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Abstract—Statistical learning theory and the Probably Ap-
proximately Correct (PAC) criterion are the common approach
to mathematical learning theory. PAC is widely used to ana-
lyze learning problems and algorithms, and have been studied
thoroughly. Uniform worst case bounds on the convergence rate
have been well established using, e.g., VC theory or Radamacher
complexity. However, in a typical scenario the performance
could be much better. In this paper, we consider PAC learning
using a somewhat different tradeoff, the error exponent - a
well established analysis method in Information Theory - which
describes the exponential behavior of the probability that the risk
will exceed a certain threshold as function of the sample size.
We focus on binary classification and find, under some stability
assumptions, an improved distribution dependent error exponent
for a wide range of problems, establishing the exponential
behavior of the PAC error probability in agnostic learning. Inter-
estingly, under these assumptions, agnostic learning may have the
same error exponent as realizable learning. The error exponent
criterion can be applied to analyze knowledge distillation, a
problem that so far lacks a theoretical analysis.

I. INTRODUCTION

Statistical machine learning studies the generalization abil-
ity and convergence rate of learning algorithms. One of the
most popular criteria for learnability is the Probably Approx-
imately Correct (PAC) criterion, suggested in [1], [2], which
describes the probability of a learning algorithm to output a
hypothesis that is not too far from the optimal one.

In this work, we will consider the class of Empirical Risk
Minimization (ERM) predictors, which is the most prominent
method for learning problems. ERM predictors choose the
hypothesis achieving minimal loss on a given training sample,
and their analysis under the PAC criterion is well established
through VC theory [3], [4].

Classical setting divides the learning problem into two cases
- Realizable learning, in which the target function is taken
from the hypothesis class, and Agnostic learning, in which
the target function could be outside the class. The general
worst-case upper bounds of both cases are well established,
see [5] for example.

Although VC theory is powerful, it provides a uniform
upper-bound for the worst case scenario, where in a typical
scenario the convergence rate could be much faster, as sug-
gested by [6]. Actually, the recent rise of deep learning demon-
strate that uniform bounds fail to describe many practical
situations and better characteristics comes from considering
non-uniform, possibly distribution dependent analysis.

In this paper we consider agnostic PAC learning for the
case of binary labels and 0-1 loss function. We derive an

improved distribution-dependent error exponent for the PAC
error probability, using some assumptions, for a wide range of
learning problems. Moreover, we show that under the specified
assumptions, the derived error exponent can be the same for
both agnostic and realizable learning.

A. Related Work

VC theory and the PAC model provide conditions for
uniform consistency and bounds, that are achieved, e.g., by
ERM predictors [3]. This theory fails to explain the success of
recent learning models, such as neural networks, as presented
in [7], [8], where practical learning rates can be much faster
than the ones predicted by the VC theory. Moreover, in [9]
different types of over-parameterized models are analyzed
and it is proved that any uniform bound would yield a
bad generalization bound. This issue motivated theories that
provide better, non-uniform learning rates.

In this direction, works such as [10]–[12], establish im-
proved bounds for specific cases and algorithms. However,
these works do not provide a general theory. [13], [14] de-
veloped tighter bounds for distribution dependent PAC-Bayes
priors. [15] showed the existence of classes with faster rates
than the classical agnostic bound, but the provided condition
for such a rate is impractical for infinite feature spaces. Other
works relax the uniformity property, as done by [16], who
proposed a relaxed model of PAC in which the bound on the
learning rate may depend on a hypothesis, but is uniform on
all distributions consistent with that hypothesis. Other works
focus on totally non-uniform learning bounds. For example,
[17], [18] established a theory for non-uniform consistency, in
which an algorithm is considered consistent if it convergence
to the optimal risk for any ground truth, and showed there
exists such algorithm for separable metric spaces. In [6] a
theory for non-uniform PAC learning in the realizable setting
is developed showing that the learning rate can be one of 3
types: exponential, linear and arbitrarily slow.

II. PROBLEM FORMULATION

Let the training data be n pairs of data samples and their
labels (x1, y1), ..., (xn, yn), where xi are i.i.d and drawn from
a feature space X ⊆ RN according to an unknown distribution
F , and the labels yi ∈ {0, 1} are generated by some unknown
deterministic function yi = g(xi), called the ground-truth
function. We have a hypothesis class FΘ = {fθ, θ ∈ Θ},
and would like to find the closest hypothesis to the ground
truth in the class under some loss function. We focus on the
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setting in which the hypotheses range is binary and the loss
function is the 0-1 loss:

ℓ(ya, yb) =

{
0 ya = yb

1 ya ̸= yb

The following notations are with regard to some arbitrary
function f , where f can be the ground truth or some other
function in discussion. For hypothesis class FΘ, denote the
risk between hypothesis fθ ∈ FΘ and some function f(x) as:

Rf (θ) = R(f, fθ) =

∫
X

ℓ(f(x), fθ(x))dF(x) , θ ∈ Θ (1)

and the empirical risk between fθ and f(x) on sample xn as:

Remp
f (θ, xn) =

1

n

n∑
i=1

ℓ(f(xi), fθ(xi)) , θ ∈ Θ (2)

In this paper, we analyze the Empirical Risk Minimization
(ERM) algorithm, which selects the hypothesis that minimizes
the empirical risk on the sample xn out of all the hypotheses in
the class. Specifically, the ERM on a sample xn and hypothesis
class Θ, with regard to a function f(x), is defined as:

θ̂fn = θ̂f (xn) = argmin
θ∈Θ

Remp
f (θ, xn) (3)

Whenever there are multiple hypotheses with the same mini-
mal empirical risk, we use the convention of choosing the one
maximizing the true risk (i.e., the worst one).

Denote the hypothesis achieving minimum risk with regard
to the ground truth g as θopt:

θopt = argmin
θ∈Θ

Rg(θ), fopt = fθopt (4)

We will refer to fopt as the projection of g on FΘ. We assume
for simplicity that the hypothesis class is non-degenerate in the
sense that there is no subset of the feature space X

′ ⊆ X for
which all hypotheses coincide. That is, for any set X

′ ⊆ X
with positive probability, we have:

Pr
(
fθ(x) = const ∀θ ∈ Θ | x ∈ X

′
)
= 0 (5)

This is not restrictive as any part of the feature space on
which all hypotheses coincide will contribute the same risk
to all hypotheses, thus not affecting the choice of ERM. We’ll
also assume that for any positive (Lebesgue) measure set the
probability measure is positive (this is non restrictive as such
regions with zero probability have no effect).

A. PAC Learning

In the context of ERM, we say that the class FΘ is (agnostic)
PAC learnable [19] if there exist a sample size N(ϵ, δ) and an
algorithm θ̂gn such that for every ground truth function g(x),
every probability distribution F on X and every δ, η ∈ (0, 1),
for n > N , with probability at least 1− η we have:

Rg(θ̂
g
n) < Rg(θopt) + δ. (6)

PAC actually describes the relationship between three quanti-
ties: the deviation from the optimal risk δ, the probability η

for deviation larger than δ and the size of the sample n. We
will refer to η as the PAC error probability for shortness.

The analysis of learning algorithms using PAC is usually
done by writing one parameter as a function of the other two.
Most notably, writing n as a function of η and δ (known as
sample complexity) or writing δ as function of n for some
fixed value of η (known as excess risk). In this way, we can
say one algorithm is better than the other if, for example, it
has a better sample complexity (i.e., n increases slower as
a function of 1

δ for a fixed η). We propose to fix δ and to
look instead at the probability of deviation η as function of
the sample size n. In this case, we say that one algorithm is
better than the other if η decays faster as a function of n.

B. VC Theory

VC theory [3] provides consistency conditions and uniform
(worst-case) bounds for PAC learning of ERM predictors.
This is done using the VC dimension of the hypothesis class,
denoted h, defined as the maximum sample size h for which
the sample can be separated into two classes in all 2h possible
label sequences, using functions from the hypothesis class.

VC theory provides the following well known results for
ERM (see [5] for example). In agnostic learning, for n > h,
with probability at least 1− η we have:

Rg(θ̂
g
n)−Rg(θopt) ≤ 4

√
2
h ln 2en

h + ln 2
η

n
(7)

In realizable learning, for n > h, with probability at least
1− η:

Rg(θ̂
g
n) ≤ 4

h(ln 2ne
h )− ln η

4

n
(8)

These bounds describe the generalization and convergence of
the ERM predictor.

Focusing on (7), we can get η as a function of δ and n by
setting the right hand side to δ:

Pr
(
Rg(θ̂

g
n)−Rg(θopt) > δ

)
≤ 2e−

δ2

32n+h ln 2en
h (9)

Similarly, we get the following for the realizable case:

Pr
(
Rg(θ̂

g
n)−Rg(θopt) > δ

)
≤ 4e−

δ
4n+h ln 2en

h (10)

This formulation of the upper bound shows that the PAC error
probability η decays exponentially with n and allows us to
explore its error exponent. Recall that the error exponent d of
a series an is defined as:

d = − lim
n→∞

1

n
ln an (11)

We will use the notation an
.
= bn to indicate that series

an has the same error exponent as bn. The concept of error
exponent (see section 5.6 in [20] for example), was proven
useful in Information Theory for analyzing the decay rate of
probabilities to zero. It allows utilizing powerful mathematical
tools such as the method of types [21] and Sanov’s theorem
[22]. We can see from (9) that the error exponent in the
agnostic case is δ2

32 , and from (10) that the error exponent



in the realizable case is δ
4 . We note that the bound in (7)

can be manipulated using a chaining technique [23] to get
rid of the ln 2en

h factor, but the resulting error exponent will
be worse. In the next sections, we will derive an improved
distribution-dependent bound for the PAC error probability
η = Pr

(
Rg(θ̂

g
n)−Rg(θopt) > δ

)
for the agnostic case. This

will be done using some assumption on the learning problem
(i.e., on the hypothesis class and the ground truth) described in
the next sections. Under these assumptions the error exponent
in the agnostic case can be the same as in the realizable case
for small enough δ.

III. PRELIMINARIES

In this section we introduce a few key concepts. In order to
provide some intuition, we will use the k-boundary hypothesis
class as a case study and demonstrate these concepts on it.

Definition 1 (k-boundary hypothesis class): Let X ⊆ R.
The k-boundary hypothesis set is defined as

fb1,...,bk(x) =



0 x < b1

1 b1 ≤ x < b2

0 b2 ≤ x < b3

...

1 bk ≤ x

Where b1 ≤ b2 ≤ ... ≤ bk, x, b1, ..., bk ∈ X . For unique-
ness, equality is allowed only between the first 2 parameters
or between last parameters (e.g., b1 = b2 < b3 < ... < bk−2 =
bk−1 = bk).

For example, on the feature space X = [0, 1] with uniform
distribution, the 2-boundary function with parameters b1 =
0.5, b2 = 0.9 is

g(x) = fb1,b2(x) =


0 0 ≤ x < 0.5

1 0.5 ≤ x < 0.9

0 0.9 ≤ x ≤ 1

We will use this example throughout this section to demon-
strate the presented concepts. Another important hypothesis
class, which is more closely related to neural networks, is the
class of linear classifiers:

Definition 2 (linear hypothesis class): Let there be a feature
space X ⊆ Rk. The k-dimensional linear hypothesis set is:

fb0,...,bk(x) = 1(b0 + b1x1 + ...+ bkxk > 0)

Where (b0, ..., bk) ∈ Rk+1, (x1, ..., xk) ∈ X and 1{.} is the
indicator function.

Definition 3 (Generalized Optimum Point): For hypothesis
class {fθ, θ ∈ Θ} and ground truth function g(x), we say
that θ ∈ Θ is a generalized optimum point (GLP) of Rg(θ) if
∀θ̃ ∈ Θ\ θ there exists a set X̃ ⊆ X with positive probability,
such that ∀x ∈ X̃ we have ℓ(fθ(x), g(x)) < ℓ(fθ̃(x), g(x)).

In simple words, θ is a GLP if no other hypothesis can beat
it uniformly on the feature space X. Notice that the hypothesis
θopt minimizing the risk is always a GLP, as for every other
hypothesis in the class there must exist a set for which θopt is

uniformly better, otherwise it would not be the minimizer of
the risk. We will refer to θopt as the global optimum.

Consider for example the 1-boundary hypothesis class with
a ground truth g as described above. The GLP’s will be θ0 =
0.5 and θ1 = 1, as no other hypothesis θ ∈ [0, 1] achieves a
lower loss for all x ∈ X. Notice that these are the only GLP’s
since any other hypothesis θ is no better (for all x) than either
θ0 or θ1. This divides the parameter space into two groups:
hypotheses that are no better than θ0 and hypotheses that are
no better than θ1. We can informally say that when an ERM
learns from g using the 1-boundary hypothesis class, there
is going to be a competition between these 2 groups. The
following definition generalizes this concept.

For each GLP θ∗, denote the set Aθ∗ ⊆ Θ:
Definition 4 (Aθ region): Let Θopt be the set of GLP’s of

Rg(θ) and θ0 ∈ Θopt be the global optimum. For every θ∗ ∈
Θopt denote the regions:

Ãθ∗ = {θ ∈ Θ | Pr
(
ℓ
(
fθ∗(x), g(x)

)
≤ ℓ

(
fθ(x), g(x)

))
= 1}

(12)
In order to make these regions disjoint, we handle the inter-
sections in the following way:

1) remove all overlaps from Ãθ0 :

Aθ0 = Ãθ0 \
⋃

θ∗∈Θopt, θ∗ ̸=θ0

Aθ∗

2) For the other regions Ãθ∗ , θ∗ ̸= θ0, arbitrarily assign the
intersection to one of the regions such that there will not
be any overlap, to obtain the regions Aθ∗

These regions form a complete partitioning of Θ such that
∪θ∗∈Θopt

Aθ∗ = Θ (see proof in appendix A).
In simple words, Aθ∗ is the set of hypotheses in Θ that

are no better than the GLP θ∗ for any given x ∈ X (with
probability 1). For the example above we have the sets Aθ0 =
(0, 0.9) and Aθ1 = (0.9, 1).

Note that in any (non-degenerate) agnostic learning problem
we will have at least 2 GLP’s, because if g is outside the class,
there must be a set in X with positive probability for which
g is different than fopt. Any hypothesis equal to g on this set
will be universally better than fopt on this set, and will not
belong to Aθ0 (this is a consequence of (5)). Thus, there must
be other GLP’s in addition to θ0.

Definition 5 (Dominating region): For hypothesis class
{fθ, θ ∈ Θ}, the Dominating region of θa on θb, where
θa, θb ∈ Θ, with regard to g(x), denoted as D(θa, θb) ⊆ X,
is defined as

D(θa, θb) ={
x ∈ X | Pr

(
ℓ
(
fθa(x), g(x)

)
< ℓ

(
fθb(x), g(x)

))
= 1

}
(13)

The dominating region is the set in the feature space for which
θa achieves lower loss than θb (i.e., fθa = g, fθb ̸= g). Using
our example, the dominating region of θ0 on θ1 is D(θ0, θ1) =
(0.5, 0.9).

Definition 6 (Stability): We say that a GLP θ∗ is stable if
we can define a distance in Θ and there exist ϵ > 0 such that



for every θ with distance ||θ − θ∗|| < ϵ the following holds
with probability 1:

ℓ(fθ∗(x), g(x)) ≤ ℓ(fθ(x), g(x)) (14)

Informally, θ∗ is a stable GLP if any hypothesis in its neigh-
borhood does not have an improved classification ability with
regard to any x ∈ X. Using our example from above, both θ0
and θ1 are stable.

IV. THEORETICAL RESULTS

We consider the following assumptions.
Assumption 1: fopt is a stable GLP.
Assumption 2: fopt is a unique GLP.
Assumption 3: The following is true in probability:

lim
n→∞

θ̂gn = θopt

Assumption 4: FΘ is a complete space. i.e., the limit
of any Cauchy sequence in Θ is also in Θ, and the
limit of any sequence fθm ∈ FΘ, such that the series∫
X
ℓ(fθm(x), fθm+1

(x))dF(x) has a limit, is also in FΘ.
Assumption 5: 0 < δ < δmax, where δmax is denoted as:

δmax = min{ min
θ/∈Aθ0

Rfopt(θ), min
θ/∈Aθ0

Rg(θ)−Rg(θopt)} (15)

Assumption 2 is needed mainly to ease the analysis and can
be generalized. Relaxing this assumption will cause the ERM
to alternate between multiple Aθ regions of the (non-unique)
global GLP’s. Assumption 3 is a non-uniform consistency re-
quirement (this is weaker than finite VC dimension), which is
reasonable. Assumption 4 is mainly a mathematical technical-
ity. Assumption 5 means that we are looking at what happens
for small enough δ, which is reasonable as we are interested
in the behavior in the asymptotic regime. Assumption 1 is the
only one that poses a significant constraint. Nevertheless, a
wide range of learning problems satisfy it, such as k-boundary
class with a ground truth with finite number of transition points
(see proof in appendix B-A ). It is also satisfied by some
cases of linear classifiers, which are more closely related to
neural networks. An example of a ground truth that satisfies
these assumptions, using a 2-dimensional linear hypothesis set
is shown in Figure 1 where the optimal linear hypothesis is
1(x2 > 1.3−x1), and any change in its parameters will result
in mis-classification of more features, thus it is a stable GLP.

We can now move to state our main results.
Theorem 1: Given a hypothesis class {fθ, θ ∈ Θ}, and

ground truth function g with projection fopt on the hypothesis
class, the following holds under assumptions 1-5:

Pr
(
Rg(θ̂

g
n)−Rg(θopt) > δ

)
=

PR + (1− PR) Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

) (16)

where PR = Pr
(
Rfopt(θ̂

fopt
n ) > δ

)
is the realizable PAC er-

ror probability when learning from fopt (see proof in appendix
B-C). This theorem decomposes the PAC error probability into
the error incurred in realizable learning and the additional

Fig. 1. Ground truth with stable optimal 2-dimensional linear hypothesis
(see definition 2). x1 and x2 are uniformly distributed in [0, 1]. The optimal
hypothesis is achieved by b0 = −1.3, b1 = 1, b2 = 1.

error incurred in agnostic learning. Notice that for realizable
learning, g ∈ FΘ, we get Pr

(
Rfopt(θ̂

g
n) > δ

)
= PR, as

expected.
Denote the KL divergence projection of a distribution Q̃ on

a set of distributions Π̃ as:

DKL(Π̃ ∥ Q̃) = inf
P∈Π̃

DKL(P ∥ Q̃) (17)

where DKL(P ∥ Q̃) is the KL divergence.
Theorem 2: Under assumptions 1 - 5, if Θ has a finite VC

dimension, there exists a positive real number d ∈ R+ such
that the following holds:

Pr
(
Rg(θ̂

g
n)−Rg(θopt) > δ

)
.
= e−n·min{ δ

4 ,d} (18)

where d = DKL(Π ∥ Q), Π is a set of distributions on some
alphabet χ, induced by the distribution on X for which the
ERM will output a hypothesis outside of Aθ0 and Q is the
true distribution on the alphabet.
The proof of the Theorem is provided in appendix B-E. The
distribution Q and the set of distributions Π will be explicitly
derived in the next section.

This theorem establishes the exponential behavior of the
PAC error probability and is achieved by showing that
the error exponent of Pr

(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
is

DKL(Π ∥ Q) and using the uniform realizable learning bound
in (10). This implies that any improved realizable bound can be
plugged into theorem 2 to get an improved agnostic bound, and
the requirement of finite VC dimension might be unnecessary.

The achieved error exponent min( δ4 , d) is better than the
classical error exponent for agnostic learning in (9), which is
δ2

32 , as it is linear in δ instead of quadratic in δ.
Notice that because d is independent of δ, for δ <

min{4d, δmax} the error exponent is δ
4 , which is the same

as the worst case realizable learning exponent. Thus, not only
the error exponent is much better than the general one for
agnostic learning, it also shows that agnostic learning might



be no harder than realizable learning in some cases. This result
can be expressed as a bound on the excess risk:

δ = O(
1

n
ln

1

η
) (19)

A. Derivation of Error Exponent

In this section we provide details on how to construct the
set Π and the distribution Q. The derivation in this section is
partial and is done under the assumption that there are K+1
GLP’s. However, this is only to simplify the already complex
derivation and is not a requirement (see appendices B and
C for more details). θopt must be one of the K + 1 GLP’s.
Denote θ0 = θopt, fθ0 = fopt. For each GLP θi , i = 1, ...,K
of Rg(θ), denote the following regions:

Di = D(θ0, θi), D
′

i = D(θi, θ0) (20)

Di is the region that supports choosing θ0 over θi and D
′

i

is the opposite. Denote #D as the number of samples that
fall in region D. θ0 achieves lower empirical risk than θi if
#D

′

i < #Di. Denote the disjointified regions of Di, D
′

i:

Xi1,...,ir = {∩j∈{i1,...,ir}Dj}\{∪j /∈{i1,...,ir}Dj}
X

′

i1,...,ir = {∩j∈{i1,...,ir}D
′

j}\{∪j /∈{i1,...,ir}D
′

j}
Xc = X\{∪jD

′

j ∪i Di},
(21)

where r = 1, ..,K and 1 ≤ ir ≤ K. Notice these re-
gions are non-intersecting and Di = Xi ∪ {∪i2Xi,i2} ∪ .. ∪
{∪i2,..iKXi,i2,..iK}. We can write the following equation:

 #D1 −#D
′

1

...

#DK −#D
′

K

 = A


#X1

...
#X1,..,K

...

#X
′

1,..,K

 (22)

where A is a matrix. Denote the alphabet χ:

χ = {X1, .., X1,..,k, X
′

1, .., X
′

1,..,k, Xc} = {a1, ..., a|χ|} (23)

Denote the probability mass function Q on χ such that
Q(ai) = Pr (x ∈ Si), ai ∈ χ, where ai is the i’th symbol
in χ and Si is the region corresponding to it. Denote Π:

Π =
{
(p1, .., p|χ|)

∣∣∣ {A
 p1

...
p|χ|−1

 < 0
}c

,

|χ|∑
i=1

pi = 1, pi ≥ 0
}

(24)
where {}c is the complement set. This set represents all
distributions on χ for which the ERM will output a hypothesis
outside of Aθ0 (and thus, sub-optimal). Notice that Q /∈ Π, as
Q is the true distribution on χ, and under it the ERM must
converge to the optimal hypothesis due to assumption 3.

Using a method of types based analysis [21], [22], [24] we
get the following exponential behavior (see appendix B-E for
details):

Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
.
= 2−nDKL(Π ∥ Q) (25)

Furthermore, by using Theorem 1 and the worst case error
exponent of realizable learning in (10), we get Theorem 2.

V. EXAMPLE

This example shows how to compute the error exponent and
that it empirically converges to the value in the theorem. Let
X = [0, 1] with uniform distribution, and the ground truth is:

g(x) =


0 0 < x < 0.6

1 0.6 < x < 0.9

0 0.9 < x < 1

We use the 1-boundary hypothesis class for ERM learning.
The optimal hypothesis minimizing the risk is:

fopt(x) =

{
0 0 < x < 0.6

1 0.6 < x < 1

There are two GLP’s: θ0 = 0.6, θ1 = 1. Their Aθ regions
are Aθ0 = (0, 0.9) , Aθ1 = (0.9, 1). The pairs of regions
D1, D

′

1, as defined in (20), are D1 = (0.6, 0.9) , D
′

1 =
(0.9, 1). The disjointified regions (as in (21)) are X1 =
(0.6, 0.9) , X

′

1 = (0.9, 1) , Xc = (0, 0.6). We get an alphabet
χ = {X1, X

′

1, Xc} with probabilities Q = (0.3, 0.1, 0.6). The
region Π is:

Π =

{
(p1, p2, p3)

∣∣∣∣∣ (−1 1
)(p1

p2

)
≥ 0,

3∑
i=1

pi = 1, 0 ≤ pi

}
Computing DKL(Π ∥ Q) is a simple constraint optimization
problem with solution DKL(Π ∥ Q) = 0.0551. The error
exponent using bound (9) is δ2

32 = 0.0003, while our improved
error exponent is min{ δ

4 , DKL(Π ∥ Q)} = 0.025. Figure
2 shows that the empirical error exponent of the PAC error
probability indeed converges to DKL(Π ∥ Q).

Fig. 2. Empirical error exponent of the second term in theorem 1. ℓ = 2,
δ = 0.1. The empirical exponent (blue) was computed using simulation.

VI. CONCLUSIONS AND FUTURE RESEARCH

We derived an improved error exponent for agnostic PAC
learning and showed that in some cases agnostic learning
might be no harder than realizable learning. Any new real-
izable learning bound can be plugged into Theorem 2 to get
a better agnostic bound. This result opens new directions for



research. One important goal can be to find explicit condi-
tions for practical hypotheses classes (e.g, neural networks)
satisfying the conditions for Theorem 2.

Interestingly, the error exponent analysis of PAC learning
turns out to be useful in attaining the first theoretical results for
the knowledge distillation problem, [25], providing conditions
that define where the associated teacher-student learning is
useful and where it is not.
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APPENDIX A
PROOF Aθ FORM A COMPLETE PARTITIONING OF Θ

Lemma 1: Let there be a complete hypothesis set {fθ, θ ∈
Θ} (as in assumption 4 in the paper), a ground truth function
g and a set of GLP’s Θopt of Rg(θ). The regions Aθ∗ , θ∗ ∈
Θopt, form a complete partitioning of Θ.

Proof 1: By definition, the regions are disjoint. Assume
exists a distinct set Θ̃ of hypotheses that don’t belong to
any Aθ∗ , θ∗ ∈ Θopt. We will first prove that either all
hypotheses in Θ̃ coincide or there exist θ̃ ∈ Θ̃ such that
∀ θ ∈ Θ̃ \ θ̃ exists a set X̃ ⊆ X with positive probability
such that ∀x ∈ X̃, ℓ(fθ(x), g(x)) > ℓ(fθ̃(x), g(x)). Assume
by contradiction this is not true, thus exists θ̃1 ∈ Θ̃ such
that ℓ(g(x), fθ̃1(x)) ≤ ℓ(g(x), fθ̃(x)) w.p 1. And for θ̃1
we can find θ̃2 such that ℓ(g(x), fθ̃2(x)) ≤ ℓ(g(x), fθ̃1(x))

w.p 1. By repeating this we get a series θ̃m ∈ Θ̃ such that
ℓ(g(x), fθ̃m+1

(x)) ≤ ℓ(g(x), fθ̃m(x)) w.p 1.
If this series is finite, either the series is not distinct and the
hypotheses in Θ̃ coincide or for any other hypothesis in Θ̃
we can find a set with positive probability for which the last
element in the series has lower loss, which is a contradiction.
If the series is infinite, then the series∫
X
ℓ(g(x), fθ̃m(x))dF(x) has a limit because it is monotone.

By the completeness assumption, this means that the limit
hypothesis of fθm is in FΘ. If it is also in FΘ̃, then either
all hypotheses in Θ̃ coincide or for any other hypothesis in
Θ̃ we can find a set with positive probability for which the
limit hypothesis has a lower loss, which is a contradiction. If
the limit hypothesis is not in FΘ̃, then the whole series θm
belongs to one of Aθ∗ , θ∗ ∈ Θopt, which is a contradiction.

To conclude this part, we’ve showed that either all
hypotheses in Θ̃ coincide to a single hypothesis θ̃ or
there exist θ̃ ∈ Θ̃ for which ∀ θ ∈ Θ̃ \ θ̃ exists
a set X̃ ⊆ X with positive probability such that
∀x ∈ X̃, ℓ(fθ(x), g(x)) > ℓ(fθ̃(x), g(x)).

Because θ̃ doesn’t belong to any of the regions Aθ∗ ,
θ∗ ∈ Θopt, it means θ̃ is not a GLP, as every GLP belongs
to its own Aθ∗ region. It also means that for every GLP
θ∗ ∈ Θopt exists a set X̃ ⊆ X with positive probability such
that ℓ(fθ̃(x), g(x)) < ℓ(fθ∗(x), g(x)) ∀x ∈ X̃ . By definition
of Aθ∗ , we have Pr

(
ℓ
(
fθ∗(x), g(x)

)
≤ ℓ

(
fθ(x), g(x)

))
=

1 ∀θ ∈ Aθ∗ .
Thus, ∀θ ∈ ∪θ∗∈Θopt

Aθ∗ there exists a set X̃ ⊆ X
with positive probability such that ℓ(fθ̃(x), g(x)) <
ℓ(fθ(x), g(x)) ∀x ∈ X̃ . We got that ∀θ ∈ Θ \ θ̃
exist a set X̃ ⊆ X with positive probability such that
ℓ(fθ̃(x), g(x)) < ℓ(fθ(x), g(x)) ∀x ∈ X̃ , which is a
contradiction to θ̃ not being a GLP.
Thus, the set Θ̃ is empty and the regions Aθ∗ , θ∗ ∈ Θopt

form a complete partitioning of Θ.



APPENDIX B
SUPPLEMENTED MATERIAL FOR "THEORETICAL RESULTS"

SECTION

In this section we’ll prove theorems 1 and 2. This will be
done gradually: in subsection B-B we’ll prove an equivalent
formulation to the PAC error probability that will be used in
proving the theorems. In subsection B-C, we’ll prove theorem
1 along with 2 needed Lemmas. In section B-D we’ll prove a
Lemma about lower and upper bounds on the seconds term in
theorem 1 that will be used in proving theorem 2. Finally, in
B-E we’ll prove theorem 2 along with with 3 needed Lemmas.
The proofs of theorems 1 and 2 in this section are provided for
the case of a finite number K+1 of GLP’s. This is generalized
to an infinite number of GLP’s in section C of the appendix.
Note that we will sometimes refer to equations from the paper.

A. K-boundary has stable global GLP

Lemma 2: Let g(x), x ∈ [0, 1] be a binary ground truth
function with at most M transition points between 0 and 1.
Let {fθ, θ ∈ Θ} be the K-boundary class. Then the optimal
hypothesis when learning from g(x) with binary loss is a stable
GLP.

Proof 2: Let θ0 be the optimal hypothesis when learning
from g with binary loss. θ0 is a GLP as for any other
hypothesis in the class there must exist a set in X for which
θ0 is uniformly better (otherwise it wouldn’t minimize the
risk).Denote the transition point of g as b1, ..., bM and the
transition points of fθ0 as a1, ..., aK . Assume without loss of
generality that bi isn’t equal to either 0 or 1 and denote b0 = 0
and bM+1 = 1. First, we’ll prove that every transition point
of fθ0 equals to one of b0, ..., bM+1 - assume by contradiction
exists ai that isn’t equal to one of b0, ..., bM+1, thus satisfying
bj < ai < bj+1, where j is one of 0, ...,M + 1. For
bj < x < bj+1, g(x) is constant (either 0 or 1). We can
generate 2 new hypotheses by changing ai to bj or to bj+1, at
least of these new hypotheses has zero loss for x ∈ [bj , bj+1]
and coincides with θ0 outside of it. Notice that θ0 has non-zero
loss on [bj , bj+1] as it can coincide with g either on [ai, bj+1]
or on [bj , ai]. This, θ0 is not the risk minimizer, which is a
contradiction.
We move to prove that for every [bj , bj+1], if exist i such
that either ai = bj or ai = bj+1, then fθ0(x) = g(x) for
x ∈ [bj , bj+1] - assume by contradiction that there is such
subset [bj , bj+1] for which ai = bj (the case of ai = bj+1 is
analogous ) and fθ0(x) doesn’t coincide with g(x). Because
both g(x) and fθ0(x) don’t have any additional transition
points between bj and bj+1, they are constant in this region
and fθ0 ̸= g(x) for bj < x < bj+1. By changing ai to be
bj+1 instead of bj , we obtained a new K-boundary hypothesis
that coincides with fθ0 outside [bj , bj+1] and coincides with
g on [bj , bj+1] thus obtaining better risk than θ0 which is a
contradiction to its optimality.
Denote ϵ = mini∈{0,..,M} ||bi+1 − bi||/2 > 0, and some
perturbation θ̃0 with transition points a′1, ..., a

′
K , where

||(a′1, ..., a′K) − (a1, ..., aK)|| < ϵ. For every i = 1, ..,K we
know that ai is one of bj . thus, if ai = bj , then

bj − ϵ < a′i < bj + ϵ Thus, bj−1 < a′i < bj+1. To show
θ0 is stable, we need to show that any region for which
fθ0(x) = g(x), we also have fθ̃0(x) = g(x). For every
j = 0, ..,M , fθ0(x) might have loss on the region [bj , bj+1]
only if there is no i for which ai = bj or ai = bj+1. But this
means that for every i = 1, ..,K, if ai = bl (where l ̸= j) then
bl−1 < a′i < bl+1, thus a′i /∈ [bj , bj+1]. Moreover, if ai < bj
then a′i < bj , and if ai > bj+1 then a′i > bj+1. Thus, the
amount of transition points of fθ0 before bj is the same as
the amount of transition points of fθ̃0 before bj . We conclude
that fθ0 and fθ̃0 coincide on any such region [bj , bj+1]. Thus,
any region that is missclassified by fθ0 is also missclassified
by fθ̃0 and θ0 is a stable GLP.

B. Equivalence Lemma

The following Lemma shows the equivalence:

Pr
(
Rg(θ̂

g
n)−Rg(θopt) > δ

)
= Pr

(
Rfopt(θ̂

g
n) > δ

)
This will allow us to use the simpler right hand term instead
of the PAC error probability.

Lemma 3: Let there be a hypothesis class {fθ, θ ∈ Θ}
and a ground truth function g(x) with projection fopt on the
hypothesis class. Under assumptions 1-5 from the main paper,
for every 0 < δ < δmax and θ ∈ Θ the following holds:

Rg(θ)−Rg(θopt) < δ ⇐⇒ Rfopt(θ) < δ, θ ∈ Θ (26)

Proof 3:
=⇒: We have the following due to δ < δmax:

Rfopt(θ) < δ < min
θ̃ /∈Aθ0

Rfopt(θ̃) =⇒ θ ∈ Aθ0

For θ ∈ Aθ0 we have:

ℓ(g(x), fopt(x)) = 1 =⇒ ℓ(g(x), fθ(x)) = 1

Denote:

X1 = {x : ℓ(g(x), fopt(x)) = 1}
X0 = {x : ℓ(g(x), fopt(x)) = 0}

The following chain of equalities holds for θ ∈ Aθ0 :

Rg(θ) =

∫
X

ℓ(g(x), fθ(x))dF(x)

=

∫
X1

ℓ(g(x), fθ(x))dF(x) +

∫
X0

ℓ(g(x), fθ(x))dF(x)

=

∫
X1

1dF(x) +

∫
X0

ℓ(fopt(x), fθ(x))dF(x)

= Rg(θopt) +

∫
X

ℓ(fopt(x), fθ(x))dF(x)

−
∫
X1

ℓ(fopt(x), fθ(x))dF(x)

= Rg(θopt) +Rfopt(θ)



So, for θ ∈ Aθ0 we have Rg(θ) − Rg(θopt) = Rfopt(θ). We
got Rg(θ)−Rg(θopt) < δ.
⇐=: We have the following due to δ < δmax:

Rg(θ)−Rg(θopt) < δ < min
θ/∈Aθ0

Rg(θ)−Rg(θopt)

Thus, θ ∈ Aθ0 . We’ve already showed that for θ ∈ Aθ0 we
have Rg(θ)−Rg(θopt) = Rfopt(θ). So, we got Rfopt(θ) < δ

C. Proof of Theorem 1

In this subsection we will prove theorem 1 from the main
paper. Before proving it, we first need to prove 2 lemmas that
will be used as part of the proof. The proof of theorem 1 is
given in the end of this subsection.

Lemma 4: Given hypothesis set {fθ, θ ∈ Θ}, ground truth
function g with projection fopt, and a drawn sample xn, the
following holds under assumptions 1-5 from the main paper:

Pr
(
Rfopt(θ̂

g(xn)) > δ |Rfopt(θ̂
fopt(xn)) > δ

)
= 1 (27)

Proof 4: From assumption 5 we have δ < δmax ≤
minθ/∈Ag

θ0

Rfopt(θ). Thus, if θ̂g(xn) /∈ Aθ0 , then we have

Rfopt(θ̂
g(xn)) > δ and we are done.

Let’s focus on the case θ̂g(xn) ∈ Aθ0 . Denote:

x̃k = {x ∈ xn | g(x) ̸= fopt(x)} (28)

We have the following:

θ̂gn ∈ Aθ0 =⇒ ℓ(fθ̂g
n
(x), g(x)) ≥ ℓ(fopt(x), g(x)) w.p 1

=⇒ fθ̂g
n
(x) = fopt(x) ∀ x ∈ x̃k

(29)
The empirical risks for any θ can be decomposed:

Remp
fopt

(θ, xn) =
1

n

∑
x∈x̃k

ℓ(fopt(x), fθ(x))+

1

n

∑
x∈xn\x̃k

ℓ(fopt(x), fθ(x))

Remp
g (θ, xn) =

1

n

∑
x∈x̃k

ℓ(g(x), fθ(x))+

1

n

∑
x∈xn\x̃k

ℓ(g(x), fθ(x))

For θ ∈ Aθ0 , the empirical risk with regard to g is:

Remp
g (θ, xn) =

k

n
+

1

n

∑
x∈xn\x̃k

ℓ(fopt(x), fθ(x)) (30)

Thus, Remp
g (θ, xn) can be decomposed to 2 terms - a fixed

term and a term that is minimized by fopt. Thus, θopt is the
minimizer of Remp

g (θ, xn), so the ERM fθ̂g
n

will choose a hy-
pothesis that is equal to fopt on the set xn\ x̃k. From equation
(29), fopt and fθ̂g

n
are also equal on x̃k, thus they are equal

on the entire sample xn. We also have Remp
fopt

(θ̂
fopt
n , xn) = 0

because the empirical risk is zero in realizable learning, so
fopt and f

θ̂
fopt
n

are equal on the entire sample xn. We get:

fθ̂g
n
(x) = fopt(x) = f

θ̂
fopt
n

∀ x ∈ xn (31)

θ̂gn and θ̂
fopt
n have the same empirical risk. By the convention

the ERM is the hypothesis with minimum empirical risk that
maximizes the true risk, which is equivalent to Rfopt(θ) (recall
the equivalence in appendix section B-B). Thus, because they
have the same empirical risk, θ̂gn and θ̂

fopt
n are equal and we

have:

θ̂gn ∈ Aθ0 =⇒ fθ̂g
n
= f

θ̂
fopt
n

=⇒ Rfopt(θ̂
g
n) = Rfopt(θ̂

fopt
n ) > δ

To conclude, the following holds for Rfopt(θ̂
g
n) > δ:

Pr
(
Rfopt(θ̂

g(xn)) > δ | Rfopt(θ̂
fopt(xn)) > δ

)
= 1

Lemma 5: Given hypothesis class {fθ, θ ∈ Θ}, ground truth
g with projection fopt on the class and a drawn sample xn, the
following holds under assumptions 1-5 from the main paper:

Pr
(
Rfopt(θ̂

g(xn)) > δ | θ̂gn ∈ Aθ0 , Rfopt(θ̂
fopt(xn)) < δ

)
= 0

(32)
Proof 5: Given Rfopt(θ̂

fopt(xn)) < δ, any hypothesis θ
′

with Rfopt(θ
′
) > δ doesn’t achieve minimal empirical risk on

xn with regard to fopt . This is true due to the convention
that the ERM is the hypothesis with maximal risk from all
the hypotheses with minimal empirical risk and due to the
equivalence in section B-B. Denote:

x̃k = {x ∈ xn | g(x) ̸= fopt(x)} (33)
x̂m = {x ∈ xn | fθ′ (x) ̸= fopt(x)} (34)

Let’s assume θ̂gn = θ
′

, which means Rfopt(θ̂
g
n) > δ.

We are given that θ̂gn ∈ Aθ0 , so we have θ
′ ∈ Aθ0 , which

means by definition of Aθ0 , that if fθ′ (x) = g(x) then
fopt(x) = g(x). Thus x̃k ∩ x̂m = ∅.
Notice that x̂m ̸= ∅ because θopt achieves lower empirical
risk with regard to fopt than θ

′
, so there must be at least one

sample of xn on which θopt is better, otherwise fθ′ and fopt
coincide on xn and have the same empirical risk, which is a
contradiction to θ

′
not being ERM with regard to fopt. The

empirical risk can be decomposed to:

Remp
g (θ, xn) =

1

n

∑
x∈x̂m

ℓ(g(x), fθ(x))

+
1

n

∑
x∈x̃k

ℓ(g(x), fθ(x))
(35)

By definition of x̂m, we have Remp
g (θopt, x̂

m) <

Remp
g (θ

′
, x̂m).

Form θ
′ ∈ Aθ0 we get Remp

g (θopt, x̃
k) = Remp

g (θ
′
, x̃k).

Thus we have Remp
g (θopt, x

n) < Remp
g (θ

′
, xn).

We got that θopt achieves lower empirical risk with regard to
g, which is a contradiction to θ̂gn = θ

′
. Thus, if θ̂gn ̸= θ

′
then :

Pr
(
Rfopt(θ̂

g(xn)) > δ | θ̂gn ∈ Aθ0 , Rfopt(θ̂
fopt(xn)) < δ

)
=

0.



Proof of theorem 1:
By conditioning Pr

(
Rfopt(θ̂

g
n) < δ

)
on Rfopt(θ̂

fopt
n ) we get:

Pr
(
Rfopt(θ̂

g
n) < δ

)
=

Pr
(
Rfopt(θ̂

g
n) < δ | Rfopt(θ̂

fopt
n ) < δ

)
Pr

(
Rfopt(θ̂

fopt
n ) < δ

)
+ Pr

(
Rfopt(θ̂

g
n) < δ | Rfopt(θ̂

fopt
n ) > δ

)
· Pr

(
Rfopt(θ̂

fopt
n ) > δ

)
=

Pr
(
Rfopt(θ̂

g
n) < δ | Rfopt(θ̂

fopt
n ) < δ

)
Pr

(
Rfopt(θ̂

fopt
n ) < δ

)
Where the last equality is due to Lemma 4. By conditioning
on {θ̂gn ∈ Aθ0}, we get the following:

Pr
(
Rfopt(θ̂

g
n) < δ | Rfopt(θ̂

fopt
n ) < δ

)
=

Pr
(
Rfopt(θ̂

g
n) < δ | Rfopt(θ̂

fopt
n ) < δ, θ̂gn ∈ Aθ0

)
· Pr

(
θ̂gn ∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
+ Pr

(
Rfopt(θ̂

g
n) < δ | Rfopt(θ̂

fopt
n ) < δ, θ̂gn /∈ Aθ0

)
· Pr

(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
= Pr

(
θ̂gn ∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
Where the last equality is due to Lemma 5 and because for
δ < δmax we have θ̂gn /∈ Aθ0 =⇒ Rfopt(θ̂

g
n) > δ. We conclude

with the following equality:

Pr
(
Rfopt(θ̂

g
n) < δ

)
=

Pr
(
θ̂gn ∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
Pr

(
Rfopt(θ̂

fopt
n ) < δ

)
By denoting Pr

(
Rfopt(θ̂

fopt
n ) < δ

)
= 1− PR and taking the

complement probability, we get:

Pr
(
Rfopt(θ̂

g
n) > δ

)
=

PR + (1− PR) Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
D. Bounds Lemma

Lemma 6: Under assumptions 1-5 from the main paper,
there exists a number ℓ ∈ N such that the following holds:

Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
≥ Pr

(
∪K
i=1{#Di + ℓ ≤ #D

′

i}n−ℓ

)
Pr

(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
≤ Pr

(
∪K
i=1{#Di ≤ #D

′

i}n
)

Before the proof, let’s denote the following concept of the set
of minimal sequences:

Definition 7: Let there be a hypothesis class FΘ, a function
fopt ∈ FΘ, and a number 0 < δ < δmax. The set of minimal
sequences with risk lower than δ with regard to fopt is

Xδ
min = {x⃗ | Rfopt(θ̂

fopt
n (x⃗)) < δ,Rfopt(θ̂

fopt
n (x⃗/xi)) > δ ∀ i}

Where x⃗/xi is x⃗ without the i’th component.
This set is nonempty due to assumption 3. Denote ℓ as the
maximal length of a sequence in Xδ

min. For example, in the k-
boundary hypothesis class we have ℓ ≤ 2k for any hypothesis.
Thus, any i.i.d sequence xn achieving Rfopt(θ̂

fopt
n (x⃗)) < δ can

be decomposed into a minimal sequence of length at most ℓ
and the rest of the samples which have no constraint on them.
So, if Rfopt(θ̂

fopt
n (x⃗)) < δ, then there is a constraint on at

most ℓ samples of x⃗. We’ll now state the proof for Lemma 6.
Proof 6: we have Pr

(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
=

Pr
(
∪K
i=1{#Di ≤ #D

′

i}n | Rfopt(θ̂
fopt
n ) < δ

)
. Let the max-

imum length of a set in Xδ
min be ℓ. So any sequence xn that

satisfies Rfopt(θ̂
g
n(x

n)) < δ can be decomposed to a minimal
sequence of length at most ℓ and the rest of the samples:

Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
=

Pr
(
∪K
i=1{#Di ≤ #D

′

i}n | constraint on at most ℓ samples
)

The lower bound is obtained by assuming that all ℓ samples
fell in every Di region for i = 1, ...K:

Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
≥

Pr
(
∪K
i=1{#Di + ℓ ≤ #D

′

i}n−ℓ

)
The upper bound is obtained by assuming that all ℓ samples
didn’t fall in any all Di region for i = 1, ...K (i.e., they all
fell in Xc):

Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
≤

Pr
(
∪K
i=1{#Di ≤ #D

′

i}n
)

E. Proof of theorem 2

In this subsection we’ll prove theorem 2. This will be done
by showing that the error exponent of the bounds in Lemma
6 is DKL(Π ∥ Q). First, we’ll analyze the second term in
theorem 1. Using Eq.(20), we have:

{θ̂g(xn) /∈ Aθ0} = ∪K
i=1{Remp

g (θ0, x
n) ≥ Remp

g (θi, x
n)}

= ∪K
i=1{#Di ≤ #D

′

i}n
(36)

Subscript n indicates the length of the sample xn. Thus we
have:

Pr
(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
=

Pr
(
∪K
i=1{#Di ≤ #D

′

i}n | Rfopt(θ̂
fopt
n ) < δ

) (37)

Denote the vector of non-negative integers
m⃗ = (m1, ..,m1,..,k,m

′

1, ..,m
′

1,..,k,mc). Using Eq.(21), we
have the following:

Pr
(
∪K
i=1{#Di ≤ #D

′

i}n
)
=

∑
m⃗∈Mn

Pr
(
#X1 = m1, ..,

#X1,..,k = m1,..,k,#X
′

1 = m
′

1, ..,#X
′

1,..,k = m
′

1,..,k,

#Xc = mc

)
(38)



Where Mn is the set of integers with sum n that satisfy at
least one of {#Di ≤ #D

′

i}n :

Mn =

{
m⃗

∣∣∣∣∣ {A(
m1, ..,m1,..,K , ..,m

′

1,..,K

)t

< 0
}c

,

m1 + ..+m
′

1 + ..+mc = n

} (39)

A is the matrix from Eq.(22). The type of a sequence xn

on alphabet χ is the empirical distribution of symbols in the
sequence:

Pxn = (
#a1
n

,
#a2
n

, ...,
#ar
n

), a1, ...ar ∈ χ

Denote Pn as the set of all length n sequences types and T (P )
as the set of sequence xn with type P . Our problem can be
formulated as an i.i.d sequence over alphabet χ. Mn can be
formulated as a constraint on types instead of integers, denoted
as M̃n :

M̃n =

{
(
#a1
n

, ...,
#a|χ|

n
)

∣∣∣∣∣
{
A

 #a1

n
...

#a|χ|−1

n

 < 0

}c

,

#a1
n

+ ...+
#a|χ|

n
= 1

}
, ai ∈ χ

(40)

Notice that the sets M̃n are subsets of the set Π denoted in
Eq.(24). Thus, Eq. (38) is the sum of types of sequences of
length n that are contained in Π:

Pr
(
∪K
j=1{#Dj ≤ #D

′

j}n
)
=

∑
P∈Pn∩Π

Pr (T (P ))

Notice Q is not contained in Π because of the consis-
tency assumption. The same formulation can be done for
Pr

(
∪K
i=1{#Di + ℓ ≤ #D

′

i}n−ℓ

)
. Denote the set Πn,ℓ:

Πn,ℓ =

{
(p1, ..., p|χ|)

∣∣∣∣∣
{
A

 p1
...

p|χ|−1

 <
ℓ

n− ℓ

}c

,

|χ|∑
i=1

pi = 1, pi ≥ 0

} (41)

We have:

Pr
(
∪K
j=1{#Dj + ℓ ≤ #D

′

j}n−ℓ

)
=

∑
P∈Pn−ℓ∩Πn,ℓ

Pr (T (P ))

Theorem 3.3 in [21] states that if a set of probabilities Π on
χ, that doesn’t contain the underlying distribution Q, has the
property:

lim
n→∞

DKL(Π ∩ Pn ∥ Q) = DKL(Π ∥ Q)

Then the following holds:

lim
n→∞

1

n
log Pr (T (xn) ∈ Π) = −DKL(Π ∥ Q)

The 3 Lemmas in the end of this section show this condition
is satisfied for both Π and Πn,ℓ. we have:

lim
n→∞

1

n
log Pr (T (xn) ∈ Π) = −DKL(Π ∥ Q)

lim
n→∞

1

n− ℓ
log Pr

(
T (xn−ℓ) ∈ Πn,ℓ

)
= −DKL(Π ∥ Q)

This means that the upper and lower bounds from Lemma
6 have the same error exponent DKL(Π ∥ Q). Thus, the
error exponent of Pr

(
θ̂gn /∈ Aθ0 | Rfopt(θ̂

fopt
n ) < δ

)
is also

DKL(Π ∥ Q). By using theorem 1 and the error exponent
for the uniform realizable case we get:

Pr
(
Rg(θ̂

g
n)−Rg(θopt) > δ

)
.
= e−n·min{ δ

4 ,DKL(Π ∥ Q)}

This proves theorem 2. The following Lemmas prove the
fulfilment of the needed conditions.

Lemma 7: Let there be an alphabet χ with underlying
probability Q and an i.i.d sequence xn over the alphabet.
denote the set Π as in Eq.(24): For Q /∈ Π, the following
holds:

lim
n→∞

DKL(Π ∩ Pn ∥ Q) = DKL(Π ∥ Q)

Proof 7: Π is the outside of a polygon on the probability
simplex (including the boundary), thus it is a connected
closed space. This means that DKL(Π ∥ Q) is achieved
for some probability P ∗ ∈ Π, such that DKL(Π ∥ Q) =
DKL(P

∗ ∥ Q).
DKL(P ∥ Q) is continuous in P ∈ Π, so for every ϵ > 0
exists δ > 0 such that if 0 < ||P − P ∗|| < δ then
|DKL(P ∥ Q)−DKL(P

∗ ∥ Q)| < ϵ.
Because Π is a closed connected set, Lemma 9 applies, so
for every δ > 0 exists N such that for n > N we have an
empirical assignment P̃n ∈ Π ∩ Pn satisfying
||P̃n − P ∗|| < δ =⇒ |DKL(P̃n ∥ Q)−DKL(Π ∥ Q)| < ϵ
=⇒ |DKL(Π ∩ Pn ∥ Q)−DKL(Π ∥ Q)| < ϵ.
We got that for every ϵ > 0 exists N such that for n > N we
have |DKL(Π ∩ Pn ∥ Q)−DKL(Π ∥ Q)| < ϵ.

Lemma 8: Let χ be an alphabet with probability Q and an
i.i.d sequence xn−ℓ, ℓ ∈ N, over χ. Denote the the set Π as
in Eq.(24) and the set Πn,ℓ as in Eq.(41). For Q /∈ Π, the
following holds:

lim
n→∞

DKL(Πn,ℓ ∩ Pn ∥ Q) = DKL(Π ∥ Q)

Proof 8: Πn,ℓ is the outside of a polygon on Sχ (including
the boundary), thus it is a connected closed set. We already
saw in Lemma 7 that DKL(Π ∥ Q) is achieved for some P ∗ ∈
Π such that DKL(Π ∥ Q) = DKL(P

∗ ∥ Q). DKL(P ∥ Q) is
continuous in P ∈ Π, so for every ϵ > 0 exists δ > 0 such that
if 0 < ||P −P ∗|| < δ then |DKL(P ∥ Q)−DKL(P

∗ ∥ Q)| <
ϵ. For every δ

2 > 0 exists P
′ ∈ Π satisfying 0 < ||P ′ −

P ∗|| < δ
2 such that P

′
is an interior point of Π. Notice that

the boundaries of Πn,ℓ are converging in n to the boundaries of
Π, so exists N1 > 0 such that for n > N1 we have P

′ ∈ Πn,ℓ.
ΠN1,ℓ is a closed connected set, thus Lemma 9 applies to it.
So, for every δ

2 > 0 exists N2 such that for n > N2 we have



an empirical assignment P̃n ∈ ΠN1,ℓ such that ||P̃n − P
′ || <

δ
2 . Notice that Πn1,ℓ ⊂ Πn2,ℓ for n1 < n2. So, for n >

max(N1, N2) we have an empirical assignment P̃n ∈ Πn,ℓ ∩
Pn such that||P̃n − P

′ || < δ
2 , and by the triangle inequality,

it satisfies ||P̃n − P ∗|| < δ
=⇒ |DKL(P̃n ∥ Q)−DKL(Π ∥ Q)| < ϵ
=⇒ |DKL(Πn,ℓ ∩ Pn ∥ Q)−DKL(Π ∥ Q)| < ϵ.

Lemma 9: Let Π be a closed and connected subset of
{(p1, ..., pr) | 0 ≤ p1 + ... + pr ≤ 1, 0 ≤ pi ≤ 1} and
let Pn be the set of types of sequences of length n over an
alphabet χ of size r. For all P ∗ ∈ Π the following holds:

lim
n→∞

inf
P∈Π∩Pn

||P − P ∗|| = 0

Proof 9: Π is a closed set, thus for any P ∗ ∈ Π and any
ϵ
2 > 0 exists Pq ∈ Interior(Π) such that ||Pq − P ∗|| < ϵ

2
and Pq is rational Pq = (a1

b1
, ..., ar

br
), ai, bi ∈ N (because

Qr is a dense subset of Π). For every n denote the empirical
probability P̃n ∈ Pn:

P̃n = (
⌊a1

b1
n⌋

n
, ...,

⌊ar−1

br−1
n⌋

n
,
n−

∑r−1
i=1 ⌊

ai

bi
n⌋

n
)

Notice P̃n converges to Pq . This means that for any ϵ
2 > 0

exists N such that for n > N1 we have ||P̃n − Pq|| < ϵ
2 .

Because Pq is in the interior of Π and P̃n converges to Pq ,
exists N2 such that for n > N2 we have P̃n ∈ Π. Using the
triangle inequality, for n > max(N1, N2) we have ||P̃n −
P ∗|| < ϵ and P̃n ∈ Π ∩ Pn =⇒ infP∈Π∩Pn

||P − P ∗|| < ϵ.
This shows that for any ϵ > 0 exists N such that for n > N
we have infP∈Pn ||P − P ∗|| < ϵ

APPENDIX C
GENERALIZATION TO INFINITE AMOUNT OF

GENERALIZED OPTIMUM POINTS

In this section we briefly show how to generalize results to
the case of infinite amount of GLP’s and how to derive Π and
Q. Let the set of GLP’s be Θopt and θopt = θ0 the global
optimum point. We need the loss of the global optimum θopt
to be bounded away from the loss of the other GLP’s:

∃ ϵ > 0 | Rfopt(θ
∗)−Rfopt > ϵ ∀θ∗ ∈ Θopt \ θopt (42)

This is necessary for δmax > 0. Notice that this is achieved
from assumptions 1, 2 and 4. Due to the completeness of Θ
and uniqueness of θopt, the only hypotheses θ ∈ Θ that can
potentially have a risk that is arbitrarily close to the optimal
risk Rg(θopt) are those that are in the neighborhood θopt. Due
to the stability assumption, we know that exists a small enough
neighborhood of θopt, such that any hypothesis in it will have
a higher loss w.p 1.
For each GLP θ∗ ∈ Θopt \ θopt of Rg(θ), denote:

Dθ∗ = D(θ0, θ
∗), D

′

θ∗ = D(θ∗, θ0) (43)

We have the following:

Pr
(
θ̂gn /∈ Aθ0

)
=

Pr

 ⋃
θ∗∈Θopt\θ0

{Remp
g (θ0, x

n) ≥ Remp
g (θ∗, xn)}

 =

Pr

 ⋃
θ∗∈Θopt\θ0

{#Dθ∗ ≤ #D
′

θ∗}n


From this point, generalizing the proof of theorem 1 is straight
forward. Denote the following regions:

Xϕ = disjointify({Dθ∗ , θ∗ ∈ Θopt \ θ0})
X

′

ϕ = disjointify({D
′

θ∗ , θ∗ ∈ Θopt \ θ0})
Xc = X \ {∪θ′∈Θopt\θ0D

′

θ′ ∪θ∈Θopt\θ0 Dθ}

Where the disjointify operator takes a collection of sets and
returns disjoint sets indexed by a continuous index ϕ. We get
a continuous alphabet χ. Denote XΦ = ∪ϕXϕ∪ϕX

′

ϕ∪Xc and
let χ ⊆ R be generated by a bijective mapping Ψ : XΦ −→ χ.
We can always find such mapping because XΦ is a set of non-
intersecting sub-sets of X ⊆ RN, so the cardinality of XΦ is
no greater than the cardinality of X and hence no greater
than the cardinality of R. Thus, there exists a subset χ of R
with the same cardinality of XΦ, which means there exists a
bijective mapping from XΦ to χ, and Q is the distribution on
χ. Denote the following sets:

Φ(Dθ) = {S ∈ XΦ | S ⊆ Dθ} (44)

Let Fn(r), r ∈ χ be the empirical distribution (CDF) on
χ induced by the drawn sequence xn. That is, if k samples
from the sequence xn landed in the region Xϕ ∈ XΦ, then
Fn(Ψ(Xϕ))− lima→Ψ(Xϕ)− Fn(a) =

k
n . Denote the set of all

such empirical distribution functions as Fn
χ . Denote:

χθ = {r ∈ χ | r = Ψ(Xϕ), Xϕ ∈ Φ(Dθ)}
χ

′

θ = {r ∈ χ | r = Ψ(Xϕ), Xϕ ∈ Φ(D
′

θ)}
(45)

These are the sets of values in the alphabet χ that corresponds
to regions in Dθ and D

′

θ. Denote the following set of empirical
distribution functions:

M̃n =

{
Fn ∈ Fn

χ | ∃θ ∈ Θ s.t∫
r∈χ

′
θ

(Fn(r)− lim
a→r−

Fn(a)) ≥
∫
r∈χθ

(Fnr)− lim
a→r−

Fn(a))

}
This the parallel of Eq.(40). Let Fχ be the set of all

distribution functions on χ. We can now define the set Π:

Π =

{
F ∈ Fχ | ∃θ ∈ Θ s.t∫

r∈χ
′
θ

(F (r)− lim
a→r−

F (a)) ≥
∫
r∈χθ

(F (r)− lim
a→r−

F (a))

}
(46)

This is the parallel of Eq.(24). The results are generalize
to continuous alphabet by using the continuous version of
Sanov’s theorem - Theorem 11 of [22].
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