
0.4.2
§
/
a
f
e
i
n
s
t
e
in20/young-stel

la

r-
fl
a
r
e
s

Draft version May 3, 2024
Typeset using LATEX twocolumn style in AASTeX631

Evolution of Flare Activity in GKM Stars Younger than 300 Myr over Five Years of TESS

Observations

Adina D. Feinstein ,1, ∗ Darryl Z. Seligman ,2, † Kevin France ,1, 3, 4 Jonathan Gagné ,5, 6 and
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ABSTRACT

Stellar flares are short-duration (< hours) bursts of radiation associated with surface magnetic re-

connection events. Stellar magnetic activity generally decreases as a function of both age and Rossby

number, R0, a measure of the relative importance of the convective and rotational dynamos. Young

stars (< 300 Myr) have typically been overlooked in population-level flare studies due to challenges

with flare-detection methods. Here, we select a sample of stars that are members of 26 nearby moving

groups, clusters, or associations with ages <300 Myr that have been observed by the Transiting Exo-

planet Survey Satellite (TESS) at 2-minute cadence. We identified 26,355 flares originating from 3,160

stars and robustly measure the rotation periods of 1,847 stars. We measure and find the flare frequency

distribution (FFD) slope, α, saturates for all spectral types at α ∼ −0.5 and is constant over 300 Myr.

Additionally, we find that flare rates for stars tage = 50 − 250 Myr are saturated below R0 < 0.14,

which is consistent with other indicators of magnetic activity. We find evidence of annual flare rate

variability in eleven stars, potentially correlated with long term stellar activity cycles. Additionally,

we cross match our entire sample with GALEX and find no correlation between flare rate and Far-

and Near-Ultraviolet flux. Finally, we find the flare rates of planet hosting stars are relatively lower

than comparable, larger samples of stars, which may have ramifications for the atmospheric evolution

of short-period exoplanets.

1. INTRODUCTION

Stellar flares are the radiation component of magnetic

reconnection events (Benz & Güdel 2010). Such events

are readily seen on the Sun (Carrington 1859; Lu &

Hamilton 1991; Fletcher et al. 2011), particularly dur-

ing the maximum in the solar cycle (Webb & Howard

1994). Solar flares can be used as proxies for magnetic

activity occurring on other stars (Feigelson &Montmerle

1999; Berdyugina 2005; Kowalski et al. 2010; Feinstein

et al. 2022a). Additionally, these short-duration flar-

ing events can have significant ramifications on the evo-

lution of short-period extrasolar planets (France et al.

2016; Günther et al. 2020; Chen et al. 2021). While

∗ NHFP Sagan Fellow
† NSF Astronomy and Astrophysics Postdoctoral Fellow

stellar flares are typically not spatially resolvable, they
do lend themselves to characterization via spectroscopic

and photometric signatures. Spectroscopic characteri-

zation of stellar flares inform our understanding of non-

thermal processes affiliated with such events such as

coronal mass ejections (Argiroffi et al. 2019; Vida et al.

2019), proton beams (Orrall & Zirker 1976; Woodgate

et al. 1992), and accelerated electrons (Osten et al. 2005;

Smith et al. 2005).

Photometric observations of stars are more readily

available now with exoplanet transit discovery missions,

and allow us to statistically characterize flare rates and

energies at optical/near-infrared wavelengths. Observa-

tions of M dwarfs with the Sloan Digital Sky Survey re-

vealed a correlation between the flaring fraction of stars

with height above the galactic plane, a proxy for age

(Kowalski et al. 2009; Hilton et al. 2010). More recently,
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NASA’s Kepler, K2, and the Transiting Exoplanet Sur-

vey Satellite (TESS) missions have provided a wealth of

stellar variability data in addition to their primary ob-

jective of detecting transiting exoplanets. Flares can be

identified within time-series photometry by a sharp rise

and subsequent exponential decay in flux, with the lat-

ter corresponding to the cooling rate (Kowalski et al.

2013). Kepler (Borucki et al. 2010) provided long-

baseline high-cadence observations used to identify stel-

lar flares. There has been extensive studies of flares in

Kepler data, from the statistics of superflares on solar-

type stars (e.g. Notsu et al. 2013; Shibayama et al. 2013;

Maehara et al. 2015; Okamoto et al. 2021) to low-mass

stars (e.g. Hawley et al. 2014; Silverberg et al. 2016).

Davenport et al. (2019) found that flare activity de-

creased with increasing rotation period for 347 GKM

stars. However, the flare frequency distribution (FFD)

slope did not vary significantly as a function of age. As

a caveat, the ages of the stars in this study were deter-

mined based on their rotation periods, relying on the

assumption that gyrochronology alone accurately ages

stars.

K2 provided 70-day baseline observations for a hand-

ful of young stars in groups such as Upper Scorpius,

Pleiades, Hyades, and Praespe clusters. Ilin et al. (2019,

2021) analyzed flares from K and M stars in these clus-

ters and found that the overall flare activity decreased

as a function of age. Moreover, this relationship was

steeper for more massive stars in the sample. Paudel

et al. (2018) surveyed 10 M6 - L0 dwarfs observed with

K2 and found the L0 dwarfs had significantly shallower

FFDs than the M dwarfs. They found that, on aver-

age, young targets (defined by the tangential velocity

of the star) exhibited more flares overall. More recently,

TESS (Ricker et al. 2015) has provided near all-sky pho-

tometric observations at 30-minute cadence or less. This

observing strategy has allowed for more detailed stud-

ies of young stellar flares from nearby, disperse young

moving groups and associations. These data permit de-

tailed studies of individual stars, for example character-

izing eight superflares (Ef > 1034 erg) on the young star

AB Doradus over ∼ 60 days of continuous observations

(Schmitt et al. 2019), as well as statistical studies of

flares across a range of spectral types and ages (Doyle

et al. 2020; Feinstein et al. 2022a; Pietras et al. 2022;

Yang et al. 2023b).

The 11-year solar activity cycle represents a change

in the magnetic activity of the Sun, and manifests itself

in a variety of observables including increases in the to-

tal number of sunspots (Clette et al. 2014; Kilcik et al.

2014), flares and coronal mass ejections (Crosby et al.

1993; Webb & Howard 1994; Lin et al. 2023), and an in-

crease in the total solar irradiance (Lean 1987). Insights

into the long-term activity cycles on other stars have

been limited to photometric and spectroscopic monitor-

ing (Saar & Brandenburg 1999). Lehtinen et al. (2016)

collected 16 to 27 years of B- and V-band photometry

for 21 young active solar-type stars. They found evi-

dence of long-term stellar activity cycles in 18 targets

for whichProt/Pcycle ∝ R−1
0 , where Prot is the rotation

period, Pcycle is the period of the stellar activity cycle,

and R0 is the Rossby number. Additionally, 50 years

of spectroscopic observations of HD 166620 from the

Mount Wilson Observatory and Keck revealed both a

∼ 16 year periodicity in emission from the core of the

Ca II H and K lines (Oláh et al. 2016) and evidence that

this star entered a grand minima (Baum et al. 2022). A

more complete review on the state of stellar activity cy-

cles can be found in Jeffers et al. (2023) and Işık et al.

(2023).

In addition to photometric and spectroscopic obser-

vations, solar flares trace the length of the solar activ-

ity cycle. The high-cadence observations from Kepler

(4-year baseline) and TESS (currently 5-year baseline)

provide sufficient data for searches of stellar activity cy-

cles from the variations in stellar flare rates. Davenport

et al. (2020) demonstrated that the flare rate and FFDs

of GJ 1234 has not changed appreciably over 10 years

of observations with both Kepler and TESS. On the

other hand, Scoggins et al. (2019) found that the M3V

star star KIC 8507979 showed a clear decline in flare

rate and change in FFD over 4-years of Kepler obser-

vations. While it is not expected to find flare rate and

distribution variations in all stars given detection limi-

tations, KIC 8507979 demonstrates the ability to study

long-term flare variability as a potential tracer for stellar

activity cycles.

The paper is presented as follows. In Section 2, we

describe our sample, and stellar flare and rotation pe-

riod identification methods. In Section 3, we present our

flare-frequency distribution (FFD) fits as a function of

stellar age, Teff, and R0. In Section 4, we present evi-

dence of flare rate changes over the 5-year TESS baseline

in eleven young stars, likely correlated with long term

stellar activity cycles. In Section 5, we search for corre-

lations in flare rates with FUV and NUV observations

from GALEX and place the flare rates of young planet

hosting stars in the context of our broader sample. We

conclude in Section 6. We provide additional figures and

tables in Section A.

This paper was written using the showyourwork!

open-source software package. The objective of

showyourwork! is to improve reproducibility and

transparency of scientific research by compiling the
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manuscript and figures simultaneously. All of the data

in this work is hosted on GitHub1 and Zenodo.2 At the

end of every caption figure in this manuscript, there is a

GitHub icon (§), which links to the Python script used

to create that figure.

2. TESS LIGHT CURVE CHARACTERIZATION

Here, we provide an overview of the methodology used

in this paper. Specifically, we describe the sample selec-

tion in Section 2.1, TESS light curve analysis in Sec-

tion 2.2, flare identification in Section 2.3, flare fitting

parameters in Section 2.4, flare quality checks in Sec-

tion 2.5, and stellar rotation period measurements in

Section 2.6.

2.1. Sample Selection

A primary goal of this paper is to measure the rela-

tionship between the flare rates and ages of stars. We

are particularly interested in this dependency for young

stars with ages 4 ≤ tage ≤ 300Myr. To this end, we

used the MOCA Data Base (Gagné et al. in prep.)3 to

identify 26 nearby, aged, young moving groups, asso-

ciations, and open clusters from which we created our

sample of stars. The final targets were required to be: (i)

confirmed members, (ii) high-likelihood candidate mem-

bers, or (iii) candidate members. Membership to these

groups has been primarily determined using kinematic

information from Gaia (Gaia Collaboration et al. 2016,

2018). The membership status is determined by the

probability that BANYAN-Σ assigns based on how well

the kinematics of the target matches with the kinematics

of the group (Gagné et al. 2018b). These rather strin-

gent cuts resulted in a catalog of 30,889 stars across 26

associations. We summarize the sample and ages for

each association (and therefore star) in Table 1.

2.2. TESS Light Curves

We cross-matched our MOCA Database sample with

the TESS Input Catalog (TIC) based on their Gaia DR2

RA and Dec; we required that the distance between the

target and the nearest TIC target was within < 1”. We

down-selected our sample to stars that have been ob-

served with TESS at 2-minute cadence. This ensures

that we are able to temporally resolve and accurately

measure the properties of flares for each of these stars

(Howard & MacGregor 2022).

1 The GitHub is hyperlinked in the showyourwork! stamp at the
top of the first page of this manuscript, and can also be found
here: https://github.com/afeinstein20/young-stellar-flares.

2 Link to be uploaded upon acceptance.
3 https://mocadb.ca/

Table 1. Adopted Ages of each Young Stellar Popula-
tion and Number of Stars per Group, Nstars

Population Age [Myr] Nstars Ref.

AB Doradus 133+15
−20 88 1

Blanco 1 137.1+7.0
−33 428 2

Carina 45±9 94 3

Carina-Musca 32 35 4

Chamaeleon 5 424 5

Columba 42 126 3

Greater Taurus Subgroup 5 8.5 56 4

Greater Taurus Subgroup 8 4.5 122 4

Lower Centaurus Crux 15 761 6

MELANGE-1 250+50
−70 19 7

Octans 35±5 64 8

Pisces Eridanis 120 219 9

Pleiades 127.4+6.3
−10 1421 2

α Persei 79+1.5
−2.3 625 2

IC 2602 system 52.5+2.2
−3.7 160 2

NGC 2451A 48.5 59 4

Oh 59 162.2 62 10

Platais 9 50 124 11

RSG2 126 145 12

Theia 301 195 437 10

Theia 95 30.2 230 10

TW Hydrae 10 24 3

Upper Centaurus Lupus 16 ± 2 696 6

Upper Scorpius 10 106 6

Vela-CG4 33.7 299 4

Total 6,824

Note—Age references: (1) Gagné et al. (2018a); (2)
Galindo-Guil et al. (2022); (3) Bell et al. (2015); (4) Kerr
et al. (2021); (5) Luhman (2007); (6) Pecaut & Mamajek
(2016); (7) Tofflemire et al. (2021); (8) Murphy & Lawson
(2015); (9) Curtis et al. (2019); (10) Kounkel et al. (2020);
(11) Tarricq et al. (2021); (12) Röser et al. (2016)

This process provided a final sample of 6,824 unique

targets. These targets have each been observed at a 2-

minute cadence between TESS Sector 1 and Sector 67;

Sector 67 was the latest available sector at the time that

this analysis was performed. In Figure 1, we show the

distribution of the on sky positions, ages and effective

temperatures, Teff, of the final sample. Because many

of the groups are located at or near the ecliptic poles,

many of our targets were observed over multiple TESS

sectors. We use Teff as our stellar characterization metric

over the standard M⋆ because ∼ 600 stars in our sam-

ple lack mass information in the TIC. The entirety of

the available data yielded 17,964 light curves processed

by the Science Processing Operations Center (SPOC)

pipeline (Jenkins et al. 2016), which can be accessed on

https://github.com/afeinstein20/young-stellar-flares
https://mocadb.ca/
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MAST under DOI 10.17909/t9-nmc8-f686. Our sample

has an average of ∼ 3 light curves per target (although

with significant spread across targets). We downloaded

all light curves using lightkurve4. For our analysis, we

used the SPOC-processed SAP FLUX.

5 45 86 127 168 209 250
Age [Myr]

Figure 1. Top: Distribution of the selected sample across
the sky and colored by the adopted age of the association
(see Table 1). The all-sky coverage by TESS has unlocked
new populations of stars to observe. We take advantage of
this observing strategy to measure flare rates across 26 dif-
ferent nearby young moving groups, clusters, and associa-
tions. Bottom: Distribution of adopted effective tempera-
tures, Teff [K] for stars in our sample. We include all stars
with Teff ≤ 6000K. §

2.3. Flare Identification

Once we downloaded the light curves for each target,

we performed the following procedure to identify stel-

lar flares. We implemented the machine learning flare-

identification methods presented and described in Fein-

stein et al. (2020b). This method relies on the similar

time-dependent morphologies of all flare events. These

flare-profiles can generally be described as a sharp rise

followed by an exponential decay in the white light

curve. This identification-technique implements the

convolutional neural network (CNN) stella (Feinstein

et al. 2020b), although other architectures have been ex-

plored for flare identification (e.g. Vida & Roettenbacher

4 https://doi.org/10.5281/zenodo.4654522

2018). The CNN was trained on a by-eye validated cata-

logue of flares from TESS Sectors 1 and 2 with 2-minute

data (Günther et al. 2020).

There are several benefits to using the CNN for stellar

flare identification. Primarily, the CNN is insensitive to

the stellar baseline flux because it is trained to search

only based on flare morphology. It is therefore relatively

insensitive to the absolute flux levels, so long as the in-

herent noise does not overwhelm the signal itself. An

additional benefit is that rotational modulation peaks

— which are themselves driven by stellar heterogeneities

— are not accidentally identified as flares. This holds

true for stars with rotation periods, Prot > 1 day. This

is especially advantageous for our sample of young stars,

which readily exhibit rotational modulation in their light

curves.

Based on these advantages, the final compiled sample

of flares is unbiased towards low-amplitude/low-energy

flares. It is important to note that these low-energy

events are typically not identified in traditional sigma-

outlier identification methods (e.g. Chang et al. 2015;

Vasilyev et al. 2022). While significant developments

have been achieved to better model and detrend stellar

variability (e.g. Bicz et al. 2022), these methods can be

computationally intensive The stella CNN models cal-

culate the probability that a data point in a light curve

is associated with a flaring event. Specifically, it takes

the light curve (time, flux, flux error) as an input and re-

turns an array with values of [0,1], which are treated as

the probability a data point is (1) or is not (0) part of a

flare. We ran every light curve through 10 independent

stella models and averaged the outputs to ensure that

our statistics were accurate. We note that in this pro-

cessing, the CNN ignores 200-minutes before and after

any gaps in the data. Therefore, any flares which oc-

cur during these times are not identified. From by-eye

vetting of ∼ 300 light curves, we found 2 flares within

the first 200 minutes of the orbital gaps. Therefore, we

estimate ≤ 120 flares are missed in our catalog.

The stella code groups individual points with the

predictions per data point when identifying a single flare

event. We modified this stage of identification slightly

from the original flare-identification method. Specifi-

cally, we identified all data points with a probability of

being associated with a flare of P > 0.75. Any data

points that were within 4 cadences of each other were

considered to be a single flare event. We did not con-

sider any potential flares that had three or fewer points

with P > 0.75. This method rejects single-point outliers

which can be assigned high probabilities of being flares.

We assigned the probability of the whole flare event as

the probability of the peak data point.

http://dx.doi.org/10.17909/t9-nmc8-f686
https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/sample.py
https://doi.org/10.5281/zenodo.4654522
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Figure 2. High level summary of the demographics of
flares in our sample. Top: The number of flares identified
compared to the number of stars in each nearby young mov-
ing group, cluster, or association. A linear relationship is
expected. Bottom: The distribution of measured TESS en-
ergies and equivalent durations of flares in our sample, col-
ored by the probability of the flare as identified with stella. §

2.4. Modeling Flare Properties

Flares are well-described in light curves as a sudden in-

crease in flux followed by an exponential decay. We used

the analytic flare model, Llamaradas Estelares which

was presented in Tovar Mendoza et al. (2022)5, to fit

and extract parameters of flares in all of the light curves

of our sample. This model builds upon the model pre-

sented in Davenport et al. (2014). Specifically, it in-

cludes the convolution of a Gaussian with a double ex-

ponential model in the flare profile.

The analytic model robustly accounts for physically-

motivated flare features. Specifically, it can incorporate

the flare (i) amplitude, (ii) heating timescale, (iii) rapid

cooling phase timescale, and (iv) slow cooling phase

timescale. We implemented a nonlinear least squares

5 https://github.com/lupitatovar/Llamaradas-Estelares

optimization to fit the flare peak time (tpeak), full width

at half maximum (FWHM), and the amplitude (A) of

each flare in the sample. We note that there are several

other physically-motivated flare models which could be

used, such as those presented in Gryciuk et al. (2017);

Pietras et al. (2022); Yang et al. (2023a); these mod-

els include using two profiles to fit the impulsive and

late phases of the flare. We combine the model with a

second-order polynomial fit to a 1.2-hour baseline before

and after the flare during only the fitting stage. This

was implemented in order to account for any slope due

to rotational modulation, and therefore was particularly

relevant for the rapid rotators (Prot < 2 days).

We calculated the equivalent duration, ED, of the flare

by integrating the quiescent-normalized flare flux with

respect to time. We calculate the flare energy, Eflare,

using,

Eflare = L⋆ AED s . (1)

In Equation 1, L⋆ is the luminosity of the star and s is a

scaling factor defined as s = Bλ(Teff)/Bλ(Tflare), where

Bλ(T ) is the Planck function. We assume that the flare

temperature is 9000 K (Hawley & Fisher 1992; Haw-

ley et al. 1995), although recent NUV flare observations

suggest this may be an underestimation (Kowalski et al.

2019; Brasseur et al. 2023; Berger et al. 2023).

2.4.1. Comparison of Flare Models

Tovar Mendoza et al. (2022) demonstrated that the

flare model works well for flares with amplitudes≥ 2 (i.e.

double the baseline flux). However, other works such as

Pietras et al. (2022) have demonstrated that a double-

flare profile better fits high energy flares. To quantify

how well the Llamaradas Estelares model works, we refit

and calculate the χ2 for a subset of high amplitude flares
(A ≥ 0.4) using Equation 3 in Pietras et al. (2022), a

double-peak flare model, which is:

f(τ) =

∫ τ

0

(
A1 exp

[
−(t−B1)

2

C2
1

]
exp

[
(t− τ)

D1

]
+A2 exp

[
−(t−B2)

2

C2
2

]
exp

[
(t− τ)

D2

])
dt

(2)

where A is is related to amplitude of the flare, B re-

lates to the total energy released during the flare, C

relates to the timescale of the flare, D is related to the

decay timescale, τ is the time of a given cadence, and t

is the time to integrate over. The subscripts 1 and 2 in-

dicate which flare variables are associated with the first

and second flare profile. We refit 900 high-amplitude

flares following Equation 2. We plot the results of this

refitting in Figure 3.

https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/flare_distribution.py
https://github.com/lupitatovar/Llamaradas-Estelares
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Figure 3. Comparison fits between the Llamaradas Es-
telares single-peak model from Tovar Mendoza et al. (2022)
and the double-peak flare model from Pietras et al. (2022)
for flares with A ≥ 0.4. Top (A): Comparison in the χ2

between the best-fit model for 900 flares. A one-to-one line
is plotted in peach to guide the eye. Across this sample of
high-amplitude flares, there is good agreement between the
fits for these two distinct models. Bottom: Comparison in
best-fit models for a subset of flares. The best-fit Llamaradas
Estelares model is plotted in blue; the best-fit double-peak
model is plotted in orange. We highlight examples where the
double-peak flare model has the better fit (B, C), the Lla-
maradas Estelares flare model has the better fit (D, E), and
where the models perform equally as well (F, G). We note
there is no correlation between flare amplitude and preferred
model. §

Broadly, we find the flare model from Tovar Mendoza

et al. (2022) and Pietras et al. (2022) to fit the majority

of the high-amplitude flares equally as well (Figure 3A).

We highlight several examples where one model fits bet-

ter than the other in Figure 3B-E, and cases where both

profiles fit the data equally as well Figure 3F-G. Flares

which prefer the Llamaradas Estelares model tend to

have a more accurately fit flare amplitude. Flares which

prefer the double-peak model tend to have an extended

decay timescale, which is better fit by the addition of

a secondary flare. Flares which are fit equally well by

both models tend to have a better fit to the amplitude

in the Llamaradas Estelares model, but a better fit to

the decay timescale in the double-peak flare model.

2.5. Flare Quality Checks

The stella CNNs were trained on data from TESS

Sectors 1 and 2. However, the noise properties are vari-

able across sectors in TESS data. The CNNs are there-

fore unable to accurately account for and capture this

variation when operating on different sectors. Moreover,

the original CNNs were only trained on a sample of 1,228

stars. This training sample does not necessarily encap-

sulate a sufficient distribution of variable stars types,

such as eclipsing binaries, RR Lyraes, and fast rotators

with Prot < 1 day (Lawson et al. 2019), which results in

the CNNs not being able to properly distinguish these

temporal features from flares. We therefore apply addi-

tional quality checks to ensure our flare sample has little

to no contamination from other sources.

Specifically, we remove flares from our sample which

did not satisfy one or more of the following criteria:

1. The amplitude of the flare must be > 0.01, the

same limits set by Feinstein et al. (2020b).

2. The flare amplitude must be at least twice the

standard deviation of the light curve 30 minutes

before and 45 minutes after the flare. This ensures

that the feature is not a sharp noise artifact.

3. The fitted flare model parameters must be physi-

cally motivated: FWHM > 0; A > 0; ED > 0.

4. The flare parameters must be σA < 0.5 and

σtpeak
< 0.01.

We find that flares are often simply mischaracterized

noise when the errors on the first and fourth criteria

are larger than the cut-offs. These quality checks high-

light the need to continuously update machine learning

models, especially when looking at data with varying

instrumental systematics.

As a final check, we performed an exhaustive by-eye

verification of flares from light curves for stars with flare

rates, R > 1 day−1. These stars generally tend to have

Teff > 5000 K and TESS magnitudes < 8. Therefore,

their light curves are dominated by sharp noise which

stella often mischaracterizes as flares. As a final cut,

the sample only includes events that have a probability

P ≥ 98% of being a true flare. After performing these

https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/model_fit.py


Evolution of young stellar flare rates 7

additional checks, we obtain a robust final flare sample

of 26,355 flares originating from 3,160 stars (Figure 2).

2.6. Measuring Rotation Periods

In addition to understanding flare statistics across

young stars, we measure the rotation periods, Prot of

stars in our sample. We then search for correlations

between Prot and Rossby number, R0. Seligman et al.

(2022) demonstrated that stars with low Rossby num-

bers R0 < 0.13 exhibit shallower flare frequency distri-

bution slopes. These shallower slopes are caused by an

excess of high energy flares compared to lower energy

flares.

In order to perform this, we describe how we mea-

sure stellar rotation periods from the TESS light curves.

To this end we used michael6, an open-source Python

package that robustly measures Prot using a combina-

tion traditional Lomb-Scargle periodograms and wavelet

transformations (Hall et al. submitted). michael mea-

sures Prot using the eleanor package, which extracts

light curves from the TESS Full-Frame Images (FFIs;

Feinstein et al. 2019).

We ran michael on all stars in our samples from which

flares were identified. The estimated rotational periods

were subsequently vetted by-eye with the michael di-

agnostic plots. This vetting was implemented to ensure

that the measured Prot was not a harmonic of the true

Prot or from an occulting companion. This led to robust

measurements of rotation periods for 1,847 stars in to-

tal. Additionally, we identified 17 eclipsing binaries or

potentially new planet candidates.

3. FLARE RATES OF YOUNG STARS

In this section, we use the previously described

methodology to estimate the flare rates of the young

stars in our sample. We implement three main steps in

this analysis. First, we perform the standard FFD fit-

ting of a power-law to the distribution of flare energies

described in Section 3.1. Next we fit the relationship

between R0 and flare rates in Section 3.2. Finally we fit

a truncated power-law to the distribution of flare ampli-

tudes in Section 3.3 to identify correlations between R0

and flare distributions.

The number of stars and flares in each association var-

ied greatly (Figure 2). This was primarily caused by the

limited number of stars that had been observed at 2-

minute cadence in TESS. We therefore did not measure

FFD properties as a function of association. Instead, we

group stars by Teff and average adopted association age.

We define the following spectral type bins by Teff:

6 https://github.com/ojhall94/michael

• M-stars below the fully convective boundary

(Teff = 2300− 3400K),

• early type M-stars (Teff = 3400− 3850K),

• late K-stars (Teff = 3850− 4440K),

• early K-stars (Teff = 4440− 5270K),

• G-stars (Teff = 5270− 5930K).

We did not include any stars hotter than Teff > 5930K.

These hot stars generally exhibit light curves dominated

by noise in the TESS observations. Additionally, we

grouped stars in the following age space: 4−10Myr (in-

cluding Upper Scorpius and TW Hydrae), 10− 20Myr,

20 − 40Myr, 40 − 50Myr, 70 − 80Myr, 120 − 150Myr,

and 150 − 300Myr. We note that there is a gap in age

from 50 − 70Myr, which could be expanded with the

identification of more associations in this age range.

3.1. Standard Power-Law Fits

We fit the stars FFD slopes, approximated as a power-

law, using the Teff and age bins described above. Flares

were binned into 25 bins in log-space from 1027 −
1035 erg. The FFD has a notable turnover energy,

Eturnover, when our detection method is incomplete due

the low-amplitude of those flares. The FFD slope is of-

ten fit to flares with energies E ≥ Eturnover. We perform

our fits following the same methodology. This turnover

in the FFD cannot be accurately modeled with a power-

law. We present our FFDs as a function of Teff and age

in Figure A1; points which were fit to measure the FFD

slope are presented in black, while the full FFD is pre-

sented in gray.

We fit the FFD using the MCMC method imple-

mented in emcee (Goodman & Weare 2010; Foreman-

Mackey et al. 2013). Specifically, we fit for the slope,

α, y-intercept, b, and an additional noise term, f . This

noise term accounts for an underestimation of the errors

in each bin. We initialized the MCMC fit with 300 walk-

ers and ran our fit over 5000 steps. We discarded the

first 100 steps upon visual inspection, after which the

steps were fully burned-in. The measured FFD slopes,

α, are presented in Figure 4. We approximate the error

on the slope as the lower 16th and upper 84th percentiles

from the MCMC fit.

Overall, we measure a shallower FFD for stars of all

masses at tage < 300 Myr. A shallower FFD indi-

cates there are more high-energy flares. The measured

FFD slopes are shallower than those measured using

smaller samples of young stars. Jackman et al. (2021)

fit the three FFDs for M3-M5, M0-M2, and K5-K8 stars

younger than 40 Myr that had been observed with Next

https://github.com/ojhall94/michael
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Figure 4. Measured flare-frequency distribution slopes, α, as a function of stellar effective temperature, Teff and age.
We measured these FFDs with respect to flare energy. We find the FFD slopes as a function of energy are consistent with
α = −0.6 to − 0.2 for stars < 300 Myr in TESS observations. A shallower FFD slope is indicative of more high-energy flares.
We present all measured FFDs in Figure A, and all measured slopes and errors in Table A1. We find the shallowest slopes for
stars Teff = 3400− 4440K, with a range from α = −0.44 to− 0.22. We do not include the results for stars Teff = 3850− 4440K
and tage = 20 − 40Myr as this bin contained only six stars with detected flares. We present the average results of measured
FFD slopes for the Hyades, Pleiades, and Praesepe clusters from Ilin et al. (2021) as black squares. We present the results of
measured FFD slopes for all TESS primary mission targets in white circles (Feinstein et al. 2022b) as “field-age”. We discuss
what drives the difference between our sample and Ilin et al. (2021) in Section 3.1. §

Generation Transit Survey. They measured slopes of

0.94± 0.04, 0.69± 0.05, 0.82± 0.14 per bin, which each

contained ≤ 120 flares. It is also worth noting that

the slopes measured here are based on up to an order

of magnitude more flares per fit. Our sample also has

a longer temporal baseline, allowing for the occurrence

of more high-energy flares. Accumulating more high-

energy flares in the FFD, if such events occur, will re-

sult in a shallower FFD slopes. TESS flare statistics for

main sequence stars have indicated steeper FFDs (Fein-

stein et al. 2022a). Therefore, the FFDs presented here
are not strictly impacted by longer observations, but are

the result of more high-energy flares on young stars.

There is a 1− 3σ discrepancy between the FFD slope

measured in Ilin et al. (2021) and the work presented

here at ages ∼ 120Myr (α ranges from −1.32±0.19 to−
0.91±0.18, depending on the Teff bin). Ilin et al. (2021)

used the K2 30-minute light curves for their analysis,

compared with our TESS 2-minute light curves. Addi-

tionally, our sample has ∼ 2× the number of stars and

∼ 7× the number of flares as in Ilin et al. (2021). First,

we test if these discrepancies are driven by differences in

sample binning. We reevaluate the FFDs assuming the

Teff bins presented in Table 3 of Ilin et al. (2021). We

find α remains consistent with our presented values to

within ∼ 1σ of the nearest temperature bin. Second, we

reevaluate the FFDs assuming the total number of flares

fit in Ilin et al. (2021). We draw nfit, Ilin et al. (2021) (last

column in Table 3 of Ilin et al. 2021) flares from our

sample 100 times without replacement, refit the FFD,

and take the average FFD slope from that sub-sample

of flares to our results. We find α remains consistent

with our presented values to ∼ 2σ. We note that in

most cases nfit, Ilin et al. (2021) < nfit, this work. Therefore,

the increased disagreement in α could be due to smaller

sample sizes.

Additionally, we test if the difference in α is driven

by the cadence differences between K2 (30-minute) and

TESS (2-minute). We bin all of the flares in our sample

down to a 30-minute cadence, re-fit for flare A and ED,

and recalculate the flare energy. We re-fit the FFD for

this altered sample and measure FFD slopes consistent

to ∼ 1σ with those presented in this work. Therefore,

the discrepancy seen here is not driven by observational

differences between K2 and TESS.

Finally, we test if the differences are driven by the

range of energies that are fit. The CNN-based flare

detection algorithm has previously been demonstrated

to be less-biased against lower energy flares. Like this

work, Ilin et al. (2021) fit the FFD across flare energies

which are not affected by a reduced efficiency in the low-

energy flare detection, E ≥ Eturnover. In energy space,

these fits begin between Ef = 1032−33 erg, compared

to our fits which begin between Ef = 1031−32 erg (Fig-

https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/mcmc_results.py
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ure A). When we limit our sample to Ef ≥ 1032.5 erg,

we find the FFD slopes become steeper and more consis-

tent with the values of α presented in Ilin et al. (2021).

Therefore, the difference in α between this work and

Ilin et al. (2021) for stars with tage = 120 − 150 Myr

is driven by the lower energy flares, with which we are

more complete to with TESS than K2.

3.2. Flare Rate Dependence on Rossby Number

The Rossby number, R0, is a parameter which incor-

porates several properties which are known to affect the

stellar dynamo, such as the rotation period and stel-

lar mass. In the context of stellar dynamo the Rossby

number indicates the dominance of the convective verses

rotational dynamo. It is defined as R0 = Prot/τ , where

τ is the convective turnover time. We convert our mea-

sured rotation periods to R0, approximating τ following

the prescription in Wright et al. (2011). We equate the

flare rates, R, for individual stars as

R =
1

tobs

(
N∑
i=1

pi

)
. (3)

In Equation (3), R is the flare rate in units of day−1,

tobs is the total amount of time a target was observed

with TESS, and pi is the probability that flare i is a true

flare as assigned by stella. We compare the calculated

R0 to measured flare rates for all stars with measured

Prot. The results are presented in Figure 5.

From these results, we are able to evaluate the depen-

dence of the flare rate on age, spectral type, and R0. We

split the sample between stars younger and older than

50 Myr. This age roughly correlates to the age at which

GKM stars turn onto the main sequence. The flare rate

of stars younger than 50 Myr slightly decreases with in-

creasing R0. However, there is a significant amount of
scatter in this relationship.

As can be seen by comparing the upper and lower

panels in Figure 5, the flare rate dependence on Rossby

number is most evident in older, more massive stars be-

tween 50−250 Myr. There is minimal evolution in both

the average flare rate and R0 between the two samples

for M stars. For K stars, R0 evolves more dramatically

during the first 250 Myr while the scatter in the flare

rate decreases. For G stars, the scatter in R0 decreases

and the average flare rate across the sample decreases.

We present a compiled histogram for all stars in our

sample in the right column of Figure 5.

To better understand this trend for the GKM sam-

ple, we fit three functions to the flare rate Rossby num-

ber parameter space: (i) a constant value, (ii) a single

power law, and (iii) a piece-wise function consisting of

a constant value and a power law. We computed the

χ2 between each of these fits and the data. For (iii),

we fit for where the R0 turnover should occur by com-

puting the χ2 across a range of R0 = [0.09, 0.18]. We

weighted the data points based on the density of points

in a given bin (Figure 5). For 4.5−50 Myr old stars, the

distribution is best-fit with a single power law with slope

m = −0.102±0.018 and y-intercept b = −0.660±0.017.

For stars 50− 250 Myr, the distribution is best-fit with

a piece-wise function of the form:

R =

{
C R0 ≤ 0.136

10b ∗Rm
0 R0 > 0.136

(4)

In Equation (4), R is the flare rate, C = 0.269± 0.007,

m = −0.612 ± 0.039, and b = −1.113 ± 0.035. The

location of the turnover is consistent with what has been

measured in other observations of magnetic saturation

for partially and fully convective stars (e.g. LX/Lbol;

Wright et al. 2018).

With a sample of 851,168 flares detected in both Ke-

pler 1- and 30-minute cadence data, Davenport (2016)

searched for a relationship between Rossby number and

relative flare luminosity. This work determined that the

relationship could be fit by a broken power law, with a

break at R0 = 0.03 and a slope of m ∼ −1 dominat-

ing higher R0. However, a single power law is slightly

preferred over the broken power law. While the metrics

used between Davenport (2016) and this paper are dif-

ferent, both suggest a saturation in flares for stars with

low R0. Additionally, Medina et al. (2020) found a bro-

ken power-law relationship between R0 and the flare rate

for flares with Ef > 3.16×1031 erg, corresponding to the

completeness threshold of their sample. Medina et al.

(2020) analyzed light curves of 419 low-mass (M⋆ =

0.1 − 0.3M⊙) main-sequence stars in the Solar neigh-

borhood observed by TESS. They found that the flare

rate saturates at log(R) = −1.30 ± −0.08 for R0 < 0.1

and rapidly declines for R0 > 0.1. Yang et al. (2023b)

analysed 7,082 stars with measured Prot observed dur-

ing TESS sectors 1–30, and found a broken-power law

described the relationship between ∆Flare/L⋆ for M

dwarfs, with a break between R0 = 0.1 − 0.13, which

is consistent with this work. While there are differences

in sample selection between our work and previous stud-

ies, all are consistent with flare rate saturation for stars

with low R0 and a steep drop-off in flare rate for stars

with higher R0 > 0.1.

3.3. Truncated Power-Law Fits

We search for evidence of variations of the FFDs as a

function of flare amplitude versus Rossby number, R0.

This is motivated by the data presented in Seligman

et al. (2022). In that work, they modeled flares driven by
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Figure 5. Comparison of Rossby Number, R0 and flare rate for young GKM stars. For the younger sample (top row; tage =
4.5−50 Myr), we find no correlations between flare rate and R0. For the slightly older sample (bottom row; tage = 50−250 Myr),
we find no change in the average flare rate for M stars. For K and G stars, we start to see some evolution in this relationship. For
K and G stars, we that as R0 increases, the average flare rate decreases. This could indicate that as stars spin-down, their flare
activity also begins to decline. We find that for the full GKM sample of stars (bottom row, rightmost column), the relationship
between R0 and flare rate is best-fit by a broken power law, with a turnover at R0 = 0.136. For the younger full sample (top
row, rightmost column), we find this relationship is best-fit by a single power law. The histograms are colored by number of
stars in each bin. §

magnetic reconnection events driven by rotational forces

as well as convective dynamo. Seligman et al. (2022)

found that stars with R0 < 0.13 exhibited shallower

FFD slopes than stars with R0 ≥ 0.13 to several sigma

significance. The differences in the FFDs were indicative

of relatively more high-energy flares to low-energy flares.

This was interpreted as evidence of a more dominant

rotational dynamo compared to the convective dynamo,

which preferentially produced longer magnetic braids in

the stellar coronae.

In this subsection, we test this theory with a much

larger sample of stars (1,847 instead of 807 stars). We

fit the distributions separated by the fitted R0 presented

in Section 3.2. In order to perform the fits, we follow

the prescription described in greater detail in Seligman

et al. (2022). Here, we provide a brief summary of the

prescription. Specifically, we fit a truncated power-law

distribution of the form,

dp/dA ∝ A−αT e−A/A∗ . (5)

In Equation (5), A is the amplitude of the flare,

A∗ is a flare amplitude cutoff parameter and αT is

the slope, rather than α. We fit the slopes using the

MCMC method implemented in emcee (Goodman &

Weare 2010; Foreman-Mackey et al. 2013). We used the

log-likelihood function in Seligman et al. (2022) and fit

for A∗ and αT . We initialized the MCMC fit with 200

walkers and evaluated the fit over 5000 steps. The first

1000 steps were discarded upon visual inspection. The

results are presented in Figure 6.

Figure 6. Flare frequency distributions, as a function of
flare amplitude, for stars with R0 ≤ 0.12 (red) and stars with
R0 > 0.12 (black). We present the best-fit model, and the
best-fit values of the model slope and normalization factor
in the legends. Our sample of R0 ≤ 0.12 includes 13,132
flares from 800 stars; our sample of R0 > 0.12 includes 5,603
flares from 747 stars. We find the stars with smaller Rossby
numbers have shallower slopes, consistent with more, high-
energy flares and a more dominant rotational dynamo (Selig-
man et al. 2022). §

https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/prot_histograms.py
https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/truncated.py
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We find that stars with R0 ≤ 0.136 have a best-fit

slope of αT = 1.076 ± 0.020, while stars with larger R0

have a best-fit slope of αT = 1.604 ± 0.040. This re-

sult agrees with the results presented in Seligman et al.

(2022). This is not the first instance we have seen a

correlation in FFDs as a function of R0. Candelaresi

et al. (2014) noted that faster rotating stars have higher

superflare rates derived from Kepler data. The spec-

troscopic survey presented in Notsu et al. (2019) found

that the maximum flare energy decreased as Prot, and

consequently R0, increased. Mondrik et al. (2019) iden-

tified flares across 2,226 stars observed with MEarth and

found an increase in flare rate between stars with low

R0 < 0.04 and stars with intermediate R0 = (0.04, 0.44),

and a subsequent decrease in flare rate for stars with

high R0 > 0.44. While our bins of stars by R0 are not

as fine as those presented in Mondrik et al. (2019), the

correlation in ∆R0 remains consistent.

4. EVIDENCE FOR STELLAR CYCLES FROM

VARIABLE FLARE ACTIVITY

The Sun undergoes an 11-year solar cycle during

which it oscillates between high and low magnetic ac-

tivity. This magnetic cycle manifests in a variety of

observables. One of the primary indicators of the solar

cycle is a stark change in the flare rate; this rate can

vary by more than an order of magnitude between Solar

maxima and minima (Webb & Howard 1994). Moreover,

energetics of the flares that are produced on the solar

surface vary dramatically over the course of the solar

cycle (Bai & Sturrock 1987; Bai 2003). Direct and indi-

rect evidence of the solar cycle have also been observed

in radio flux, total solar irradiance, the magnitude and

geometry of the magnetic field, coronal mass ejections

affiliated with flares, geomagnetic activity, cosmic ray

fluxes and radioisotopes in ice cores and tree rings. For

a recent review, see Hathaway (2015).

While other stars should also experience activity cy-

cles like the Sun, they are more difficult to measure.

Constraints on stellar cycles have predominantly relied

on long baseline variations in stellar photometry, typi-

cally observed at cadences which cannot resolve stellar

flares (see recent reviews by Jeffers et al. 2023; Işık et al.

2023). However, tracing stellar cycles via stellar flares

may be more reliable, as flares are a direct consequence

of magnetic activity. Scoggins et al. (2019) explored

measuring the stellar cycle length of KIC 8507979, a

star in the Kepler field which was observed for 18 90-

day quarters. Scoggins et al. (2019) found the flare

rate decreased over each quarter, which could be fit by

Lfl/LKp = (−9.96 ± 3.94) × 10−2 × tyr + (2.43 ± 0.11),

where tyr is the time in years, and Lfl/LKp is a param-

eterization of the Kepler flare rate (Lurie et al. 2015).

4.1. Flare Observables from the Sun

Here, we explore observables from solar flares between

2002 and 2018 in the Reuven Ramaty High Energy So-

lar Spectroscopic Imager (RHESSI; Lin et al. 2002) flare

catalog.7 The RHESSI mission observes the Sun across

a wide range of X-ray energies, from 3 keV-17 MeV,

with high temporal and energy resolutions as well as

with high signal sensitivity. Such a wide energy range

enables the ability to explore both thermal and non-

thermal emission observed during flare events. Over 16

years of operations, over 100, 000 solar flares have been

observed and characterized in RHESSI data. These ob-

servations covered the second half of solar Cycle 23 and

the beginning of Solar Cycle 24. We use the publicly

available RHESSI flare catalog to determine metrics that

would be most useful when searching for evidence of

stellar cycles. One potential issue with this analysis is

that the HXR observations from RHESSI and white-

light observations from TESS may not be directly cor-

related. However, there is a close spatial and tempo-

ral correspondence between HXR and white-light flares

on the Sun (Fletcher et al. 2007; Krucker et al. 2011;

Kleint et al. 2016). In particular, Namekata et al. (2017)

demonstrated the difference spatially resolved flares as

observed with RHESSI HXR and the Solar Dynamics

Observatory (SDO)/Helioseismic and Magnetic Imager

(HMI) white-light. In some examples, the HMI white-

light emission is seen to last longer than the HXR, indi-

cating the white-light emission is related to non-thermal

electrons.

However, other examples of simultaneous HXR and

white-light flare observations in (Namekata et al. 2017)

show similar flare durations. Therefore, we take the

HXR solar flares with energies between 25 − 50 keV as

likely representative of solar white-light flares, and are

a comparable sample to our TESS sample. First, the

total number of flares detected in the 25−50 keV band-

pass varied by 650 flares from solar maximum in 2002

to solar minimum in 2008. This variation correlates to a

change in flare rate from 1.81 to 0.02 flares day−1 on av-

erage. Second, the flare frequency distribution changes

between solar minimum and maximum because the fre-

quency of the highest-energy flares decreases. Finally,

the total flare luminosity relative to the total luminos-

ity correlates with the stellar cycle. This is defined by

Lurie et al. (2015) as

7 https://hesperia.gsfc.nasa.gov/rhessi3/data-access/rhessi-data/
flare-list/index.html

https://hesperia.gsfc.nasa.gov/rhessi3/data-access/rhessi-data/flare-list/index.html
https://hesperia.gsfc.nasa.gov/rhessi3/data-access/rhessi-data/flare-list/index.html
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Lflare

L⋆
≡ ξflare

texp
(6)

where Lflare is the total luminosity emitted by flares,

L⋆ is the luminosity of the star, ξflare is sum of the equiv-

alent duration of all flares observed, and texp is the ex-

posure time of the observations. These results for the

Sun are presented in the left-most column of Figure 7.

4.2. Quantifying Flare Activity over 5 Years of TESS

Observations

The TESS Extended Missions have provided a five-

year baseline that we can use to search for evidence of

stellar cycles. This is a comparable baseline to Kepler,

although with sparser sampling. We search for evidence

of stellar cycles within our sample of fast rotators. Our

sample contains 108 stars which have been observed for

tobs ≥ 200 days across five years. We search for evidence

of changes in the stellar magnetic activity by looking

for correlations in (i) variations in the total luminosity

emitted in flares (ii) the total flare rate per year and (iii)

annual changes in the FFD. We group our observations

by the year in which the observations were taken, even

for the cases where the star was not continuously ob-

served throughout that year (e.g. Sectors 1-26 are Year

1, Sectors 27-55 are Year 2, and Sectors 56-67 are Year

3.

We searched our 108 candidates by eye for correlations

in the aforementioned criteria. The correlations are cat-

egorized into the following four options: (i) Positive:

Ef, max and the total number of flares has increased over

five years; (ii) Negative: Ef, max and the total num-

ber of flares has decreased over five years; (iii) Trough:

Ef, max and the total number of flares was greater in

the first and third years observed with a minima in the

second year; (iv) Peak: Ef, max and the total number

of flares was fewer in the first and third years observed

with a maxima in the second year.

From these three observables, we identified eleven

stars which all display evidence of scenario Peak,

with the exception of one star displaying evidence

of scenario Negative, which are presented in Fig-

ure 7. These stars are TIC 142015852, 235056185,

260351540, 270676943, 272349442, 308186412,

339668420, 350559457, 391745863, 393490554, and

452357628. Our sample includes seven early type M-

stars, two late K-stars, one early K-star, and one G-

star. TIC 272349442 is a candidate member of TW

Hydrae (tage = 10±3Myr), TIC 142015852, 270676943,

308186412, 339668420, 350559457, and 452357628 are

candidate members of Carina (tage = 45 ± 9Myr), TIC

235056185 and 260351540 are candidate members of IC

2602 (tage = 52.5 ± 2.95Myr), and TIC 391745863 and

393490554 are candidate members of the AB Doradus

Moving Group (tage = 133± 12.5Myr).

We report the measured ξflare/texp and flare rates

across all three years in presented in Figure 7 in Ta-

ble A2. Across our sample, we find the largest change

in flare parameters in TIC 235056185, which has a

∆log10(ξflare/texp) = 1.14 and ∆R = 0.5. Addition-

ally, we see some targets (e.g. TIC 350559457) be-

come very flare quiet, going from R = 0.2 day−1 to

R = 0.05 day−1, which is obvious when visually inspect-

ing the light curve. For stars showing the Peak scenario,

we find that the year before and after the peak do not

necessarily return to the same value of ξflare/texp and R,

although it does for some stars.

4.3. Flare Recovery per TESS Year

The majority of stars identified with evidence of stel-

lar cycles exhibit the Peak scenario. To determine if

this is astrophysical or driven by some unknown instru-

mental systematic, we perform an injection-recovery test

on this sub-sample of stars. Injection-recovery tests

are used to address biases in our detection method.

Injection-recovery tests are typically not recommended

for machine-learning detection techniques (Feinstein

et al. 2020b). However, we perform them because these

are some of the first results of searching for evidence of

stellar cycles via flare activity.

We inject a total of 50 flares into each sector of data

for our eleven stars. We draw the amplitude of our flares

from a Gaussian distribution centered at a 3% increase

in flux, with a standard deviation of 1%. We do not

inject flares with amplitudes below 0.5%. We used the

Llamaradas Estelares flare model. We fit a line between

flare amplitude and FWHM from our new catalog to

extract an appropriate FHWM for any given amplitude.

We added additional noise to the FHWM, as the rela-

tionship between amplitude and FWHM exhibits scatter

similar to distribution of flare energy and ED shown in

Figure 2. Once the flares were injected, we followed the

steps outlined in Sections 2.3 - 2.5 to identify these in-

jected flares.

We considered a flare recovered if the tpeak is within

15 minutes of the injected tpeak. We are able to re-

cover 93% of flares with A ≥ 3% and 80% of flares with

A < 3%. This is consistent with previous results using

this flare identification method (Feinstein et al. 2020b).

We note that there is a steep drop-off in flare recovery

rate at Tmag > 13, with average recovery rates dropping

from 90% to 70%. The variation in recovery rates be-

tween years observed by TESS ranges from 1−8% across

all eleven targets. There is no correlation between recov-
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ery rate, ξflare/texp and flare rate, with the exception of

TIC 142015852 and 339668420. We find an 8% increase

between Years 1 and 2, and a 3% decrease between Years

2 and 3 in the recovery rate for TIC 142015852. Addi-

tionally, we find an 1% increase between Years 1 and 2,

and a 2% decrease between Years 2 and 3 in the recovery

rate for TIC 339668420. An 8% change in the recovered

flare rate correlates to ∆(ξflare/texp) = 0.09, assuming

ED = 1minute, and a ∆R = 0.03. These estimates are

smaller than the annual variations seen in flare statis-

tics for these two stars, leading us to conclude that these

variations are astrophysical.

4.4. Observing Peaks in Stellar Flare Activity

In the Section 4.3 we demonstrated that 10 out of 108

stars with > 200 days of observations exhibited Peak

behavior in their variability patterns and found no bias

in flare detection as a function of year. This is approx-

imately what we would expect to find for an unbiased

sample. Our analysis requires a large number of bright

flares to be observable to characterize the stellar cycle.

Therefore, our sample of objects should be biased to-

wards stars that are undergoing a local maximum, rather

than a local miinimum, in their activity cycle.

It is not clear what the length of the activity cycles

are for stars other than the Sun. For this order of mag-

nitude estimate we therefore assume that the activity

cycles of all stars in our sample are similar to that of

the Sun. This approximation is valid if the length of

stellar cycles on average is not more than an order of

magnitude different than that of the sun. By observ-

ing N ∼108 stars for a τ ∼5 year baseline, assuming

that each has a P ∼ 10 year activity cycle, we would

expect that during that time period τ/PN ∼ 50 stars

should experience a peak in their stellar cycle during

the observations. Moreover, our analysis will only be

sensitive to activity cycles if there is not only a peak,

but also lower activity in the year before and after the

peak. Therefore, the number of stars that we would ex-

pect to identify that have a peak in year 2 should be

τ/PN/3 ∼ 16. Therefore we would expect to identify

∼ 16 stars exhibiting a peak in their activity cycle dur-

ing these observations, which is similar to what we have

found.

However, it is likely that there is a variety of lengths

of stellar cycles in our population and the exact corre-

spondence between the number found and the number

estimated is simply a manifestation of the crude order of

magnitude approximation that we employed rather than

an exact correspondence. Nevertheless, this represents

tentative detections of peaks in stellar activity cycles

and that on average the length of these cycles is not an

order of magnitude different than that of the Sun.

The results presented here are consistent with those

presented in previous studies of magnetic activity cycles

in young stars. Oláh et al. (2016) analyzed 29 stars from

the Mount Wilson survey which had ∼ 36 years of Ca II

H & K monitoring. Roughly 16 stars in this sample have

constrained ages of < 1 Gyr via gyrochronology. This

sample of stars have Prot = 18.1 ± 12.2 days and mag-

netic activity cycles of Pcyc = 7.6 ± 4.9 years. There

is significantly more dispersion in the young stellar cy-

cle lengths than for the older stars. Oláh et al. (2016)

concluded that young stars show more complex inter-

annual variations in magnetic activity. While stars age,

magnetic braking will increase the rotation of the star.

Once this process has occurred, the magnetic activity

cycle becomes more well-behaved, as seen on the Sun.

We apply the relationship between log(1/Prot) and

log(Pcyc/Prot) described in Oláh et al. (2016) to esti-

mate the activity cycles in our sample. 10 of our 11

candidates have measured Prot = 0.41 − 5.22 days. Us-

ing the best-fit slope of 0.76 ± 0.15, we estimate the

Pcyc = 0.81 − 1.49 years. Strong evidence of shorter

activity cycles than ∼ 3 years may be missed by the

sparse annual sampling from TESS. Redesigning the

next TESS extended mission to stare at the northern

and southern ecliptic poles continuously for two years,

instead of alternating poles, may help resolve these

shorter activity cycles, if present.

4.5. Validating Stellar Activity Cycles

The stars presented in this work present examples that

stellar activity cycles could be identified by characteriz-

ing stellar flares and measuring flare rates. In addition

to flare rates, it would be beneficial to conduct detailed

spectroscopic follow-up of these candidates. For exam-

ple, detailed monitoring of Ca II H & K lines for these

targets could reveal if their activity cycles are similar

to that seen from the flare rates. Unfortunately, our

candidates are located too far south to have been in-

cluded in the Mount Wilson HK project, which aimed

to understand stellar chromospheric activity on a va-

riety of timescales (Wilson 1968). Monitoring of the

overall XUV luminosities of these targets could pro-

vide additional insights into the variability of the tar-

gets. Additionally, more continuous time-series photom-

etry of these targets would provide more stringent con-

straints on the flare variability for these targets. While

long time-series photometry, such as that achieved with

TESS and Kepler are ideal, more sparse but consistent

photometric monitoring for stellar flares may provide

useful additional supplemental data to TESS observa-
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tions. This is especially true for the times when TESS

is observing in the opposite ecliptic hemisphere.

The TESS Full-Frame Images (FFIs) allow for the cre-

ation of light curves for objects in ∼ 95% of the sky (e.g.

Feinstein et al. 2019). During its primary mission (July

2018 - July 2020), the TESS FFIs were taken every 30-

minutes. During its first extended mission (July 2020

- September 2022), the FFI cadence was decreased to

10-minutes. Now, during its second extended mission

(September 2022 - September 2025), the FFI cadence

was again decreased to 3-minutes. At 3-minutes, we

can more accurately identify and resolve the structure

of stellar flares (Howard & MacGregor 2022). A detailed

search of flare variability for stars in the TESS FFIs may

provide a more statistical view of how flare rates change

on long timescales, and if they can yield insights into

stellar activity cycles.

5. DISCUSSION

5.1. Correlations with Far- and Near-Ultraviolet Flux

The stellar X-ray coronal emission is known to be a

tracer of overall magnetic activity. Therefore, it should

theoretically depend on the dynamo of the star, and on

observable parameters that are related to the dynamo

such as the rotational period. Empirical evidence indi-

cates that there are distinct saturated and non-saturated

regimes for coronal X-ray emission from main sequence

stars. Specifically, stellar X-ray luminosity surveys have

revealed that the saturation limit depends on the stel-

lar rotation period. Namely, there is no evolution in

LX/Lbol for stars with Prot < 10 days (Pizzolato et al.

2003). The rotation period is a good predictor of the

X-ray luminosity for stars with longer Prot.

The Far- and Near-Ultraviolet (FUV/NUV) emission

is another tracer of magnetic activity. Younger, more

active stars display excess luminosity in both of these

wavelengths (Shkolnik 2013). We use archival obser-

vations from the Galaxy Evolution Explorer (GALEX ;

Martin et al. 2005) to search for trends in FUV/NUV

saturation and flare rate saturation, similar to the es-

tablished X-ray trends. GALEX provides broad FUV

photometry from 1350 − 1750Å and NUV photometry

from 1750 − 2750Å. We crossmatch our target stars

with the GALEX catalog following the sample selection

methods outline in (Schneider & Shkolnik 2018). Specif-

ically, we search using a 10′′ radius around the coordi-

nates of each target in our sample. We include targets

with no bad photometric flags (e.g. fuv artifact or

nuv artifact == 0) as defined in the catalog. It is rec-

ommended by the GALEX documentation to exclude

any objects with these flags associated. Additionally, we

exclude targets with measured magnitudes brighter than

15, which marks the saturation limit for both the FUV

and NUV photometers (Morrissey et al. 2007).Based on

these thresholds, we find that 462 stars in our sample

have NUV photometry and 139 stars have FUV pho-

tometry.

We investigate whether the saturation of flare rate

and FUV/NUV emission are correlated with the derived

R0 in each star. We present our results comparing the

FUV and NUV flux and the measured flare rate and

Rossby number in Figure 8. We present the measured

FUV/NUV flux normalized by the J-band flux, which

acts as an activity indicator. In theory, the bolomet-

ric luminosities should be a better normalization factor

than the J-band flux. However, the majority of stars in

our sample do not have bolometric luminosity measure-

ments. Therefore, we keep the normalization to fJ while

assessing FUV/NUV correlations for the larger statisti-

cal sample.

While there is tentative evidence of trends between the

flare rate and the Rossby number (see Section 3.2), there

is inconclusive evidence that the normalized FUV and

NUV flux follow this trend. We note that the number

of stars in our sample which have GALEX FUV mea-

surements is small (Nstars = 139) and therefore might

not be representative of the broader population. It is

worth noting that the NUV flux traces the photosphere

for many of these stars, as opposed to the X-rays which

trace coronal emission. Additionally, the FUV still has

contributions from the photosphere for G stars. There-

fore, it is possible that the lack of a correlation between

the regimes identified for X-ray emission is due to the

fact that the UV is tracing different stellar atmospheric

regions that are not associated with the magnetic activ-

ity. not hold for FUV and NUV flux.

The FUV and NUV flux from GALEX is a super-

position of many different emission lines. These lines

trace various regions of the stellar atmosphere ranging

from the corona to the photosphere depending on their

formation temperatures. It is possible that the blend-

ing of lines produces the lack of correlation between

FUV/NUV flux, R0, and flare rate. Spectroscopic ob-

servations of targets with R0 which span the transition

out of the saturated regime may reveal a stronger rela-

tionship between these parameters. Pineda et al. (2021)

reported evidence of broken power-law relationship be-

tweenR0 and FUV emission lines for∼ 20 stars observed

with the Space Telescope Imaging Spectrograph on the

Hubble Space Telescope. Depending on the emission line

analysed, Pineda et al. (2021) found a saturated regime

for R0 < 0.18−0.24, with a steep drop-off for higher R0.

Additionally, Loyd et al. (2021) evaluated the relation-

ship between FUV emission lines and R0 for 12 Tucana-
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flux for stars in our sample normalized by the stellar J-band
flux. There is no obvious correlation between the fractional
NUV/FUV flux and the measured flare rate or Rossby num-
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row shows GKM stars ≥ 50 Myr. M stars are shown as cir-
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stars, and therefore may not be the best comparison band-
pass when looking for trends in magnetic activity. §

Horologium (tage = 40 Myr), 9 Hyades (tage = 650 Myr),

and 7 field-aged (tage = 2−10 Gyr) M stars. They found

a saturated log10(R0) = −0.876+0.037
−0.061, which is consis-

tent with the X-ray flux and R0 relationship.

The ROentgen Survey with an Imaging Telescope Ar-

ray (eROSITA) instrument (Predehl et al. 2007, 2021)

on the Russian Spectrum-RG mission is an all-sky X-

ray survey from ∼ 0.2 − 8 keV. The synergies be-

tween eROSITA and TESS are already being explored.

Magaudda et al. (2022), used the measured LX from

eROSITA and Prot/R0 from TESS for 704 M dwarfs to

reconfirm the known X-ray activity relationship. It is

possible that these combined data may show a clearer

relationship between R0 and flare rate in the X-ray than

shown here in the FUV/NUV (Figure 8).

5.2. Flare Rates of Young Planet Host Stars Verses

Comparison Sample

The all-sky observing strategy of TESS has revealed a

new population of young transiting exoplanets. Charac-

terization of the environment of these planets is crucial

to understanding their subsequent evolution. Specif-

ically, the stellar environment can impact how these

young planets evolve into their mature counterparts.

It is unclear whether stellar flares are beneficial or

detrimental to the habitability of exoplanets. It is pos-

sible that stellar flares can trigger the development of

prebiotic chemistry (Rugheimer et al. 2015; Airapetian

et al. 2016; Ranjan et al. 2017; Rimmer et al. 2018).

On the other hand, stellar flares and affiliated coronal

mass ejections can permanently alter atmospheric com-

positions (Chen et al. 2021). This alteration may in-

crease the amount of atmospheric mass stripped dur-

ing the early stages of planet evolution (Feinstein et al.

2020b). Therefore, understanding the environment of

young transiting exoplanets can provide insight into

their evolution.

To this end we compare measured flare rates of young,

planet hosting stars to a statistical sample of stars with

similar ages and Teff that do not have confirmed short-

period planets. Specifically, we measured the flare rates

of planet hosting stars with ages < 300Myr, comparable

to the ages of our primary sample. We followed the

methods outlined in Section 2 to detect and vet flares

for the planet-hosting stars.

For our comparison sample, we considered stars with

ages ±30Myr of the planet hosting star and Teff ±
1000K. For each of the stars in the control samples, we

calculate the flare rate following Equation 3. We present

the flare rates of planet-hosting stars and a comparable

sample of stars in Figure 9 and report the measured

rates in Table 2. For the control samples, we report the

median flare rate, and the lower 16th and upper 84th

percentiles.

Flare rates are slightly diminished for the majority of

planet hosting stars compared to the control sample.

This could be interpreted as evidence that the pres-

ence of planets inhibits magnetic reconnection events

and activity, or that the presence of flares biases transit-

detection algorithms. However, for all cases where the

flare rates are diminished in the presence of a short-

period planet, the difference between the flare rates are

within 1−σ and not statistically significant.

There are a handful of cases where stars hosting short-

period planet exhibit drastically higher flare rates. The

most dramatic case is for the 23 Myr AU Mic (Jeffries &

Oliveira 2005; Malo et al. 2014; Mamajek & Bell 2014),

where the flare rate is more than an order of magnitude

higher than in the control sample. AU Mic and its tran-

siting planets are generally considered as a benchmark

laboratory for understanding the impact of stellar activ-

ity on young exoplanet atmospheres. The system hosts

an extended debris disk (Kalas et al. 2004; Liu 2004;

Metchev et al. 2005) along with two short-period tran-

siting planets (Plavchan et al. 2020; Martioli et al. 2021;

Gilbert et al. 2022). It is worth noting that this flare

https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/galex.py
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rate is consistent with that measured by Gilbert et al.

(2022); Feinstein et al. (2022c), and is not attributed to

star-planet interactions (Ilin & Poppenhaeger 2022). In

addition to this, HIP 67522, DS Tuc A, and TOI 451 all

exhibit higher flare rates than the comparison sample.

It is unclear what differentiates the planet hosting sys-

tems with higher flare rates from the control sample.

France et al. (2018) and Behr et al. (2023) found that

planet hosting stars are less active than an equivalent

control sample of field age stars in the UV. In Figure 9

the color of the points corresponds to the effective tem-

perature of the star. It appears that the flare rates of

the planet hosting stars compared to the control sam-

ple is randomly distributed with respect to the effective

temperature of the star. It is possible that there is a

small age effect: the systems with higher flare rates are

some of the youngest planet hosting stars: HIP 67522

is 17± 2 Myr, AU Mic is 22± 3 Myr, DS Tuc is 45± 4

Myr and TOI 451 is 120 ± 10 Myr. There is a slight

preference for the younger systems to exhibit elevated

flare rates, but this is marginal evidence at best. Future

observations of these systems with elevated flare rates

may reveal what causes this feature.
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Figure 9. Comparison of flare rates from young planet
host stars with respect to a comparable sample with respect
to age [Myr] and Teff [K]. Circles represent the flare rate of
the host star (name along the x-axis); vertical bars represent
the lower 16th and upper 84th percentiles for the compara-
ble sample. The majority of young planet host stars have
comparable flare rates to the lower end of the comparison
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relation with spectral type or age which may indicate why
these host stars are relatively flare quiet. The measured flare
rates are presented in Table 2. §

6. CONCLUSIONS

Table 2. Young Planet Host Flare Rates

Host Name Age Flare Rate Comp. Sample N

[Myr] [day−1] Flare Rate [day−1]

TOI 1227 11± 2 0.008 0.065+0.074
−0.042 168

HIP 67522 17± 2 0.169 0.081+0.099
−0.043 368

AU Mic 22± 3 2.218 0.104+0.188
−0.066 590

V1298 Tau 23± 4 0.022 0.116+0.107
−0.07 300

HD 109833 27± 3 0.000 0.077+0.097
−0.039 415

KOI-7913 36± 10 0.031 0.152+0.165
−0.094 312

KOI-7368 36± 10 0.029 0.116+0.107
−0.071 285

DS Tuc 45± 4 0.420 0.104+0.104
−0.061 281

TOI 942 50+30
−20 0.040 0.092+0.146

−0.049 120

TOI 451 120± 10 0.128 0.059+0.136
−0.03 204

HIP 94235 133+15
−20 0.020 0.048+0.094

−0.028 165

TOI 1860 133± 26 0.008 0.049+0.108
−0.026 207

TOI 1807 18040 0.013 0.06+0.11
−0.038 53

HD 18599 200+200
−70 0.000 0.033+0.066

−0.02 22

TOI 2076 204± 50 0.000 0.083+0.122
−0.041 55

HD 110082 250+50
−70 0.000 0.088+0.045

−0.045 2

Note—N is the total number of stars used to calculate the compara-
ble sample flare rate. We highlight host stars with flare rates higher
than those in the comparison sample.

In this work, we present the first measured flare rates

for stars < 300Myr using TESS 2-minute cadence ob-

servations. We identified 26,355 flares from 3,160 stars

(Figures 1 and 2). The results of our work are summa-

rized as follows:

1. We measured the flare-frequency distribution

(FFD) slope, α, for samples of flares binned by age

and Teff. We find α saturates at α = −0.6 to− 0.2

for stars younger than 300Myr and declines af-

ter that age (Figure 4). This is the first evidence

that flare rates saturate across spectral types, as

do other tracers of stellar magnetic activity,.

2. We measured rotation periods for 1,847 stars and

find that the relationship between flare rate and

Rossby number, R0, is best described as a piece-

wise function with a turnover at R0 = 0.136 for

stars tage > 50Myr (Figure 5). Additionally, we

find that stars with R0 ≤ 0.136 have a shallower

FFD than stars with R0 > 0.136, which is evidence

of a more dominant rotational dynamo compared

to the convective dynamo (Figure 6); this is con-

sistent with results presented in Seligman et al.

(2022).

https://github.com/afeinstein20/young-stellar-flares/blob/9113bbb9de9114ea4ee74b73ddbc6cd9bbcb3411/src/scripts/yp_rates.py


18 Feinstein et al.

3. We searched for evidence of far- and near-

Ultraviolet (FUV/NUV) flux saturation as a func-

tion of R0, similar to what is seen in the X-ray, by

cross matching our sample with the GALEX cat-

alogs. We find no correlation between the FUV

and NUV flux with flare rate (Figure 8). The

NUV (and for the G-type stars, the FUV) flux

traces the photosphere for many of the stars in our

sample, unlike the X-ray which traces the corona.

Spectrally-resolved NUV and FUV observations

where the chromospheric emission lines can be iso-

lated may be a more promising means of investi-

gating this connection. Future synergies between

eROSITA and TESS may reveal such relationships

as well.

4. We compared the flare rates of planet-hosting

young stars with a comparable sample with tage =

tage, host ± 30Myr and Teff = Teff, host ± 1000K.

We find that the majority of planet-hosting stars

are flare inactive relative to a larger population of

similar stars (although not to a statistically sig-

nificant level), with the exception of HIP 67522,

AU Mic, DS Tuc, and TOI 451 (Figure 9).

5. We searched for evidence of long-term stellar cy-

cles by evaluating changes in flare rates and FFDs

over five years of TESS observations. We identi-

fied ten candidates which show potential evidence

of a local maxima in their stellar cycle, and one

candidate which shows a decline in flare activity

(Figure 7). We determine that these maxima are

not due to flare-detection biases via injection re-

covery tests. While we are unable to obtain stellar

cycle timescales from three data points, these re-

sults highlight the insights flares can bring to un-

derstanding stellar dynamos for targets with more

TESS observations (e.g. stars in the continuous

viewing zones) and the use of future TESS ex-

tended missions.
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APPENDIX

A. SUPPLEMENTAL MATERIAL

In this appendix we present all of our best-fit slopes and intercepts for various flare-frequency distributions (FFDs)

fit throughout this work. The fits outlined in Sections 3.1 are included. We present the FFDs as a function of energy

in Figure A1. 100 random draws from our MCMC fitting to these distributions are shown as orange lines. We fit each

distribution with E > 1029 erg, which roughly represents the turnover in each distribution. We do not fit the slope for

Teff = [3850− 4440] K at 20 – 40 Myr due to our limited sample size (6 stars in total).

Software: numpy (Van Der Walt et al. 2011), mat-

plotlib (Hunter et al. 2007), scipy (Virtanen et al.

2020), lightkurve 8, banyan-Σ (Gagné et al. 2018b), as-

tropy (Astropy Collaboration et al. 2013; Price-Whelan

et al. 2018), stella (Feinstein et al. 2020a,b), tensorflow

(Abadi et al. 2016), astroquery (Ginsburg et al. 2019)

Facility: TESS
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Figure A1. Flare frequency distributions (FFDs) for subgroups of stars, clustered by age and effective temperature, Teff.
Flares were sorted into 25 bins in log-space from 1027 − 1035 erg. We fit the FFD from the turn-over in the binned flares, likely
a result of low-energy flares missed by the flare-detection algorithm. The bins used to fit the FFD are shown in black, while all
bins are shown in gray. We ran an MCMC fit to these distributions with a simple power law; 100 random samples from these
fits are over-plotted in orange. We fit distributions with > 3 bins. The best-fit slopes from these fits are presented in Figure 4.
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