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ABSTRACT

Session-based recommendation (SBR) aims to predict the following
item a user will interact with during an ongoing session. Most ex-
isting SBR models focus on designing sophisticated neural-based
encoders to learn a session representation, capturing the relation-
ship among session items. However, they tend to focus on the last
item, neglecting diverse user intents that may exist within a session.
This limitation leads to significant performance drops, especially for
longer sessions. To address this issue, we propose a novel SBR model,
called Multi-intent-aware Session-based Recommendation Model (Mi-
aSRec). It adopts frequency embedding vectors indicating the item
frequency in session to enhance the information about repeated
items. MiaSRec represents various user intents by deriving multiple
session representations centered on each item and dynamically
selecting the important ones. Extensive experimental results show
that MiaSRec outperforms existing state-of-the-art SBR models on
six datasets, particularly those with longer average session length,
achieving up to 6.27% and 24.56% gains for MRR@20 and Recall@20.
Our code is available at https://github.com/jin530/MiaSRec.
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1 INTRODUCTION

Session-based recommendation (SBR) [16, 30] aims to learn hidden
user preferences in a session and provide personalized items for
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Figure 1: A session example with multiple user intents, such
as travel, fashion, sun protection, and photo. Dotted rectan-
gles represent items related to each user intent, and solid
rectangles represent recommendations for each user intent.
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each user. A session refers to a sequence of user-item interactions
over time, e.g., consecutive clicks on multiple products during a
transaction. It is particularly effective for anonymous or first-time
users in web applications like e-commerce and streaming services,
e.g., Amazon, YouTube, Netflix, and Spotify [1, 5, 6, 21]. SBR inher-
ently suffers from extreme data sparsity because it only deals with
user actions during an ongoing session, making it challenging to
capture dynamic and intricate item correlations.

Existing SBR models [11, 12, 17, 20, 25, 32, 33, 35] have primarily
focused on extracting a single representation from a session to cap-
ture and express user preferences. They mainly aimed to model a ses-
sion consisting of multiple items using various neural-based session
encoders, including recurrent neural networks (RNNs) [11, 12, 20],
graph neural networks (GNNs) [25, 32, 33], or Transformers [17, 35].
However, despite their advanced encoder designs, modeling only a
single representation cannot express multiple user intents.

Figure 1 illustrates the importance of using multiple user intents.
While the user may be interested in photo when focusing on the
last item “camera”, looking at the entire session suggests that the
user will click items about travel. Considering the other items in
the session, fashion or sun protection also align with different user
intents. In this scenario, it is more appropriate to recommend a
top-N item list with appropriate multiple intents, e.g., (“travel bag”,
“sneakers”, and “photo frame”). On the other hand, in some sessions,
not all items are important. For example, in Figure 1, “speaker” is
less relevant to the other items for capturing user intents.
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Figure 2: The model architecture of MiaSRec.

Recently, some SBR models, such as MSGIFSR [7] and Atten-
Mixer [36], have attempted to capture multiple user intents, fo-
cusing primarily on the last few consecutive items to represent
diverse user intents. However, they cannot accurately capture user
intent if the last item is less important or noisy. Besides, some stud-
ies [2, 28, 31, 37] have attempted to identify multiple user interests
over a long user-item history. They employ a fixed number of user
interests and extract the same number of interests for all users. It
may miss some interests or include unnecessary ones since the
number of user interests varies by user. We claim the challenges
for modeling multiple user intents in the session: (i) how to fully
capture multiple user intents inherent in each session and (i) how to
filter out unimportant ones among multiple intents.

To address these issues, we propose a novel SBR model, called
Multi-intent-aware Session-based Recommendation Model (MiaS-
Rec), as shown in Figure 2. First, MiaSRec encodes the session
items with position and frequency embeddings, reflecting sequen-
tial information and repeat patterns. It then employs a self-attention
mechanism and a high-way network to derive different user intents
in the session. Then, it adaptively extracts diverse user intents in the
session. Lastly, MiaSRec decodes multiple session representations
into item distributions and aggregates them using pooling functions.
Despite its simplicity, extensive experiments demonstrate that Mi-
aSRec outperforms existing SBR models on six benchmark datasets.
Notably, MiaSRec achieves significant gains for longer sessions
(> 10) with multiple user intents, up to 13.51% in Recall@20.

2 PROPOSED MODEL

2.1 Session-based Recommendation

Let V = {v1,...,0,} denote a set of n unique items, e.g., products
and songs. An arbitrary session s = (v, ...,0s,) represents a
sequence of |s| items that a user interacts with, e.g., clicks, views,
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and purchases. Here, t; indicates the index of the i-th item in the
session. Given a session, the goal of SBR is to predict the next item
vy, that the user is likely to consume. The SBR model takes a
session as an input and returns a top-N item list to recommend.

2.2 Model Architecture

In this section, we present a novel SBR model called MiaSRec, which
aims to address (i) how to represent multiple user intents in the
session and (ii) how to prune out unnecessary user intents.

2.2.1 Embedding Layer. We first embed each session item v;, into
item embedding vector v;, € R?, and generate the mean item
embedding v, = ﬁ Zlill Vvy;, capturing the global session infor-
mation. To better capture the importance of each item in a session,
we incorporate the absolute position embedding vector a; € R to
distinguish sequential order and the frequency embedding vector
S R to express the importance of repeated items in a session.
Here, f; denotes the frequency of the i-th item in a session. In Fig-
ure 2, given session s = (v1,v3,v2,03), the frequency is (1, 2, 1, 2).
Finally, the item, position, and frequency embedding vectors are
combined as the model input x;.

X; = Vi +a; +17, forie{1,...,|s|,m}. (1)

Note that we sort session items in reverse order as in [32], so the
last item vy, always corresponds to the first positional embedding
aj. And, we randomly initialize the learnable parameter of position
and frequency embeddings.

2.2.2  Multi-intent Representation. We employ the self-attention
mechanism [29] to capture the complex relationships among session
items. Using the bi-directional self-attention layer Self-attention(-),
we generate multiple contextualized representations of the session
information associated with each item as follows:

C1,. .., C|g]s €m = Self-attention([x1, . .., X|g|, Xm]))- (2)

To ensure that multiple contextualized representations do not
become similar and to better reflect different user intent, we lever-
age the high-way network [25] by emphasizing item embeddings.
Specifically, we combine contextualized representation c; and item
embedding v; to derive user intent representation o; € R? that
takes into account both the overall information of the session and
the information of each item.

0j=g0vi+(1-g)oc;forie{l,...,|s|,m},

3
where g = 0(Wg [vi;ei]T), ®)

where Wy € R4%2d j5 3 Jearnable weight matrix, g € R? is a gating

vector, and o(+) is the sigmoid function.

2.2.3 Intent Selection. We employ multiple session representations
to fully exploit the potential of each session item. However, not all
session items may be necessary, and some may be noisy. To extract
essential user intents in a session, we calculate the importance of
multiple representations and remove unimportant ones. We uti-
lize a sparse transformation a-entmax [26, 35], assigning a zero
probability to unimportant representations.

a-entmax(z) = argmaxp ' z + HOT[ (p), (4)
peA!
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where H (p) = rp—py (P — P§) if @ # 1, else H (p) =
—2jpjlogp; ! Depending on «, 1-entmax and 2-entmax are equiv-
alent to softmax and sparsemax [24], respectively. A larger o value
generates a more sparse probability distribution, and we set  as 1.5
empirically. We extract session representation h; € R? by masking
unnecessary user intents.

y = a-entmax(w - [01;. .. ;0|S|;om]T),

) 5)
{hy,....h} ={yioilyi > 0,i e {1,...,|s|,m}}, (

where w € RY is a learnable parameter and y € RISH1 is the im-
portance weight vector for each item. k is the number of non-zero
elements in y. Unlike the previous multiple representation mod-
els [2, 7, 36, 37] utilize a fixed number of representations regardless
of the session, MiaSRec dynamically selects multiple session repre-
sentations for a given session, up to the number of session items.

2.2.4  Multi-intent Aggregation. The multi-intent aggregation pro-
cess of MiaSRec is divided into two parts: (i) decoding item distri-
butions from multiple session representations and (ii) aggregating
the distributions for the final recommendation.

To decode each session representation into the item distribu-
tion, we employ cosine similarity with item embedding matrix, i.e.,
dot product with L2-normalization. For simplicity, we reuse the
item embedding look-up table V € R"*?, 5o the number of model
parameters does not increase.

Vi 9= [V, VT, (6)

where fli and V are the normalized session vector and the normal-
ized item embedding matrix, respectively. y; € R” represents an
item distribution decoded by the session vector h;.

To aggregate multiple item distributions, we adopt max-pooling
and average-pooling functions. Max-pooling maintains the prin-
cipal features for multiple intents, and average-pooling captures
consistent intent over the session.

¥ = pMaxPool(§1, ..., §x) + (1 — f)AvgPool(y1,...,¥x), (7)

where § € R” is the final aggregated item distribution, and f is
a combination hyperparameter. MaxPool(-) and AvgPool(-) repre-
sent the max- and average-pooling functions that fetch the maxi-
mum (or average) value for each dimension from multiple vectors.
Lastly, we formulate a cross-entropy loss function for training.

exp(§(j)/7)

S exp /) ®

L(y.9) = = ), y(j) log(
Jj=1

where y € R" is a one-hot vector of the target item, i.e.,, y(j) = 1
if the j-th item is the target item; otherwise, y(j) = 0. Here, 7
is the hyperparameter to control the temperature [14] for better
convergence [9].

3 EXPERIMENTS
3.1 Experimental Setup

Datasets. We conduct extensive experiments on six real-world
datasets collected from e-commerce and music streaming services:

IAL:={peRl:p =0, |pll =1} denotes the I-probability simplex.
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Table 1: Statistics of the various benchmark datasets. AvgLen
indicates the average length of entire sessions.

Dataset # Interacts  # Sessions  # Items  AvgLen
Diginetica 786,582 204,532 42,862 4.12
Retailrocket 871,637 321,032 51,428 6.40
Yoochoose 1,434,349 470,477 19,690 4.64

Tmall 427,797 66,909 37,367 10.62
Dressipi 4,305,641 943,658 18,059 6.47
LastFM 3,510,163 325,543 38,616 8.16

Diginetica, Retailrocket, Yoochoose, Tmall 2 Dressipi, and LastFM.
For data pre-processing, we follow the conventional procedure [20,
22, 23, 33]. We discard the sessions with a single item and the items
that occur less than five times in entire sessions. We split training,
validation, and test sets chronologically as the 8:1:1 ratio. Table 1
summarizes detailed statistics on all benchmark datasets.
Baselines. We compare MiaSRec with the following SBR mod-
els: SASRec [17], SR-GNN [33], NISER+ [9], SGNN-HN [25],
DSAN [35], LESSR [4], CORE [15]. We also compare with the sub-
sequent multiple representations models. SINE [28], ComiRec [2],
Re4 [37], Atten-mixer (A-mixer) [36], MSGIFSR [7]. We do not
consider SBR models which use additional information, e.g., tempo-
ral information [8, 27] or content-based features [3, 13, 19, 40].
Evaluation protocol and metrics. As the common protocol to
evaluate SBR models [20, 33], we adopt the iterative revealing scheme,
which iteratively exposes an item from a session to the model. We
adopt Recall (R@20) and Mean Reciprocal Rank (M@20) to quantify
the prediction accuracy of the next single item. All experimental
results are averaged over three runs with different seeds, and we
conduct the significance test using a paired t-test.
Implementation details. For reproducibility, we implement Mi-
aSRec and the other baseline models on an open-source recommen-
dation system library RecBole? [38, 39]. We optimize all baselines
using Adam optimizer [18] with a learning rate of 0.001. We set
the embedding dimension to 100 and the max session length to 50.
We stop the training if the validation MRR@20 decreases for three
consecutive epochs 4. For all methods, we set the batch size to 1024.
For MiaSRec, we set a as 1.5 for -entmax and tune the temperature
7 among {0.01, 0.05, 0.07, 0.1, 0.5, 1}, dropout ratio § among {0, 0.1,
0.2, 0.3, 0.4, 0.5}. We search f from 0 to 1 in 0.1 increments. We
follow the original papers’ settings for other hyperparameters of
baseline models, but if not available, we thoroughly tune them.

3.2 Experimental Results

Overall comparison. Table 2 reports the performance comparison
between MiaSRec and other baseline models. (i) MiaSRec shows the
best performance on all datasets. Note that MiaSRec demonstrates
performance improvements of up to 24.56% for R@20 compared to
the best baseline. In particular, MiaSRec shows substantial improve-
ments in Recall on datasets with longer average session lengths
(e.g., Tmall and LastFM). (ii) Multiple representation models, such

2Since it has been widely used in previous studies [10, 15, 34], we adopt Tmall even
though it consists of timestamps in units of days, not in minutes or seconds.
3https://github.com/RUCAIBox/RecBole

4We report the performance on the test set using the models that show the highest
performance on the validation set.
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Table 2: Performance comparison for MiaSRec and baseline models. Imp. indicates how much better MiaSRec is than the best
baseline model. The best model is marked bold and the second best model is underlined. Significant differences (p < 0.01)
between the best baseline model and MiaSRec are reported with .

Dataset | Metric | SASRec SR-GNN NISER+ SGNN-HN DSAN LESSR CORE | SINE ComiRec Re4 A-mixer MSGIFSR | MiaSRec | Imp.
Diginetica R@20 | 49.86 48.01 51.11 50.60 52.06 4870 52.89 |46.45 51.22 51.59 49.84 53.20 53.54 | 0.65%
M@20 | 17.20 16.60 18.21 17.28 18.25 16.96 18.53 [16.10  18.35 18.47  17.07 18.37 19.477 | 5.04%

Retailrocket R@20 | 59.70 58.01 60.70 57.43 61.13  56.56 61.77 |55.11  61.56  61.65 59.49 63.04 63.37 0.26%
M@20 | 35.71 36.01 38.18 35.39 38.68 36.82 38.49 [34.15 3816 38.10 36.25 38.42 39.237 | 1.41%

Yoochoose R@20 | 63.64 62.28 63.50 61.60 63.73  62.78 64.64 |57.50  63.13  62.67 63.73 65.20 65.37 0.26%
M@20 | 28.66 28.36 29.06 27.97 29.23 28.84 2825 |25.07 2829  28.00 29.32 30.02 30.747 | 2.39%
Tmall R@20 | 35.80 33.47 40.39 39.71 42.82 3259 4491 |35.66 4240 4156 38.76 35.39 55.947 | 24.56%
M@20 | 25.08 24.75 29.48 24.16 30.85 2419 31.59 | 2241 28.43 28.56  28.52 22.19 33,577 | 6.27%

Dressipi R@20 | 37.18 36.10 38.19 38.35 37.77 37.71 38.14 |38.18 39.60 39.15 37.75 38.43 42.267 | 6.73%
M@20 | 14.31 14.51 15.34 15.05 1513 1473 1554 | 1546  16.07 1592 15.24 15.90 16.70"7 | 3.92%
LastFM R@20 | 20.53 21.80 22.50 22.72 2247 2231 2275|2217 2213  23.02 2293 22.73 25.853L 12.32%
M@20 | 6.22 8.70 8.79 7.66 7.93 8.80 7.83 | 7.57 7.83 8.50 8.74 8.20 9.95' 13.06%

I-)(- MiaSRec(Ours) « CORE o MSGIFSR ¢ A-mixer # ComiRec & Re4

55 70
=50 =60
@45 %50
&~ 40 &40
3 > 0D O * D I NN B
Yoo o A \Q'\ N Yo o W \Q'\ \69
Session length Session length
(a) Diginetica (b) Retailrocket

Figure 3: Performance comparison of SBR models over vary-
ing session lengths. Sessions are divided into six groups de-
pending on session length.

as MSGIFSR [7], ComiRec [2] and Re4 [37], tend to show higher ac-
curacy than single representation models. This implies that various
intents can exist in session, and it is necessary to capture them.

Effect of session length. Figure 3 illustrates the accuracy of SBR
models as the session length varies. (i) The accuracy of all models
decreases as the session length increases since user intent can vary.
For example, in Diginetica, CORE [15] shows 13.2% performance
drop for long sessions (|s|>10) compared to short sessions (|s|<5).
(if) MiaSRec shows the highest performance in most cases, regard-
less of session length, and a comparatively modest performance
drop, which indicates that MiaSRec effectively captures various user
intents. Particularly, for long sessions (|s|>10), it shows significant
improvements over CORE, e.g., 6.03% for R@20 in Diginetica.

Ablation study. Table 3 shows the ablation study of MiaSRec for ad-
ditional embeddings and multi-intent selection. (i) Both frequency
and position embeddings have a significant impact on performance.
This indicates that reflecting the importance of each item through
sequential and occurrence information is effective in improving
performance. (ii) It is always better to use multiple representations
than a single representation. In particular, MiaSRec shows up to
2.71% improvements in R@20 compared to single representation
variants using mean vector (o) and last item vector (o|,)). (iii) The
intent selection method of MiaSRec is more effective than heuristic

Table 3: Ablation study for MiaSRec. “PE” and “FE” mean
position and frequency embedding. “mean” indicates only
using the mean vector (o), and “last k” indicates selecting
the last k representations as session representations.

Model Diginetica Retailrocket Yoochoose

R@20 M@20 | R@20 M@20 | R@20 M@20

MiaSRec 53.54 19.47 | 63.37 39.23 | 65.37 30.74

Variants for embedding layers
w/o PE (a;) 51.36 18.15 61.06 37.51 61.13 26.51
w/o FE (rfi) 53.48 19.23 63.28 38.92 65.15 29.91
Variants for intent selection

mean (0,,,) 52.73 18.66 61.70 38.25 64.71 29.84
last 1 (0|5|) 52.34 18.37 61.90 37.79 64.10 30.05
last 3 (Ojg|-2s)) | 53.08 1920 | 62.07 3868 | 6477 3034
last 5 (0g-4js)) | 53.38 1929 | 63.01 3890 | 6513  30.51

multiple representation variants. It outperforms other methods that
adopt multiple representations of the last few item vectors, suggest-
ing the importance of extracting the representation dynamically
over the session.

4 CONCLUSION

This paper proposed a novel SBR model, MiaSRec, which exploits
various user intents in a session. Unlike previous SBR models that
only use a single session representation, MiaSRec fully captures a
variety of intents utilizing each session item using multiple repre-
sentations and dynamically selects more important ones using the
intent selection layer. It then effectively decodes and aggregates the
multiple representations and provides recommendations that reflect
the various intents. Extensive experiments showed that MiaSRec
outperformed twelve baseline models on six benchmark datasets.
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