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We revisit the problem of the structure and physical properties of electrically charged static
spherically symmetric solutions of the Einstein-Maxwell system of equations where the matter model
is a polytropic gas. We consider a relativistic polytrope equation of state and take the electric
charge density to be proportional to the rest mass density. We construct the families of solutions
corresponding to various sets of parameters and analyze their stability and compliance with the
causality requirement, with special emphasis on the possibility of constructing black hole mimickers.
Concretely, we want to test how much electric charge a given object can hold and how compact it
can be. We conclude that there is a microscopic bound on the charge density to rest mass density
ratio coincident with the macroscopic bound regarding the extremal Reissner-Nordstöm black hole.
The macroscopic charge to mass ratio for the object can exceed the corresponding microscopic ratio
if the object is non-extremal. Crucially, the only way to obtain a black hole mimicker is by taking
a subtle limit in which an electrically counterpoised dust solution is obtained.

I. INTRODUCTION

In the present article we consider static, spherically
symmetric configurations of charged polytropic matter
in the context of General Relativity. The study of
non-vacuum solutions of the Einstein-Maxwell system of
equations has a long and fruitful history, in particular
because they provide interior matter solutions for the
Reissner-Nordström (RN) metric. As the interior solu-
tions need to be smoothly joined to the electro-vacuum
exterior, the total mass, M , and the total charge, Q,
satisfy the same requirement as the RN black hole for
not representing naked singularities, Q ≤ M , being the
extremal case Q = M . Also, to be a regular solution
and not a black hole, the radius of the object, R, has
to be larger than the corresponding black hole radius,

R+ = M +
√
M2 −Q2.

More than 50 years ago the generalization for charged
matter of the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions of hydrostatic equilibrium was first presented [9].
There, also the time evolution equations where derived
and it was argued that pair creation and high conduc-
tivity at the core would discharge a neutron star, and
that therefore electric charge inclusion was not necessary
to discuss such compact objects. Nonetheless, the ques-
tion was raised as to whether electric charge may pre-
vent the total collapse of a charged ball. We consider
that this question has not yet been completely resolved.
Being the TOV equations complicated enough, a natu-
ral step to analyze possible solutions is to integrate them
numerically, which was done in [36]. As matter model
it was considered a completely degenerate Fermi gas and
the charge density was set proportional to the energy
density. The main conclusion was that there is a max-
imum charge fraction above which there are no stable
configurations, and that said upper bound is far below
the macroscopic charge of extremal black holes. Below
this bound the families of solutions behave similarly to

solutions without charge. In [5] also the TOV equations
were numerically integrated and a stability analysis was
performed. A polytropic equation of state was used and
the charge distribution was prescribed a priori. The main
interest was to determine if relativistic charged spheres
can form extremal black holes. The conclusion attained
was that they can not, as the spheres became unstable
before the extremal limit is reached. Even so, there were
hints that if a very stiff equation of state is considered,
corresponding to an extremely high polytropic exponent,
then the extremal limit can be approached. Again con-
sidering a polytropic equation of state with respect to
energy density but assuming that the charge density is
proportional to energy density, in [31] the charged solu-
tions with polytropic exponent 5

3 were constructed. Al-
though it was argued that a relevant amount of charge
is not possible for realistic objects, a mechanism is pro-
posed for the formation of charged black holes. With
emphasis in the so called quasiblack hole limit, in [7] the
TOV equations were integrated numerically and families
of solutions were constructed. The polytropic relation
was taken with respect to energy density and the charge
density was set proportional to energy density. Although
the speed of sound was taken into account, it was not con-
sidered as determinant when taking the quasiblack hole
limit. Later, in [6], the same type of analysis was done us-
ing the relativistic polytropic equation of state, where the
polytropic relation was with respect to rest mass density,
although again the charge density was proportional to
energy density. The results were qualitatively the same,
although quantitative differences were obtained for the
high density regime. For a description of the concept of
quasiblack hole and associated properties the reader is
refered to [26].

Also from an analytic perspective important advances
have been done. A substantial effort at classifying spher-
ically symmetric charged solutions was made in [22],
where the classification was done regarding which free
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functions were prescribed. Many explicit solutions were
presented and also known solutions recovered and dis-
cussed with regard to its physical properties. Generaliz-
ing Buchdahl’s proof to the charged setting, in [17] an ab-
solute bound on how compact relativistic charged spheres
can be was proved. The main assumptions were that the
mass density is a decreasing function of radius while the
charge density is increasing. The limit solution is ob-
tained for a constant density sphere, which means that
as a fluid it is incompressible. Interestingly, if Q = M the
limit is no longer restrictive, as it coincides with the hori-
zon, R = R+. Improving on this result a sharp inequality
with less assumptions was proved by Andréasson in [4],
and it was shown that infinitely thin shell solutions sat-
urate the inequality. Constant density charged spheres
were investigated numerically in [8]. The charge density
was taken proportional to energy density, and the focus
was on the Buchdahl-Andréasson bound and the quasi-
black hole limit. The same problem but from an analytic
perspective and restricted to the small charge limit was
tackled in [27].

From a fundamental particle physics approach, the
spherically symmetric static configurations of neutron
stars were studied in [10], considering the presence of
neutrons, protons and electrons. Although only global
neutrality was considered, the local charge distribution
was obtained from chemical potential equilibrium. Im-
portant for us is that with these physically motivated
equations of state the resulting objects are far from being
black hole mimickers and also charge distribution does
not approach extremality. In a similar vein, but without
imposing global charge neutrality, the relativistic equilib-
rium of electrons, protons and neutrons through chemical
potential was treated in [3], with the intention of mod-
elling non-neutral white dwarf stars. There, a bound on
total charge was obtained, which is orders of magnitude
below extremality.

A related and theoretically relevant development has
been the study of electrically counterpoised dust (ECD)
spacetimes. Such matter corresponds to a charged per-
fect fluid without pressure, where the charge and mass
densities are perfectly balanced. As the underlying par-
ticles have the same mass as charge, then any static dis-
tribution is possible, being the gravitational and elec-
trostatic forces always balanced. This was first shown
for a system of discrete particles by Majumdar [28] and
Papapetrou [30], following the work of Weyl [35] on ax-
isymmetric spacetimes. If the matter content is restricted
to said particles, then to each particle there is an event
horizon, which is interpreted as an extremal Reissner-
Nordström (ERN) black hole [19]. If instead of black
holes one wants to consider regular objects, then the ex-
terior solution can be matched with static interiors made
of ECD [15], [34]. The reach of the results presented in
[35], [28], [30] and [15], together with the minimum set
of assumptions needed to obtain them, was analyzed by
De and Raychaudhuri [16]. The assumptions made in
[35], [28], [30], [15] and [16] have been relaxed in several

ways, and the results extended to charged perfect fluids
with pressure, for example in [20], [18], [25], or to higher
dimensions [23], [24]. The fact that any static charge dis-
tribution gives rise to a solution of the Einstein-Maxwell
field equations has been exploited to test features of Gen-
eral Relativity, such as the relation between charge and
mass in the RN solution and the construction of a point
charge model [11], the construction of static objects with
unbounded density [13], to show that unbounded red-
shifts can be obtained from regular objects [14], and to
discuss the hoop conjecture [12]. In general, the engi-
neered solutions can be made to be as close to the ERN
black hole as desired, and this has been analyzed in re-
lation to the bifurcation of solutions [21] and it has been
shown that such black hole limit is a general feature of
ECD solutions [29]. This means that a regular ECD ob-
ject could mimic an ERN black hole as well as desired.

Our main concern here is the possibility of construct-
ing black hole mimickers, and in particular quasiblack
holes, made of charged perfect fluid. From the perspec-
tive of the known fundamental particles, this endeavor
seems hopeless, as there are numerous reasons why the
total charge in a compact object is expected to be negli-
gible [10], [3]. The only option that would give a chance
to a macroscopic charge comparable to the gravitational
mass of the object is if there would exist a particle with
a charge to mass ratio comparable to ECD. Therefore,
we take here the charge density of the fluid to be pro-
portional to the rest mass density, interpreting this ratio
as the charge to mass ratio of each particle composing
the fluid, since in this way the charge inside a fluid ele-
ment is proportional to the number of charged particles
it contains. Also, taking into account that we are in a
highly relativistic scenario, we take as equation of state
the relativistic polytropic equation of state, where the
polytropic relation is with respect to rest mass density.
In order to consider the obtained objects to be reasonable
physical objects we consider a stability condition and a
causality condition. For stability we take the usual crite-
ria that the object, which is part of a family of objects,
has to be in the stable branch, where the limit between
stable and unstable solutions is given by the maximum
in mass with respect to central pressure. The causality
condition is that the speed of sound in the fluid has to be
below the speed of light. To the best of our knowledge
this is the first time that these constitutive equations and
conditions have been imposed together. We think this is
relevant because the quasiblack hole limit that we an-
alyze is a delicate limit, and we do not want to include
unphysical solutions nor exclude relevant ones. Our main
results are as follows. Extremally charged solutions can
be formed in the sense of Q

M ≈ 1, but they have large
R and M and low pressure, making them in fact faint
extended objects. Black hole mimickers and quasiblack
holes, in the sense of R ≈ R+, can not be constructed
using polytropic charged matter. The limit that gives a
quasiblack hole is subtle, and entails taking at the same
time the charge density to mass density ratio to one, the
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polytropic exponent to infinity and the central pressure
to zero, which in fact means that it is an ECD solution.
This shows that non-extremal quasiblack holes can not
be formed even in this limit. Also, together with the
results in [1] and [2], this makes extremely difficult to
consider a physically feasible scenario where the collapse
of regular matter leads to the formation of an ERN black
hole.

The article is structured as follows. In Section II we
present the TOV system of equations and the equations
of state that we consider, together with the physical re-
quirements that we impose on the solutions. In Section
III we present the families of solutions constructed nu-
merically. In Section IV we show that the black hole
mimicker limit corresponds to ECD. Finally, the conclu-
sions are presented in Section V.

II. THE SYSTEM OF EQUATIONS

In this section we briefly review the charged TOV equa-
tions and the physical criteria we want to use to analyze
the solutions.

We consider static spherically symmetric solutions of
the Einstein-Maxwell system of equations with perfect
fluid as matter model. We use geometrized units, G =
c = 1, and ϵ0 = (4π)−1. The system of equations is

Gµν = 8πTµν , ∇νF
µν = 4πjµ (1)

where Gµν is the Einstein tensor, Tµν the energy-
momentum tensor, Fµν the Faraday tensor, jµ the elec-
tric current and ∇µ the covariant derivative. In this case

Tµν =(ϵ+ p)uµuν + pgµν (2)

+
1

4π

(
FγµF

γ
ν − 1

4
FγλF

γλgµν

)
, (3)

where ϵ is the energy density of the fluid, p its pressure
and uµ its four-velocity field. The current jµ is

jµ = σuµ (4)

where σ is the charge density.
The metric in Schwarzschild coordinates takes the form

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2(dθ2 + sin2 θ dϕ2). (5)

To describe the matter content in a static and spheri-
cally symmetric configuration we need the matter energy
density ϵ(r), pressure p(r) and charge density σ(r). To
simplify the system of equations it is convenient to de-
fine two functions, the charge inside a sphere of radius r,
q(r),

q =

∫ r

0

4πr2eΛσ dr, (6)

and the functionm(r), corresponding to the gravitational
mass,

m =
r

2

(
1− e−2Λ +

q2

r2

)
. (7)

Then the Einstein-Maxwell equations reduce to

dm

dr
= 4πr2

(
ϵ+

σq√
r2 − 2mr + q2

)
, (8)

dq

dr
=

4πr3σ√
r2 − 2mr + q2

, (9)

dp

dr
=

σq

r
√

r2 − 2mr + q2
− (ϵ+ p)

4πr3p+m− q2/r

r2 − 2mr + q2
,

(10)

which are the TOV equations generalized for the presence
of electric charge. The initial conditions for the ODE
system are m(r = 0) = 0, q(r = 0) = 0, p(r = 0) =
p0, where p0 is arbitrary and is used as parameter in a
given family of solutions. In order to close the system of
equations we need constitutive relations for the fluid. As
equation of state we take a relativistic polytrope, which
relates the pressure to the rest-mass density, ρ,

p = κργ , (11)

and then the energy density is

ϵ = ρ+
κ

γ − 1
ργ . (12)

For the charge density, we consider that there is a micro-
scopically given and constant ratio, α, between charge
and rest mass,

σ = αρ. (13)

As we integrate p in the TOV system, we write

ϵ =
( p
κ

) 1
γ

+
p

γ − 1
, σ = α

( p
κ

) 1
γ

. (14)

We see that to find a solution of the system of equations,
what we call an “object”, we need to provide four con-
stants, two corresponding to the equation of state, κ and
γ, one corresponding to the fundamental charge-mass re-
lation of the fluid, α, and the central pressure of the
object, p0. Therefore, we consider that p0 parameterize
a family of objects made of “the same fluid”. Each object
in the family represents a “compact object” in the sense
that it has a finite radius, R, given by the condition that
the pressure becomes zero, p(R) = 0. Then, the exterior
solution, r > R, is the RN solution with mass M = m(R)
and charge Q = q(R). We will follow the customary cri-
teria that there is a change of stability in a given family
once the first maximum in M is found while increasing
p0.
The speed of sound in the fluid is cs =

√
∂p/∂ϵ and

the causality condition is cs < 1. In our case, we consider
γ > 6

5 , and then cs < 1 is automatically satisfied for
6
5 < γ ≤ 2. For γ > 2, in order for causality to be
respected we need that

p < κ
1

1−γ

(
γ − 1

γ(γ − 2)

) γ
γ−1

. (15)
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Once κ and γ have been fixed, then (15) gives a condition
on the acceptable pressures within the object. In case
we found a solution for which (15) is violated, then we
have to discard said solution as unphysical. If instead
of (11) we take p = κϵγ then the causality condition is

p < κ
1

1−γ γ
γ

1−γ , which is more restrictive than (15). This
ensures that we are not arbitrarily restricting the space
of solutions.

In order to numerically integrate the TOV equations
we need to use dimensionless variables. As we use ge-
ometrized units, we can choose a unit of length or mass
and express all involved quantities in these units. For
simplicity we choose a solar mass, M⊙ = 1.9885 ×
1030 kg = 1.48 km, as unit of mass and length. Then,
the system of equations has the same form, were we have
performed the replacements r → M⊙r, M → M⊙M ,
Q → M⊙Q, ϵ → M−2

⊙ ϵ, σ → M−2
⊙ σ, p → M−2

⊙ p. Also,
the equation of state and the charge-mass relation are

given by (14) with κ → M
2(γ−1)
⊙ κ.

As we integrate the system of equations for different
values of κ and γ, it is necessary to take these parameters
in a way that is meaningful for the intended use, namely,
to study possible bounds on extremality. The existing
objects that most closely motivate this search are neu-
tron stars. Therefore, we take as a representative central
density and central pressure values in the range expected
for neutron stars, that is,

ρns = 1018
kg

m3
, pns = 1034 Pa. (16)

The dimensionless values are

ρns = 1.62× 10−3, pns = 1.80× 10−4. (17)

Then, having chosen a value for γ, the corresponding
representative value for κ is

κ =
pns
ργns

. (18)

Besides analyzing the general behaviour of charged
polytropic solutions our interest is to study the possi-
bility of black hole mimickers. Therefore we need to con-
sider extremality criteria. As the interior solution is con-
tinued with an exterior RN spacetime, the extremality
criteria corresponds with the RN black hole. Regard-
ing the macroscopic charge, Q, the object is extreme
if Q = M , sub-extreme if Q < M and over-extreme if
Q > M . Regarding how compact the object is, we com-
pare the radius R to the corresponding horizon radius,

R+ = M +
√

M2 −Q2, and define the compactness pa-

rameter C = R+

R . If C → 1, then the object would be
a black hole mimicker, as it would be observationally in-
distinguishable from a black hole.

III. THE FAMILIES OF SOLUTIONS

We integrate the TOV system of equations for different
values of the parameters. The profiles for the involved

functions, p, m and q, are all standard and well behaved,
and therefore we concentrate on discussing the families
of solutions. Each family corresponds to a given set of
values for α, κ and γ, and is parameterized by p0. The
quantities that we want to discuss are the total mass, M ,
radius, R, charge to mass, Q

M , and compactness, C. We
separate the stable solutions from the unstable ones by
finding the first maximum of M as a function of p0.

We start considering how the families of solutions
change when we vary κ. In Figure 1 we present the
graphs for M as a function of R, Q

M as a function of
p0 and C also as a function of p0. Each column corre-
sponds to a given value of γ, with values 5

3 , 2 and 4.
In each graph there are plotted five families of solutions,
each corresponding to a value of κ. The last stable so-
lution is represented with a red dot. All graphs have
α = 0.5. From the first line of plots we see that by in-
creasing κ the mass and radius of the solution increase,
and therefore also the maximum mass increases. Modulo
this displacement, all families of solutions behave iden-
tically for a given value of γ. Remarkably, for the Q

M
and C relationships, the graphs seem to be simple dis-
placements regarding p0, actually, in log p0. Therefore,
within numerical accuracy, the limiting values for p0 → 0
and the maximum values do not depend on κ. We see
that as expected limp0→0

Q
M = α and that limp0→0 C = 0.

Also, the maximum value of Q
M is above α but far from 1,

and the maximum value of C increases with γ but again
is far from 1. Given that varying κ does not give new
phenomenology, and that we want to concentrate on the
measures of extremality, from now on, once γ is fixed,
the corresponding κ is given by (18), and then we have
one less parameter to consider.

We now turn our attention to how the families behave
with respect to α and γ. In Figures 2 and 3 we plot
the same quantities as in Figure 1, each column with
a given value of γ, having for Figure 2 the values 3

2 ,
5
3

and 2, and for Figure 3 the values 5
2 , 4 and 9. In each

graph, each family corresponds to a given value of α,
again being indicated by a red dot the last stable solution.
For γ > 2, a vertical red line indicates the separation
between solutions that respect causality from those that
violate it, being the acceptable solutions to the left of
said line. From the M − R diagrams we see that for
a given γ, the solutions are more extended and massive
the higher α is. Please note that in the first line of plots
in Figure 2 the scale is log− log while in Figure 3 it is
linear. This means that for γ < 2 a change in α produces
a big change in M and R, while for γ > 2 the effect
is much less pronounced. This also corresponds to how
soft or stiff the equation of state is, and we can see that
this does not depend on α. We see that γ = 2 is the
transition value from a gas like behaviour for γ < 2 to
a liquid like behaviour for γ > 2. For γ < 2 the limit
p0 → 0 has R → ∞ while for γ > 2 the limit p0 → 0
has R → 0. In other words, for the gas like behaviour
there is no maximum radius for a family of objects, while
for the liquid like behaviour there is no minimum radius.
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(a) γ = 5
3

(b) γ = 2 (c) γ = 4

FIG. 1: M vs. R, Q
M vs. p0 and C vs. p0 for families with varying κ. In all cases α = 0.5 and each column

corresponds to a given value of γ. The red dots indicate the last stable solution.

The transition value is γ = 2, where for a given family
there is both a maximum and minimum radius.

Turning our attention to the ratio Q
M , the behaviour

is as expected. That is, limp0→0
Q
M = α, and it increases

with increasing p0, although we always have Q
M < 1. We

have tried to construct solutions with α > 1 but have
been unsuccessful, even for α slightly above 1. For a
given family, the maximum of Q

M is obtained for the last
stable solution, but if we increase γ the causality condi-
tion starts to limit the range of p0 and said maximum can
not be attained. It is interesting to note that the maxi-

mum value of p0 allowed for a given family decreases with
increasing α, we explore this in the next section.

Finally, we consider C. As expected, for given values
of γ and α, C is an increasing function of p0 and the
allowed maximum is attained for the last stable object in
the family. If γ is big enough, the last acceptable object
is limited by causality, and the maximum value of C is
obtained for the last causal object. If we now consider γ
as fixed and check the maximum values of C as functions
of α we see that the behaviour depends on the value of
γ. For low γ the maximum of C is obtained for α = 0.
That is, if the equation of state is soft enough, the most



6

(a) γ = 3
2

(b) γ = 5
3

(c) γ = 2

FIG. 2: M vs. R, Q
M vs. p0 and C vs. p0 for families with varying α. Each column corresponds to a given value of

γ. The red dots indicate the last stable solution.

compact object possible corresponds to the neutral case.
For γ big enough, the behaviour reverses, and the most
compact object corresponds to the biggest α. Also, as γ
increases the maximum of C approaches C = 1, although
the range of p0 gets limited more and more. In the next
section we explore this limit.

IV. THE BLACK HOLE MIMICKER LIMIT

In this section we present the analysis of the possibil-
ity of obtaining black hole mimickers made of polytropic

charged matter. For this we analyze the allowed values
of p0 and the extremality measures, Q

M and C. In Figure

4 we present the maximum allowed values of p0,
Q
M and

C as functions of α and for several values of γ. The first
line of plots corresponds to 0 ≤ α ≤ 0.99 while the sec-
ond line zooms into the range 0.99 ≤ α ≤ 0.999. In the
graphs we have indicated with a solid line the bounds cor-
responding to the last stable object in the family, while
the dashed line correspond to the last causal object in the
same family. Therefore, for γ ≤ 2 there is no dashed line.
We see that, for fixed α the allowed range for p0 regard-
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(a) γ = 5
2

(b) γ = 4 (c) γ = 9

FIG. 3: M vs. R, Q
M vs. p0 and C vs. p0 for families with varying α. Each column corresponds to a given value of

γ. The red dots indicate the last stable solution. The red lines indicate the last causal solution.

ing stability is an increasing function of γ. Conversely,
regarding causality, said range is a decreasing function.
Also, regarding causality, we have that limα→1 p0 = 0.
This is a very strong restriction, as it shows that if we
want to approach the limit α → 1 we at the same time
have to reduce the pressure and approach p0 = 0. In fact,
in the case α = 1 we are left with p0 = 0, and therefore
no matter is present.

Regarding Q
M , in the second column of Figure 4 we

plot first Q
M − α, as it is clearer the different behaviour

for different values of γ. Here it is important to check

first if the bound is imposed due to stability or due to
causality. For example, for γ = 5

2 the bound is only due
to stability, while for γ = 9 the bound is first due to
causality and then, close to α = 1 it is due to stability.
The main conclusion here is that Q

M can be above α but

that always Q
M < 1 for α < 1 and that for all γ we have

limα→1
Q
M = 1.

Lastly, considering C, for a given α, regarding stability
C is an increasing function of γ, while regarding causal-
ity one needs to be careful, because it depends on the
particular value of α, although generally it is a decreas-
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FIG. 4: Maximum allowed values of p0,
Q
M and C as functions of α for several values of γ. Solid lines indicate

bounds due to stability and dashed lines indicate bounds due to causality.

ing function of γ. More importantly, C is bounded above
away from C = 1 for any given γ. We see that if we want
to approach C = 1 we need to take two limits at the same
time, α → 1 and γ → ∞. This is our main conclusion,
that to obtain a black hole mimicker we need to take
said double limit, and this in fact imposes also the limit
p0 → 0. Therefore, if we just take those limits we are left
with an empty flat spacetime. The only workaround is
to notice that the limit can be taken in such a way that
at the same time κ → 0, and if done carefully, although
p → 0 we have ρ ̸= 0. This limit is in fact the known
ECD spacetimes, for which p = 0 and α = 1, and which
correspond to an ERN exterior.

V. CONCLUSIONS

We have numerically constructed and analyzed fami-
lies of electrically charged polytropic spheres. Regarding
the constitutive relation for charge, we take the charge
density to be proportional to rest mass density, as we
consider that the fluid is composed of particles with a
fixed charge to mass ratio. With respect to the equa-
tion of state, we considered relativistic polytropes, where

the polytropic relation is with respect to rest mass den-
sity. To consider the obtained objects as physically fea-
sible, we impose the usual stability condition and also
the causality condition of the speed of sound being be-
low the speed of light. Our main conclusion is that qua-
siblack holes can not be formed of charged polytropic
matter. In fact, the limit for obtaining a black hole mim-
icker is subtle and ends up being ECD. This also shows
that starting with polytropic matter we can not construct
non-extremal black hole mimickers. It is still possible to
construct charged solutions with Q

M ≈ 1, but this so-
lutions are quite extended and faint, and the closer we
get to extremality the closer we are to ECD. These re-
sults lend support to the conjecture of the impossibility
of forming extremal black holes through the collapse of
regular charged matter.
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