
SHARE: Secure Hardware Allocation and Resource
Efficiency in Quantum Systems
Suryansh Upadhyay

The Pennsylvania State University
University Park, PA, USA

sju5079@psu.edu

Swaroop Ghosh
The Pennsylvania State University

University Park, PA, USA
szg212@psu.edu

Abstract—Quantum computing (QC) is poised to revolutionize
problem-solving across various fields, with research suggesting
that systems with over 50 qubits may achieve quantum advan-
tage—surpassing supercomputers in certain optimization tasks.
As the hardware size of Noisy Intermediate-Scale Quantum
(NISQ) computers continues to grow, Multi-tenant computing
(MTC) has emerged as a viable approach to enhance hardware
utilization by allowing shared resource access across multiple
quantum programs. However, MTC can also bring challenges
and security concerns. This paper focuses on optimizing quantum
hardware utilization in shared environments by implementing
multi-programming strategies that not only enhance hardware
utilization but also effectively manage associated risks like
crosstalk and fault injection. We propose a novel partition-
ing and allocation method called Community-Based Dynamic
Allocation Partitioning (COMDAP) and Secure COMDAP to
refine and secure multi-programming capabilities in quantum
systems. COMDAP ensures equitable and efficient resource
distribution, addresses the issues of suboptimal partitioning, and
significantly improves hardware utilization. We report a 23%
average improvement in hardware utilization rate compared to
existing greedy heuristics, with rates averaging 92%. COMDAP
introduces an average increase of approximately 0.05X in ∆CX,
alongside a 3.5% average reduction in PST across benchmarks.

Index Terms—Quantum Computing Security, Multi-tenant
computing, Community Algorithms, Crosstalk

I. INTRODUCTION

Quantum computing (QC) has drawn significant interest
for its potential to transform problem-solving in numerous
fields. Utilizing the unique principles of quantum mechanics,
including superposition, entanglement and interference, these
advanced computing systems can potentially achieve exponen-
tial speedup to tackle certain computational tasks compared
with the classical computers. With potential uses that extend
to machine learning [1], security [2], drug discovery [3], and
optimization [4], quantum computing is becoming increasingly
important to both academia and industry.

The practical implementation of quantum computing faces
formidable challenges, including qubit decoherence, measure-
ment errors, gate errors, and temporal variations. However,
quantum computing continues to progress with the introduc-
tion of IBM’s 133 qubit ‘Quantum Heron’ which is distin-
guished by an architecture that significantly reduces error rates,
improving upon the 127 qubit ‘Quantum Eagle’. Nevertheless,
these devices fall into the Noisy Intermediate-Scale Quantum
(NISQ) category and are limited by qubit connectivity and

Fig. 1. An exemplary quantum computing system operating at 25.93%
qubit utilization, executing a program for a single user while other users
await access. This highlights need for multiprogramming approaches that
enhance resource efficiency without compromising security against potential
adversarial attacks such as fault injection and information stealth [9] [14].

gate fidelity. Quantum computers are typically accessed via
cloud services, which offer users convenience and scalability.
Cloud-based quantum computing platforms from IBM and
others offer remote access to quantum resources but face
challenges such as job submission latency and queue backlogs,
impacting efficient hardware utilization (Fig.1). Addressing the
efficient use of quantum resources without sacrificing circuit
fidelity remains a critical concern in optimizing NISQ device
performance. To address this challenge, the concept of multi-
tenant computing (MTC) has emerged [6] [7] [8] [9], gaining
prominence with the rise in hardware size and improved qubit
error rates.

Motivation: Multi-programming can significantly enhance
the utilization of quantum hardware by mapping multiple
quantum programs onto a single quantum hardware con-
currently. However, this strategy may affect the reliability

ar
X

iv
:2

40
5.

00
86

3v
1

 [
qu

an
t-

ph
]

 1
 M

ay
 2

02
4

of programs due to several factors: a) limited availability
of high-fidelity qubits, b) crosstalk from simultaneous gate
operations, c) connectivity constraints necessitating SWAP
operations for 2-qubit gates between non-adjacent qubits d)
potential exploitation of connectivity constraints and crosstalk
in multi-tenant environments for malicious purposes. Current
partition methods, often based on greedy algorithms [6], prior-
itize resource allocation to programs with high computational
demands [6] [8], typically those requiring a significant number
of CNOT gates. This prioritization can result in inequitable
treatment of less intensive programs, which may receive sub-
optimal qubits and mappings due to their lower priority. This
approach can inadvertently provide adversaries opportunities
to strategically exploit specific qubits or manipulate gaps
in scheduling and partitioning policies [9]. Therefore, it is
essential to develop robust and equitable resource allocation
strategies that minimize interference to enhance both the
reliability and security of quantum computations in multi-
programming environments.

This paper seeks to answer a critical question: How can
we efficiently and securely utilize quantum hardware in a
shared environment? We introduce a novel partitioning and
allocation method that uses community detection algorithms to
enhance the multi-programming capabilities of quantum hard-
ware while enhancing the hardware-utilization and managing
the associated security risks. Our approach is designed not
just to create a single or few, highly optimized partition but to
ensure that all partitions are fair and perform similarly. This
approach also helps reduce the number of broken links—a
common issue in poorly optimized partitions—and increases
hardware utilization. By using the Louvain algorithm for com-
munity formation [10], we initially identify natural groupings
within a quantum system to form communities. To further
refine the efficiency and effectiveness of partitioning, we
introduce a new metric called the Connectivity and Reliability
Index (CRI). This index evaluates the quality of partitions
by considering the density of connections within communities
and the error rates. By distributing quantum resources more
equitably across the network, we aim to achieve a balance that
not only enhances performance but also ensures fairness. This
strategy is particularly effective in multi-tenant environments
where equitable access to quantum resources is essential.

Our proposed framework builds on existing research and
contributes to the field of quantum computing by providing
innovative solutions for dynamic resource management.

Contributions: In this work we (a) present a Greedy
approach using the Connectivity and Reliability Index , (b)
develop Community-Based Dynamic Allocation Partitioning
(COMDAP), (c) enhance COMDAP with Secure COMDAP,
(d) introduce the Connectivity and Reliability Index (CRI) to
evaluate partition quality, (e) conduct exhaustive simulations
using diverse quantum circuits and backends to validate the
performance and efficiency of our partitioning heuristics.

Paper organization: Section II provides background infor-
mation. Section III outlines the challenges in fair and secure
resource allocation. In section IV we discuss our proposed

heuristics. Section V presents simulations, results, and analy-
sis. The discussions are presented in Section VI. Section VII
concludes the paper.

II. BACKGROUND

A. Qubits and Quantum gates

Qubits are similar to classical bits in that they store data
through internal states such as |0⟩ and |1⟩. However, due to
their quantum nature, qubits can exist in a superposition of
both |0⟩ and |1⟩. A qubit’s state, denoted by φ = a |0⟩ + b
|1⟩, can be expressed as a combination of complex probability
amplitudes, a and b, corresponding to the states ket0 and ket1.
Mathematically, quantum gates are represented using unitary
matrices (a matrix U is unitary if UU† = I, where U† is the
adjoint of matrix U and I is the identity matrix).

B. Quantum errors

Qubits are highly sensitive to noise and are error-prone. Key
error types that affect quantum computing operations include:

1) Coherence Errors: interactions between qubits and their
surrounding environment lead to state decoherence, introduc-
ing errors that limit the effective circuit depth achievable on
Noisy Intermediate-Scale Quantum (NISQ) devices [11].

2) Operational Errors: imperfections in quantum gate im-
plementation, often caused by imprecise pulse delivery, result
in operational errors. These errors manifest as inaccuracies in
the rotational angles required for specific quantum operations,
potentially causing qubits to under-rotate or over-rotate, thus
deviating from their intended states [12].

3) Measurement Errors: flaws in measurement circuitry
can lead to measurement errors, where qubits read as ’0’
may actually be ’1’, and vice versa. These readout errors can
result in incorrect computational outcomes, regardless of the
accuracy of preceding quantum operations [13].

4) Crosstalk: crosstalk between qubits during parallel gate
operations presents a significant challenge, as it can degrade
the performance of each involved qubit [14]. Crosstalk is
particularly problematic in densely packed quantum circuits
where multiple operations occur simultaneously.

C. Quantum Cloud Services

Quantum computers require extensive and expensive in-
frastructure, including cryogenic coolers and superconducting
wires, making direct access challenging. Quantum cloud ser-
vices like those offered by IBM, Google, and AWS Braket,
provide users with remote access to the users worldwide
while simplifying the management of these complex systems.
However, several challenges persist:

1) Resource Under-utilization: Current quantum cloud ser-
vices execute only one program per run, leading to significant
under-utilization of hardware. This operational mode leaves
many qubits idle, especially in larger quantum systems, where
the extent of unused resources can be substantial.

2) Long wait times: Rapid increase in quantum computing
research and demand outpaces the development/availability of
new quantum computers, creating bottlenecks and extended
wait times for access resulting in long wait queues. This is
specifically a challenge for iterative algorithms.

3) Security Risks: Access to quantum computing through
cloud services like those offered by IBM, Google, and AWS
Braket, while necessary, is expensive, may push users towards
potentially untrustworthy third-party services. Such third-party
services could pose risks by enabling the theft of sensitive
intellectual property from quantum circuits, similar to risks
associated with untrusted compilers [15].

D. Multi-tenant computing and scheduler

Multi-tenant computing (MTC) allows multiple programs
or tasks to run concurrently on the same computer system.
To ensure efficient and fair execution of quantum algorithms,
it is critical to manage and optimize the allocation of quan-
tum resources in a cloud-based environment. A scheduler is
essential for orchestrating quantum jobs, assigning them to
available quantum devices, and prioritizing them based on
criteria such as Service-Level Agreements (SLAs), user priority
and fairness, and resource constraints.

E. Fairness in Resource Allocation and Fair Share Queue

In the context of this work, fairness involves the equitable
allocation of quantum computing resources, particularly qubits
and their connectivity, to each program operating on a shared
quantum system. We assume that a fair share queue based
on IBM’s current policy [17] and a scheduler are already in
place. When a quantum system is available for more tasks,
it requests the next job from the fair-share scheduler. The
scheduler typically selects the next job by first determining
which group has used the least of their allocated time within
the scheduling window. Within each group, program execution
is prioritized based on the least used share, with the oldest
jobs being prioritized first-in-first-out (FIFO). This policy can
also be used for MTC to select multiple programs for parallel
execution on the quantum hardware.

F. Louvain community algorithm

The Louvain Community Detection Algorithm is a widely-
used method for identifying community structures within
networks. It operates as a heuristic approach that optimizes
modularity, which is a scale of how densely connected the
nodes within a community are compared to nodes in different
communities [10]. Initially, every node is assigned to its
own community. The algorithm then examines each node
to determine if there is a modularity gain by moving it to
a neighboring community. For each node, it calculates the
potential gain from moving the node to each of its adjacent
communities. If moving a node results in a positive modu-
larity gain, the node is relocated to the community with the
maximum gain. If no community offers a positive gain, the
node remains in its original community. The calculation of the
modularity gain from moving an isolated node into a different

community is essential for this process. The modularity gain
∆Q can be computed with the following formula, derived from
combining prior studies and algebraic adjustments:

∆Q =

(∑
in−(

∑
tot×ki)

2m

)
+ γ

(
ki × kin

2m2

)
(1)

Here,
∑

in represents the sum of the weights of the links
from nodes in the community to node i, ki is the sum of the
weights of the links incident to node i,

∑
tot is the sum of the

weights of the links incident to all nodes in the community,
m is the total weight of all edges in the graph, and γ is
the resolution parameter, which adjusts the scale at which
community detection operates.

G. Relation to prior work

The multi-programming environment for a qunatum hard-
ware was first introduced by developing the Fair and Reliable
Partitioning (FRP) method [7]. This method, which catego-
rizes qubits based on utility derived from connectivity and
error rates, often expands from a high utility root, leading
to biased allocations favoring specific processor regions and
overlooking crosstalk in hardware partitions. In contrast, our
approach utilizes a community-based strategy with a commu-
nity detection algorithm that identifies qubit groups by inter-
connectivity and reliability. This not only captures clustering
effects and local topologies but also ensures equitable resource
distribution across the hardware. Unlike methods that focus
on iterative expansion [6] [7] and prioritize individual qubit
fidelity, our method optimizes the collective characteristics of
qubit clusters to form robust sub-networks.

In contrast to the approach described in [5], which employs
reinforcement learning (RL) to optimize circuit placement
by learning device noise characteristics, we utilize the Lou-
vain algorithm for community detection. This method forms
a hierarchy of partitions, diverging significantly from the
RL-based strategy. Training an RL agent can be inherently
complex and resource-intensive. In comparison the hierarchy
tree is constructed once per calibration cycle and can be
reused across multiple allocations without incurring additional
computing overheads. In [8], the authors present CDAP, a
qubit mapping scheme that uses the Fast Newman (FN)
algorithm to create initial mappings for concurrent quantum
programs and establish a hierarchy tree. This method primarily
focuses on minimizing crosstalk within partitions and over-
looks the crosstalk between them, which introduces security
vulnerabilities in multiprogramming environments. In contrast,
our approach comprehensively mitigates these limitations by
developing equitable and secure partitions that address security
threats including crosstalk and adversarial SWAP injection.

III. CHALLENGES IN FAIR AND SECURE RESOURCE
ALLOCATION

In our work, we address the following challenges to boost
throughput, ensure fair resource distribution and minimize
security risks for simultaneous execution of multiple programs
on NISQ computers:

A. Qubit variability

The varying error rates and coherence times of qubits
present substantial challenges for fair resource allocation
in multi-programming environments. These error rates are
not constant but fluctuate over time, which directly affects
the reliability of the computations that the allocated qubits
perform [16]. For example, consider a five-qubit quantum
system running two programs: Program1 needs 3 qubits and
Program2 needs 2. Qubits 1, 2, 3, and 5 have lower error
rates compared to the more error-prone qubit 4. When run
separately, Program1 uses qubits 1, 2, and 3, while Program2
would typically use a subset of these. However, when both
programs run simultaneously, there’s a compromise due to
limited qubit availability. Program1 still uses qubits 1, 2, and
3, but Program2 has to use qubits 4 and 5, despite qubit 4’s
higher error rate.

B. Connectivity constraint and SWAP operations

Application reliability in quantum computing is influenced
by qubit allocation, program characteristics, and the network
topology of the assigned region. In superconducting quantum
systems, qubits are interconnected via resonators (waveg-
uides), which are integral for implementing multi-qubit gates
such as the controlled-NOT (CNOT) and controlled-Z (CZ)
gates used in IBM and Rigetti quantum systems, respec-
tively. Not all qubits are interconnected and this restricted
connectivity poses a challenge in quantum circuit mapping
(known as coupling constraints), which is addressed by routing
qubits using the SWAP operation to ensure that logical qubits
requiring 2-qubit operations are in close proximity, albeit at
the expense of:

a) Increase in circuit depth: extra SWAP operations result
in an increase in the overall depth of the quantum circuit.

b) Computational overhead: each SWAP operation con-
sumes additional gate resources and prolongs the execution
time of the circuit.

c) Error accumulation: as each SWAP operation intro-
duces its own sources of error, extra SWAP operations con-
tribute to error accumulation.

A well-connected topology can reduce the number of SWAP
operations needed to position non-adjacent qubits for execut-
ing a CNOT gate.

C. Security

1) Crosstalk Induced Faults: Crosstalk represents a sig-
nificant security risk, particularly as quantum computers are
expected to operate in multi-user environments, providing
services via public cloud platforms. This shared environment
allows for the operations of neighboring circuits to interfere
with each other through crosstalk. Such interference can be
intentionally leveraged to inject fault, resulting in degraded
program performance or incorrect outputs [14].

2) Adversarial SWAP Injection: Quantum jobs, when sub-
mitted to a quantum system, are queued in the scheduler
alongside other submissions, awaiting execution. This schedul-
ing process, which determines the execution sequence and

concurrency of tasks, can be exploited due to the connectivity
constraints and unfair priority based hardware allocation
approaches. By strategically occupying specific qubits, an
adversary can force a significant increase in SWAP operations
in the victim’s program [9].

IV. FAIR AND SECURE HARDWARE ALLOCATION

A. Assumptions and approach

In this work, we assume that a fair share queue and a
scheduler are already in place. We propose and benchmark
four distinct hardware partitioning heuristics: the Greedy
heuristic using an attractor node approach (which serves as our
baseline), Greedy Hardware Allocation using CRI, COMDAP:
Community-Based Dynamic Allocation Partitioning, and Se-
cure COMDAP that incorporates crosstalk considerations.
Additionally, we introduce the Connectivity and Reliability
Index (CRI), a metric we employ to quantify and enhance the
efficiency and effectiveness of our partitioning methods.

B. Connectivity and Reliability Index (CRI)

This metric is designed to quantitatively assess and compare
partitions within quantum hardware. Traditional methods of
comparing partitions often fall short due to disparities in
relative partition sizes, making direct comparisons unfeasible.
To address this, the CRI provides a normalized metric that
evaluates each partition based on its connectivity and error
performance relative to the original, unpartitioned hardware.
Specifically, the CRI measures how good/bad a given partition
is compared to the unpartitioned hardware. By doing so, it
provides a standardized index and allows for more accurate
and fair comparisons between different hardware partitions,
ensuring that each is assessed on a like-for-like basis with
regard to its connectivity and reliability. A CRI value of 1
indicates that the partition’s performance is equivalent to that
of the original hardware. If the CRI exceeds 1, the partition
is considered to outperform the original hardware in terms
of connectivity and error rates. Conversely, a CRI value less
than 1 suggests that the partition’s performance is inferior to
that of the original hardware. Mathematically, it is defined as
follows:

CRI =

Dpartition

Cpartition
+ α (1− (Epartition +Rpartition))

DHardware
CHardware

+ α (1− (EHardware +RHardware))
(2)

where:
a) Density (D): is defined as the ratio of the total number

of actual edges to the total number of possible edges in the
graph. Mathematically, it can be expressed as:

D =
2 ∗ E

N × (N − 1)
(3)

where E represents the number of actual edges, and N is the
number of nodes in the graph. A higher density value indicates
a greater degree of connectivity among the nodes, suggesting
more robust communication or interaction capabilities within
the partition/hardware.

Fig. 2. Proposed COMDAP framework for allocating quantum programs to hardware. Utilizing the Louvain algorithm, COMDAP structures hardware into a
hierarchy tree where communities are identified based qubit connectivity and CNOT error rates. Program allocation is then performed by assessing communities
with the CRI metric, ensuring optimal and feasible partitioning for queued programs.

b) Compactness (C): evaluates the degree to which elements
within a partition or the entire quantum hardware are closely
grouped or interconnected. A lower compactness score indi-
cates that the elements are more densely packed. Compactness
is quantitatively defined as:

C =
diameter

max possible diameter
(4)

where the diameter represents the maximum distance be-
tween any two nodes in coupling map of that partition or
hardware.

c) Alpha (α): is a weighting factor used to balance the
influence of error terms against connectivity and compactness
measures. Adjusting α allows for emphasizing either structural
or error aspects depending on the specific requirements or
goals of the partitioning strategy. For all our evaluations we
set α to 1.

d) Average CNOT error (E): represents the average CNOT
error rate of a partition/hardware. It quantifies the operational
errors associated with CNOT gate operations.

e) Average readout error (R): represents the readout error
rate of a partition/hardware.

C. Attractor Node-Based Greedy Hardware Allocation

The Greedy attractor node based heuristic, similar to prior
works [6] [7], identifies optimal nodes—attractor nodes—for
constructing hardware partitions. These nodes are selected
based on their connectivity and error rates, which are quanti-
fied using the Composite Fidelity Metric (CFM):

CFM = d+ (1− (avg cnot+ re)) (5)

Where, d represents the degree of the qubit, avg cnot is
the average CNOT error, and re denotes the readout error.
The CFM effectively integrates the node’s connectivity (de-
gree) with penalties for average CNOT and readout errors.
Nodes that achieve higher scores are preferred for their robust
connectivity and lower error rates, making them ideal for
forming subgraphs tailored to specific quantum programs.
Partition formation begins with a breadth-first search (BFS)

Algorithm 1: Greedy Hardware Allocation
Input: p: program properties, G: hardware graph
Output: Allocated partitions and hardware utilization

1 allocated partitions ← []
2 allocated nodes ← set()
3 for size in program sizes do
4 max metric ← −∞
5 best partition ← None
6 for subgraph in possible subgraphs do
7 current metric ← calculate metric
8 if current metric > max metric then
9 max metric ← current metric

10 best partition ← subgraph
11 end
12 end
13 if best partition then
14 allocated partitions.append((best partition,

max metric))
15 allocated nodes.update(best partition.nodes())
16 end
17 end

Output: allocated partitions, hardware utilization

from a selected attractor node. This approach involves explor-
ing neighboring nodes that are neither part of any existing
subgraph nor previously allocated. The selection of candidates
is based on their CFM scores, prioritizing those with the best
metrics. This process is continued until the subgraph either
meets the required size or exhausts all potential nodes. Once a
subgraph reaches the necessary size, it is assessed by summing
the CFM scores of its constituent nodes. The subgraph with
the highest total score is then chosen as the optimal partition
for a program.

D. Greedy Hardware Allocation using CRI

The Greedy Hardware Allocation Strategy, outlined in Algo-
rithm 1, is designed to optimally distribute hardware resources
across quantum programs in the queue as per their specific

requirements (size, qubits and connectivity). It iteratively se-
lects the most appropriate hardware partition for each program,
aiming to maximize the CRI.

First, the heuristic initializes an empty set to track nodes
allocated to any program, ensuring no double-booking of
resources. It then examines all viable subgraphs of the quan-
tum hardware graph G (generated using the coupling map of
the hardware), excluding any previously allocated nodes, to
identify potential partitions for each program based on size
requirements. For every candidate subgraph, the algorithm
computes CRI. The subgraph with the highest CRI is chosen as
the best partition for that program. Nodes within the selected
partition are then marked as allocated, and the partition’s
details are stored. If no appropriate partition is found, an empty
graph with a null metric is recorded, signaling no allocation
for that program. This process repeats for each program in the
queue until all have been assigned partitions or all the viable
qubit/qubit-links have been used.

E. Community-Based Dynamic Allocation Partitioning (COM-
DAP)

The COMDAP program allocation strategy is outlined in
Algorithm 2. It utilizes the Louvain algorithm to optimally
partition a quantum hardware. COMDAP begins with a graph
derived from the hardware’s coupling map, where CNOT
error rates are represented as edge weights. The Louvain
Community Detection Algorithm then identifies highly co-
hesive communities within this graph, employing a heuristic
approach based on modularity optimization. This ensures that
every partition is both feasible and optimally configured. The
COMDAP allocation strategy is structured into two phases:

1) Hardware profiling and hierarchy tree: A critical com-
ponent of our allocation strategy is the construction of a
hierarchy tree, based on the Louvain community detection
algorithm Fig.2. This tree has the following properties:

a) Node Representation: Each node within the hierarchy
tree represents a community of tightly interconnected physical
qubits, making it a potential candidate set for initial allocation.

b) Interconnection and Reliability: Nodes consist of
physical qubits chosen for their low CNOT error rates and
robust connectivity, ensuring a high degree of reliability.

c) Efficiency Across Calibration Cycles: Constructed once
per calibration cycle, the hierarchy tree can be reused without
additional computing overheads.

d) Resource Identification and Utilization: The tree struc-
ture aids in superior initial mapping by structuring physical
qubits based on their reliability and connectivity avoiding the
pitfalls of non-strategic, greedy algorithms.

2) Hardware Allocation for Queued Programs: The allo-
cation of quantum programs to physical qubits is achieved by
systematically exploring the hierarchy tree from the bottom
up. This tree structures the quantum hardware graph into
communities, each evaluated and characterised using the CRI
metric which assesses each community based on factors such
as average path length, node connectivity, density and error
rates.

Algorithm 2: COMDAP
Input: p : program properties, G : hardware graph
Output: Allocated partitions and hardware utilization

1 for each program in queue do
2 partition found ← False
3 for each community in hierarchy tree do
4 if community size ≥ program size then
5 subgraph ← community;
6 CRI ← calculate_CRI(subgraph);
7 if community size == program size and

CRI is the highest then
8 Allocate community to program;
9 Update hierarchy tree;

10 partition found ← True;
11 Break;
12 end
13 if no exact match and CRI highest for

largest community then
14 Allocate densest subset to program;
15 Update hierarchy tree;
16 partition found ← True;
17 Break;
18 end
19 end
20 end
21 if not partition found then
22 // Merge smaller communities;
23 base community ← closest size match with

highest CRI;
24 closest community ← nearest smaller

community for merging;
25 Merge base community and closest community,

recalculate CRI;
26 Allocate community to program;
27 Update hierarchy tree;
28 end
29 end
30 return allocated partitions, hardware utilization

The process of matching quantum programs to communi-
ties considers several scenarios, depending on the available
communities and their characteristics:

a) If a community exactly matching the program’s size and
possessing the highest CRI is found, it is directly allocated to
that program.

b) If no exact match is available, the heuristic identifies
the largest available community with the highest CRI. It
then selects the most densely connected subset within this
community that meets the program’s size requirements and
has the highest CRI.

c) If there is no larger community available (excluding the
complete hardware as a community), the strategy involves
combining smaller communities. The heuristic first finds a base
community that closely matches the program size requirements

Fig. 3. Comparison of hardware partition strategies: On the left, a representative fair share queue with 9 programs. The greedy attractor heuristic allocates
only 5 programs, leaving many qubits isolated. The greedy heuristic using CRI, shown in the middle, performs better. COMDAP achieves maximum hardware
and queue utilization.

Fig. 4. Comparison of hardware utilization for various partitioning methods
on the Fake27QPulseV1 backend across ten different queues.

and has the highest CRI. It then searches for the nearest
smaller community to merge, aiming to maximize the CRI
for the resultant partition.

This method ensures an equitable resource distribution
across programs, making each partition as close to optimal as
possible given the available hardware and program constraints.

F. Secure COMDAP

Secure COMDAP enhances the original COMDAP frame-
work by integrating heuristics designed to mitigate crosstalk,
which is essential for effectively executing parallel quantum
programs securely and with high fidelity. This section details
the methodologies and enhancements introduced in secure
COMDAP, including crosstalk characterization and the imple-
mentation of targeted padding strategies.

1) Crosstalk Characterization: In Secure COMDAP, we
leverage well-established research to address crosstalk in
quantum computing environments effectively. Drawing on
methodologies from references [18] and [19], we focus on
significant crosstalk effects observed at one-hop distances
between CNOT pairs such as Pi(CX0,1) and Pj(CX2,3).
Findings from [19] indicate that the pairs prone to strong
crosstalk remain consistent over time, thus reducing the need
for continuous re-characterization. Using results from Simul-
taneous Randomized Benchmarking (SRB) [19], we note that
when two qubits pairs, Pi and Pj , operate concurrently, the
error rates E(Pi-Pj) and E(Pj-Pi) significantly exceed those of
solo operations.

2) Heuristic1-Program Padding: Program Padding involves
allocating buffer qubits around the active community used by

a program. These qubits are marked as occupied, and hence
are unavailable for use in other programs. This setup forms
a physical isolation layer that effectively mitigates the risk of
crosstalk by preventing the simultaneous operation of CNOT
pairs across different programs.

3) Heuristic2-Smart Padding: Smart Padding refines the
basic concept of program padding by selectively applying it
based on detailed crosstalk characterization data. This method
specifically targets qubit links identified as highly susceptible
to crosstalk. We implement a threshold criterion from [19],
considering crosstalk significant if the correlated CNOT error
rate exceeds three times the baseline error (E(Pi-Pj) > 3∗
E(Pi)). This selective approach allows us to concentrate our
mitigation efforts on the most critically affected qubit pairs.
If 2 qubit pairs (Pi, Pj) are identified with a high correlated
error rate, smart padding is used to block the use of adjacent
qubits in concurrent operations, thereby drastically reducing
crosstalk potential. For example, in Fig. 2 qubit pairs (q8,q11)
and (q14,q16) are identified with highly crosstalk-sensitive
links. If a partition includes the pair (q8,q11), we pad the
directly connected qubit q14 to prevent any other program
from including the pair (q14,q16). This effectively reduces
crosstalk potential by ensuring these pairs do not overlap in
parallel-running programs. However, if pairs with such links
exist within the same partition, no padding is applied, since
the risk of crosstalk-induced adversarial fault injection mainly
concerns parallel executions. This ensures that padding is
judiciously used only to mitigate crosstalk between separate
programs.

V. RESULTS AND ANALYSIS

A. Experimental setup

We utilize the Qiskit open-source quantum software devel-
opment kit for simulating quantum environments. For bench-
marking, we use a variety of quantum circuits: iswap n2,
hs4 n4, simon n6, linearsolver n3, grover n2, qec en n5,
toffoli n3, adder n4, qec sm n5, inverseqft n4, pea n5, fred-
kin n3, basis trotter n4, adder n10, basis change n3 among
others, sourced from [20]. These benchmarks encompass a
range of qubit counts (2-12), gate counts (4-1000), circuit
depths, and connectivity patterns. To evaluate our approach,

Fig. 5. Distribution of Community Reliability Index (CRI) values across ten
queues for partitions allocated using COMDAP, Greedy heuristic, and Greedy
Attractor-node strategies.

Fig. 6. a) Comparative data on the impact of different hardware partitioning
heuristics on PST in a multi-tenant computing environment. The baseline for
comparison is single execution, which represents data from programs run
individually. b) PST variation for programs in queue 10.

we form queues from these benchmarks, with queue depths
surpassing the number of available hardware qubits, and
containing programs of varying sizes and priorities. For
benchmark execution, we primarily utilize Qiskit’s fake
provider module Fake27QPulseV1 (27 qubit noisy simu-
lator mimicking IBM’s Hanoi system). We also test our
heuristics across multiple fake provider modules, each with
different configurations and size. These include FakeCam-
bridge(28 qubits), FakeJohannesburg(20 qubits), FakeMel-
bourne(14 qubits), FakeRueschlikon(16 qubits), and FakeSin-
gapore(20 qubits).

B. Performance metrics

We evaluate our framework’s effectiveness using following
key performance metrics:

1)Probability of a Successful Trial (PST): Defined as the
fraction of trials that yield a correct result. A higher PST
indicates superior fidelity.

2)Number of Post-Mapping CNOT Gates: We evaluate
the efficiency of our partitioning policy by evaluating the
number of CNOT gates required post-mapping, which reflects
SWAP overheads.

3)Post-Mapping Circuit Depth: We also assess the depth
of the circuit following partition allocation.

4)Connectivity and Reliability Index (CRI): It evaluates
partition quality; a higher CRI indicates better connectivity
and performance.

C. Time complexity and Execution time

We evaluate the time complexities of the proposed heuris-
tics for hardware partitioning—Greedy Attractor Node-Based,
Greedy CRI-Based, and COMPDAP—and note substantial dif-
ferences in scalability and efficiency. The Greedy CRI-Based
heuristic, which identifies connected subgraphs in a graph G,
faces potentially exponential time complexity O(N target size),
due to its recursive depth-first search that extends subgraphs
by adding neighboring nodes. It can lead to a combinatorial
explosion, especially in dense graphs. The Greedy Attrac-
tor Node-Based heuristic sorts physical and logical qubits
and merges high-fidelity neighbor qubits into sub-partitions,
resulting in a polynomial time complexity O(mk2 + n log n)
where m is the number of starting points, k the size of sub-
partitions, and n the total nodes, making it more scalable.
COMPDAP leverages a community detection approach with
a logarithmic complexity O(n log n), making it efficient for
partitioning larger hardware setups. Moreover, for COMPDAP,
the hierarchy tree is constructed once per calibration cycle and
can be reused without additional computing overhead incurring
negligible time overhead. We report an average execution time
per queue of 5 s for the Greedy CRI-Based algorithm, 10
ms for the Greedy Attractor Node-Based algorithm, and 2 ms
for the COMPDAP algorithm. While the Greedy CRI-Based
algorithm struggles with scalability and is time-intensive for
larger graphs or higher target sizes, the COMPDAP heuristic
provides a more scalable and time-efficient solution for hard-
ware partitioning in multi-tenant computing environments.

D. Hardware Utilization

Fig. 4 illustrates hardware utilization for various partitioning
heuristics presented in this paper, tested across ten different
varieties of queues on the fake-backend Fake27QPulseV1.
For the attractor node-based greedy strategy, similar to [6],
we observe the lowest hardware utilization, with a maximum
of 82% and an average of 75%. In contrast, our CRI-based
greedy heuristic achieves a higher average utilization of 82%
with a max of 95%. The COMDAP heuristic is the most
effective, achieving 100% utilization for a given queue, with
an overall average of 92%. Secure COMDAP, which includes
a general padding approach to reduce interprogram crosstalk,
exhibits a lower average utilization of 62%. However, secure
COMDAP with a smart padding strategy has an average

Fig. 7. Comparison of a) SWAP overhead and b) change in circuit depth
across different heuristic approaches.

78% utilization while effectively addressing crosstalk issues.
Unlike attractor node-based greedy strategy that optimize for
individual partitions, COMDAP ensures that all partitions are
fair and perform similarly, significantly reducing broken links
and enhancing overall hardware utilization Fig. 3.

E. Partition Quality

We evaluate partition quality and allocation fairness using
CRI. A value of 1 indicates a partition’s performance matches
the original hardware, while values above 1 indicate better
relative connectivity and lower error rates, suggesting superior
performance. Using our COMDAP heuristic on a 27-qubit
hardware , all communities formed have a CRI over 1, indicat-
ing better performance compared to the baseline hardware Fig.
2. Notably, smaller communities show higher CRI values due
to their denser connections. Fig. 5 illustrates the distribution
of CRI values for programs allocated partition in a queue.
The CRI values are calculated only for programs in a queue
that have received an allocated partition through COMDAP.
An outlier value of 0 indicates no allocation. We observe
that COMDAP consistently exhibits a higher median CRI
across different queues, suggesting superior partition quality
compared to the CRI-based Greedy heuristic and the Greed
Attractor-node strategy. Additionally, COMDAP demonstrates
less variability in CRI values, indicating a more equitable
partition quality across programs of varying priorities.

Fig. 8. Comparative data on the impact of Secure COMDAP on PST in a
multi-tenant computing environment. The baseline for comparison is single
program execution.

F. Fidelity and PST

In Fig. 6(a), we report comparative data on the impact of
various hardware partitioning heuristics on PST in a multi-
tenant computing environment. The baseline for our analysis
is independent execution, wherein each program is run sep-
arately. We observe an average PST reduction across queues
by 13%, 6%, and 3.5% for the heuristics: Greedy based on
attractor node, Greedy using CRI, and COMDAP respectively.

We observe that the Greedy based heuristics may initially
outperform COMDAP by effectively allocating high-priority
programs through locally optimal qubit partitions, leading
to improved PST for these programs Fig.6(b). However, as
these strategies progress through the queue, the quality of
the remaining qubits/qubit connectivity likely declines due to
fragmentation or high error rates, resulting in poorer PST. In
contrast, the COMDAP tends to maintain a relatively stable
PST for all programs suggesting that it employs a more
equitable partitioning approach, ensuring a fair distribution
of resources among all programs.

G. Program depth and Swap overhead

We evaluate the impact of proposed hardware partitioning
heuristics on the post-transpilation increase in the number
of CNOT gates (∆CX), serving as an indicator of SWAP
overhead, and the variation in the quantum circuit’s depth post-
transpilation (∆depth), which influences the circuit’s execution
duration and potential error incidence. The benchmark for this
comparison is the single program execution, wherein programs
are executed individually. We compare data across ten distinct
queues, ensuring that only programs with an allocated partition
shared by all three of our heuristics were included in the
analysis to avoid data bias.

We observe a modest performance degradation with the
Greedy attractor node-based heuristic, showing an average
≈0.1X increase in ∆CX compared to single execution across
all queues (Fig. 7(a)). In contrast, COMDAP exhibited a
nominal average increase of ≈0.05X in ∆CX. Meanwhile,
the CRI-based greedy heuristic demonstrated no change in

Fig. 9. Hardware utilization for COMDAP Secure smart pad with varying
no. of crosstalk-prone links for Fake27QPulseV. We generate 100 different
configurations for each case and report the average hardware utilization for
queue 10.

average delta CX. Additionally, both COMDAP and the CRI-
based greedy heuristic showed a slight average depth increase
of ≈0.1X (Fig. 7(b)).

H. Secure COMDAP

Secure COMDAP is designed to mitigate security threats
in multi-tenant quantum computing. Due to the limited avail-
ability of real hardware, we randomly designate few qubit
links to be crosstalk error prone (Section IV.E). In Fig. 9, we
generate 100 different configurations for each possible number
of crosstalk-prone links in the hardware and report the average
hardware utilization for queue 10. We observe that Secure
COMDAP, when using a general padding approach, results
in a lower average hardware utilization of 55% compared to
the standard COMDAP(97%). However, by employing a smart
padding strategy, we see significant improvements in hardware
utilization across all scenarios of crosstalk-prone links. We
also observe an average PST reduction when compared to
single execution, across queues by ≈4%, and ≈3.5% for
the heuristics: secure COMDAP general pad and smart pad
respectively (Fig. 8). We compare data across ten distinct
queues, ensuring that only programs with an allocated partition
shared by all three of the COMDAP heuristics were included
in the plot to avoid data bias. Secure COMDAP maintains
similar program performance levels as COMDAP but with
lower hardware utilization. It provides security against the
following two prominent threats:

1) Crosstalk Induced Faults: Secure COMDAP identifies
and monitors qubit pairs with high error rates when operating
concurrently using SRB [18]. By implementing general/smart
padding, it places a protective buffer around highly susceptible
qubit pairs, preventing their simultaneous operation with other
pairs. It effectively reduces crosstalk and also safeguards
against any adversarial programs that might exploit crosstalk
to induce faults.

2) Adversarial SWAP Injection: Previously proposed pro-
gram allocation heuristics [6] [7] [8] prioritize programs with
a high number of CNOT gates to allocate better-connected

Fig. 10. Hardware utilization for proposed partitioning heuristics.

qubits. However, COMDAP aims to distribute resources eq-
uitably, without preferentially allocating programs based on
their CNOT gate count. Our strategy effectively complicates
any adversary’s attempt to target specific qubits and initiate
a SWAP injection attack. Despite running all programs con-
currently, the average increase in (∆CX) is minimal, about
0.05X.

VI. DISCUSSION

A. Efficacy across different hardware topologies

We test our heuristics across multiple fake provider mod-
ules, each with different configurations and sizes. Fig. 10 il-
lustrates hardware utilization for various partitioning heuristics
and shows the average utilization for different 10 queues for
each backend. For the attractor node-based greedy strategy,
we observe the lowest hardware utilization with an average
of 82%. The COMDAP heuristic is the most effective across
different hardware topologies, with an overall average of 96%.

B. Implementation on real hardware

Fake backends, which run on classical computers, offer
the advantage of quick simulations by avoiding the long
queues and limited access time typical of real hardware. While
benchmarks on actual hardware might yield more accurate
results due to factors like crosstalk, the use of proposed
heuristics—which enhance hardware utilization —would not
significantly alter the overall conclusions as our heuristics
account for crosstalk. One could feed the accurate crosstalk
prone links to secure COMDAP by performing SRB experi-
ments to recalibrate the partitioning and allocation.

VII. CONCLUSION

In this work, we address fundamental challenges in multi-
tenant quantum computing, focusing on equitable hardware
allocation, crosstalk mitigation, and security against fault
injection attacks and adversarial SWAP injection attacks. We
propose a novel framework that includes Community-Based
Dynamic Allocation Partitioning (COMDAP) and its secure
enhancement. We report a notable enhancement in resource
allocation efficiency, with COMDAP achieving a 23% higher
hardware utilization rate than traditional greedy heuristics,
while providing a secure multi-tenant environment.

VIII. ACKNOWLEDGMENT

This work is supported in parts by NSF (CNS-1722557,
CNS-2129675, CCF-2210963, CCF-1718474, OIA-2040667,
DGE-1723687, DGE-1821766, and DGE-2113839) and Intel’s
gifts.

REFERENCES

[1] I. Cong, S. Choi, and M. D. Lukin, “Quantum convolutional neu-
ral networks,” Nature Physics, 2019. [Online]. Available: https:
//doi.org/10.1038/s41567- 019- 0648- 8.

[2] Upadhyay, Suryansh, and Swaroop Ghosh. ”Robust and Secure Hybrid
Quantum-Classical Computation on Untrusted Cloud-Based Quantum
Hardware.” arXiv preprint arXiv:2209.11872 (2022).

[3] Y. Cao, J. Romero, and A. Aspuru-Guzik, “Potential of quantum com-
puting for drug discovery,” IBM Journal of Research and Development,
vol. 62, no. 6, pp. 6–1, 2018.

[4] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

[5] Harper, Benjamin, et al. ”Crosstalk Attacks and Defence in a Shared
Quantum Computing Environment.” arXiv preprint arXiv:2402.02753
(2024).

[6] Niu, Siyuan, and Aida Todri-Sanial. ”Enabling Multi-tenant computing
mechanism for quantum computing in the NISQ era.” Quantum 7 (2023):
925.

[7] Das, Poulami, et al. ”A case for Multi-tenant computing quantum
computers.” Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. 2019.

[8] Liu, Lei, and Xinglei Dou. ”QuCloud+: A Holistic Qubit Mapping
Scheme for Single/Multi-programming on 2D/3D NISQ Quantum Com-
puters.” ACM Transactions on Architecture and Code Optimization 21.1
(2024): 1-27.

[9] S. Upadhyay and S. Ghosh, ”Stealthy SWAPs: Adversarial SWAP
Injection in Multi-Tenant Quantum Computing,” 2024 37th International
Conference on VLSI Design and 2024 23rd International Conference on
Embedded Systems (VLSID), Kolkata, India, 2024, pp. 474-479, doi:
10.1109/VLSID60093.2024.00085.

[10] Blondel, Vincent D., et al. ”Fast unfolding of communities in large
networks.” Journal of statistical mechanics: theory and experiment
2008.10 (2008): P10008.

[11] Iverson, Joseph K., and John Preskill. ”Coherence in logical quantum
channels.” New Journal of Physics 22.7 (2020): 073066.

[12] Magesan, Easwar, et al. ”Efficient measurement of quantum gate error
by interleaved randomized benchmarking.” Physical review letters 109.8
(2012): 080505.

[13] Busch, Paul, Pekka Lahti, and Reinhard F. Werner. ”Colloquium: Quan-
tum root-mean-square error and measurement uncertainty relations.”
Reviews of Modern Physics 86.4 (2014): 1261

[14] Ash-Saki, Abdullah, Mahabubul Alam, and Swaroop Ghosh. ”Analy-
sis of crosstalk in NISQ devices and security implications in multi-
programming regime.” In Proceedings of the ACM/IEEE International
Symposium on Low Power Electronics and Design, pp. 25-30. 2020.

[15] Upadhyay, Suryansh, and Swaroop Ghosh. ”Obfuscating quantum
hybrid-classical algorithms for security and privacy.” arXiv preprint
arXiv:2305.02379 (2023).

[16] Prakash Murali, Jonathan M Baker, Ali Javadi-Abhari, Frederic T
Chong, and Margaret Martonosi. 2019. Noise-adaptive compiler map-
pings for noisy intermediatescale quantum computers. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 1015–1029.

[17] https://quantum-computing.ibm.com/services/resources/docs/resources/
manage/systems/queue

[18] Gambetta, Jay M., et al. ”Characterization of addressability by simulta-
neous randomized benchmarking.” Physical review letters 109.24 (2012):
240504.

[19] Prakash Murali, David C McKay, Margaret Martonosi, and Ali Javadi-
Abhari. Software mitigation of crosstalk on noisy intermediate-scale
quantum computers. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 1001–1016, 2020.

[20] Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang.
”QASMBench: A Low-Level Quantum Benchmark Suite for NISQ
Evaluation and Simulation.” ACM Transactions on Quantum Computing
(2022). DOI:10.1145/3550488, [arXiv:2005.13018].

http://arxiv.org/abs/2209.11872
http://arxiv.org/abs/1411.4028
http://arxiv.org/abs/2402.02753
http://arxiv.org/abs/2305.02379
http://arxiv.org/abs/2005.13018

	Introduction
	Background
	Qubits and Quantum gates
	Quantum errors
	Coherence Errors
	Operational Errors
	Measurement Errors
	Crosstalk

	Quantum Cloud Services
	Resource Under-utilization
	Long wait times
	Security Risks

	Multi-tenant computing and scheduler
	Fairness in Resource Allocation and Fair Share Queue
	Louvain community algorithm
	Relation to prior work

	Challenges in Fair and Secure Resource Allocation
	Qubit variability
	Connectivity constraint and SWAP operations
	Security
	Crosstalk Induced Faults
	Adversarial SWAP Injection

	Fair and Secure Hardware Allocation
	Assumptions and approach
	Connectivity and Reliability Index (CRI)
	Attractor Node-Based Greedy Hardware Allocation
	Greedy Hardware Allocation using CRI
	Community-Based Dynamic Allocation Partitioning (COMDAP)
	Hardware profiling and hierarchy tree
	Hardware Allocation for Queued Programs

	Secure COMDAP
	Crosstalk Characterization
	Heuristic1-Program Padding
	Heuristic2-Smart Padding

	Results and Analysis
	Experimental setup
	Performance metrics
	Time complexity and Execution time
	Hardware Utilization
	Partition Quality
	Fidelity and PST
	Program depth and Swap overhead
	Secure COMDAP
	Crosstalk Induced Faults
	Adversarial SWAP Injection

	Discussion
	Efficacy across different hardware topologies
	Implementation on real hardware

	Conclusion
	Acknowledgment
	References

