Theorem 1.4, that is, pathwise uniqueness of L1∩Lp solutions to (1.7).

The idea of the proof is to estimate the Ḣ−β
2 norm of the difference of two solutions θ1 and

θ2, where the main point is to take advantage of the control of the H−β
2
+1−α norm of θ1 − θ2

induced by the noise to cancel the singularity generated by nonlinear terms.
The following classical lemma is needed.

Lemma 5.1. Let a+ b > 0 and −1 < a, b < 1, we have

‖fg‖Ḣa+b−1 . ‖f‖Ḣa‖g‖Ḣb .

Proof of Theorem 1.4. As we know from Remark 1.5, conditions here are stronger than those of
Theorem 1.2, so there exists a solution which satisfies (1.8)–(1.10). The bound (1.11) follows in
a similar manner as Step 2 in the proof of Theorem 1.2.

Now let us turn to prove the uniqueness. Let θ1 and θ2 be two weak solutions to (1.7) on
the same filtered probability space (Ω,F , (Ft)t,P) and with respect to the same sequence (Bk)k
of independent Brownian motions satisfying θ1, θ2 ∈ L∞(Ω × [0, T ];Lp ∩ L1). The difference
θ := θ1 − θ2 satisfies the following equality in H−4:

dθ +
[
(Kβ ∗ θ1) · ∇θ + (Kβ ∗ θ) · ∇θ2

]
dt+

∑

k

σk · ∇θ dBk =
π

4α
∆θ dt.
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Now applying Itô formula to 〈θ,Gδβ ∗ θ〉 and similarly to the computations in Lemma 3.4, we
obtain

d〈θ,Gδβ ∗ θ〉 = 2〈∇Gδβ ∗ θ, (Kβ ∗ θ1)θ〉dt+ 2〈∇Gδβ ∗ θ, (Kβ ∗ θ)θ2〉dt
+ 2

∑

k

〈∇Gδβ ∗ θ, σkθ〉dBk

+

∫∫

R2×R2

tr
[
(Q(0)−Q(x− y))D2Gδβ(x− y)

]
θ(x)θ(y) dxdydt

=: (2I1 + 2I2) dt+ 2
∑

k

Mk dB
k + J dt.

(5.1)

As in the proof of Lemma 3.4, we know the Itô integral is a true martingale with zero expectation.

Concerning the term I1, the idea is to control θ by its H−β
2
+1−α norm and θ1 by its Lp norm.

We fix ǫ > 0 such that α+ ǫ < β
2 − 1

p∧2 . We exploit Lemma 5.1 and get

|I1| = | 〈∇Gδβ ∗ θ, (Kβ ∗ θ1)θ〉 |
≤ ‖θ‖

Ḣ−
β
2 +1−α−ǫ

‖(Kβ ∗ θ1)∇Gδβ ∗ θ‖
Ḣ

β
2 −1+α+ǫ

. ‖θ‖
Ḣ−

β
2 +1−α−ǫ

‖Kβ ∗ θ1‖Ḣ2(α+ǫ)‖∇Gδβ ∗ θ‖
Ḣ

β
2 −α−ǫ

. ‖θ‖2
Ḣ−

β
2 +1−α−ǫ

‖θ1‖Ḣ2(α+ǫ)−β+1 .

Taking 1
p̃ = β

2 − α− ǫ (so 1 < p̃ < p ∧ 2), thanks to the Sobolev embedding Lp̃ →֒ Ḣ2(α+ǫ)−β+1,
we have

|I1| . ‖θ1‖Lp̃‖θ‖2
Ḣ−

β
2 +1−α−ǫ

.

By assumption, the Lp ∩L1 norm of θ1 is uniformly bounded on Ω× [0, T ], hence there exists a
constant C1, such that (P⊗ dt)-a.s.,

‖θ1t ‖Lp̃ ≤ ‖θ1t ‖Lp + ‖θ1t ‖L1 ≤ C1.

By interpolation, one can check, for ǭ > 0 to be determined later,

‖θ‖2
Ḣ−

β
2 +1−α−ǫ

≤ ‖θ‖2
Ḣ−

β
2
+ ‖θ‖2

H−
β
2 +1−α−ǫ

. ‖θ‖2
Ḣ−

β
2
+ ǭ‖θ‖2

H−
β
2 +1−α

+ Cǭ‖θ‖2
H−

β
2
.

(5.2)

Taking expectation and integrating in time, we get
∫ t

0
E[|I1|] dr . ǭ

∫ t

0
E

[
‖θr‖2

H−
β
2 +1−α

]
dr + (Cǭ + 1)

∫ t

0
E

[
‖θr‖2

Ḣ−
β
2

]
dr. (5.3)

Now we turn to estimate the term I2, note that

〈∇Gβ ∗ θ, (Kβ ∗ θ)θ2〉 = 〈∇(Gβ ∗ θ),∇⊥(Gβ ∗ θ) θ2〉 = 0,

so it is enough to control the remainder term with Gβ −Gδβ. We have, by Lemma 5.1,

|I2| = |〈∇(Gδβ −Gβ) ∗ θ, (Kβ ∗ θ)θ2〉|
≤ ‖θ2‖

Ḣ−
β
2 +1−α−ǫ

‖(Kβ ∗ θ)∇(Gδβ −Gβ) ∗ θ‖
Ḣ

β
2 −1+α+ǫ

. ‖θ2‖
Ḣ−

β
2 +1−α−ǫ

‖Kβ ∗ θ‖Ḣ2(α+ǫ)‖∇(Gδβ −Gβ) ∗ θ‖
Ḣ

β
2 −α−ǫ

≤ ‖θ2‖
Ḣ−

β
2 +1−α−ǫ

‖θ‖Ḣ2(α+ǫ)−β+1‖∇(Gδβ −Gβ) ∗ θ‖
Ḣ

β
2 −α−ǫ

.
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Still by the Sobolev embedding Lp̃ →֒ Ḣ2(α+ǫ)−β+1 and the uniform bound of L1 ∩ Lp norm of
θ1 and θ2, we get

|I2| .
(
‖θ1‖Lp̃ + ‖θ2‖Lp̃

)
‖θ2‖

Ḣ−
β
2 +1−α−ǫ

‖∇(Gδβ −Gβ) ∗ θ‖
Ḣ

β
2 −α−ǫ

. (C1 + C2)‖θ2‖
Ḣ−

β
2 +1−α−ǫ

‖∇(Gδβ −Gβ) ∗ θ‖
Ḣ

β
2 −α−ǫ

.

Taking expectation and integrating in time, we get

∫ T

0
E[|I2|] dr .

(∫ T

0
E

[
‖θ2r‖2

Ḣ−
β
2 +1−α−ǫ

]
dr

)1/2(∫ T

0
E

[
‖∇(Gδβ −Gβ) ∗ θ‖2

Ḣ
β
2 −α−ǫ

]
dr

)1/2

.

By (2.9), we can write the last term as

∫ T

0
E

[
‖∇(Gδβ −Gβ) ∗ θ‖2

Ḣ
β
2 −α−ǫ

]
dr

=

∫
|ξ|−β+2−2(α+ǫ)

(
1− e−(2π|ξ|)βδ + e−(2π|ξ|)β/δ

)2
∫ T

0
E
[
|θ̂r(ξ)|2

]
drdξ.

Notice that by (5.2), the integral

∫ ∫ T

0
|ξ|−β+2−2(α+ǫ)E

[
|θ̂r(ξ)|2

]
drdξ =

∫ T

0
E

[
‖θ2r‖2

Ḣ−
β
2 +1−α−ǫ

]
dr

is finite, hence by dominated convergence theorem,

∫ T

0
E[|I2|] dr = o(1) as δ → 0. (5.4)

As in Lemma 3.9, the term J in (5.1) provides a control of the H−β
2
+1−α norm of the

difference θ. We divide the quantity in J as follows:

tr
[
(Q(0)−Q(x))D2Gδβ(x)

]
= tr

[
(Q(0)−Q(x))D2Gβ(x)

]
ϕ(x)

+ tr
[
(Q(0)−Q(x))D2(Gδβ −Gβ)(x)

]
ϕ(x)

+ tr
[
(Q(0)−Q(x))D2Gδβ(x)

]
(1− ϕ(x))

=: A(x) +R1(x) +R3(x),

where ϕ is a radial smooth function satisfying 0 ≤ ϕ ≤ 1 everywhere, ϕ(x) = 1 for |x| ≤ 1 and
ϕ(x) = 0 for |x| ≥ 2. Now we proceed as in Lemmas 3.6–3.8 and obtain

J ≤
∫

R2

(Â(ξ) + R̂3(ξ)) |θ̂t(ξ)|2 dξ +
∫∫

R2×R2

|R1(x− y)| |θt(x)| |θt(y)|dxdy

= −c
∫

〈ξ〉−(2α+β−2)|θ̂t(ξ)|2 dξ +C

∫
|ξ|−β |θ̂t(ξ)|2 dξ

+ C

∫∫ (
δ + |x− y|2α+β−41{|x−y|≤δ1/(4+β)}

)
ϕ(x− y) |θt(x)| |θt(y)|dxdy.

By Hölder’s and Young’s inequalities for the last term, we get, taking 1
r = 2− 2

p∧2 ,

J ≤ −c‖θt‖2
H−

β
2 +1−α

+ C‖θt‖2
Ḣ−

β
2
+ Cδ‖θt‖2L1 + C

(∫
|x|(2α+β−4)r1{|x|≤δ1/(4+β)}dx

)1/r

‖θt‖2Lp∧2

≤ −c‖θt‖2
H−

β
2 +1−α

+ C‖θt‖2
Ḣ−

β
2
+ Cδ‖θt‖2L1 + o(1)‖θt‖2Lp∧2 ,
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where we have used the assumption α > 2
p − β

2 to guarantee (2α + β − 4)r > −2. Taking
expectation and integrating in time, we get

∫ t

0
E[J ] dr ≤ −c

∫ t

0
E

[
‖θr‖2

H−
β
2 +1−α

]
dr + C

∫ t

0
E

[
‖θr‖2

Ḣ−
β
2

]
dr + o(1), (5.5)

where o(1) is uniform for t ∈ [0, T ].
Now integrating over Ω × [0, t] in (5.1), using the bounds (5.3)–(5.5) where ǭ > 0 in (5.3)

is chosen small enough and letting δ → 0, by (2.10) and the embedding L1 ∩ Lp ⊂ Ḣ−β/2 in
Remark 1.5, we arrive at

E

[
‖θt‖2

Ḣ−
β
2

]
≤ ‖θ0‖2

Ḣ−
β
2
− c

2

∫ t

0
E

[
‖θr‖2

H−
β
2 +1−α

]
dr + C

∫ t

0
E

[
‖θr‖2

Ḣ−
β
2

]
dr.

Then by Grönwall inequality and θ0 = θ10 − θ20 = 0, we get

sup
t∈[0,T ]

E

[
‖θt‖2

Ḣ−
β
2

]
+
c

2

∫ T

0
E

[
‖θt‖2

H−
β
2 +1−α

]
dt ≤ ‖θ0‖2

Ḣ−
β
2
eCT = 0,

which completes the proof.

A Proof of Lemma 2.5

In this section, we give a proof of Lemma 2.5, more precisely, a generalized version in Rd. Before
we start, we need to do some preparation work about the fractional heat kernel. Throughout
this section, we suppose p(t, x) is the fractional heat kernel on Rd for some integer d ≥ 2, that
is to say, {

∂tp+ (−∆)
β
2 p = 0 in (0,∞) × Rd,

p(0, ·) = δ0.

For (t, x) ∈ (0,∞) × Rd, define q(t, x) = t(t2/β + |x|2)− d+β
2 . The following bound of the kernel

p(t, x) is well known, see for example [5; 31].

Lemma A.1. There exists a constant C = C(d, β) such that for all (t, x) ∈ (0,∞) ×Rd,

C−1q(t, x) ≤ p(t, x) ≤ Cq(t, x). (A.1)

Remark A.2. It is easy to check that

t

(t
2
β + |x|2) d+β

2

≍ t

|x|d+β ∧ t−
d
β .

For simplicity, both sides of the above expression are represented by q(t, x).

From a probabilistic point of view, the fractional Laplacian −(−∆)
β
2 is the infinitesimal

generator of the β-stable process, which is a pure jump Markov process. That is to say, p(t, x) is
the transition probability of a β-stable process Z = (Zt)t≥0. Then by the Bochner subordination
formula (see e.g. [4, Proposition 8.6]), we have

Z =
√
2BS in law,
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where B and S are independent, B = (Bt)t≥0 is a standand d dimensional Brownian motion

and S = (St)t≥0 is a subordinator with Laplace exponent λ
β
2 , namely, E[e−λSt ] = e−λ

β
2 t for all

λ, t ≥ 0. Hence by conditioning we get

p(t, x) =

∫ ∞

0
h(s, x)ρt(s) ds, (A.2)

where h(s, x) = (4πs)−
d
2 e−

|x|2

4s is the heat kernel in Rd, ρt is the probability density function of

St. Accroding to [5, Lemma 5], there exists a constant c such that ρ1(s) ≤ c s−1−β
2 for all s > 0,

so by scaling property ρt(s) = t−
2
β ρ1(t

− 2
β s), we have

ρt(s) ≤ c t s−1−β
2 , t > 0.

Combining the above estimate and (A.2), the dominated convergence theorem implies that

∇xp(t, x) =

∫ ∞

0
∇xh(s, x)ρt(s) ds = −x

2

∫ ∞

0

h(s, x)

s
ρt(s) ds

= −2πp(d+2)(t, x)x,

(A.3)

where p(d+2) is the heat kernel in dimension d + 2. Strictly speaking, p(d+2)(t, x) should be

p(d+2)(t, x̄), where x̄ ∈ Rd+2 satisfies |x̄| = |x|. Similarly, we obtain that

D2
xp(t, x) = −2πp(d+2)(t, x) Id + 4π2p(d+4)(t, x)x ⊗ x, (A.4)

where p(d+4)(t, x) is understood in a similar way and Id is d×d unit matrix. A simple calculation
shows that

∇xq(t, x) = −(d+ β)q(d+2)(t, x)x,

D2
xq(t, x) = −(d+ β)q(d+2)(t, x) Id + (d+ β)(d + 2 + β)q(d+4)(t, x)x⊗ x.

(A.5)

Combining Lemma A.1 and (A.3) – (A.5), we have the following estimates.

Lemma A.3. Let p, q be defined as above, we have that for all (t, x) ∈ (0,∞)× Rd,

p(t, x) ≍ q(t, x), ∇xp(t, x) ≍ ∇xq(t, x), D2
xp(t, x) ≍ D2

xq(t, x),

where the constants behind ≍ are only dependent on β and d.

Remark A.4. In fact, the same proof works for the general case m ∈ N,

Dm
x p(t, x) ≍ Dm

x q(t, x).

Now we turn to prove Lemma 2.5. Note that the relation (2.7) holds true in dimension d
and Gδβ is defined as in (2.8). We give a general version of Lemma 2.5 for all dimension d.

Lemma A.5. For every nonnegative integer m, there exists a constant Cm such that for all
x ∈ Rd,

|DmGδβ(x)| .m
1

|x|m+d−β
.

Moreover, the following estimates hold:

|∇(Gβ −Gδβ)(x)| .β,d δ
1/21{δ1/(β+d+1)≤|x|≤δ−1/β}

+ |x|β−d−11{|x|≤δ1/(β+d+1)
or |x|≥δ−1/β},

(A.6)

|D2(Gβ −Gδβ)(x)| .β,d δ + |x|β−d−21{|x|≤δ1/(d+2+β)}. (A.7)

Note that all implicit constants are independent of δ.
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Proof. We first prove the uniform bound on |DmGδβ(x)|. By Remark A.4, we get

|DmGδβ(x)| ≤
∫ 1/δ

δ
|Dm

x p(t, x)|dt ≍
∫ 1/δ

δ
|Dm

x q(t, x)|dt .m
1

|x|m+d−β
.

Now we move to the bounds on ∇(Gβ −Gδβ) and D
2(Gβ −Gδβ). Using (A.3), (A.4) and Lemma

A.3, we get

|∇(Gβ −Gδβ)(x)| ≤
(∫ δ

0
+

∫ ∞

1/δ

)
|∇xp(t, x)|dt

≍
(∫ δ

0
+

∫ ∞

1/δ

)
p(d+2)(t, x)|x|dt

≍
(∫ δ

0
+

∫ ∞

1/δ

)
q(d+2)(t, x)|x|dt.

(A.8)

Similarly,

|D2(Gβ −Gδβ)(x)| .
(∫ δ

0
+

∫ ∞

1/δ

)(
q(d+2)(t, x) + q(d+4)(t, x)

)
|x|2 dt. (A.9)

With Remark A.2, a tedious calculation shows that

(∫ δ

0
+

∫ ∞

1/δ

)
q(t, x) dt ≤

{(
1
2 + β

d−β

)
|x|β−d, |x| ≤ δ1/β or |x| ≥ δ−1/β ;

1
2δ

2|x|−(β+d) + β
d−β δ

d−β
β , δ1/β ≤ |x| ≤ δ−1/β .

(A.10)

Substituting (A.10) into (A.8) and (A.9) yields

|∇(Gβ −Gδβ)(x)| .
{(

1
2 + c

)
|x|β−d−1, |x| ≤ δ1/β or |x| ≥ δ−1/β ;

1
2δ

2|x|−(β+d+1) + cδ
d+2
β

−1|x|, δ1/β ≤ |x| ≤ δ−1/β ,

|D2(Gβ −Gδβ)(x)| .





(
1 + c+ c̃

)
|x|β−d−2, |x| ≤ δ1/β or |x| ≥ δ−1/β ;

δ2|x|−(β+d+2) + cδ
d+2
β

−1

+c̃δ
d+4
β

−1|x|2, δ1/β ≤ |x| ≤ δ−1/β ,

where the constants c = β
d+2−β , c̃ =

β
d+4−β . Simplifying the above estimates, we can derive the

assertions of the lemma. Indeed, for δ1/(β+d+1) ≤ |x| ≤ δ−1/β , we have

|∇(Gβ −Gδβ)(x)| . δ2|x|−(β+d+1) + δ
d+2
β

−1|x| . δ + δ
d+1
β

−1
. δ1/2;

for δ1/β ≤ |x| ≤ δ1/(β+d+1), we have

|∇(Gβ −Gδβ)(x)| . δ2|x|−(β+d+1) + δ
d+2
β

−1|x| . |x|β−d−1 + |x| . |x|β−d−1.

Thus we have shown (A.6)

|∇(Gβ −Gδβ)(x)| .β,d δ
1/21{δ1/(β+d+1)≤|x|≤δ−1/β}

+ |x|β−d−11{|x|≤δ1/(β+d+1) or |x|≥δ−1/β}.

The estimate (A.7) can be obtained by the same trick.
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B Estimating the remainders

In this section, we give an estimate of the remainder terms appearing in Lemma 3.6. For this
purpose, we need the following lemma.

Lemma B.1. Let 1 < β < 2 be fixed, we have the following bounds:

∣∣ |x|β−4Remf (|x|)
∣∣ . |x|β−2,

∣∣∇
[
|x|β−4Remf (|x|)

] ∣∣ . |x|β−3,
∣∣D2

[
|x|β−4Remf (|x|)

] ∣∣ . |x|β−4.

The proofs are almost identical to [10, Lemma A.1], so we omit the details here.

Lemma B.2. Let 1 < β < 2 be fixed. Suppose g : R2 → R is a Borel measurable function,
which has support in B̄2(0) and is C2 on R2\{0}, and assume that for all x ∈ R2\{0},

|g(x)| . |x|β−2, |∇g(x)| . |x|β−3, |D2g(x)| . |x|β−4.

Then for all 2− β < ǫ < 1, we have

|ĝ(ξ)| .ǫ 〈ξ〉−2+ǫ, for all ξ ∈ R2.

Proof. First we claim that theW 1+γ,p norm of g is finite for 0 < γ < β−1 and 1 < p < 2
3−β+γ <

2. Here the W 1+γ,p norm is defined as

‖g‖p
W 1+γ,p = ‖g‖pLp + ‖∇g‖pLp +

∫∫

R2×R2

|∇g(x)−∇g(y)|p
|x− y|2+γp dxdy.

Obviously the Lp norms of g and ∇g are finite. For the last term, on the one hand we exploit
the bound on ∇g and get,

|∇g(x)−∇g(y)|p
|x− y|2+γp .

1

(|x| ∧ |y|)(3−β)p |x− y|2+γp =: I1.

On the other hand, take a C1-path η : [0, 1] → R2 with η(0) = y, η(1) = x, min
s∈[0,1]

|η(s)| & |x|∧ |y|

and max
s∈[0,1]

|η′(s)| . |x− y|; then exploiting the bound on D2g, we get

|∇g(x) −∇g(y)|p
|x− y|2+γp ≤

(∫ 1

0
|D2g(η(s))| |η′(s)|ds

)p 1

|x− y|2+γp

.

max
s∈[0,1]

|η′(s)|p

min
s∈[0,1]

|η(s)|(4−β)p · 1

|x− y|2+γp

.
1

(|x| ∧ |y|)(4−β)p |x− y|2−(1−γ)p
=: I2.

Interpolating between the above two estimates, we get, for all 0 < λ < 1,

|∇g(x) −∇g(y)|p
|x− y|2+γp . Iλ1 I

1−λ
2 =

1

|x− y|2+(γ+λ−1)p

(
1

|x|p(4−β−λ) +
1

|y|p(4−β−λ)
)
.
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Since 1 < p < 2
3−β+γ < 2, we can choose 0 < λ < 1 − γ such that 2 + (γ + λ − 1)p < 2 and

p(4 − β − λ) < 2, making the right-hand side above integrable. Therefore, g has finite W 1+γ,p

norm for 0 < γ < β − 1 and 1 < p < 2
3−β+γ < 2. Then we have (see [40, Subsection 2.5])

‖g‖H1+γ,p := ‖F−1(〈·〉1+γ ĝ)‖Lp . ‖g‖W 1+γ,p <∞.

Thus by Hausdorff-Young inequality, we have

〈·〉1+γ ĝ ∈ Lp
′
, where

1

p
+

1

p′
= 1.

Now we will show 〈·〉1+γ ĝ is actually inW 1,p′, then by Sobolev embedding, 〈·〉1+γ ĝ is bounded,
which completes the proof with ǫ = 1− γ. Note that g has compact support, so ĝ is smooth and

|∇(〈ξ〉1+γ ĝ(ξ))| . 〈ξ〉1+γ |∇ĝ(ξ)|+ 〈ξ〉γ |ĝ(ξ)| . 〈ξ〉2|∇ĝ(ξ)|+ 〈ξ〉|ĝ(ξ)|.

For the first term, observe that xg(x) and ∆(xg(x)) are in Lp, hence

〈ξ〉2|∇ĝ(ξ)| ≍
∣∣F

[
(I −∆)(xg(x))

]
(ξ)

∣∣ ∈ Lp′ .

Similarly, we have

〈ξ〉|ĝ(ξ)| ≤ |ĝ(ξ)|+ |ξ ĝ(ξ)| = |ĝ(ξ)|+ |F(∇g)(ξ)| ∈ Lp
′
.

Consequently, we have proved that for 0 < γ < β − 1 and 1 < p < 2
3−β+γ < 2, 〈·〉1+γ ĝ is in

W 1,p′ , so by the Sobolev embedding on R2, 〈·〉1+γ ĝ is bounded.
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