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Abstract
The verification of whether small-scale turbulence is isotropic remains a grand challenge. The dif-

ficulty arises because the presence of small-scale anisotropy is tied to the dissipation tensor, whose

components require the full three-dimensional information of the flow field in both high spatial and

temporal resolution, a condition rarely satisfied in turbulence experiments, especially during field

scale measurement of atmospheric turbulence. To circumvent this issue, an intermittency-anisotropy

framework is proposed through which we successfully extract the features of small-scale anisotropy

from single-point measurements of turbulent time series by exploiting the properties of small-scale

intermittency. Specifically, this framework quantifies anisotropy by studying the contrasting effects

of burst-like activities on the scale-wise production of turbulence kinetic energy between the hori-

zontal and vertical directions. The veracity of this approach is tested by applying it over a range

of datasets covering an unprecedented range in the Reynolds numbers (Re ≈ 103 to 106), sampling

frequencies (10 kHz to 10 Hz), surface conditions (aerodynamically smooth surfaces to typical grass-

lands to forest canopies), and flow types (channel flows, boundary layer flows, atmospheric flows,

and flows over forest canopies). For these diverse datasets, the findings indicate that the effects of

small-scale anisotropy persists up to the integral scales of the streamwise velocity fluctuations and

there exists a universal relationship to predict this anisotropy from the two-component state of the

Reynolds stress tensor. This relationship is important towards the development of next-generation

closure models of wall-turbulence by incorporating the effects of anisotropy at smaller scales of the

flow.

I. INTRODUCTION

According to Kolmogorov’s hypothesis, the small-scale (comparable to inertial subrange

and dissipative scales) turbulence statistics are isotropic, independent of the large-scale

(comparable to the integral scales) conditions, and possess universal characteristics [1, 2].

In this context, isotropy implies that the turbulence statistics are independent of direction,

and therefore, should not be affected if the coordinate system is rotated or translated [3]. The

expectation of isotropy at smaller scales of the flow stems from the physical consideration

that due to the cascading process the flow at smaller scales loses the memory of anisotropy
∗ subharc@uci.edu
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that persists at the largest scales of the flow [1]. Although the assumption of small-scale

isotropy is the backbone of turbulence research, there currently exists no consensus on how

to verify whether the small-scales are isotropic or not [4].

Some previous studies attempted to study the problem of small-scale isotropy through

the spectral or structure function methods. In this approach, a scalewise description of

turbulence is obtained and the local isotropy hypothesis in the inertial wavenumber range

is investigated by employing a few standard measures, such as: studying the 4/3 ratio of

spectral amplitudes; existence of the Kolmogorov −5/3 or +2/3 power laws in the spectra

or second-order structure functions; the rolling off of the momentum cospectra faster than

the energy spectra; the Kolmogorov 4/5 law in the third-order structure functions, and so

on [5, 6]. However, none of these measures conclusively show the evidence of local isotropy

at small scales, since the inferences obtained from one measure differ from the other [6].

Apart from these measures, an another popular approach has been to consider a statistical

quantity named dissipation tensor, whose properties are quite sensitive to the presence of

small-scale eddies. The anisotropic dissipation tensor (dij) is defined in a Cartesian co-

ordinate system as,

dij =
ϵij
ϵii

− 1

3
δij, ϵij = 2ν

∂u′
i

∂xk

∂u′
j

∂xk

, (1)

where overbar indicates averaging over time or space, u′
i are the turbulent fluctuations

in the velocity field (i = 1, 2, 3), δij is the Kronecker delta, ϵij is the dissipation rate of

u′
iu′

j, and ν is the kinematic viscosity of the fluid. This tensor becomes zero in isotropic

turbulence and its anisotropy is quantified by using the invariants of dij, an approach known

as invariant analysis [7]. However, except a few studies [8, 9], the measurements of all the nine

components of the dissipation tensor are practically very hard to obtain from point-based

observations. Therefore, these are mainly evaluated from the direct numerical simulations

of turbulent flows [10–12].

Given the problems with the estimation of dissipation tensor and the uncertainties as-

sociated with other measures, an alternative assessment of small-scale anisotropy is sought

whose foundations are rooted in the phenomenology of small-scale turbulence. One such

aspect of anisotropy is related to small-scale intermittency, characterized by the appearance

of strong non-Gaussian tails in the velocity increments as the scales of the flow tend to de-

crease [13, 14]. The presence of small-scale intermittency introduces anomalous scalings in
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the structure function moments, rendering them to be significantly different from the ones

arising from the assumption of local isotropy at smaller scales of the flow [13, 15].

Carter and Coletti [16] exploited the concept of intermittency to study small-scale

anisotropy in homogeneous turbulence. By analysing the particle image velocimetry (PIV)

measurements in three different directions (i.e., streamwise, spanwise, and vertical), Carter

and Coletti [16] studied the effects of intermittency on the higher-order structure func-

tions of the velocity components. The authors found that the effect of intermittency was

quite sensitive to the direction being considered, and therefore, linked such behaviour with

the presence of small-scale anisotropy. Although this study explored an alternate way to

characterize small-scale anisotropy, it had certain caveats. First, the study was performed

for a homogeneous flow at a very low Reynolds number (Re ≈ 400). Second, this study

assessed anisotropy in a qualitative sense rather than quantifying it through a statistical

measure. Third, the authors employed higher-order moments whose estimations require

high-resolution measurements, which are not readily available for all flows types, especially

for high-Reynolds number atmospheric flows.

On the other hand, in this current work, we extend the concept of intermittency-

anisotropy to inhomogenous wall-turbulence, where the turbulence statistics are known

to depend on the wall-normal locations and a directional bias exists between the horizon-

tal and vertical directions [17]. For such flows, we specifically show that the small-scale

anisotropy can be comprehensively studied by only considering the directional effects of

burst-like activities on the turbulence kinetic energy at each scale of the flow. Therefore,

we limit ourselves to the second-order moments, whose computations do not necessarily

require high-resolution measurements. To test the robustness of our approach, a large

corpus of experimental and numerical datasets from wall-turbulence are used, covering an

unprecedented range in the Reynolds numbers (103 to 106), sampling frequencies (10 kHz to

10 Hz), surface conditions (aerodynamically smooth surfaces to typical grasslands to forest

canopies), and flow categories (channel flows, boundary layer flows, atmospheric flows, and

flows over forest canopies). By analyzing these diverse datasets (see Table I for a summary),

our objectives are primarily threefold. First, to investigate up to what scales the small-scale

effects persist in turbulent flows and whether that scale is universal. Second, to formulate

a bulk measure of small-scale anisotropy for these wide class of flows by exploiting the

phenomenology of small-scale turbulence. Third, to propose a diagnostic relationship to
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predict small-scale anisotropy from the large-scale conditions itself. To achieve these goals,

this study is organized in three different sections. In Section II we introduce the different

datasets and our framework. In Section III, the results are presented and discussed to

elucidate on the flow physics. Finally, in Section IV the conclusions and scopes for future

research are outlined.

II. DATASET AND METHODOLOGY

A. Dataset

1. Channel and boundary-layer flows

To accomplish our objectives, we use two datasets from a turbulent channel flow and

from a boundary-layer flow. The first of these datasets is a numerical one, obtained from

direct numerical simulation (DNS). The simulation was carried out at a Reynolds number of

Re = 2003 and the resulting dataset is available at [18]. The simulation is run on a smooth-

wall channel setup with periodic boundary conditions in the streamwise (x) and spanwise (y)

directions. The domain size of the simulation is 8πδ × 2δ × 3πδ in the streamwise, vertical,

and spanwise directions respectively, where δ is the half-channel height. The numerical

grid consists of 6144 and 4608 uniformly-spaced grid points in the streamwise and spanwise

direction, respectively, while a non-uniform grid with 633 points is used in the wall-normal

direction (z). We refer to this dataset as the DNS dataset and carry out our computations

on the streamwise direction and average the results over multiple spanwise locations. This

strategy is adopted to ensure that the results obtained from DNS can be directly compared

with other point flow set-ups.

The other dataset is an experimental one from a fully-developed turbulent boundary layer

flow over an aerodynamically smooth flat plate, as obtained in the wind-tunnel facility of the

University of Melbourne [19]. The Reynolds number of this flow is of the order of Re ≈ 104.

Regarding this experiment, only the time series of the streamwise velocity, u, are available

from hot-wire measurements at a sampling frequency of 20 kHz for up to 120-s. Further

details of the experiment can be found in Baars et al. [20] and we refer to this dataset as

the TBL dataset. For both DNS and TBL datasets, the turbulent fluctuations (x′, where

x = u, v, w) are computed by subtracting the spatial (time)-averaged mean velocity from x.
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Throughout this study, the wall-unit normalization is indicated by the + superscript such

that z+ = zu∗/ν, where u∗ is the friction velocity and ν is the kinematic viscosity of air.

2. Atmospheric surface layer flows

Regarding atmospheric flows, we use five different datasets from the meteorological masts

positioned within the surface layer. These flows are categorized as ASL flows, and by assum-

ing the depth of the atmospheric boundary layer to be around 500 m, the Reynolds numbers

of these flows roughly correspond to Re ≈ 106. One of these datasets is collected during the

SLTEST experiment, where nine North-facing time-synchronized CSAT3 sonic anemome-

ters were mounted on a 30-m mast, spaced logarithmically over an 18-fold range of heights,

from 1.42 m to 25.7 m, with the sampling frequency being set at 20 Hz [21, 22]. The other

dataset is from a field experiment conducted over Oceano Dunes in California, where sonic

anemometer observations were available from a 10-m tower with a sampling frequency of 50

Hz [23–25]. Both of these measurement sites were topographically flat and aerodynamically

smooth. We refer to these datasets as SLTEST and Oceano, respectively. The other two

experimental datasets were obtained during an experimental campaign (CAIPEEX-IGOC)

in India, and high-frequency observations of the three velocity components were collected

at a sampling frequency of 10-Hz [26]. The site conditions were representative of a typical

grassland and we refer to these experiments as CPX1 and CPX2, respectively. One another

experimental dataset is used, collected over a grassland at the Blackwood division of the

Duke Forest in Durham, North Carolina with a sampling frequency of 56 Hz [27]. This

dataset is simply referred to as Grass. For our purposes, we restrict all these observations to

near-neutral conditions, i.e., when the effect of buoyancy is negligible. It is done to ensure

that the ASL results can be compared effectively with the channel and boundary-layer flows.

The results reported in Section III are averaged over an ensemble of near-neutral runs of

30-min duration each. The near-neutral runs are identified as those satisfying the condition

|z/L| < 0.5, where L is the Obukhov length and z is the observation height.
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3. Roughness sublayer flows

In order to account for the effect of roughness, we use three different datasets where

measurements were carried out within the roughness sublayers. These flows are labelled

together as RSL flows and their Reynolds numbers too are of the order of 106. One of these

datasets is the GoAmazon one, where nine level measurements were available over a dense

Amazon forest [28–31]. The measurement heights are within the range of z/h = 0.2− 1.38,

where h is the height of the trees, approximately equal to 35 m. The leaf area index (LAI),

which is defined as the total one-sided leaf area (half the total foliage area) per unit ground

surface area, is estimated to be between 6.1 and 7.3 m2 m−2. The other dataset is over a

maize canopy, where five observation heights are available at z/h = 1/3, 2/3, 3/3, 4/3, 5/3,

with h being equal to 2.05 m [32, 33]. The LAI for the maize canopy is around 3.3 m2 m−2

[32]. For both GoAmazon and maize canopies, the sampling frequencies of the measurements

are set at 25 Hz. A third dataset is over Loblolly pine canopies in Duke forest, where only

one measurement height is available at z/h = 1.44, where h is the height of the pine trees

(13 m) and the sampling frequency is set at 10 Hz [34]. We refer to this dataset as DF and

the LAI for this forest is 3.1 m2 m−2. These various LAI values indicate how different the

canopy structure was among the GoAmazon, Maize, and DF datasets. For all these three

RSL datasets, we restrict ourselves to near-neutral stratification (satisfying |(z−d)/L| < 0.5,

where d = 2h/3) and perform an average over an ensemble of 30-min runs belonging to such

conditions. For convenience, all these diverse datasets are summarized in Table I.

B. Methodology

To quantify small-scale intermittency, we adopt the burst framework introduced by

Chowdhuri and Banerjee [22]. Since this framework has already been discussed in detail, we

briefly summarize the important concepts here. For a velocity signal u′, the effects of strong

fluctuations on its instantaneous energy content is quantified by drawing a plot between the

cumulative distributions of duration against its amplitudes. In this context, duration (tp)

is simply defined as those time instances up to which the signal stays positive or negative.
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Dataset Flow type Surface Variables fs Ensemble

DNS [18] Channel Smooth u, v, w 256 Hz NA

TBL [19] Boundary-layer Smooth u 10 kHz NA

SLTEST [22] ASL Saltland u, v, w 20 Hz 20

Oceano [25] ASL Sand u, v, w 50 Hz 611

CPX1 [26] ASL Grassland u, v, w 10 Hz 130

CPX2 [26] ASL Grassland u, v, w 10 Hz 160

Grass [27] ASL Grassland u, v, w 56 Hz 100

GoAmazon [31] RSL Forest (h = 35 m) u, v, w 20 Hz 93

Maize [32] RSL Crop (h = 2.05 m) u, v, w 20 Hz 16

DF [34] RSL Forest (h = 13 m) u, v, w 10 Hz 160

TABLE I. A summary of different datasets used in this study. The variables u, v, and w denote the

velocity components in streamwise, spanwise, and vertical directions, respectively. Here fs indicates

the sampling frequencies, and for DNS this quantity refers to the inverse of the streamwise spacing.

Ensemble specifies the number of 30-min near-neutral runs being used to average the results and

are only applicable for ASL and RSL flows. The symbol h denotes the canopy height.

The amplitudes (S2
p), on the other hand, are defined as,

S2
p =

1

T × u′(t)2

∫ t+tp

t

u′2(t) dt, (2)

where T is the total duration of the time-series. The quantity S2
p represents the contribution

from an event of duration tp to the instantaneous variance u′2(t).

When the cumulative distributions of tp and S2
p are plotted against each other, if no

amplitude effect was present they would follow a straight line with 45◦ slope. Therefore, the

departure from this straight line statistically represents the effect of strong bursts in the flow

and is quantified as an area between the curve and the straight line. This area is termed

as burstiness index (B2
u) and is bounded between 0 to 0.5. The concept of burstiness index

can be extended to create a scale-wise description (B2
∆u(τ)), where the burstiness curves are

constructed for the signals ∆u = u′(t+τ)−u′(t), which represents the velocity increments at

a scale τ . Physically, B2
∆u(τ) represents the effect of bursts to the turbulence kinetic energy
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at each scale of the flow.

FIG. 1. The plots of (a) structure function moments (ζ(q), where q are the moment orders), (b)

the PDFs of the signal increments (P (∆x/σ∆x), where ∆x are the increments and σ denote their

standard deviations) and (c) the scale-wise variations in small-scale intermittency (Rxx(τ), where

τ are the time lags) are shown for such synthetic signals whose level of intermittency is controlled

by changing a tunable parameter w. The legend in (a) denotes the different w values. The cyan

colored dash-dotted line in (b) indicates the Gaussian distribution.

This concept can now be modified to generate a scale-wise description of small-scale in-

termittency. Small-scale intermittency is characterized by non-Gaussian distributions of the

velocity increments [13]. This is illustrated through Fig. S1 in [35], where for all the previ-

ously defined datasets the velocity increments of streamwise (∆u) and vertical velocity (∆w)

fluctuations display strong non-Gaussian tails. However, this non-Gaussian distribution can

be destroyed through a Fourier phase randomization operation, by converting them to a

Gaussian distribution [36]. One can employ an iteratively adjusted amplitude Fourier trans-

form (IAAFT) model for this purpose, which preserves the probability density functions

(PDFs) of the signal and its spectrum but destroys the effects of large non-Gaussian tails in

the velocity increments [37]. It is, therefore, tempting to consider a ratio of the burstiness

indices between the original and IAAFT signal at each scale and if this ratio deviates from

unity that would be solely due to the presence of small-scale intermittency.

To test this hypothesis, we generate a family of synthetic turbulent signals (with each

consisting of 106 data-points) from a log-Poisson cascade model, which has a tunable pa-

rameter w and by changing it systematically one can either increase or decrease the effects

of small-scale intermittency. The details of this model can be found in Chainais et al. [38].
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One of the tell-tale signs of intermittency is the departure from the Kolmogorov prediction

of the structure function moments (ζ(q), where q are the moment orders). From Fig. 1a,

one can clearly see that by decreasing w, large departures from the Kolmogorov prediction

(ζ(q)/ζ(1) = q, where ζ(q) = q/3) is observed, which is represented by a straight line of

45◦ slope. According to Chainais et al. [38], the moments ζ(q) for different w values of the

log-Poisson cascade model can be written as,

ζ(q) = (2w − 1)
q

3
+ 2(1− wq/3), (3)

which are shown in Fig. 1a as colored lines after normalizing them with ζ(1). Moreover, if

the PDFs of the normalized signal increments (∆x/σ∆x, where σ∆x is the standard deviation)

are plotted, the lowest w values correspond to the heaviest tails while the ones with w = 1

follow a Gaussian distribution (Fig. 1b).

Based on our hypothesis, we compute the ratios of the burstiness indices at each scale τ ,

defined as,

Rxx(τ) =
B2
∆x

B2
∆xp

− 1, (4)

where the subscript p indicates the burstiness index of an IAAFT signal. Note that we sub-

tract 1 so that the ratios are zero when no difference exists between the original and IAAFT

signals. As expected, Rxx(τ) deviates the strongest from 0 for the lowest w values (Fig. 1c).

On the other hand, Rxx(τ) systematically decrease with increasing w, and eventually for

w = 1, they remain at zero irrespective of the scales under consideration. Hence, Rxx(τ) is

indeed sensitive to the presence of heavier tails in the distributions of signal increments and

can be used to generate a scale-wise description of small-scale intermittency. The results

related to that aspect are presented for real turbulent signals in Section III.

III. RESULTS AND DISCUSSION

We begin with discussing up to what scale does the effect of small-scale intermittency

persist. For this purpose, we use a scale-wise description of intermittency based on the

framework described earlier. This information is further utilized to construct a metric for

small-scale anisotropy, and a diagnostic relationship is proposed to estimate this quantity

from the anisotropic states of the Reynolds stress tensor for a wide range of wall-bounded

flows.
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A. Scale-wise description of small-scale intermittency

To assess the scales (τ) up to which the small-scale effects continue, we first compare the

Ruu curves between the DNS and TBL datasets. These Ruu(τ) values are obtained similarly

as in Eq. 4 but for the u′ signals. Regarding DNS dataset, the scales are the spatial

ones along the streamwise direction and the curves are averaged over multiple spanwise

locations. The integral scales of u′, computed from their autocorrelation curves, are used

as a normalization factor for the time or spatial lags. For both of these datasets, the Ruu

curves are plotted for heights spanning from the viscous sublayer to the logarithmic layer

and are color-coded according to their log10(z+) values (see the colorbars in Figs. 2a–b).

Specifically, the light gray colors denote the heights within the viscous sublayer, while the

ones with more intensities (i.e., the colors approaching black) indicate the heights from the

logarithmic layer.

Upon comparing Figs. 2a and b, one can clearly see that the Ruu values remain the

largest within the viscous layers but they decrease systematically as the logarithmic layer

is approached. Physically this finding implies that the effects of small-scale intermittency

dominate the turbulence statistics the most at the lower layers of the flow. The same

conclusion was reached by Onorato et al. [39], where they linked this behaviour with the

presence of the bursting events in the viscous sublayer. However, for further verification, one

could compare the Ruu values with the coefficient of variability (COV) of the instantaneous

dissipation rate along the streamwise direction, ε = (∂u/∂x)2, since this quantity is sensitive

to intermittency at smaller scales of the flow [40, 41]. Although for DNS data (∂u/∂x)2 can

be estimated directly, Taylor’s hypothesis is used for the TBL flow to convert the temporal

derivative to a spatial one. The results are shown in Fig. S2 of [35], and can be noticed that

the strong Ruu values correlate nicely with the COV of ε. Therefore, one can confidently

claim that the Ruu curves indeed encapsulate the effects of small-scale intermittency in

turbulent flows.

However, as opposed to the smaller ones, at larger scales the Ruu curves approach zero,

irrespective of the wall normal locations. This saturation towards zero is very clear for the

TBL data and occurs precisely at scales equal to γu. On the other hand, for the DNS data,

in the logarithmic layers, the curves do not saturate exactly at zero since the attainment of

the plateau is not very prominent. To investigate this more carefully, in Fig. 2c, we show
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FIG. 2. The scale-wise intermittency curves of streamwise velocity fluctuations, as quantified

through Ruu, are shown for the (a) DNS and (b) TBL datasets. The time scales (τ) are normalized

by the integral scales of u′ (γu). The grey color-bars represent the logarithms of the wall-normal

heights, log10(z+), with the intensities increasing as z+ increases. (c) The intermittency curves are

compared between the DNS and TBL datasets through a contour plot, where the contours denote

the Ruu values, and the x and y axes represent τ/γu and z+, respectively. The colored contours

correspond to the TBL dataset while the black ones are for the DNS dataset. (d) The Ruu curves

from different ASL datasets are overlaid on the TBL dataset, indicated through different colors as

shown in the legend. (e) The Ruu curves corresponding to different canopy datasets (see the legend)

are shown, belonging to the RSL flow category. The h indicates the heights of the canopies.

the contour plots of Ruu values, plotted against τ/γu and z+. To differentiate between the

two datasets, the Ruu contours of the DNS data are shown in black while for the TBL ones

they are color-coded. It can be clearly seen that within the viscous layers (i.e., z+ ≤ 100

as per [42]), the Ruu contours agree sufficiently well between the two datasets. But in the

logarithmic layers the contours diverge. A possible interpretation of this phenomenon is,

as compared to the TBL data, the outer-layer structures in the DNS data are not well

developed due to their low Reynolds numbers [43], thereby causing such lack of convergence

towards zero in the Ruu curves.
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After establishing this fact, we next move on to compare the high Reynolds number

ASL datasets (Re ≈ 106) with the moderate Reynolds number flow ((Re ≈ 104), which is

the TBL one. As discussed in Section II A, we use several ASL datasets collected over a

range of surface conditions, spanning between an aerodynamically smooth surface to a more

typical grassland, with the measurement frequencies varying between 10 to 56 Hz. These

comparisons are shown in Fig. 2d. Despite such huge differences in the Reynolds num-

bers, surface conditions, or sampling frequencies, the Ruu curves from several ASL datasets

remarkably collapse on to the curves being constructed from the logarithmic layers of the

TBL flow. Moreover, in sync with the TBL data, the ASL curves too attain a clear plateau

at zero, comparable to scales of the order of γu. Together these observations suggest that,

notwithstanding the differences in the large-scale conditions, through our framework one

could unravel the universal aspects of small-scale turbulence. This is indeed a significant

result since many previous studies found that the traditional statistics of small-scale turbu-

lence (computed through the moments of the structure functions) obtained from the ASL

datasets disagree with the low Reynolds number flows [6, 44].

An another interesting outcome emerges when one considers the Ruu curves from the

canopy datasets where the observations are collected over the roughness sublayers, or in

other words, known as the RSL flows. In order to restrict the number of lines, we show all

the nine observation heights from the GoAmazon data and the only available observation

from the Duke Forest (z/h = 1.44), but for the Maize canopy we only limit ourselves to

the observation height of z/h = 5/3. The entire observations from the Maize canopy are

shown in Fig. S3 of [35]. From Fig. 2e, one could see that the Ruu curves of the RSL flows

are qualitatively similar to the ASL ones, but for two specific heights from the GoAmazon

dataset the Ruu values remain quite large and thus differ from the rest of the curves. These

two heights are at z/h = 0.6 and 0.7, which precisely correspond to the locations where

the leaf area densities of the plant elements are the largest [45]. Therefore, this finding

suggests that the eddies created at the wakes of the plant elements (such as leaves, stems,

etc.) contribute significantly to the small-scale intermittency of the streamwise velocity

components in RSL flows. This conclusion remains true for the Maize canopy as well, where

one particular observation height (z/h = 1/3) stands out from the rest (see Fig. S3a in

[35]).

After Ruu, we now turn our attention towards the Rww curves, whose non-zero values are
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FIG. 3. Same as Fig. 2, but for the vertical velocity fluctuations (Rww). (a), (c) The Rww curves

are compared between the DNS and ASL datasets, where the grey colored lines represent the DNS

dataset while the colored ones are from ASL flows. (b), (d) The Rww curves are shown for different

canopy datasets. The timescales in (a)–(b) are normalized by the integral scales of w (γw), while

γu is used in (c)–(d).

connected to the effects of small-scale intermittency on the vertical velocity fluctuations (w′).

Since the w′ measurements were not available for the TBL flow, DNS observations are used

for comparing with the ASL datasets. In Fig. 3a, the Rww curves are shown for both DNS

and ASL datasets where the time scales are normalized by γw, which is the integral scale of
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w′. Regarding DNS, as opposed to Ruu, no significant differences are observed in the Rww

values as one transitions from the viscous sublayer to the logarithmic layer. Furthermore,

the Rww curves attain a plateau at 0, while for the Ruu curves no such clear indication is

evident (see Fig. 2a). The behaviour of Rww curves remain qualitatively similar between

the DNS and ASL datasets, and more importantly, the time scales at which the Rww values

saturate towards 0 are significantly larger than γw at least by an order of magnitude. Thus,

the effects of small-scale intermittency persists well beyond γw. However, by using spectra

and second-order structure functions of w′, a few studies concluded that γw can be used as a

scale to separate the inertial-subrange turbulence from the large-scale ones [e.g., 46, 47]. Our

results, therefore, put a caution against using this scale to isolate the features of small-scale

turbulence. This problem gets resolved when for Rww curves, the time scales are normalized

instead by γu and the values attain a plateau at scales comparable to the integral scale of

u′ (Fig. 3c).

The same conclusion remains true for the RSL datasets as well (Figs. 3b and d, and Fig.

S3b of [35]). Particularly, for these Rww curves, no clear demarcation is observed for z/h =

0.6 and 0.7 levels, as was the case for Ruu (Fig. 2e). In fact, the Rww curves reasonably

collapse when the time scales are normalized by the canopy shear scale h/uh (where uh is

the mean wind speed at z/h = 1), which is the characteristic scale of the canopy-induced

coherent structures [48, 49]. This result is shown in Figs. 4a and c, where for both Maize

and GoAmazon canopies similar inferences can be drawn. However, from Figs. 4b and

d, it becomes apparent that the canopy shear scale cannot collapse the Ruu curves. This

suggests that for RSL flows the canopy-scale coherent structures control the intermittency

effects for vertical velocity fluctuations, while the eddies created at the wakes of plant ele-

ments do the same for u′. These different scaling properties of Ruu and Rww curves are of

significant importance since at present no consensus exists on how the presence of canopies

influence the small-scale intermittency characteristics. Some studies postulate that the co-

existence of canopy-scale coherent structures and small-scale eddies generated at the wakes

of plant elements create a complex flow pattern whose intermittency features are different

from smooth-wall turbulent flows [e.g., 50]. On the other hand, Shnapp [51] claims that the

small-scale intermittency of canopy turbulence shares resemblance with homogeneous and

isotropic turbulence. Our results convincingly demonstrate that the presence of a canopy

does indeed modify the small-scale features as opposed to the channel, TBL, and ASL flows,
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FIG. 4. The Rww and Ruu curves are shown for the (a, b) GoAmazon and (c, d) Maize canopy

datasets. The legends indicate the different heights for both datasets.

albeit differently for the streamwise and vertical velocity fluctuations.

By combing this insight with the differences being observed between Ruu and Rww curves

for the channel and ASL flows, one could conclude that there exists a directional preference

regarding intermittency, such that it has distinct characteristics for the horizontal and verti-

cal velocity fluctuations. This phenomenon is eventually tied to small-scale anisotropy and

to quantify that aspect we introduce a concept named intermittent Reynolds stress tensor.

B. Intermittent Reynolds stress tensor

By convention, the anisotropic Reynolds stress tensor quantifies the differences in how

the turbulence kinetic energy is distributed among the three coordinate directions. This
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tensor is defined as,

bij =
u′
iu

′
j

2q
− 1

3
δij, q =

u′
ku

′
k

2
, (5)

where i = 1, 2, and 3 denote the streamwise, cross-stream, and vertical directions, q is

the turbulent kinetic energy, and δij is the Kronecker delta. To quantify anisotropy, the

eigen values of bij are used and any difference between the three eigenvalues is connected to

the anisotropy of the velocity field. This anisotropy measure is sensitive to the large-scale

flow features, such as the presence of coherent structures [52, 53]. Analogously, for our

purposes, we define an intermittent Reynolds stress tensor (b̃ij(τ)) whose components are

more sensitive to the presence of small-scale intermittency. This new tensor is expressed as,

b̃ij(τ) = Ruiuj
(τ), i, j = 1, 2, 3. (6)

The diagonal components of b̃ij(τ) represent Rxx(τ) (where x can be u, v, w) values, which

quantify the intermittency effects on the velocity variances at each scale of the flow. On the

other hand, the cross-diagonal terms are associated with large intermittent fluctuations in

the instantaneous flux components. For instance, a particular cross-diagonal component of

b̃ij(τ), represents,

Ruw(τ) =
B(∆u∆w)

B(∆up∆wp)
− 1, (7)

where B(∆u∆w) denote the burstiness indices of the instantaneous streamwise momentum

flux at a scale τ [22], while the subscript p denote the momentum flux signals obtained

from the IAAFT model of the two velocity components. Physically, as this cross component

approaches zero, it implies that the flux generation at that particular scale is not sensitive

to the presence of small-scale intermittency. If the three eigen values of b̃ij are |λ̃i|, where

i = 1, 2, 3, then b̃ij can be diagonalized as,

b̃ij =



|λ̃1| 0 0

0 |λ̃2| 0

0 0 |λ̃3|


(8)

In case of an isotropic configuration, one would expect to satisfy the condition of |λ̃1| =

|λ̃2| = |λ̃3|, thereby indicating that no directional preference exists in how the small- scale
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intermittency affects the three different velocity components. Note that we use the absolutes

of the eigen values since the magnitudes of these quantities matter the most rather than

their signs [54]. As shown in Appendix A, out of these three eigen values, |λ̃3| is the largest,

and their scale-wise variations remain remarkably consistent among the DNS, ASL, and RSL

datasets. After studying the behaviour of the eigenvalues in Fig. 7, the anisotropy in b̃ij

can be conveniently expressed through the metric,

λ̃eff =
|λ̃3|√
λ̃2
1+λ̃2

2

2

(9)

whose values approach unity as the differences in the three eigen values decrease and are

significantly larger than 1 when anisotropy persists. This formulation is qualitatively similar

to Pumir et al. [55], where a somewhat similar metric was used to study the anisotropy in

the velocity strain tensor.

In Fig. 5 we show how λ̃eff varies with τ/γu across all the three different datasets. The

three different panels in Fig. 5 correspond to the DNS (Fig. 5a), ASL (Fig. 5b), and RSL

(Fig. 5c) observations, respectively. It is clear that irrespective of the dataset types, λ̃eff

values decrease with increasing scales and at scales larger or equal to γu they approach unity.

Therefore, a significant amount of anisotropy persists at smaller scales, which systematically

disappears as the larger scales are encountered. In Appendix B, a thorough comparison is

presented among the three datasets (see Fig. 8), and it is apparent that the λ̃eff values from

the logarithmic layers of DNS and ASL datasets agree quite well with each other. On the

other hand, the RSL datasets show a clear difference with the ASL ones. Specifically, the

RSL datasets display a clear peak in the λ̃eff curves, which indicates that there is a particular

scale where the anisotropy is the largest for such flows. These peak positions do not collapse

exactly when τ are scaled with γu. In fact, a nice collapse is observed when the canopy

shear scale is used (see Fig. 5d). This collapsed peak position is at τuh/h ≈ 0.04, which

further underscores the importance of the canopy-scale coherent structures in determining

the features of small-scale anisotropy. However, the DNS and ASL datasets too display a

peak in their λ̃eff curves and the location of these peaks collapse reasonably well at a scale

of τ/γu ≈ 0.03− 0.04.

Nevertheless, upon close inspection, it is apparent that the magnitudes of λ̃eff values

indicate a clear height dependency for the RSL datasets, such that their values remain the

largest at heights above the canopy. This height dependency is not very prominent for the
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FIG. 5. The effective eigenvalues (λ̃eff) of the intermittent Reynolds stress tensor are shown for the

(a) DNS, (b) ASL, and (c) RSL datasets. (d) Same as in (c), but the timescales are normalized by

the canopy shear time scale uh/h, where uh is the mean wind-speed at z = h level. The legends

are same as in Fig. 2.

ASL datasets. It is, therefore, interesting to ask why such differences exist and whether

there exists any connection with the anisotropy of the velocity field at energy-containing

scales (i.e., comparable to the integral scales of u′) of the flow.
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FIG. 6. A bulk measure of small-scale anisotropy (Ãeff), obtained by integrating the λ̃eff values

between 0 and γu, is compared between the three anisotropic states of the (a)–(c) dissipation (Cε
ic,

where i = 1, 2, 3) and (d)–(f) Reynolds stress tensors (Cb
ic, where i = 1, 2, 3). The red colored

squares denote the DNS dataset, while the blue and black coloured markers represent the ASL and

RSL datasets. The thick pink lines in (a)–(c) indicate a non-linear fit to the data and in (d)–(f)

the green dash-dotted lines indicate the 1:1 straight line. The pink dash-dotted line in (e) denote

a line with a slope of 0.5.

C. Small- and Large-scale anisotropy

To create a bulk measure of small-scale anisotropy, we integrate the λ̃eff values up to the

scales τ = γu. If no anisotropy was present within those scales, this area would be exactly

equal to 1. Hence, a bulk measure of small-scale anisotropy can be defined as,

Ãeff =
1∫ γu

0
λ̃eff(τ) dτ

. (10)

Since λ̃eff values are always greater than unity when anisotropy persists (see Fig. 5), Ãeff

values are bounded between 0 ≤ Ãeff ≤ 1. For practical purposes, to numerically compute

the integral,
∫ γu
0

λ̃eff(τ) dτ , we use a trapezoidal approximation.

In general, the small-scale anisotropy is studied through the dissipation tensor [9, 56],

whose values can only be computed from the DNS data. Such computation is not possible

from the atmospheric data, since the dissipation tensor requires measurements of the whole
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three-dimensional flow field. On the contrary, the estimation of Ãeff can be accomplished

from any dataset due to the well-behaved nature of λ̃eff curves (see Fig. 5), which can be

computed for any single-point turbulence measurements.

As a first order check, we compare Ãeff values with the anisotropic states of the dissipation

tensor (dij, see Eq. 1), estimated from our DNS dataset. The partial derivatives of the

velocity components, as required for the dissipation tensor, are calculated from a forward-

differencing scheme such that, ∂u/∂x = (u′[i + 1, j, k] − u′[i, j, k])/∆x, where i, j, k are the

grid-point coordinates of the DNS data at x, y, z directions, respectively. The anisotropic

states of the dissipation tensor are defined from the perspective of a barycentric map [57],

whose three components are Cε
1c, Cε

2c, and Cε
3c. These three components are determined as,

Cε
1c = λ1 − λ2

Cε
2c = 2(λ2 − λ3)

Cε
3c = 3λ3 + 1

, (11)

where λ1, λ2, λ3 are the three eigenvalues of the dissipation tensor in the order λ1 > λ2 > λ3.

The comparisons between Ãeff and Cε
ic (where i = 1, 2, 3) are shown in Figs. 6a–c. It is clear

from the figures that these two metrics are definitely related to each other but through a

non-linear relationship, expressed as,

Ãeff =
P (Cε

ic)

Q(Cε
ic)

, (12)

where P and Q are the fifth-order polynomial expansions of Cε
ic, whose coefficients are

estimated from a data fitting exercise. One point to note is the ranges for Ãeff and Cε
ic are

different. This difference could have occurred since the dissipation tensor is an area-averaged

measure while the Ãeff values are obtained by integrating λ̃eff(τ) up to a certain scale, which

is γu.

At the same time, Ãeff values are also compared with the three anisotropic states (Cb
ic) of

the Reynolds stress tensor bij (see Eq. 5), defined analogously as in Eq. 11. These anisotropic

states can be computed for all the datasets and from Figs. 6d–f, it is apparent that the Ãeff

values are very strongly connected to the two-component anisotropic state of Reynolds stress

tensor (Cb
2c) rather than to the one (Cb

1c)- or three-(Cb
3c) component states. To provide a sense

of reference, the green lines in Fig. 6d–f indicate a straight line of 45◦ slope, from which

it is evident that the data-points are quite scattered around it without any underlying
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order when Cb
1c or Cb

3c are considered. Contrary to this, the strong relationship between

Ãeff and Cb
2c holds irrespective of the Reynolds number or surface conditions of the flow,

thereby hinting towards a universal behaviour. Physically, the two-component anisotropic

state of the Reynolds stress tensor indicates the influence of the horizontal motions over the

vertical ones on the turbulence statistics. From a topological perspective, the two-component

anisotropy is connected to the presence of large-scale coherent structures near the wall whose

vertical components are blocked due to the location of the wall itself [58].

From a practical standpoint, the relationship between Ãeff and Cb
2c can be well-represented

through a straight line of a slope of 0.5, or in other words, Ãeff = Cb
2c/2. The R2 value

associated with this fit is larger than 0.9 and thus can be considered to be statistically

robust. By knowing such relationship, it is possible to infer about the presence of small-scale

anisotropy in the flow from the large-scale state itself. As shown by Antonia et al. [56], the

information about small-scale anisotropy is quite important to refine the standard k-ε model

of wall turbulence, where it is implicitly assumed that at smaller scales the turbulence tend

to be isotropic. As a future work, it remains to be seen whether our empirical relationship

can be directly used to separate the dissipation rate to an isotropic and an anisotropic part.

IV. CONCLUSION

In this study a scale-wise analysis of small-scale intermittency is introduced and applied

over a range of numerical and experimental datasets with the Reynolds numbers varying

from 103 to 106, the surface conditions spanning from aerodynamically smooth surfaces to

grasslands to forests having trees as large as 35 m, and the flow types being considered

encompass channel flows to boundary layers to atmospheric surface layers and roughness

sublayers. For such a wide variety of datasets, our findings indicate that the effects of small-

scale intermittency persists up to the scales of the order of integral scales of the streamwise

velocity fluctuations. Therefore, this scale provides a universal basis to separate the effects

of large-scale flow features from the small-scale ones.

Moreover, we find that the effects of intermittency is very different for the horizontal

and vertical velocity components, in terms of their scaling properties and magnitudes. This

conclusion also appears to be universal, and therefore, we use this information further to

define a metric for small-scale anisotropy. This metric is based on the eigen values of an
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intermittent Reynolds stress tensor, whose properties are quite sensitive to the presence of

small-scale flow features. Unlike the dissipation tensor, whose computation is only limited to

three-dimensional numerical datasets, our metric can be easily computed for any point-wise

experimental measurements, whether obtained from engineering or atmospheric flows.

We show that the effect of small-scale anisotropy is mainly determined by the presence of

coherent structures in the flow. Based on this finding, a diagnostic relationship is proposed

between the small-scale anisotropy and the two-component anisotropic state of the Reynolds

stress tensor. This relationship remarkably holds over a wide range of flows and for practical

purposes, can be used to refine the k-ε models of wall turbulence where the assumption of

isotropy at smaller scales plays a pivotal role. In conclusion, we address an important gap in

turbulence research, concerned with the fact that whether the small-scale turbulence features

are universal or not. It turns out there are indeed a couple of aspects that can be considered

universal. First, the scales up to which the small-scale effects continue, and second, the

relationship between small-scale anisotropy and large-scale coherent structures.

As a possible limitation, this study is confined to neutral conditions, and therefore, in

future, it would be interesting to investigate the role of buoyancy on (a) small-scale in-

termittency; (b) the scaling properties of Ruu and Rww curves; and (c) their anisotropic

characteristics. One another future direction is scalar turbulence, where by studying the

Rxx (where x could be temperature, carbon-dioxide, or water-vapor fluctuations) curves,

the topic of intermittency and scalar similarity at the smaller scales of the flow can be

addressed for both convective and neutral stratification.
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Appendix A: The eigen values of b̃ij

FIG. 7. The magnitudes of the three eigen values (|λ̃i|, where i = 1, 2, 3) of the intermittent

Reynolds stress tensor are shown. The upper three panels (a)–(c) indicate the plots for the DNS

and ASL datasets, while the lower three panels (d)–(f) indicate those from the RSL flows. The

colors represent the same information as in Fig. 2.

In this appendix we show the behaviour of the three eigen values (|λ̃i|, where i = 1, 2, 3)

of the intermittent Reynolds stress tensor with τ/γu. We take the magnitudes of the eigen

values instead of their original signs, which is considered as a standard practice in the

community [54, 59, 60]. The upper three panels of Fig. 7 compare the eigenvalues between
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the DNS and ASL datasets (Fig. 7a–c), while the lower three panels show the same for

the RSL datasets (Fig. 7d–f). It is apparent that, irrespective of the datasets considered,

the qualitative behaviour of the three eigen values with τ/γu remain very similar among

all the three different datasets. For instance, the eigenvalues |λ̃3| remain the largest of the

three and decrease monotonically with increasing scales. This behaviour is very similar

to how the individual Ruu or Rww curves behave (see Figs. 2 and 3), and therefore, the

effects of small-scale intermittency can be fully described by |λ̃3| alone. In fact, similar to

Ruu curves, for RSL datasets, the values of |λ̃3| at scales τ < γu remain the strongest for

those GoAmazon levels where the leaf area densities are the largest. On the other hand,

the eigenvalues |λ̃1| and |λ̃2| (with |λ̃2| being the smallest) are considerably smaller than

|λ̃3| for scales τ < γu, thereby indicating the presence of anisotropy at smaller scales with

the effect of intermittency being different for the velocity field between the horizontal and

vertical directions. It is interesting to note that, contrary to the other two eigenvalues, |λ̃1|

values do not monotonically decrease with increasing scales, rather they attain a minimum

at a particular scale beyond which they increase again.

Appendix B: Comparison of λ̃eff values

FIG. 8. (a) The λ̃eff values are compared between the DNS (grey lines) and SLT (colored lines)

datasets. (b) The same as (a), but shown as a contour plot where the heights are normalized as

(z − zmin)/(zmax − zmin). The black contours represent λ̃eff values from the SLT dataset while the

colored ones are from the DNS. (c) The contours of λ̃eff values are compared between the SLT

(black contour lines) and GoAMZ (grey contour lines) datasets.
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A detailed comparison of λ̃eff values is presented in Fig. 8, among the DNS, ASL, and

RSL datasets. For clarity purposes, regarding the ASL and RSL flows, the SLTEST and

GoAmazon datasets are considered to be the representative ones, since they contain mea-

surements from multiple levels. In Fig. 8a, we directly overlay the λ̃eff values obtained

from the SLTEST dataset on the DNS ones. From a visual inspection, it appears that

the SLTEST curves qualitatively follow the DNS ones quite well as the logarithmic layer is

approached. The lines with darker shades from the DNS datasets indicate the logarithmic

layer. However, to quantify this aspect more precisely, in Fig. 8b, we construct a contour

plot, where the contour values represent the variations in λ̃eff . To differentiate between the

two datasets, the colored contours of λ̃eff values indicate the DNS dataset while the black

ones are from the SLTEST data. Moreover, since the height ranges of the two datasets are

significantly different, we employ a standard normalization where the heights (z) are scaled

as, (z − zmin)/(zmax − zmin). After applying this scaling, it becomes clear from Fig. 8b that

the SLTEST contours match the DNS ones quite well as the heights of the DNS dataset

increase. Therefore, despite huge differences in their Reynolds numbers nearly by three or-

ders of magnitude, a similarity emerges between the channel and ASL flows. On the other

hand, when the contours of λ̃eff values are compared between the SLTEST and GoAmazon

datasets, significant differences appear between the two (see Fig. 8c). This highlights the

influence of the roughness elements on the small-scale turbulence statistics, which can be

physically accounted for through a canopy shear scale as pointed out in Fig. 5.
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