
Collective nature of high-Q resonances in finite-size photonic metastructures

Thanh Xuan Hoang,1, ∗ Daniel Leykam,2, † Hong-Son Chu,1 Ching
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We study high quality-factor (high Q) resonances supported by periodic arrays of Mie resonators
from the perspectives of both Bloch wave theory and multiple scattering theory. We reveal that,
unlike a common belief, the bound states in the continuum (BICs) derived by the Bloch-wave
theory do not directly determine the resonance with the highest Q value in large but finite arrays.
Higher Q factors appear to be associated with collective resonances formed by nominally guided
modes below the light line associated with strong effect of both electric and magnetic multipoles.
Our findings offer valuable insights into accessing the modes with higher Q resonances via bonding
modes within finite metastructures. Our results underpin the pivotal significance of magnetic and
electric multipoles in the design of resonant metadevices and nonlocal flat-band optics. Moreover,
our demonstrations reveal that coupled arrays of high-Q microcavities do not inherently result in
a stronger light-matter interaction when compared to coupled low-Q nanoresonators. This result
emphasizes the critical importance of the study of multiple light-scattering effects in cavity-based
systems.

I. INTRODUCTION

High quality factor Q nanophotonic resonances are im-
portant for various applications ranging from photonic
crystal cavities for quantum photonics [1–3] to metasur-
faces for ultra-thin optical beam-shaping elements [4–6].
The former are based on nominally-infinite Q guided
modes of photonic crystal slabs, while the latter em-
ploy finite Q Mie resonances of wavelength-scale parti-
cles. Remarkably, fine-tuning or special symmetries have
been predicted to convert low Q resonances into infi-
nite Q modes known as bound states in the continuum
(BICs) [7, 8]. While there has been enormous interest in
the BIC concept, theoretical predictions regarding BICs
as cavities with infinite Q diverge from practical imple-
mentations, with experimentally-measured Q values lim-
ited to less than one million [9].

Both the photonic crystal cavity and BIC approaches
are inspired by analogies between matter and light waves.
These concepts are rooted in the physics of scattering-free
propagation observed in Bloch waves within infinite peri-
odic photonic crystals [7, 10]. Discrepancies between the
nominal and measured Q values are typically attributed
to enhanced scattering losses arising from fabrication im-
perfections or finite sample sizes [9, 11, 12], which are
both neglected in the Bloch wave theory [7]. These ef-
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fects become more important as devices are scaled down,
leading to much lower Q factors reported in nanopho-
tonic systems compared to single microcavities, which
support whispering-gallery modes with measurable Q in
the billions [13]. Thus, while the BIC approach gives an
elegant and intuitive way to understand the Q factors of
Bloch waves, it lacks quantitative predictive power for
real finite size systems.

Here we study resonances supported by arrays of Mie-
resonant nanoparticles from the viewpoint of multiple
scattering theory (MST), schematically illustrated in
Fig. 1. We show that the scattering wave viewpoint
provides a simple way to understand the emergence of
(quasi-)BICs and other high Q resonances in metastruc-
tures and metasurfaces in terms of collective resonances
whoseQ scales with the system size, diverging in the limit
of an infinite system. Intriguingly, our findings reveal
that the collective resonances of coupled high-Q micro-
cavities do not necessarily result in Q factor divergence.
This is in contrast to the pronounced divergence observed
when coupling low-Q Mie resonators, highlighting the in-
tricate physics involved in strong multiple scattering ef-
fects.

In the following we will consider Mie-resonant silicon
nanoparticles with a fixed sphere radius of 210 nm and
a refractive index of 3.5. These parameters ensure that
the high Q collective resonances fall within the crucial
near-infrared frequency range, essential for various tech-
nological applications [14, 15], and are similar to recent
experiments studying quasi-BICs [16–18].
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FIG. 1. Schematic illustrating the interaction of a magnetic dipole with various structures: a meta-atom, a diatomic meta-
molecule, a linear chain of spheres, and a two-dimensional (2D) array of spheres. Extending the linear chain and the 2D array
to infinite periodic structures transitions them into photonic crystals capable of supporting Bloch waves, including bound states
within the continuum.

II. BLOCH WAVES VS. SCATTERING WAVES

In the weak coupling regime, the emission rate γ of a
light emitter interacting with the local three-dimensional
(3D) electromagnetic environment is described by the
multipolar interaction Hamiltonian:

Hint = −µ ·E(rµ, t)−m ·B(rm, t)− . . . (1)

Here, m and rm (µ and rµ) represent the magnetic (elec-
tric) dipole moment and position of the dipole, respec-
tively. Equation (1) is applicable to investigate both the
dynamical and stationary properties of the emission rate.
Our focus lies on the stationary modes of BICs, where we
employ predefined magnetic dipoles with constant mo-
ments across the entire frequency range of interest.

For systems involving magnetic dipole transitions at
equilibrium, the emission rate is

γ =
ω

2
Im{m∗ ·B(rm)}. (2)

Here, ω represents the angular frequency associated with
the dipolar transition. As our interest lies in the en-
hancement of γ due to emitter-environment interactions,
we utilize the Purcell factor defined as:

FP =
γ

γ0
, (3)

where γ0 denotes the emission rate of the emitter in the
corresponding homogeneous material, which is vacuum
in Fig. 1.

Equations (2) and (3) can effectively describe the in-
teraction of a dipole with both Bloch waves and scat-
tering waves, which correspond to different field profiles
B(rm). The unique boundary conditions applied in solv-
ing Maxwell’s equations for B(rm) result in significant
distinctions between the two.

A. Bloch waves: Diffracted waves as open channels

In the case of Bloch waves, the electromagnetic field
satisfies

B(r+Rnu) = eikB ·RnuB(r), (4)

where Rnu is the vector connecting the nth and uth unit
cells. Numerical simulations are employed to determine
the magnetic field B(r) within the unit cell, utilizing an
excitation source at the temporal frequency f . For the
linear chain in Fig. 1, Bloch boundary conditions are
applied in the z direction, while perfectly matched layers
simulate outgoing waves in the x and y directions. These
outgoing waves propagate in vacuum with a wavenumber
k = 2πf/c, c being the speed of light. The dispersion
relation kB(f) is computed based on these simulations,
analyzing the magnetic field eigenmode B(r).
For a given f , if kB > k, the Bloch wave is termed a

guided mode [19], aligning with a band below the light
line in the band diagram. Conversely, if kB < k, the
Bloch wave couples with a finite number of diffracted
channels, also known as open channels. These open chan-
nels collectively form what is referred to as a continuum
due to their continuous spectra. The interaction with
these open channels causes the bands above the light line
to exhibit behavior akin to leaky resonances, leading to
the concept of guided resonances [20].
Subsequent advancements introduced the term ‘bound

states’ for guided bands, suggesting that Bloch waves –
propagating without scattering – are truly ‘bound.’ How-
ever, the finite nature of one-dimensional (1D) or two-
dimensional (2D) photonic crystals inevitably leads to a
complex interplay between Bloch waves and scattering
waves in both theoretical and experimental realms [21].
These complexities are further compounded by recent
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works in guided resonances, giving rise to Bloch BICs
with a definition differing from the original matter
BICs [22–24].

Despite its inherent existence, the scattering aspects
in the interaction between light and 1D and 2D photonic
crystals have largely been neglected. Scattering effects
account for numerous fundamental phenomena, wherein
the often-overlooked differences between light waves and

matter waves play crucial roles [25].

B. Scattering waves: Partial multipole and plane
waves as open channels

The scattering field can be expanded using multipole
and plane-wave representations as [26, 27]

E(r) =

Lmax∑
l=1

l∑
m=−l

[αlmNlm(kr) + βlmMlm(kr)] =
ik

2π

∫ 2π

0

dβ

∫
C±

dα sinαÊ(ŝ)eik·r, (5)

H(r) =

Lmax∑
l=1

l∑
m=−l

[βlmNlm(kr)− αlmMlm(kr)] =
ik

2π

∫ 2π

0

dβ

∫
C±

dα sinαĤ(ŝ)eik·r. (6)

Here, Nlm and Mlm represent electric and magnetic
multipole fields behaving as outgoing waves at infinity,
while αlm and βlm denote multipole expansion coeffi-
cients (MECs) specific to the interaction configuration.

The spectral amplitude vectors Ê(ŝ) and Ĥ(ŝ) relate to
the MECs, where ŝ(α, β) = k/k is a unit vector with the
polar angle α containing both real and complex values
along the integration contours C±. For convenience, we
will use H = B/µ0 to refer to the magnetic field.
The complex values of α correspond to evanescent

plane waves that decay exponentially in specific di-
rections. Traditionally termed closed channels, these
evanescent waves stand in contrast to their propagat-
ing counterparts, corresponding to the real values of α,
known as open channels [16]. In the context of the plane-
wave expansion, emitters depicted in Fig. 1 interact with
both propagating and evanescent wave components. De-
spite far-field analysis typically overlooking evanescent
waves, these emitters interact with both types, necessi-
tating energy dissipation into the far-field region to main-
tain system equilibrium.

The stored energy within evanescent waves doesn’t
represent a true BIC; upon deactivating the excitation
source, the associated polarization energy gradually leaks
into the far-field region. Notably, individual plane waves,
extending infinitely and implying infinite energy, aren’t
physically realizable. Conversely, partial multipole fields
offer a more comprehensible representation as physical
waves.

Due to the positive energy of light waves, each mul-
tipole mode always corresponds to a resonance, poten-
tially possessing a substantial yet always finite qual-
ity factor (Q factor). These modes, operating within
a 3D space, intricately engage with numerous degrees
of freedom. Consequently, they produce far-field pat-
terns characterized by varying intensities across differ-
ent directions–displaying maximum and minimum inten-
sities as dictated by their mode numbers. Crucially, all

multipole modes remain open channels, perpetually in-
teracting with their 3D environment. This absence of
closed channels in their expansion aligns with the pos-
itive energy nature of light waves. These properties of
multipole modes serve as fundamental components for
dissecting the underlying physics governing phenomena
such as symmetry-protected and accidental BICs.

The importance of the far-field can be seen through
the calculation of the system’s time-averaged radiated
power, derived from the multipole expansion detailed in
Eqs. (5) and (6):

P =
c

8π

Lmax∑
l=1

l∑
m=−l

l(l + 1)
[
|αlm|2 + |βlm|2

]
. (7)

An alternative approach to Eq. (3) involves computing
the Purcell factor as FP = P/P0, where P0 denotes the
radiating power in the corresponding homogeneous envi-
ronment. Equation (7) ensures the coexistence of both
near and far fields.

Further insight into the energy carried by individ-
ual plane waves can be captured by Eq. (7). For ex-
ample, considering a plane wave traveling in the z di-
rection with circular polarization and an electric field
E = (x̂+ iŷ)E0e

ikz, the associated MECs are

αl;1 = iβl;1 =
E0

k
il+1

√
π(2l + 1)

l(l + 1)
. (8)

Using Eqs. (7) and (8), the power carried by such a
plane wave can be estimated as an infinite sum: P =
(cE2

0)/(8k
2)

∑∞
l=1(2l + 1) → ∞. This signifies the un-

physical nature of a plane wave carrying infinite power in
practical terms. Thus, multipole modes, acting as open
channels, offer a more insightful framework for describing
light phenomena in metastructures.
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III. COLLECTIVE ANTIBONDING AND
BONDING PHOTONIC MODES

The theory of multiple Mie scattering allows us to ex-
press the field scattered by the u-th sphere positioned at
ru in terms of a series of magnetic multipole fields Mlm

Eu(ru) =

Lu∑
l=1

q
(u)
l;0 Ml;0(k[r− ru]), (9)

where the required truncation order Lu depends on the
vacuum wavenumber k and the spheres’ radius; here
Lu = 10 is sufficient to obtain good agreement with a
direct numerical solution of Maxwell’s equations (Lumer-
ical FDTD). Due to the axial symmetry, the mz source
excites only the magnetic multipole modes with m = 0.
The internal field of the u-th sphere can be calculated

in the MST in which we can relate its MECs η
(u)
l;0 to the

MECs q
(u)
l;0 in Eq. (9) via η

(u)
l;0 = q

(u)
l;0 d

(u)
l /b

(u)
l , where b

(u)
l

and d
(u)
l are the Mie coefficients. Applying the MST re-

sults in the following equation taking into account all the
short-range, long-range, and scattering couplings

q
(n)
l′;0 = b

(n)
l′

A1;0
l′;0(

−−→
OOn)mz +

∑
u̸=n

Lu∑
l=1

Al;0
l′;0(

−−−→
OuOn)q

(u)
l;0

 ,

(10)

where Al;0
l′;0(

−−−→
OuOn) translates the magnetic multipole

field of Ml;0 from the u-th sphere into the incident field
approaching the n-th sphere [28]. Equation (10) allows
us to compute all the MECs for studying the near- and
far-field distributions as well as the Purcell factor.

A. Intrinsic magnetic quadrupole and octupole
modes in photonic meta-atoms

Figure 2 illustrates the spectral multipolar analyses de-
tailing the interaction between a magnetic dipole and a
single sphere. In Fig. 2(b), the resonant wavelengths
of the intrinsic magnetic quadrupole (MQ) and octupole
(MO) are presented, with corresponding Q factors of 50
and 200, respectively. Generally, higher-order multipole
modes exhibit higher Q factors, as observed here, owing
to the dominance of whispering-gallery modes in the light
confinement physics of a single sphere. These modes rely
on the effect of partial internal reflection, which progres-
sively approaches total internal reflection for higher-order
multipole modes. In some cases, Q factors in the bil-
lions have been experimentally observed for sufficiently
high orders. However, whispering-gallery cavities, de-
spite their high Q factors, are often bulky and lack the
nanoscale light manipulation capabilities characteristic
of metastructures, which present distinct advantages in
manipulating light properties at the nanoscale.
The spectral distribution of FP in Fig. 2(c) reveals

peak wavelengths consistent with those of the internal

FIG. 2. (a) Interaction schematic of a magnetic dipole ori-
ented along the z-axis interacting with a single sphere. (b)
Spectral profiles of the internal Mie coefficients: d2 (MQ) and
d3 (MO). (c) Purcell factor associated with the interaction
schematic. The MST result based on Eq. (7) closely matches
the FDTD simulation using Eq. (3). (d)-(e) Near- and far-
field patterns correspond to the excitation of the magnetic
quadrupole and octupole modes.

Mie coefficients, underscoring that Purcell enhancements
are primarily driven by the intrinsic modes. To vali-
date the accuracy of FP calculations, we conducted nu-
merical simulations using a finite-difference time-domain
(FDTD) commercial software (Lumerical FDTD).
The dominance of intrinsic modes in the interaction

is further elucidated by the near- and far-field patterns
shown in Figs. 2(d) and 2(e), corresponding to the MQ
and MO modes, respectively. Notably, in the far-field
distributions, the MQ mode exhibits a distinctive behav-
ior characterized by destructive interference in the trans-
verse xy plane. This interference aligns with the anti-
symmetric nature of the near-field Hz component of the
MQ mode, as depicted in Fig. 2(d).
This observation concerning the interplay between

near and far fields has often been foundational in arguing
for the existence of symmetry-protected BICs. However,
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this argument encounters limitations when considering
the symmetric nature of its electric Ex component. Sim-
ilarly, the constructive interference of the MO mode in
the transverse xy plane cannot be solely explained by the
symmetry of the Hz component in Fig. 2(e).

A further significant observation drawn from the far-
field distributions in Figs. 2(d) and 2(e) is the absence of
radiation in the z direction, which can be attributed to
the vectorial characteristics of the longitudinal mz dipole
and its associated excited multipole modes. Understand-
ing this vectorial nature of the electromagnetic field is
crucial for our later discussion on at-Γ BICs.

B. Antibonding and bonding magnetic quadrupole
modes in diatomic metamolecules

FIG. 3. (a) Interaction schematic of a z-oriented magnetic
dipole with a diatomic photonic molecule. (b) The spectral
profile of the Purcell factor illustrates the splitting of the MQ
mode into antibonding (MQ-A) and bonding (MQ-B) modes.
(c)-(d) Near- and far-field distributions of the collective MQ-
A and MQ-B modes, respectively.

Figure 3 illustrates the splitting of the intrinsic MQ
mode into antibonding (MQ-A) and bonding (MQ-B)
modes upon optical coupling of the two meta-atoms, as
shown schematically in Fig. 3(a). The FP plot in Fig.
3(b) reveals the typical blue and red shifts of the an-
tibonding and bonding modes, akin to observations in
molecular physics.
The near- and far-field distributions of the MQ-A and

MQ-B modes are depicted in Figs. 3(c) and 3(d), re-
spectively. Notably, the near-field Hz distribution of
the antibonding mode displays an anti-symmetric nature,
contrasting with its bonding counterpart. The bonding
nature of the MQ-B mode is evident with a magnetic
hotspot at the gap between the two meta-atoms, enhanc-
ing the emission rate of magnetic emitters.
Another significant feature is the differing interference

characteristics of the two modes when observing the far-
field patterns in the xy plane. Despite the similar Hz

symmetry in the meta-atoms for both modes, the trans-
verse far fields exhibit destructive and constructive in-
terference for the MQ-A and MQ-B modes, respectively.
This observation underscores the necessity of considering
collective behaviors to understand the far-field patterns.
In essence, examining near-field distributions in individ-
ual units alone proves insufficient for explaining the far-
field characteristics of the interaction between light emit-
ters and metastructures.

IV. COLLECTIVE NATURE OF BOUND
STATES IN THE CONTINUUM

This section investigates the physics governing high-
Q resonances within the frameworks of Bloch waves in
photonic crystals and scattering waves in metastructures,
particularly focusing on elucidating the physical mecha-
nisms behind BICs, which conventionally associated with
photonic crystals formed by an infinite periodic arrange-
ment of spheres.
Despite significant advances in both applications and

fundamental studies of BICs, their unified physical mech-
anism remains an open question [8, 29]. Here, we explore
the two most common mechanisms underlying the exis-
tence of BICs: symmetry mismatch and the destructive
interference of multipolar modes. Throughout our dis-
cussion, we illustrate how collective resonances emerging
from strong multiple scattering provide a unified under-
standing of these high-Q and infinite-Q resonances.

A. At-Γ bound states in the continuum and the
divergence of collective resonances

Traditionally, at-Γ BICs have been attributed to the
symmetry properties of their corresponding eigenmodes,
hence also termed symmetry-protected BICs. In Fig. 4,
we present an alternative perspective on the origin of at-Γ
BICs, focusing on collective resonances. Figures 4(a) and
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FIG. 4. Comparison of results obtained from metastructure (a-d) and photonic crystal (e-h) analyses. (a) Schematic illustrating
the interaction between a magnetic dipole and a metastructure composed of N spheres, within a 3D environment supporting
an infinite number of degrees of freedom represented by the wave vector k̂∞. (b) Spectral profiles displaying MQ and MO
expansion coefficients for a 20-sphere chain, revealing two photonic bands signify the existence of two Bloch MQ and MO waves,
respectively. (c) Analysis of the Q factors of MQ and MO bandedge modes, showcasing their divergence and convergence with
increasing numbers of spheres. (d) Investigation into the scattering multipole coefficients representing the internal field localized
at the middle sphere of the finite extent chain. (e) Schematic depicting the interaction between a magnetic dipole and a Bloch

wave within the photonic crystal framework, featuring a single continuum diffraction channel denoted by the wave vector k̂B0

for our subwavelength period chain. (f) Band diagram confirming the existence of the two photonic crystal bands, with the
MQ band spanning across the light line and the MO band positioned entirely above it. (g) Analysis of the Q factors associated
with the two modes above the light line, indicating the existence of a bound state in the continuum corresponding to the MQ-A
mode at the Γ point. Inset highlights the divergence and convergence near the Γ point (kB = 0). (h) Investigation into the
Purcell factors, revealing characteristics corresponding to the Q factor analysis presented in (g).

4(e) depict schematics representing the two alternative
views of BICs based on scattering and Bloch waves, re-
spectively. The fundamental distinction lies in the num-
ber of radiative channels: scattering waves couple with
an infinite number of plane-wave channels, whereas pho-
tonic crystals, characterized by subwavelength periods,
typically feature only a single diffraction channel serving
as the continuum channel for Bloch waves.

Figure 4(b) illustrates the emergence of two distinct
bands from the MQ and MO modes as we transition
from 2 spheres (depicted in Fig. 3) to 20, forming a
1D linear chain. These collective bands suggest the exis-
tence of photonic crystal bands, a hypothesis confirmed
by Bloch band simulations in Fig. 4(f). Remarkably,
the wavelengths at the band edges in Fig. 4(f) closely
match predictions from MST calculations in Fig. 4(b).
Notably, the MST reveals collective resonances spread
across the entire widths of the Bloch bands, both be-
low and above the light line. This finding underscores
the limited impact of the light line on cavity design us-
ing photonic metastructures. While collective resonances
below the light line exhibit significantly higher strengths
compared to those above it, their shared origin in res-
onant multiple scattering provides a unified perspective

on guided resonances and Bloch bound modes.

Although the Q factors of the MQ-A and MQ-B modes
for the two spheres exhibit similarity, as depicted in Fig.
3(b) and presented in Fig. 4(c), their behaviors diverge
distinctly as the number of spheres increases. Specifi-
cally, the Q factor of the bonding MQ mode shows a no-
tably faster increase compared to its antibonding coun-
terpart. This divergence generally follows a power law
scaling represented as Q(N) ≈ Q0N

α, where N is the
number of spheres. Here, we estimate α ≈ 3 for the MQ-
B modes, α ≈ 2 for the MQ-A mode, and α ≈ 0 for the
MO mode.

The MQ-B mode, existing below the light line, is con-
ventionally labeled as a guided mode binding to the 1D
photonic crystal without extending transversely into the
far-field region. However, within the MST framework
of metacrystals, the MQ-B mode coexists with the far
field via scattering effects. While modes below the light
line often exhibit higher Q factors, recent attention has
shifted towards guided resonances above the light line,
promising infinite-Q factors for enhancing light-matter
interactions. Figure 4(g) illustrates the typical Q factor
characteristics of two guided resonances corresponding to
the MQ-A and MO bands. As the Bloch wavenumber ap-
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proaches the Γ point (kB = 0), the Q factor of the MQ-A
guided resonance diverges, commonly attributed to the
antisymmetric Hz magnetic field component character-
istic of the MQ mode, as depicted in Fig. 2(d). Con-
versely, the finite Q factor of the MO band arises from
the symmetric Hz characteristic of the MO mode, shown
in Fig. 2(e) [30]. However, challenges emerge when con-
sidering the symmetry properties of both the electric and
magnetic components of these modes, as discussed ear-
lier. The finite Q factor of the Bloch MO mode agrees
with the converging Q factor obtained from the MST, as
shown in Fig. 4(c). This consistency between the MST
and photonic crystal is intriguing, especially considering
their distinct boundary conditions. However, it is also
expected, as both arise from the Maxwell equations.

The behavior of the MQ-A mode diverging and the
MO mode converging as the number of spheres in-
creases can be mathematically likened to the divergence
of the series

∑∞
n=1 n and the convergence of the series∑∞

n=1(1/(n(n+1))). In this analogy, the MQ mode, with
its stronger long-range interactions, exhibits a strong (di-
vergent) collective resonance, while the Q factor of the
MO mode remains finite.

Further insights into the impact of the long-range inter-
actions on the resonant MECs are elucidated in Fig. 4(d),
illustrating the divergence and convergence of the MECs
representing the resonant field inside the middle sphere.
Due to the positive energy of light, adding more spheres
to the chain introduces both channels that enhance res-
onances and radiative channels that weaken them. For
both the MQ-A and MQ-B modes, the enhancement ef-
fect outweighs the dissipative effect, resulting in the di-
vergence of the MQ coefficients. Conversely, for the MO
mode, the opposite occurs, leading to the convergence
of the MO coefficient. These patterns of divergence and
convergence in the resonant strengths elucidate the corre-
sponding diverging and converging characteristics of the
Purcell factors shown in Fig. 4(h), where we examine the
interaction between the magnetic dipole and the Bloch
MQ-A and MO modes.

Interestingly, arrays of single high-Q Mie resonators
(MOs) do not inherently yield higher collective resonance
Q factors compared to arrays of low-Q Mie modes (MQs)
with a sufficiently high number of resonators, as exem-
plified in Fig. 4(c). This peculiarity arises from the in-
tricate interplay between the behavior of individual res-
onators and their collective response. Individual high-Q
modes retain light for longer periods but also introduce
heightened radiative loss channels, limiting their collec-
tive resonances from reaching the strong multiple scatter-
ing regime necessary for divergence. In fact, higher-order
Mie modes behave akin to whispering-gallery modes, and
coupling these high-Q modes generally results in collec-
tive Q factors lower than those of their isolated counter-
parts [28]. This finding serves as a valuable guideline for
designing coupled cavity arrays for applications such as
quantum simulators and networks [31–33].

Another prominent wave mechanism proposed to ex-

plain origins of Bloch BICs is based on the destructive
interference of multipole fields in specific directions [34].
This explanation of origins of symmetry-protected (S-
BIC) and accidental (A-BIC) BICs, as labeled in Fig. 5,
is rooted in coupled mode theory. However, it’s essential
to note a common misconception originating from this

theory, where the Bloch diffraction channel with the
−→
k B0

wavevector is often confused with the radiation trans-
verse

−→
k 0 direction, as depicted in Fig. 4. Additionally,

at-Γ BICs are sometimes incorrectly labeled as a nonra-

diative mode, implying that the amplitude of the
−→
k B0

diffraction wave is zero. Contrary to this misconception,
our observations in Fig. 4 reveal that the amplitude of

the
−→
k B0 diffraction wave is not zero due to the direc-

tion of the excitation magnetic dipole and its associated
multipole modes supported by the unit cell.

The Q factor divergence at the Γ point is primarily a
result of enforcing the Bloch boundary conditions along
the z direction, which represents the long-range couplings
in the infinite photonic crystal. In our FDTD simula-
tions, this enforcement injects energy into the unit cell

while allowing energy to escape along the transverse
−→
k B0

direction, indicating that its amplitude is not necessar-
ily zero. At the Γ point, the injected energy balances
with the diffracted energy, resulting in the corresponding
Bloch eigenmode having a real eigenvalue, often referred

to as a BIC [7]. This non-vanishing
−→
k B0 mode with a

real eigenvalue (infinite Q factor) aligns well with the
collective resonance picture presented above.

Nevertheless, multipolar interference and coupling sig-
nificantly influence the light properties in metastructures,
giving rise to far-field patterns with intriguing topologi-
cal characteristics. We delve deeper into these multipo-
lar wave phenomena by examining the near- and far-field
distributions of the MQ-A and MQ-B modes supported
by the 20-sphere chain in Fig. 5. Notably, despite ear-
lier concerns regarding symmetry arguments, they offer
valuable insights into the appearance of dark and bright
fringes on the transverse xy plane in Figs. 5(c) and 5(d).
The antisymmetry of the antibonding mode (Fig. 5(a))
corresponds to the dark fringe in Fig. 5(c), while the
symmetry of the bonding mode (Fig. 5(b)) accounts for
the 0th scattering order in Fig. 5(d). However, both
antibonding and bonding modes exhibit similar far-field
patterns, with dark fringes positioned between bright
fringes representing scattering orders. Each dark fringe
results from the destructive interference of excited mul-
tipole modes within the chain. In fact, these dark fringes
are ubiquitous, even appearing in the single-sphere case
(Fig. 2), concluding that these directions of minimal ra-
diation intensities should not be considered as represen-
tations of Bloch BICs.

The analysis of the topological properties of BICs typ-
ically involves a far-field perspective, where the polar an-
gle θ is commonly associated with the light’s momentum
[9, 23]. To deepen our understanding of far-field charac-
teristics, we present the far-field intensity as a function
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FIG. 5. Examining multipolar interference as the origin of symmetry-protected (S-BICs) and accidental (A-BICs) bound
states in the continuum. Near-field Hz distributions of the antibonding MQ-A and bonding MQ-B modes are depicted in
(a) and (b), respectively, for the 20-sphere chain. The same set of multipoles is utilized for both modes, but the amplitude
and phase differences of these multipoles result in distinct far-field interference patterns shown in (c) and (d) for the MQ-A
and MQ-B modes, respectively. Panel (e) presents the far-field intensity of the antibonding mode as a function of radiation
wavelength and polar angle. It’s noteworthy that the wavelength and radiation angle θ of the minimum intensity differ from
those associated with the at-Γ BIC presented in Fig. 4, which corresponds to 976 nm and 90◦, respectively.

of both the excitation wavelength and polar angle θ in
Fig. 5(e), focusing specifically on the antibonding MQ-
A mode. It’s important to note the distinction between
the far-field plots in Figs. 5(c) and 5(e): the former rep-
resents a single wavelength across the entire polar angle
range of θ (0, π) and the half azimuthal angle range ϕ
(0, π), while the latter captures ranges of the excitation
wavelength and polar angle. Due to the axial symmetry
of our system, the far-field distributions are azimuthally
invariant. The 1st and 2nd scattering orders from Fig.
5(c) are marked in Fig. 5(e) for better visualization. As
explained earlier, the intensity at θ = 90◦, corresponding
to the marked S-BIC in Fig. 5(c), is not at a minimum.
Instead, multiple minimal far-field points occur at vari-
ous θ angles and wavelengths, some of which correspond
to off-Γ points in Fig. 4(f), indicating guided resonances
with finite Q factors. Consequently, the origins of BICs
relying on the destructive far-field interference of multi-
pole modes are not universally conclusive.

The Q factor divergences illustrated in Fig. 4 pertain
to chains of lossless silicon spheres. Recent research has
shown a growing interest in exploring the fundamental
limits of Q factors attributed to material absorption loss
[35]. Typically, the Q factor is sensitive to both radia-
tive (Qr) and absorptive (Qabs) factors, related by the
equation 1/Q = 1/Qr + 1/Qabs. For a material charac-
terized by permittivity ϵ′ + iϵ′′, the absorptive Q factor
is represented as Qabs = ϵ′/ϵ′′.

In Fig. 6, we analyze the Q factor characteristics
of MQ-A and MQ-B modes for a lossy silicon material
with a refractive index of 3.5 + i10−4, corresponding to

FIG. 6. Impact of material absorption loss on collective res-
onances and Bloch modes. (a) Both bonding and antibonding
MQ modes exhibit Q factors converging to values limited by
absorption loss. (b) The convergence of Q factors for the two
bandedge modes corroborates findings from multiple scatter-
ing theory in (a).

Qabs = 1.75 × 104. In contrast to the rapid divergence
of Q factors for MQ-A and MQ-B modes in the absence
of absorption loss, Fig. 6(a) reveals their convergence to
approximately the Qabs value in the presence of absorp-
tion loss, highlighting the severity of this limitation. The
observation that saturated Q factors exceed Qabs can be
attributed to the interplay between long-range couplings
in the chains and absorption loss. Additionally, these
saturated Q factors are influenced by the fraction of elec-
tromagnetic energy stored inside the spheres [36].
Furthermore, Fig. 6(b) uncovers an intriguing finding:

the maximum Q factor of Bloch modes surpasses Qabs by
an order of magnitude and differs from the bandedge MQ-
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B mode predicted by the MST. Instead, it corresponds
to the Bloch mode near the light line. This discrepancy
arises from the tighter confinement of the Bloch bandedge
mode to the spheres, resulting in increased absorption
loss. However, it’s crucial to note that for finite chains,
the Q factor of the bandedge MQ-B mode consistently
remains the maximum, emphasizing the importance of
accounting for practical finite sizes in light-matter inter-
action systems.

B. Off-Γ bound states in the continuum

This subsection presents the collective resonance origin
of off-Γ BICs. Traditionally, the existence of these off-Γ
BICs is challenging to predict, hence termed as accidental
BICs [30]. As demonstrated in the preceding subsection,
the at-Γ BIC arises from divergence of sum of the reso-
nant scattering multipole fields, while the convergence of
the Q factor of the MO mode in the 1D photonic crys-
tal is a result of radiative loss overwhelming the resonant
enhancement due to the long-range coupling effect. An
effective strategy to mitigate this radiative loss is to aug-
ment the structure by adding more spheres to form a 2D
array or a metasurface, as illustrated in Fig. 7. Trans-
forming the 1D chain into the 2D metastructure allows
for the scattering of light escaping in the y direction back
towards the central region, thereby enhancing the light
trapping efficiency.

Resonant metasurfaces typically accommodate numer-
ous supermodes [37–39], as represented by MO1,2,3 in
Figs. 7(a)-(c). The near-field Hz distributions of the two
MO1 and MO2 supermodes clearly show their collective
characteristics. Remarkably, we observe that the domi-
nant MO1 supermode differs from the bandedge nature
observed in its 1D chain counterpart (Fig. 4). This ob-
servation suggests that the maximal Q factor of the cor-
responding guided resonance occurs not at the Γ point
but at an off-Γ point. The far-field distribution of the
MO1 supermode shown in Fig. 7(d) has several null-field
directions, a common feature of collective resonances.

Figure 7(e) presents the divergence of the Q factor
of the MO1 supermode with an increasing number of
spheres forming square metastructures. This Q factor
divergence suggests that we could observe BICs with the
corresponding 2D photonic crystals, considering the di-
vergence of Q factors of collective resonances as a mech-
anism for detecting BICs. This hypothesis finds support
in simulations of the photonic crystal band and its as-
sociated Q factor as depicted in Fig. 7(f). Our findings
shed light on an intriguing aspect: while the Q factors of
BICs theoretically tend to infinity, experimental results
commonly cap at levels less than one million [9]. As il-
lustrated in Fig. 7(e), even when scaling the structure to
a 100×100 resonator array, the Q factor approaches only
around 1 million. Notably, a 2D supermode supported by
a 16×16 array of MOs was employed to realize a BIC laser
with a Q factor in the range of several thousands [16],

consistent with our Q factor simulation presented in Fig.
7(e). By comparing these results with those obtained for
the case of 1D arrays, as shown in Fig. 4(c), the utiliza-
tion of 2D arrays of MQs may significantly enhance the
efficiency of MO-based surface-emitting lasers.

Conceptually, the off-Γ BICs depicted in Fig. 7(f) have
often been characterized as Friedrich–Wintgen BICs, at-
tributed to their origin from coupled resonances [16].
However, the existence of Friedrich–Wintgen BICs neces-
sitates a critical condition: the number of closed chan-
nels must exceed the continuum channels [7]. As pre-
viously discussed, this condition is not strictly met by
light waves. A more apt term to describe the off-Γ BICs
might be Feshbach-type BICs, drawing on the work of
Feshbach, who provided a unified theory of coupled reso-
nances interacting with various open channels [40]. Fesh-
bach’s theory shares similarities with our MST approach
and is therefore better suited to explain the existence of
the off-Γ BICs.

Past efforts to explore the impact of finite size ef-
fects on off-Γ BICs relied on the tight-binding model for
Bloch waves, attributing scattering loss primarily to the
edges of finite structures [36, 41]. However, our MST
offers a contrasting perspective, revealing that scatter-
ing loss predominantly originates from the central regions
for both at-Γ and off-Γ BICs [42]. These differing per-
spectives stem from the analogous yet distinct behaviors
between matter and light waves. The concept of Bloch
waves, rooted in matter waves traversing crystal lattices
without scattering, hinges on two fundamental proper-
ties. Firstly, matter waves, with potential negative en-
ergies, limit interactions with the 3D environment, al-
lowing the matter waves and their potential structures
to be considered closed systems. Secondly, these matter
waves, when interacting with their local lattice poten-
tials, do not encounter a retardation effect due to their
probabilistic nature [25].

Conversely, light waves possess positive energies, thus
the internal fields within the unit cells of metacrystals–
or metastructures in general–maintain coupling with the
3D environment even when we extend their structure to
infinity. Moreover, in scenarios of resonant multiple scat-
tering, light waves experience retardation effects, a cru-
cial consideration. Unlike matter waves, the localization
of light in resonant metacrystals does not rely on struc-
tural disorders, which are required for localizing matter
waves through the Anderson effect. Essentially, the cen-
tral localization of light within the resonant metasurface,
as depicted in Fig. 7(a), and its associated van Hove
singularity at the off-Γ points stem from the distinctive
retardation effects inherent to light waves. Our findings
elucidate these distinct attributes of photonic BICs, offer-
ing clarity on their physical origin and promising avenues
for advancements in ‘Mie-tronics’ studies.
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FIG. 7. Off-Γ bound states in the continuum from the collective MO resonances in square arrays of spheres. (a)-(b) Near-field
Hz distributions corresponding to the MO1 and MO2 modes marked in (c), where we show the Purcell factor associated with
the magnetic dipole placed at the strongest field in (a). (d) Far-field distribution of the MO1 mode. (e) Divergence of the Q
factor of the MO1 mode with an increasing number of spheres, representing the size in one dimension of the square array. (f)
Band structure and divergence of the Q factor at off-Γ points indicate the existence of accidental bound states in the continuum.

V. DISCUSSION AND CONCLUSION

Near-field and far-field excitation of collective
resonances. We presented a comprehensive picture
of high-Q resonances, spanning from whispering-gallery
modes to collective resonances in photonic metastruc-
tures. Our focus was on resonant multiple scattering and
the multipole expansion of the electromagnetic field, with
the primary goal of optimizing light-matter interactions.
While our investigation centered on the near-field exci-
tation of high-Q resonances, our methodology also offers
insights into far-field excitation schemes by treating the
3D environment as a practical continuum. The coupling
between high-Q metastructures and incident free-space
beams is by no means trivial. Exciting high-Q reso-
nances from the far field proves challenging due to the
complexity of the intrinsic multipolar content of these
collective modes. Simple laser beams may prove inade-
quate as their intrinsic modes might not align suitably.
Efficient excitation requires the use of structured light
beams with appropriate multipole content [43, 44]. Thus,
our proposed Mie-tronics approach not only aids in de-
veloping effective design strategies of high-Q resonances
but also provides an alternative to excitation methods
based on Bloch waves and group theory [37].

Scaling law of collective resonances. Our findings

offer valuable insights into the fundamental quantitative
limits of Q and Purcell factors within resonant metastruc-
tures. In these resonant systems of size N , their Q and
Purcell factors follow a power law scaling Q(N) ≈ Nα.
The primary objective when optimizing systems of fixed
size N is to maximize the α factor [36]. This scaling
parameter is influenced by various system attributes, in-
cluding its refractive index, unit cell geometry, and no-
tably, the dominant Mie modes contributing to collective
resonances. We find that generally collective bonding
modes exhibit a scaling factor of α = 3, at least one
polynomial degree higher than its antibonding counter-
part. To further augment this scaling factor, the most
promising strategy involves finely tuning the geometrical
parameters to merge collective resonances and achieve
the so-called merging BICs or flatband resonances, as
exemplified by a scaling factor of α = 6 in our recent
study [42].

Interestingly, the scaling law and fine-tuning effects are
also observable in collective responses of field-mediated
atoms, each supporting a two-level dipolar transition
state [45, 46]. The similarity in behavior between atomic
and photonic systems arises from the analogy between a
resonant mode and a two-level atomic system, as well as
the significant role of multiple light scattering in both
scenarios [25, 47]. It is noteworthy that while dipole
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interactions are vital, our photonic systems encompass
more general interactions, including higher-order multi-
pole modes, for a comprehensive understanding of collec-
tive responses.

Similarities and differences between photonic
and matter BICs. Conceptually, our results provide
a clear picture of photonic and matter BICs, highlight-
ing both their similarities and differences. The original
BIC concept revolves around electron localization in po-
tentials extending infinitely, which supports the BIC as
an infinitely narrow resonance [48]. Any introduction
of finiteness to such potentials transforms the electronic
BIC into a finite-Q resonance [49]. This original BIC
is characterized by the divergence of the sum of partial
scattering waves [50]. Our understanding of BICs shares
two key similarities: our resonant structures also demand
infinite extension to induce the divergence of partial mul-
tipole waves, and introducing 3D finiteness causes the
transition of infinitely narrow resonances into finite-Q
resonances.

However, a difference exists between our photonic BICs
and the original matter wave BIC. While our photonic
BICs maintain coupling to the 3D environment, the orig-
inal matter wave BIC primarily focused on 1D matter
waves. It employed layered potential structures that
neglect coupling to additional dimensions, consequently
considering a single continuum channel only. The cru-
cial distinction for our photonic BICs, existing despite
their coupling to the far-field region, lies in the impact
of retardation effects from Mie resonances. These effects
temporarily confine light waves within resonators, facil-
itating strong multiple back-scattering and resulting in
the divergence of partial multipole waves at the center of
photonic structures. This divergence means that achiev-
ing high-Q resonances involves maximizing the scattering
multipole coefficients, leading to the appearance of nu-
merous radiation fringes in the far field. Interestingly, the
oscillating far-field characteristic of our photonic BICs is
also a feature of compact matter BICs, also known as
Friedrich–Wintgen BICs [51, 52]. However, the existence
of these compact matter BICs hinges on closed chan-
nels associated with negative-energy states—an aspect
not applicable to light waves, which inherently possess
positive energies. Consequently, all light modes operate
as open channels, precluding the feasibility of compact
photonic BICs.

Collective nature as a unified picture of pho-
tonic BICs. The origin of photonic BICs traces back to
the analogy drawn between resonances and closed chan-
nels, alongside the association between diffraction orders
and open channels [53]. Subsequently, photonic BICs
has garnered significant interest from the photonic crystal
community due to both the familiarity with Bloch waves
and their potential applications across diverse fields. BIC
research has often focused on bands above the light line

in the band diagram [7, 9, 22, 23], associating BICs
with isolated Bloch wavenumbers (kB) and infinite Q
factors, suggesting their decoupling from the far-field re-
gion [29, 54].

However, our findings challenge this understanding, re-
vealing a paradigm shift: BICs correspond to the diver-
gence of collective resonances coupling to the far-field
region, even for infinitely extended metastructures. Con-
sequently, the widely held belief that BICs collapse in
the presence of fabrication defects and structural disor-
ders should be reconsidered [55]. The collective nature of
BIC resonances makes them robust to fabrication defects
and structural disorders. Constituent resonators adapt
in phase to structural variations to maintain their collec-
tive responses. Moderate structural variations may shift
BIC resonances in spectral space, affecting their strength
but not destroying them. Our identification of the col-
lective nature of BICs explains their robust existence,
an alternative to their commonly associated topological
nature [9, 23]. It’s worth mentioning that multipoles in-
herently possess topological properties, providing an ex-
planation for the topological nature of BICs. This reeval-
uation of the origin of infinite Q factors fundamentally
reshapes our understanding of BICs, revealing the intri-
cate interplay between resonances, scattering, and the
far-field region.

In conclusion, the allure of high-Q resonances lies in
their potential to facilitate a robust interaction between
light and matter. Our research underscores the signif-
icant promise of bonding resonances as a pathway to
achieving substantial enhancements in interaction effi-
ciency. The plethora of collective resonances may em-
power photonic metastructures with the capacity to im-
prove interaction efficiencies across a wide spectral range,
encompassing linear to nonlinear optics, from THz to vis-
ible light, and beyond. This study highlights the tremen-
dous potential of Mie-tronics in applications reliant on
high-Q resonances, thereby advancing our comprehension
of the BIC phenomena, and their prospective impact on
photonics.
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