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GAGLIARDO-NIRENBERG INEQUALITY WITH HÖLDER NORMS

MENGXIA DONG a

Abstract. The classical Gagliardo-Nirenberg inequality, known as an interpolation inequality, involves Lebesgue
norms of functions and their derivatives. We established an interpolation lemma to connect Lebesgue and
Hölder spaces, thus extending the Gagliardo-Nirenberg inequality. This extension involved substituting arbitrary
Sobolev norms with appropriate Hölder norms, allowing for a wider range of applicable parameters in the
inequality.
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1. Introduction

The classical Sobolev embedding theorem states that if 1 ≤ p < n then for any weakly differentiable function
u ∈ W 1,p, we have

‖u‖p∗ ≤ C‖∇u‖p,

where p∗ = np
n−p

and C > 0 is independent of u. If p > n, then according to the Morrey’s inequality, for the

continuous representative, the following holds:

‖u‖
C

0,1−n
p
≤ C‖∇u‖p.

These results are well-documented in standard references such as [1] or [4].
Sobolev spaces serve as important tools for describing the regularity and integrability of functions, while

Sobolev embedding reveal the potential connection between these two aspects. However, as a space for con-
tinuous functions, Hölder spaces primarily emphasize the regularity of functions but lack a description of their
integrability. Therefore, L. Nirenberg introduced a notation for the first time in [12] to formalize the definition
of integrability of functions in Hölder spaces, with a key idea being that when p < 0, define

‖u‖p = [u]Cp1,p2 =
∑

|α|=p1

sup
x 6=y

|Dαu(x)−Dαu(y)|

|x− y|p2
,

where p1 =
[

−n
p

]

, p2 = −n
p
− p1. While this notation differs significantly from the traditional definition of

integrability, it seamlessly blending the traditional Lebesgue norm for p > 0 with the Hölder semi-norm for
p < 0. This notation allows for unifying the two inequalities involved in Sobolev embedding into a single
framework.
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In addition, in L. Nirenberg’s article [12], he also presents the famous interpolation inequality.

‖Dlu‖q ≤ C‖Dku‖θp‖u‖
1−θ
r ,

for all function u ∈ C∞
0 (Rn) with a constant C independent of u. Here, k, l ∈ N with k > l, and the parameters

satisfy
1

q
−

l

n
= θ ·

(

1

p
−

k

n

)

+ (1− θ) ·
1

r
,

for all θ in the interval
l

k
≤ θ ≤ 1.

This inequality was also proven by E. Gagliardo in [6] and independently by L. Nirenberg. The inequality is
also referred to as Gagliardo-Nirenberg inequality. Gagliardo-Nirenberg inequality has diverse applications in
functional analysis, partial differential equations, and mathematical physics. It’s particularly useful in studying
the regularity properties of solutions to elliptic and parabolic equations, interpolation theory, and in establishing
compactness results for function spaces.

If we look at it as a classical interpolation inequality of the form

‖u‖X ≤ C‖u‖θY ‖u‖
1−θ
Z ,

E. Gagliardo and L. Nirenberg initially established the proof for cases where X , Y , and Z are Sobolev spaces .
In 1995, A. Kufner and A. Wannebo expanded the scope by allowing Y to be a Hölder space [8]. Subsequently,
in 2018, A. Molchanova, T. Roskovec, and F. Soudský successfully broadened the extension to encompass both
X and Y as Hölder spaces [14].

In this paper, we will demonstrate our results by substituting arbitrary of Lebesgue norms with appropriate
Hölder norms. For the convenience of exposition and proof, we slightly adjust the notation given by L. Nirenberg
in [12]. Now let’s introduce our new notation. Define Xp to be Lebesgue and Hölder spaces:

0 < p < ∞ : Xp = Lp,

p = ∞ : Xp = L∞,

−∞ < p < 0 : Xp = Cp1,p2 ,

where p1 = −
[

n
p
+ 1

]

and p2 = −n
p
− p1 when p < 0. Define the norms ‖u‖Xp(Rn) to be

0 < p < ∞ : ‖u‖Xp(Rn) = ‖u‖Lp(Rn) =

(
∫

Rn

|u|pdx

)
1
p

,

p = ∞ : ‖u‖Xp(Rn) = ‖u‖L∞(Rn) = ess sup
x∈Rn

|u(x)|,

−∞ < p < 0 : ‖u‖Xp(Rn) = ‖u‖Cp1,p2(Rn) = ‖u‖Cp1(Rn) +
∑

|α|=p1

[Dαu]C0,p2(Rn)

= max
|α|≤p1

sup
x∈Rn

|Dαu|+
∑

|α|=p1

sup
x,y∈R

n

x 6=y

|Dαu(x)−Dαu(y)|

|x− y|p2
.

This notation establishes a connection between Hölder spaces and Lebesgue spaces to a certain extent. From
this perspective, it shares many similarities with Morrey-Campanato spaces. Literature related to Morrey-
Campanato spaces have been studied by various authors S. Campanato [3], F. John and L. Nirenberg [7], N.G.
Meyers [11], where Stam proved Interpolation Theorem for this space in [13]. However, Morrey-Campanato
space tends to lean towards using mean oscillation, which describes the regularity, to portray the connection
between the two, while our notation leans more towards extending integrability.

Similar to the Sobolev space, fix −∞ < 1
p
< +∞ and let k be a non-negative integer, if for each multi-index

α with α ≤ k,
Dαu ∈ Xp(Rn),

then we say
u ∈ Xk,p(Rn).

For simplicity and to distinguish it from the Lebesgue norm, we denote

|u|p = ‖u‖Xp(Rn)

2



in this paper.
Here are the main theorem of this paper.

Theorem 1.1. Let p, q, r ∈ (−∞, 0) ∪ [1,+∞), k, l ∈ N
+, k > l and n

p
/∈ {1, · · · , k − l}, then for any u ∈

Xk,p(Rn) ∩Xr(Rn), we have u ∈ X l,q(Rn) and there exists a constant C independent of u such that

(1) |Dlu|q ≤ C|Dku|θp|u|
1−θ
r ,

where
1

q
−

l

n
= θ ·

(

1

p
−

k

n

)

+ (1− θ) ·
1

r
,

for all θ in the interval
l

k
≤ θ ≤ 1.

This paper is orgnized as follows: In section 2, we will use the new notation to present a unified form of
the Sobolev inequality and the Morrey’s inequality. The main purpose is to facilitate subsequent calculations.
In Section 3, we established a crucial interpolation lemma related to both Lebesgue and Hölder spaces. This
lemma plays a key role in problem-solving, and importantly, it demonstrates that similar to Lebesgue spaces,
even when extended to Hölder spaces, the interpolation inequality holds true. In Section 4, we complete our
conclusions using mathematical induction and the interpolation lemma.

2. Sobolev Inequalities

Under the new notation, we can combine the Sobolev inequality and Morrey’s inequality into a unified format
and expand the range of parameter p to all negative numbers in the Hölder space. Let us check it:

Theorem 2.1. Let p ∈ (−∞, 0)∪ [1, n)∪ (n,+∞), then for any u ∈ X1,p(Rn), we have u ∈ Xp∗

(Rn) and there

exists a constant C independent of u such that

(2) |u|p∗ ≤ C|Du|p,

where
1

p∗
=

1

p
−

1

n
.

Proof. When p ∈ [1, n), both p and p∗ are positive, the inequality (2) is the standard Sobolev inequality

‖u‖p∗ ≤ C‖Du‖p.

When p ∈ (n,+∞), p is positive and p∗ is negative, direct calculation show us

p∗1 = −

[

n

p∗
+ 1

]

= 0,

p∗2 = −
n

p∗
− p∗1 = 1−

n

p
.

In this case the inequality (2) becomes the Morrey’s inequality:

‖u‖
C

0,1−n
p
≤ C‖Du‖p.

When p ∈ (−∞, 0), p∗ < 0 is negative. Then direct computation shows us

p∗1 = −

[

n

p∗
+ 1

]

= −

[

n

p

]

= p1 + 1,

p∗2 = −
n

p∗
− p∗1 = 1−

n

p
− (p1 + 1) = −

n

p
− p1 = p2.

Therefore, we get the Hölder equality

(3)

|u|p∗ = ‖u‖
C

p∗
1 (Rn)

+
∑

|α|=p∗

1

sup
x,y∈R

n

x 6=y

|Dαu(x)−Dαu(y)|

|x− y|p
∗

2

= ‖Du‖Cp1(Rn) +
∑

|α|=p1

sup
x,y∈R

n

x 6=y

|Dα(Du(x)) −Dα(Du(y))|

|x− y|p2
= |Du|p.
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Which completes the proof. �

Remark 2.2. If we suppose there is a space Y with the norm ‖ · ‖Y and assume

|u|∞ := ‖u‖Y .

We would like to apply it on the unified format notation in order to extend the range of p in Theorem 2.1. Thus
we must have:

‖u‖Y = |u|∞ ≤ C|Du|n,

|u|−n ≤ C|Du|∞ = C‖Du‖Y .

These two inequalities show that
W 1,n →֒ Y →֒ L∞.

However, this is impossible. Therefore, we cannot provide a perfect notation for borderline cases.

By iteratively employing Theorem 2.1, we can express the generic Sobolev inequality involving derivatives of
any order in a consolidated manner.

Theorem 2.3. Let p ∈ (−∞, 0)∪ [1,+∞), k, l ∈ N
+, k > l and n

p
/∈ {1, · · · , k− l}. Then for any u ∈ Xk,p(Rn),

we have u ∈ X l,q(Rn) and there exists a constant C independent of u such that

(4) |Dlu|q ≤ C|Dku|p,

where
1

q
−

l

n
=

1

p
−

k

n
.

Proof. Assume p0 = p, let pi+1 be the conjugate Sobolev index of pi, i.e.

1

pi+1
=

1

pi
−

1

n
(i = 0, 1, · · · , k − l − 1).

Thus we have
1

pk−l

=
1

pk−l−1
−

1

n
= · · · =

1

p
−

k − l

n
=

1

q
.

Since n
p
/∈ {1, · · · , k − l}, consequently pi 6= n, then repeatedly applying (2) we obtain

|Dlu|q . |Dl+1u|pk−l−1
. · · · . |Dku|p.

�

3. Interpolation Lemma

L. Nirenberg mentioned an interpolation lemma in [12], however, the proof is omitted. In this section, we will
provide a foundational yet detailed proof to demonstrate that interpolation is continuously available between
Lebesgue and Hölder spaces, bridging the connection between them.

Lemma 3.1. Assume −∞ < λ < µ < ν < ∞, then

(5) |u| 1
µ
≤ C|u|η1

λ

|u|1−η
1
ν

where

µ = ηλ+ (1− η)ν,

and C is independent of u.

Remark 3.2. Some special cases of this lemma have been studied. In particular

(1) When λ ≥ 0, the inequality (5) is essentially the interpolation inequality for Lebesgue spaces.
(2) When ν ≤ 0, a result of A. Lunardi [9], [10] settling the case −nλ,−nν ∈ N for Hölder norms.

Before proving the interpolation lemma, let’s first look at two lemmas. One of them illustrate the transitivity
of interpolation, which is a straightforward application of the Reiteration Theorem found by A. Calderón in [2].
Readers may also refer the theorem in Lunardi’s books [9] and [10]; it presents a more general form within the
interpolation theory. This lemma allows us to focus on proving the important parameter nodes and the general
case will be directly deduced from this lemma, and we will frequently use this method in the subsequent proofs.

4



Lemma 3.3. Assume −∞ < µ0 < µ1 < µ2 < µ3 < ∞, when i = 1, 2, we have the interpolation inequalities

|u| 1
µi

. |u|ηi
1

µi−1

|u|1−ηi
1

µi+1

,

where

µi = ηiµi−1 + (1− ηi)µi+1.

Then for j = 1, 2, we have

|u| 1
µj

. |u|
θj
1
µ0

|u|
1−θj
1
µ3

,

where

µj = θjµ0 + (1 − θj)µ3.

Proof. We only prove for j = 1, the proof of the other case is similar. From the condition we have

µ1 = η1µ0 + (1− η1)µ2

= η1µ0 + (1− η1)(η2µ1 + (1 − η2)µ3)

= η1µ0 + (1− η1)η2µ1 + (1− η1)(1− η2)µ3.

Therefore

µ1 =
η1

1− η2 + η1η2
µ0 +

(

1−
η1

1− η2 + η1η2

)

µ3.

Choose
θ1 =

η1
1− η2 + η1η2

.

Then
|u| 1

µ1

. |u|η1

1
µ0

|u|1−η1

1
µ2

. |u|η1

1
µ0

|u|
η2(1−η1)
1
µ1

|u|
(1−η1)(1−η2)
1
µ3

.

Simplify it and we obtain the interpolation inequality in Lemma. �

The inequality in the next lemma is used to address interpolation problems related to summation in Hölder
norms.

Lemma 3.4. Assume a, b, c, d > 0 and 0 < η < 1. Then

(6) aηb1−η + cηd1−η ≤ (a+ c)η(b+ d)1−η.

Proof. The proof is simple. From Young’s inequality we have
(

a

a+ c

)η (
b

b+ d

)1−η

≤ η ·
a

a+ c
+ (1− η) ·

b

b+ d
,

(

c

a+ c

)η (
d

b+ d

)1−η

≤ η ·
c

a+ c
+ (1− η) ·

d

b+ c
.

Combining these two inequalities and simplifying them, we conclude the proof. �

Now we can begin the proof of the interpolation lemma. According to Lemma 3.3, we will only present the
proof for the parameters are all greater or less than zero and the special case where the middle term µ is exactly
equal to 0, thereby naturally deducing the general case.

Proof of Lemma 3.1. Case 1. λ ≥ 0. In this case (5) is merely the interpolation inequality for Lp, which can
be proved simply by applying Hölder inequality. Set η = ν−µ

ν−λ
, then

(
∫

|u|
1
µ

)µ

=

(
∫

|u|
η
µ |u|

1−η
µ

)µ

≤

(
∫

|u|
1
λ

)λη (∫

|u|
1
ν

)ν(1−η)

.

Case 2. ν ≤ 0. In this case, all parameters are less than 0, thus we need to deal with Hölder norms. For
convenience, when −∞ < λ < µ < ν ≤ 0 and k ∈ N, let’s assume Cλ, Cµ, Cν and Ck be

Cλ = [u]Cλ1,λ2 , Cµ = [u]Cµ1,µ2 , Cν = [u]Cν1,ν2 , Ck = ‖u‖Ck .
5



Where the parameters obtained by the notation we defined.

λ1 = − [nλ+ 1] , λ2 = −nλ− λ1,

µ1 = − [nµ+ 1] , µ2 = −nµ− µ1,

ν1 = − [nν + 1] , ν2 = −nν − ν1.

Since λ < 0 ensure the continuity of function, when ν = 0 we have

|u|∞ = ‖u‖L∞ = ‖u‖C0 =: ‖u‖C0,0.

Obviously,
λ1 ≥ µ1 ≥ ν1.

We divide the proof of this case into three sub-cases.
Case 2.1. Interpolation of Ck. First assume u ∈ C2(Rn), then from Taylor formula, we have

u(y)− u(x) = Du(x) · (y − x) +
1

2
(y − x)D2u ((1− θ)x + θy) (y − x)T .

For each direction ei(i = 1, · · · , n) and h > 0,

|u(x+ hei)− u(x)−Diu(x)h| ≤
1

2
|Diiu(x)|∞h2 ≤

1

2
|D2u(x)|∞h2,

so that

|Diu(x)|∞ ≤
2|u(x)|∞

h
+

1

2
|D2u|∞h

≤ 2(|u(x)|∞)
1
2 (|D2u(x)|∞)

1
2 .

So we have

C1 = max(|u|∞, |Du|∞)

≤ (|u|∞)
1
2

[

max
(

(|u|∞), 2(|D2u|∞)
)]

1
2

. C
1
2

0 C
1
2

2 .

For u ∈ Ck+2(Rn), after substituting Dku for u, we can directly obtain

Ck+1 . C
1
2

k C
1
2

k+2.

Combine with Lemma 3.3 we know that for any k1, k2, k3 ∈ N and k1 < k2 < k3, if u ∈ Ck3(Rn), then

(7) Ck2
. Cη

k1
C1−η

k3
,

where
1

k2
=

η

k2
+

1− η

k3
.

Case 2.2. λ1−ν1 = 0. Without loss of generosity, we assume ν1 = 0. According to the condition λ1 ≥ µ1 ≥ ν1
we have

λ1 = µ1 = ν1 = 0.

Direct calculation shows us

(8) µ2 = ηλ2 + (1− η)ν2.

Then apply the Hölder conditions and (8),

|u(x)− u(y)| ≤ |u(x)− u(y)|η|u(x)− u(y)|1−η

≤ Cη
λC

1−η
ν |x− y|ηλ2+(1−η)ν2

= Cη
λC

1−η
ν |x− y|µ2 .

This tells us
Cµ ≤ Cη

λ · C1−η
ν .

Apply the interpolation inequality (6) we have

|u| 1
µ
= C0 + Cµ

6



= Cη
0C

1−η
0 + Cη

λ · C1−η
ν

≤ (C0 + Cλ)
η(C0 + Cν)

1−η

= |u|η1
λ

|u|1−η
1
ν

.

Case 2.3. λ1 − ν1 = 1 and µ2 = 1. Without loss of generosity, we assume ν1 = 0. Since λ1 ≥ µ1 ≥ ν1, then

λ1 = µ1 = ν1 = 0.

By calculation, we obtain

1 = µ2 = −nµ− µ1

= −n(ηλ+ (1− η)ν) − µ1

= η(1 + λ2) + (1− η)ν2,

which equivalent to

(9) ηλ2 + (1 − η)(ν2 − 1) = 0.

Choose m ∈
(

1
2 , 1

)

, there must exist point x ∈ R and direction ei such that |Diu(x)| = mCµ. Without loss of
generality, we assume |D1u(0)| = mCµ, then

|D1u(0)−D1u(he1)| ≤ |Du(0)−Du(he1)| ≤ Cλh
λ2 .

Thus we have
|D1u(he1)| ≥ |D1u(0)| − |D1u(0)−D1u(he1)| ≥ mCµ − Cλh

λ2 ,

where

h ∈

[

0,

(

mCµ

Cλ

)
1
λ2

]

:= [0, R].

It is worth noting when h ∈ [0, R], D1u(he1) maintain the same symbol. Therefore

|u(0)− u(Re1)| =

∫ R

0

|D1u(he1)|dh

≥

∫ R

0

(

mCµ − Cλh
λ2
)

dh

= mCµR−
Cλ

λ2 + 1
Rλ2+1.

Recall u ∈ Cν1,ν2 , thus we have the estimate

|u(0)− u(Re1)| ≤ CνR
ν2 .

Combing them together we obtain

mCµR−
Cλ

λ2 + 1
Rλ2+1 ≤ CνR

ν2 .

Substitute R =
(

mCµ

Cλ

)
1
λ2

into the inequality,

mλ2

λ2 + 1
Cµ ≤ Cν

(

mCµ

Cλ

)

ν2−1

λ2

.

Recall the condition of parameters (9) we have

ν2 − 1

λ2
= −

η

1− η
.

Thus we simplify and obtain

(10) Cµ ≤

(

1 +
1

λ2

)1−η

m−1Cη
λC

1−η
ν .

Apply the interpolation inequality concerning sums (6) again we obtain the interpolation inequality (5).
All the remaining cases when ν ≤ 0 could be established by applying Lemma 3.3 on results of step 2.1, step

2.2 and step 2.3.

7



Case 3. µ = 0.
In this case we have λ < 0 and ν > 0. First let us check when − 1

n
≤ λ < 0 and 0 < ν ≤ 1. Followed the

notation we have

λ1 = − [nλ+ 1] = 0,

λ2 = −nλ− λ1 = −nλ.

Define

a+ b := |u|∞ + sup
x,y∈Rn

|u(x)− u(y)|

|x− y|λ2
= |u| 1

λ
< ∞

for short. Easy to see a < ∞ and u is continuous. When b = 0 the function is trivial. Without loss of generality,
assume |u(0)| = a, and we have

|a− u(x)| ≤ b|x|λ2 .

Thus we have

|u(x)| ≥ a− |a− u(x)| ≥ a− b|x|λ2 , |x| ∈

[

0,
(a

b

)
1
λ2

]

:= [0, c].

Set p := 1
ν
≥ 1 we obtain

∫

Rn

|u|pdx ≥

∫

B(0,c)

|u|pdx

=

∫ c

0

∫

∂B(0,r)

|u|pdSdr

&

∫ c

0

(a− brλ2)prn−1dr

=
apcn

λ2

∫ 1

0

(1− s)ps
n
λ2

−1
dt (r = cs

1
λ2 )

=
apcn

λ2
B

(

−
1

λ
, p− 1

)

.

Notice that
(apcn)

1
p = a1−

ν
λ b

ν
λ = a

1
1−η b

−η
1−η .

Finally we conclude the estimate

|u| 1
µ
= |u|∞ = a ≤

(a

b
+ 1

)η

a

= (a+ b)η(a
1

1−η b
−η
1−η )1−η

. |u|η1
λ

|u|1−η
1
ν

.

Combining with Lemma 3.3, we can derive all the remaining cases. �

4. Proof of Theorem 1.1

In this section, we will prove our conclusions using mathematical induction and the interpolation lemma. The
basic idea is similar to the method used by L. Nirenberg in [12], and we also refer to the proof details provided
by A. Fiorenza, M.R. Formica, T. Roskovec, and F. Soudský in [5].

4.1. Initial Inequality. We aim to prove the Gagliardo-Nirenberg inequality by mathematical induction, so
we need a fundamental starting inequality. Let’s check the case when l = 1 and k = 2 in Theorem 1.1.

Lemma 4.1. Let −∞ < 1
p
, 1
q
, 1
r
≤ 1 and

2

q
=

1

p
+

1

r
.

If u ∈ X2,p(Rn) ∩Xr(Rn), then u ∈ X1,q(Rn) and there exists a constant C independent of u such that

(11) |Du|2q ≤ C|D2u|p|u|r,

Remark 4.2. This lemma has been mostly proven by previous researchers.
8



(1) When p, q, r ≥ 1, this Lemma was left as an exercise in L. Nirenberg’s paper [12]. Recently, A. Fiorenza,
M.R. Formica, T. Roskovec and F. Soudský provided a detailed proof of this lemma in their paper [5]
under these circumstances.

(2) The result for r ∈ [−∞, n)∩q ∈ [1,∞) can be found as a particular case in A. Kufner, and W. Andreas’s
paper [8]. Thus we only need to prove for the remaining cases, which is trivial.

Proof. Given that the majority has been proven by predecessors, we now focus on demonstrating the lemma
when r ∈ [−n, 0) ∪ q ∈ [−∞, 0).

First denote the converse Sobolev conjugate index p∗ with

1

p∗
=

1

p
+

1

n
.

When r ∈ [−n, 0). Easy to verify
2

q
=

1

p∗
+

1

r∗
.

Notice r∗ ∈ [−∞, 0), then apply the general sobolev inequality (2), Hölder equality (3) and the interpolation
inequality (5), we have

|Du|2q . |Du|p∗ |Du|r∗ . |D2u|p|u|r.

When q ∈ [−∞, 0). This case is also simple, the parameters satisfy the condition

2

q∗
=

1

p∗∗
+

1

r
.

Use (2), (3) and (5) again we have

|Du|2q = |u|2q∗ . |u|p∗∗ |u|r . |D2u|p|u|r.

�

4.2. Induction. When θ = 1, Sobolev inequality (2) arises as a special case of the Gagliardo-Nirenberg inequal-
ity (1). In this subsection, we focus on the case θ = l

k
, where the parameters hold the condition:

1

q
=

l

k
·
1

p
+

k − l

k
·
1

r
.

Use mathematical induction to prove the inequality for a pair of integers (l, k). For the base case, let’s consider
l = 1 and k = 2, which has been addressed in Lemma 4.1 in the preceding subsection.

First, we use induction method on the parameter k, assume the Gagliardo-Nirenberg inequality (1) holds for

l = 1 and k = k̃ ∈ N. We want to show it also holds for l = 1 and k = k̃ + 1. Notice the parameters satisfy

(12)
1

q
=

1

k̃ + 1
·
1

p
+

k̃

k̃ + 1
·
1

r
.

Set s corresponding to q, r such that

(13)
2

q
=

1

s
+

1

r
.

Then comes from (11) we obtain

(14) |Du|q ≤ C|D2u|
1
2
s |u|

1
2
r .

From the relations (12) and (13) of the parameters we derive that

1

s
=

1

k̃
·
1

p
+

k̃ − 1

k̃
·
1

q
,

which coincides with the case l = 1 and k = k̃ we assumed, therefore apply (1) on Du we have

(15) |D2u|s ≤ C|Dk̃+1u|
1

k̃
p |Du|

k̃−1

k̃
q .

Then inequalities (14) and (15) imply that

|Du|q ≤ C|Dk̃+1u|
1

k̃+1

p |u|
k̃

k̃+1

r .

Which completes the first induction.
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Secondly, we use induction concerning the parameter j, assuming the Gagliardo-Nirenberg inequality (1)

holds for (l, k) = (l̃, k̃) ∈ N
2 with l̃ < k̃. It is enough to prove it also holds for (l, k) = (l̃ + 1, k̃ + 1). Similarly,

we have the parameters satisfy

(16)
1

q
=

l̃ + 1

k̃ + 1
·
1

p
+

k̃ − l̃

k̃ + 1
·
1

r
.

Set t to be such that

(17)
1

q
=

l̃

k̃
·
1

p
+

k̃ − l̃

k̃
·
1

t
.

Thus the parameters meet the assumption, apply (1) on Du we get

(18) |Dl̃+1u|q ≤ C|Dk̃+1u|
l̃

k̃
p |Du|

k̃−l̃

k̃

t .

Then (16) and (17) imply that

1

t
=

1

l̃ + 1
·
1

q
+

l̃

l̃ + 1
·
1

r
.

Let l = 1 and k = l̃ + 1, it matched the result we have for the first induction

(19) |Du|t ≤ C|Dl̃+1u|
1

l̃+1

q |u|
l̃

l̃+1

r .

Combine (18) and (19) we complete the second induction,

|Dl̃+1u|q ≤ C|Dk̃+1u|
l̃+1

k̃+1

p |u|
k̃−l̃

k̃+1

r .

4.3. Interpolation. Once we reach the inequalities for endpoints of θ = 1 and θ = l
k
, the general case is

followed by the interpolation Lemma 3.1. Set

1

q1
−

l

n
=

1

p
−

k

n
,

1

q2
=

l

k
·
1

p
+

k − l

k
·
1

r
,

η +
l

k
· (1− η) = θ.

It is easy to verify that
1

q
=

η

q1
+

1− η

q2
.

Then

|Dlu|q . |Dlu|ηq1 |D
lu|1−η

q2

. |Dku|ηp|D
ku|

l
k
(1−η)

p |u|
k−l
k

(1−η)
r

= |Dku|θp|u|
1−θ
r .

This completes the proof of Theorem 1.1.
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