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Chapter 1
Introduction

Courcelle’s Theorem ([Cou90]) is an important result in graph theory,
proving the existence of linear-time algorithms for many decision problems
on graphs whose tree-width is bounded by a constant. The result has
been extended ([CM93]) to cover even more problems (namely optimisation
problems) and more graph classes (namely all those that can be built
using a hyperedge replacement grammar). Due to its generality, however,
many a graph theorist might shy away from trying to apply it to their
special case because of the “black box” nature of the theorem. Existing
literature largely fails to provide an accessible insight into the workings of
the theorem, requiring the reader to be already familiar with hypergraph
grammars, typed algebras, or other constructions not traditionally taught
together with graph theory.
The purpose of the current text is twofold: to provide an explanation and
step-by-step proof of Courcelle’s Theorem as applied to graphs of tree-
width bounded by a constant, and to show explicitly (on the example of
path-width1) how to apply the same principles to other graph classes.
We present the proof of Courcelle’s Theorem in a way that does not
assume any particular knowledge on the part of the reader except a basic
understanding of mathematics and possibly the fundamentals of graph
theory. A more advanced reader may therefore find it desirable to skip

1 A note for the reader already familiar with Courcelle’s Theorem: the traditional for-
mulation does allow to encode the path-width of a graph, making this redundant in a
certain sense. However, encoding the path-width by monadic second-order logic is done
by encoding the (finitely many) forbidden minors for the desired path-width, which are
at the time of this writing known only up to a path-width of 2.
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Chapter 1: Introduction

certain chapters so as not to become the victim of boredom. Such a reader
is advised to peruse the section “How to Read this Thesis” on page 10.
There exist in the literature two basic techniques to prove Courcelle’s
Theorem: the one used by Courcelle himself utilises algebraic methods
to show that certain classes of graphs have properties which then let one
construct an automaton that solves the membership problem of these classes
in linear time. An alternative approach is seen in [KL09], where Kneis
and Langer use Hintikka games to arrive at a practical implementation
of Courcelle’s Theorem with better constants in the runtime, but slightly
restricted scope.
We have opted for a variation on the former approach. We introduce
the algebraic and automata-theoretic basics without assuming any prior
knowledge on the part of the reader and show a theoretical proof of Cour-
celle’s Theorem. We then construct explicitly the corollaries for the special
cases of classes of graphs of tree-width bounded by a constant before doing
the same with respect to path-width. We have chosen to omit from our
construction certain parts of the main statement, namely the extension of
monadic second-order logic to counting monadic second-order logic and the
case where our graphs are not free of loops. Each of these topics has been
exiled into an appendix, where only the most tireless of readers shall find
the formal constructions needed to integrate them into the framework of
the main chapters.
It should be noted that our goal is to provide a theoretical approach
to Courcelle’s Theorem. Algorithms and runtime considerations will be
provided where they are of interest, but questions of computability and
concrete implementation are not discussed. Furthermore, there are certain
generalisations and extensions which are, for the sake of brevity, not included
in this text; these are discussed in the closing remarks on page 213.
We hope that the present work can provide a gentle introduction to the
topic for the interested graph theorist who has only in passing heard of
this “monadic second-order logic” and wishes to learn more without having
to compile the pertinent material themselves, and that the examples and
constructions given turn Courcelle’s Theorem from a black box into a useful
implement in the reader’s personal tool shed.
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Chapter 2
Overview

Before we dive into the deep theory, the reader might want to get their feet
wet by splashing around the shallow end for a bit. This chapter shall serve
as a primer on what it is we are trying to prove, followed by a road map
for the rest of the thesis.
The reader already intrinsically motivated may of course skip this chapter
to get right to the nitty-gritty mathematics.

1. What Is Courcelle’s Theorem?
Courcelle’s Theorem ([Cou90]) states the following.1

Courcelle’s Theorem
Every definable subset of 𝐹𝐺(𝐴)𝑘 is an effectively recognizable set of
graphs.

Even knowing that 𝐹𝐺(𝐴)𝑘 is the set of isomorphism classes of directed
hypergraphs of type 𝑘 over a finite set of edge labels 𝐴, this statement
might not be immediately helpful. Let us dissect it.
The finite set 𝐴 is just a collection of edge labels. Each edge label 𝑎 ∈ 𝐴 is
also assigned a type, which is just a natural number2. A label 𝑎 can only

1 The exact statement in [Cou90] is “Every definable subset of 𝐹𝐺(𝐴)𝑘 is an effectively
given recognizable set of graphs”, which appears to be a typo since Courcelle’s proof
explicitly states “effectively recognisable”.

2 In this and forever hence, the natural numbers shall contain the number 0.
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Chapter 2: Overview

go on edges that connect the same amount of vertices3 as the type of 𝑎.
For example, a label of type 2 can only go on an edge with exactly two end
points.
We shall see in this work that the set 𝐴 does not actually have to be
finite. Indeed, it can safely be omitted without affecting the truth of the
statement.4

The natural number 𝑘 denotes the number of “terminal” vertices in our
graph and is called the graph’s type.5 These vertices are not to be confused
with, for example, the sources and sinks of a network flow. Rather, they
are special only in the sense that we designate them as points where we
may “glue” two graphs together (in a sense to be made precise later). A
graph of type 0 is a “normal” graph as the reader surely knows it (where
all vertices are equally important and worthy of love).
Graph homomorphisms between such hypergraphs are defined exactly as
one would expect and respect terminal vertices; in particular, two graphs
of different type can never be isomorphic.
We hence fix a natural number 𝑘 and only look at hypergraphs of this
type, up to isomorphism (in layman’s terms, up to renaming of vertices
and edges). For the reader uncomfortable with the notion of “graph type”,
they may simply prescribe 𝑘 = 0 to stay in familiar waters6. For the reader
uncomfortable with hypergraphs, not much is lost by restricting to the case
where all edges are of type 2 (that is, have exactly two end points).7

A “definable” subset of this set of (isomorphism classes of) graphs is a
set that is defined by a formula in counting monadic second-order logic,

3 Remember that we are talking about hypergraphs, so an edge may have zero, one, two,
or finitely many end points instead of just one or two.

4 However, 𝐴 may as well be chosen to be finite, since a larger set does not affect any of
the practical implications of the theorem.

5 The reader will at some point notice that several concepts in the general vicinity of
Courcelle’s Theorem are called the “type” of something. Unless otherwise stated, it
should not be assumed that these share anything besides their name – an edge’s “type”
is its number of end points, while a graph’s “type” is its type in a certain typed algebra
as defined in chapter 6.

6 We are committed to this nautical metaphor now and shall ride it until the bitter end.
Probably when we fall off the edge of the world in our little logic boat.

7 For the reader uncomfortable with mathematics in general, we recommend [Pip20].
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2.1: What Is Courcelle’s Theorem?

which is a certain restricted version of the second-order logic the reader
may or may not know. For now, it suffices to know that counting monadic
second-order logic defines rules by which one may build logical formulas,
and a set 𝑋 of graphs is called definable if and only if it there is a counting
monadic second-order logic formula 𝜑 such that

𝑋 = { 𝐺 ∈ 𝐹𝐺(𝐴)𝑘 : 𝐺 satisfies 𝜑 }.

In other words, a set of graphs is definable if it is the set of all graphs
having a certain property (like “all graphs which admit a vertex cover of
size 8”), and that property is definable in counting monadic second-order
logic (which the aforementioned vertex cover property happens to be).
Courcelle now asserts that any such set of graphs is effectively recognisable.
“Recognisable” means that the set is precisely the set of accepted inputs of
a certain deterministic finite state automaton.8

“Effectively” recognisable, then, means that this automaton not only exists,
but can actually be computed, without invoking trickery like the axiom of
choice or applying uncomputable functions.9

Since deterministic finite state automata always halt, the latter property
also implies that the set 𝑋 of graphs is decidable – that there exists an
algorithm that, given any graph, tells us in finite time whether or not that
graph belongs to the set. In fact, it even tells us something about the
runtime of this algorithm, as we will see later.
Picking up the pieces we have shaved off the theorem so far, we get the
following slightly less confusing corollary.

8 Technically, recognisable is defined as being the preimage of a homomorphism from a
certain locally finite typed algebra. We shall see later that these concepts are inter-
changeable for certain classes of graphs, for example the class of graphs with tree-width
at most 𝑘 for a fixed 𝑘 ∈ ℕ.

9 We do not discuss efficacy or computability in this thesis. The constructive nature of the
provided proofs might already convince the reader that all steps must be computable.
Otherwise, a look at [Cou90] and the other papers in the same series should prove
enlightening once one has understood the constructions introduced in the present work.
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Chapter 2: Overview

Courcelle’s Theorem
Let 𝑘 ∈ ℕ. Let 𝜑 be a property of graphs that is expressible in counting
monadic second-order logic.
Then there is an algorithm which, given any graph of tree-width at
most 𝑘, decides in finite time whether that graph satisfies 𝜑.

Actually, we shall show that the algorithm mentioned above runs in linear
time.
We also prove several extensions of this result, for example to other classes
of graphs, and present a generalised framework in which to generate similar
results.

2. How to Read this Thesis
The chapters of this thesis are mostly designed for linear consumption.
Some can be read independently of each other, but since this thesis is
geared towards graph theorists, most examples will involve graphs in one
form or another.
Some generalisations have been omitted from the main corpus of this work
in order to make the first-time reader’s life easier. These concepts have
instead been put into appendices.
The reader should start with chapter 3, which introduces some simple
preliminaries and explains our notation, and then make use of the following
road map.

• Chapter 4 introduces the necessary graph-theoretic concepts. They
are not needed for all the subsequent chapters, but they are needed
to understand all examples.

• Chapter 5 introduces the concepts of formal logic in a way accessible
to the average mathematician with no such theoretical background.
One can read most of this chapter without any advanced knowledge
of graph theory, if desired.

• Chapter 6 introduces typed algebras. We show that graphs form such

10



2.2: How to Read this Thesis

a typed algebra, whence we can translate many theoretical results
about algebras into statements about finite graphs.

• Chapter 7 represents the payoff of our previous work and uses the
results to show the theoretical formulation of Courcelle’s Theorem. It
says nothing about algorithms or complexity yet. We show Courcelle’s
Theorem for a subset of counting monadic second-order logic that
suffices for many practical applications to cut down on notation. The
proof of the full statement is deferred to appendix A.

• Chapter 8 introduces tree automata, a variation on deterministic
finite state automata. It assumes that the reader has read at least
the section on trees from chapter 4.

• Chapter 9 extends the proof from chapter 7 to show that on certain
classes of graphs, for example those of tree-width bounded by a
constant, Courcelle’s Theorem delivers a linear-time algorithm to
check whether any given graph satisfies a certain logical property. We
focus in this chapter on graphs which may have parallel edges, but
no loops, the latter being delayed until appendix B. We discuss some
interesting special cases of the results from the previous chapters.

• Appendix A expands upon the concepts from chapter 5 and introduces
the “counting” part of counting monadic second-order logic. We then
re-prove all previous statements in this slightly more general setting.

• Appendix B shows how we can extend everything we have shown in
chapter 9 to work on graphs with loops.

The acyclic graph on the next page represents the dependencies between
the chapters. Dashed edges represent a “soft” dependency, where omission
of the previous chapter still allows the reader to understand most of the
new chapter, minus some examples or possibly a clearly-labelled section
that deals with connections between the two concepts.
Of course, reading all chapters in ascending order (putting appendices last)
is a valid option and yields in particular a topological sorting for said graph.
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chapter 3
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chapter 9

appendix A appendix B
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Chapter 3
Preliminaries

The journey to speaking any language begins with understanding its writing
system.1 We therefore introduce in this chapter the constituent particles
from which all words and sentences of logic will be built. We further collect
some miscellaneous notation that may or may not be standard. The reader
may safely skip section 3.2 and only use it as a glossary.

1. Alphabets
The most important thing to remember is that the languages we define are,
on their own, devoid of meaning. They are purely syntactical constructs,
with semantics only added later on. For example, the average reader would
presume the sentence

1 = 2

to be “false” in some Boolean interpretation. This, however, is presumptuous
in the sense that it assumes that the language and meanings used are those
known to the reader. A mathematician of some unknown extraterrestrial
race may well have defined the symbol “1” to mean “the number three”,
the symbol “2” to mean “the natural numbers”, and the symbol “=” to
mean “is an element of”. Of course, no earth mathematician in their right
mind would define such a language, rather sticking to symbols like

3 ∈ ℕ,
1 This is, of course, a blatant lie (think of how one learns one’s mother tongue), but in

the case of formal logic, a bottom-up approach is generally favourable.
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Chapter 3: Preliminaries

but this exaggerated example shall serve to remind the reader to treat as
separate syntax and semantics of formal logic.

Definition 3.1.1
An alphabet is a set of symbols.

This is a somewhat vacuous definition (why not just say “set”?), but we
shall use the word alphabet to emphasise that the elements of this set are
syntactical building blocks with no meaning or interactions attached to
them.
Definition 3.1.2

Let 𝛴 be an alphabet. A word over 𝛴 is a finite sequence of sym-
bols 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝛴, written like

𝛼1𝛼2 … 𝛼𝑛.

The number 𝑛 is called the length of the word, denoted |𝛼1𝛼2 … 𝛼𝑛|.
We denote by 𝜀𝛴 the word of length zero, called the empty word.
The set of all words over 𝛴 is denoted by the so-called Kleene star 𝛴∗.

We usually drop the index from 𝜀𝛴, writing simply 𝜀.
From time to time, we might want to map words to other words. This is
achieved in a canonical way.

Definition 3.1.3
Let 𝛴, 𝛩 be alphabets and let 𝑓∶ 𝛴 → 𝛩 be a function. The func-
tion 𝑓∗ ∶ 𝛴∗ → 𝛩∗ which maps 𝛼1 … 𝛼𝑛 to 𝑓(𝛼1) … 𝑓(𝛼𝑛) is called the
Kleene extension of 𝑓.

One less common operation that we shall need is the permutation of words,
that is, the notion that the words “𝛼𝛼𝛽𝛽” and “𝛼𝛽𝛼𝛽” are somehow related
in a way that “𝛼𝛼𝛽𝛽” and “𝛼𝛼𝛼𝛼” are not.

14



3.2: Miscellaneous Notation

Definition 3.1.4
Let 𝑛 ∈ ℕ. We denote by

𝔅𝑛 ≔ { 𝑓∶ { 1, … , 𝑛 } → { 1, … , 𝑛 } : 𝑓 is bijective }

the set of permutations on { 1, … , 𝑛 }.

Definition 3.1.5
Let 𝛴 be an alphabet, 𝜔 = 𝛼1 … 𝛼𝑛 ∈ 𝛴∗, and 𝜋 ∈ 𝔅𝑛. We denote by

𝜋(𝜔) ≔ 𝛼𝜋(1) … 𝛼𝜋(𝑛)

the word 𝜔 reordered according to 𝜋. If 𝜔, 𝜂 are words in 𝛴∗ of equal
length 𝑛 such that there exists a permutation 𝜋 ∈ 𝔅𝑛 with 𝜋(𝜔) = 𝜂, we
call 𝜂 a reordering of 𝜔 and write 𝜔 ≈ 𝜂.

2. Miscellaneous Notation
As far as possible, we try in this work to stick to preexisting notation. At
times, however, this would result in clashes. Rather than have two objects
with the same name, we opt to change the notation in this case.
For the reader’s convenience, the type of letter used correlates to the type
of object it references.

• Standard antiqua letters refer to graph theory – 𝐺 is a graph, 𝑣 ∈ 𝑉
is a vertex in a set of vertices, and so on.

• Calligraphic letters refer to typed algebras and their signatures – 𝒜
is an algebra, 𝒻 ∈ ℱ is a function symbol in a set of function symbols,
and so on.

• Greek letters refer to formal logic – 𝜑 is a well-formed formula, 𝜈0
a formal variable, 𝛤 is a language, and so on. In this context, we
consider general strings and alphabets a part of the broader topic of
formal logic.

• Fraktur letters are used for constants rather than variables – 𝔊 is the

15
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Chapter 3: Preliminaries

algebra of finite graphs, for example, and we have already seen 𝔅𝑛.
This means that whenever the reader re-encounters a particular fraktur
letter, it will refer to exactly the same object as it did when they first
met it.

For tree automata, which we need only in few places, we have reserved
letters from the ancient Phoenician alphabet:

�� (alef) �� (bet) �� (gaml) �� (delt) �� (he)
�� (wau) �� (zai) �� (het) �� (tet) �� (yod)
�� (kaf) �� (lamd) �� (mem) �� (nun) �� (semk)
�� (ain) �� (pe) �� (sade) �� (qof) �� (rosh)
�� (shin) �� (tau)

In case the reader is, against expectations, not fluent in ancient Phoenician,
a helpful margin note such as the one on this page shall remind them of
the symbol’s name.

2.1. Sets and Tuples
We need in several places the power set of a given set.

Definition 3.2.1
Let 𝑋 be a set. We denote by 𝟚𝑋 the power set of 𝑋, that is, the set of
all subsets of 𝑋.

Since our definitions are built iteratively on top of each other, there
will be many nested tuples. For instance, an undirected graph will be
a triple (𝑉 , 𝐸, ⦉_⦊), while a directed graph will be a pair (𝐺,⭐), where 𝐺
is an undirected graph. This means that writing out a directed graph looks
like

((𝑉 , 𝐸, ⦉_⦊) ,⭐) ,

which quickly gets ugly as the nested parentheses accumulate.
We allow ourselves to drop the additional parentheses where no confusion
can occur.

16



3.2: Miscellaneous Notation

Notation 3.2.2
Given a nested tuple

((𝑥1, … , 𝑥𝑛) , 𝑦) ,

we write
(𝑥1, … , 𝑥𝑛, 𝑦)

to denote that same nested tuple.

2.2. Functions with More or Less than One Parameter
We shall often deal with families of functions of the form {𝑓𝑛}𝑛∈ℕ, where 𝑓𝑛
is a function from 𝑋𝑛 to some set 𝑋′. We understand in this case
that 𝑋2, 𝑋3, … contain tuples and hence 𝑓2, 𝑓3, … take multiple input
parameters. The set 𝑋1 should naturally contain 1-tuples, but is usually
identified with the set 𝑋.
A function 𝑋1 → 𝑋′ is called “unary”, a function 𝑋2 → 𝑋′ is called
“binary”, and so on, after the number of input parameters it takes, even
though in reality, a function 𝑋2 → 𝑋′ takes just one 2-tuple from 𝑋 × 𝑋.
No matter what 𝑋 actually is, we set the convention that 𝑋0 = { () }, a
one-element set. A function 𝑋0 → 𝑋′ is called “nullary” because it takes
no real parameters. In reality, since it is a function from a one-element
set (and not from the empty set), it does of course take one parameter, it
just happens to always be (). Thus, a nullary function is always constant.
When defining such a function mapping to some element 𝑥′ ∈ 𝑋′, we write

𝑓∶ 𝑋0 → 𝑋′, () ↦ 𝑥′.

2.3. Indices
In most cases, we shall use both upper and lower indices for our objects. In
some cases, in order to avoid triple and quadruple indices, we also use left
indices, like in the twine of two graphs 𝐺 and 𝐺′:

𝐺 ⊗𝑛 𝑘
𝑚 𝐾 𝐺′.

17



Chapter 3: Preliminaries

To save the reader from having to remember what every index means,
we adopt the following conventions: a left index (upper or lower) always
indicates in some way the input type of an object – for example, a function
which is denoted as 𝑓ℕ can be expected to take a natural number as input,
while 𝑓𝛴 will take words from some alphabet 𝛴. Right indices relate to
things other than the input type.
In most cases, the more “important” index will be the lower (left or right)
one, while “auxiliary” properties are upper indices. For example, what
others would write as 𝑓𝑥,𝑦, we write as 𝑓𝑦

𝑥 , whereas 𝑓𝑦,𝑥 becomes 𝑓𝑥
𝑦 .

If we need to indicate the output type of a function, we shall always choose
the upper right index to do so.

2.4. Formal Logic
Since we shall be dealing with logical formulas quite a bit, and also with
formulas which in turn contain other formulas, we adopt the convention
that the symbols of a formal language shall be printed in red. For example,
the formula

𝜆1(𝜈1, 𝜈2) ⇔ 𝜈1 = 𝜈2

means not “in the formal language, 𝜆1(𝜈1, 𝜈2) and 𝜈1 = 𝜈2 are the same
formula”, but rather “𝜆1(𝜈1, 𝜈2) is true precisely when the symbols 𝜈1
and 𝜈2 are the same”, so perhaps it is the definition of an equality-checking
symbol 𝜆1.

2.5. Algorithmic Complexity
For the algorithmic specifics in chapter 9, we assume that the reader is
familiar with the very basics of complexity theory.

Notation 3.2.3
We write P for the class of problems solvable in polynomial time and NP
for the class of problems verifiable in polynomial time. We write 𝒪(𝑓)
for the class of functions asymptotically bounded by 𝑓.

18



𝟚𝑋denotes the
power set of 𝑋.

Chapter 4
Graphs

We begin our journey where it will end: with finite graphs. Before the
impatient graph theorist jumps to the next chapter, we briefly touch on
some peculiarities of our notation.
As our ultimate goal is to relate graph properties and formal logic, we must
take special care in our definitions. When talking about formal logic, it
can be rather inconvenient when the structures one examines are too big
to fit into a set. If the reader recalls the standard definition of a graph,
they will notice that usually the vertex set 𝑉 is simply “a set”, meaning the
vertices 𝑣 ∈ 𝑉 can be whatever the author pleases. This means that the
vertices themselves could again be sets – in particular, for every set 𝑋, there
is a (finite!) graph 𝐺 which contains 𝑋 as a vertex. Hence the collection
of all graphs includes all possible sets and consequently cannot be itself a
set1, and this remains true even if one requires all graphs to be finite.
The standard construction to pare down the class of graphs to a manageable
size is to define what a graph isomorphism is, then consider isomorphism
classes of graphs. If the reader prefers this, they may pretend that this
is what we have done and pretend that every vertex mentioned in the
proofs starting from chapter 5 is actually a vertex of a representative of
such an isomorphism class, that graph morphisms are actually classes
of morphisms between classes of graphs, and so forth – this requires no
more notational fudgery than is usually involved in the isomorphism class
construction, as virtually no author states their theorems in the form “let 𝐺

1 Suppose there were a set 𝑋 containing all sets. In Zermelo-Fraenkel set theory, we know
(for example by Cantor diagonalisation) that |𝟚𝑋| > |𝑋| for any set. But 𝑋 contains all
sets, in particular the elements of 𝟚𝑋, hence 𝟚𝑋 ⊆ 𝑋 – a contradiction.
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Chapter 4: Graphs

be a representative of an isomorphism class of cubic graphs …”, even if they
later treat the class of cubic graphs as if it were a set.
We present here an alternative approach that integrates nicely with our
usage of formal languages and which allows to work with a set (instead of
a proper class) of finite graphs while staying formally sound throughout.
The price we pay for this is that most of what the reader would consider
“graphs” are no longer graphs in our definition – we do not allow the vertices
and edges to be arbitrary objects anymore.
Is this an absurd restriction? It is

A note on hypergraphs

When we talk about graphs in this
thesis, we actually mean hyper-
graphs, that is, graphs where a sin-
gle edge can connect more than two
vertices. If the reader feels uncom-
fortable with this, they may simply
pretend that edges can only ever con-
nect two vertices – whenever we men-
tion the number of end points of an
edge, they may mentally substitute
the number 2.
In case further clarification seems
in order, a box not entirely unlike
this one shall help the reader out.

indeed not, because for any “graph”
the reader might invent, there is a
graph in our definition that is iso-
morphic to it. We simply prohibit
cases where the vertices of the graph
are sets, or classes, or oranges, and
only ever allow them to be the sym-
bols 𝑣1, 𝑣2, ….
A “graph” as the reader knows it,
where the vertices and edges can be
arbitrary objects, is instead demoted
to the status of “pseudograph”.

1. What is a
Graph?
All of our graphs are hypergraphs where an edge can connect arbitrarily
many vertices and can also contain the same vertex more than once. We
omit the prefix “hyper” in most cases.

Definition 4.1.1
An undirected pseudograph is a tuple (𝑉 , 𝐸, ⦉_⦊) with the following
properties.

• 𝑉 is a nonempty set, called the set of vertices.
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4.1: What is a Graph?

• 𝐸 is a set, called the set of edges.
• ⦉_⦊ is a function 𝐸 → 𝑉 ∗, called the end points of the edges.
• 𝑉 and 𝐸 are disjoint.

For an edge 𝑒 ∈ 𝐸, the natural number |⦉𝑒⦊| is called the edge type of 𝑒,
denoted |𝑒|.

To illustrate, let us consider the (not very practical) undirected pseudo-
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊) with

• 𝑉 ≔ { 𝑣1,ℕ, 𝑓, 3.7 },

• 𝐸 ≔ { 2, 𝑉 , 𝐺, { 2 } },

• ⦉𝑒⦊ ≔

⎧{{
⎨{{⎩

𝑣1ℕ if 𝑒 = 2
𝑣1𝑣1 if 𝑒 = 𝑉
ℕ𝑣1𝑓 if 𝑒 = { 2 }
𝑓𝑓𝑓3.7 if 𝑒 = 𝐺.

2

𝑉

{ 2 }

𝐺

𝑣1 ℕ

𝑓3.7

The edge 2 is an ordinary edge,
What about the empty graph?

By definition, all of our graphs have at least
one vertex. This is a deliberate choice that
makes several proofs in later chapters eas-
ier to write down. Should it be the reader’s
deepest wish to allow for empty graphs in
their algorithms, they may simply add that
as a special case without changing any of
the runtimes, since any property is easy to
check on the empty graph.

going from ℕ to 𝑣1 (or vice
versa, since the graph is not di-
rected). The edge 𝑉 is not too
uncommon either, it is simply
a loop. The edge { 2 } connects
three vertices, while the edge 𝐺
connects to 3.7 once and to 𝑓
thrice, forming a multiloop.
Apart from showcasing the kind
of edges that a hypergraph ad-
mits, 𝐺 illustrates our point about pseudographs: allowing arbitrary sets
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Chapter 4: Graphs

for 𝑉 and 𝐸 leads to strange objects which are still graphs, like this one
containing itself as an edge. We shall soon disallow these constructions.
Since these graphs are supposed to be undirected, it makes sense to regard
graphs where the end points of edges are simply reordered as “the same”.2

Definition 4.1.2
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊), 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈) be undirected pseudographs.
An undirected pseudograph morphism from 𝐺 to 𝐺′ is a pair (𝑔, ℎ) with
the following properties.

• 𝑔 is a function 𝑉 → 𝑉 ′.
• ℎ is a function 𝐸 → 𝐸′.
• for every edge 𝑒 ∈ 𝐸, we have 𝑔∗⦉𝑒⦊ ≈ ⦇ℎ𝑒⦈.

Stated in prose, a pseudograph morphism maps vertices to vertices in any
way it likes, then maps edges to edges such that the number of end points
of each edge (with multiplicity) is preserved and such that if 𝑣 was an end
point of 𝑒 with multiplicity 𝑘, 𝑔𝑣 is an end point of ℎ𝑒 with multiplicity at
least 𝑘. The “look” of 𝑒 can still change, as 𝑔 might identify several of its
end points with the same vertex 𝑣′:

𝑒2𝑒1

(𝑣2 ↦ 𝑣3

𝑣1 ↦ 𝑣3, 𝑒1 ↦ 𝑒2)
𝑣3𝑣1 𝑣2

The reader may easily verify that composition of pseudograph morphisms
yields a pseudograph morphism and that the identity on a pseudograph

2 This could alternatively be achieved by prescribing ⦉𝑒⦊ to be a multiset rather than
a word. This makes the notion of graph homomorphism simpler, at the cost of more
cluttered notation and making the definition of directed graphs harder. The reader may
simply pretend that we are using their preferred version, since nothing depends on the
actual word-ness of ⦉_⦊.
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4.1: What is a Graph?

(denoted by id) is a pseudograph morphism, thus justifying the name and
the following definition.

Definition 4.1.3
An undirected pseudograph morphism (𝑔, ℎ) ∶ 𝐺 → 𝐺′ is called an
undirected pseudograph isomorphism if there is an undirected pseu-
dograph morphism (𝑔′, ℎ′) such that (𝑔, ℎ) ∘ (𝑔′, ℎ′) = id𝐺′ and such
that (𝑔′, ℎ′) ∘ (𝑔, ℎ) = id𝐺.
Two pseudographs 𝐺 and 𝐺′ are called isomorphic if there exists a
pseudograph isomorphism 𝐺 → 𝐺′. We write 𝐺 ≅ 𝐺′.

The following lemma will be well-known to the reader.

Lemma 4.1.4
Let 𝑓 = (𝑔, ℎ) be a pseudograph morphism. Then 𝑓 is a pseudograph
isomorphism if and only if 𝑔 and ℎ are both bijective. In that case, we
have 𝑓−1 = (𝑔−1, ℎ−1).

Proof. Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊), 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈) be pseudographs.
First, let (𝑔, ℎ) ∶ 𝐺 → 𝐺′ be a pseudograph isomorphism. Then by definition
there is a pseudograph morphism (𝑔′, ℎ′) ∶ 𝐺′ → 𝐺 such that we have
both (𝑔 ∘ 𝑔′, ℎ ∘ ℎ′) = (id𝑉 ′ , id𝐸′) and (𝑔′ ∘ 𝑔, ℎ′ ∘ ℎ) = (id𝑉, id𝐸), proving
the claim.
Let conversely (𝑔, ℎ) ∶ 𝐺 → 𝐺′ be a pseudograph morphism with 𝑔, ℎ
bijective. It suffices to show that (𝑔−1, ℎ−1) is a pseudograph morphism
from 𝐺′ to 𝐺, that is,

∀𝑒′ ∈ 𝐸′ ∶ (𝑔−1)∗(⦇𝑒′⦈) ≈ ⦉ℎ−1(𝑒′)⦊.

Let to this end 𝑒′ ∈ 𝐸′. Since ℎ is bijective, we can find 𝑒 ∈ 𝐸 such
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that 𝑒′ = ℎ(𝑒) and immediately recognise that

(𝑔−1)∗(⦇𝑒′⦈) = (𝑔−1)∗(⦇ℎ(𝑒)⦈)
≈ (𝑔−1)∗(𝑔∗(⦉𝑒⦊))
= (𝑔∗)−1(𝑔∗(⦉𝑒⦊))
= ⦉𝑒⦊
= ⦉ℎ−1(ℎ(𝑒))⦊
= ⦉ℎ−1(𝑒′)⦊,

finishing the proof.
�

We are now ready to introduce “real” graphs. We start by fixing a set of
meaningless symbols3.

Definition 4.1.5
A graph language is a pair (𝛴𝑉, 𝛴𝐸) of two disjoint alphabets. The
elements of 𝛴𝑉 are called vertex symbols, while the elements of 𝛴𝐸 are
called edge symbols.

The alphabets 𝛴𝑉 and 𝛴𝐸 may be proper classes if one really wants to
construct all possible graphs. We shall, however, soon restrict them to be
quite small for our purposes.
A graph in a language is now simply a pseudograph that only uses the
allowed symbols.

Definition 4.1.6
Let 𝛤 = (𝛴𝑉, 𝛴𝐸) be a graph language. An undirected 𝛤-hypergraph is a
pseudograph (𝑉 , 𝐸, ⦉_⦊) such that 𝑉 ⊆ 𝛴𝑉 and 𝐸 ⊆ 𝛴𝐸.

As long as both 𝛴𝑉 and 𝛴𝐸 are sets, this ensures that the collection of
all 𝛤-hypergraphs also forms a set.
The notions of morphism and isomorphism carry over without any modifi-
cation. They are reproduced here for completeness only.

3 The best kind of symbols.
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Definition 4.1.7
Let 𝛤 be a graph language, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊), 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈)
be undirected 𝛤-hypergraphs. An undirected 𝛤-hypergraph morphism
from 𝐺 to 𝐺′ is a pair (𝑔, ℎ) with the following properties.

• 𝑔 is a function 𝑉 → 𝑉 ′.
• ℎ is a function 𝐸 → 𝐸′.
• for every edge 𝑒 ∈ 𝐸, we have 𝑔∗⦉𝑒⦊ ≈ ⦇ℎ𝑒⦈.

Definition 4.1.8
Let 𝛤 be a graph language, and let 𝐺, 𝐺′ be undirected 𝛤-hyper-
graphs. An undirected 𝛤-hypergraph morphism (𝑔, ℎ) ∶ 𝐺 → 𝐺′ is
called an undirected 𝛤-hypergraph isomorphism if there is an undi-
rected 𝛤-hypergraph morphism (𝑔′, ℎ′) such that (𝑔, ℎ) ∘ (𝑔′, ℎ′) = id𝐺′

and (𝑔′, ℎ′) ∘ (𝑔, ℎ) = id𝐺.
Two 𝛤-hypergraphs 𝐺 and 𝐺′ are called isomorphic if there exists a 𝛤-hy-
pergraph isomorphism 𝐺 → 𝐺′.

In particular, every 𝛤-hypergraph morphism is also a pseudograph mor-
phism.
We formalise the idea that a graph from 𝛤 is “just as good” as a graph
where vertices and edges are arbitrary objects, provided that the language
is large enough.

Lemma 4.1.9
Let 𝛤 = (𝛴𝑉, 𝛴𝐸) be a graph language, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be
a pseudograph with |𝑉 | ≤ |𝛴𝑉| and |𝐸| ≤ |𝛴𝐸|. Then there exists
a 𝛤-hypergraph which is isomorphic to 𝐺.

Proof. Say the assumptions hold. The fact that |𝑉 | ≤ |𝛴𝑉| implies
that there exists an injective function 𝑔∶ 𝑉 → 𝛴𝑉. Similarly, there is an
injective function ℎ∶ 𝐸 → 𝛴𝐸. Since ℎ is injective, it admits a retrac-
tion ℎ−1 ∶ 𝛴𝐸 → 𝐸 with ℎ−1 ∘ ℎ = id𝐸.
We set ⦇_⦈ ≔ 𝑔∗ ∘ ⦉_⦊ ∘ ℎ−1

ℎ(𝐸)
, a function ℎ∶ 𝐸 → 𝛴∗

𝑉.
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We claim that the 𝛤-hypergraph 𝐺′ = (𝑔(𝑉 ), ℎ(𝐸), ⦇_⦈) is isomorphic to 𝐺.
The reader may first wish to convince themselves of the intuitive sensibility
of our choice by noting that the following diagram commutes.

𝐸 𝛴𝐸

𝑉 ∗ 𝛴𝑉
∗

ℎ

⦉_⦊ 	 𝑔∗⦉ℎ−1⦊

𝑔∗

The isomorphism in question is the pair (𝑔, ℎ). We need to show that this
is a morphism, and that it admits an inverse.
By definition of ⦇_⦈, we have for every edge 𝑒 ∈ 𝐸

⦇ℎ(𝑒)⦈ = 𝑔∗(⦉ℎ−1
ℎ(𝐸)

(ℎ(𝑒))⦊)

= 𝑔∗(⦉𝑒⦊)
≈ 𝑔∗(⦉𝑒⦊),

whence 𝑔, ℎ is a pseudograph morphism.
The functions 𝑔 and ℎ are injective, and of course they are surjective onto
their respective images. Hence by lemma 4.1.4, (𝑔, ℎ) is an isomorphism.

�

We allow the following shorthand.

Notation 4.1.10
Let 𝛤 be a graph language, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be an undi-
rected 𝛤-hypergraph. By 𝑣 ∈ 𝐺 we mean 𝑣 ∈ 𝑉, and by |𝐺| we mean |𝑉 |.

As our main concern is finding algorithms that run in finite time, we are
only ever interested in graphs with finitely many vertices and edges. For
this reason, we fix now and forever a reasonably small language for our
graphs to live in.4

4 The reader may recall that fraktur letters are reserved for global constants, which means
the meaning of these symbols shall not change until the end of the thesis.
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Definition 4.1.11
We set 𝔉 = (𝔙, 𝔈) with two countably infinite sets of symbols

𝔙 ≔ { 𝑣0, 𝑣1, … }

and
𝔈 ≔ { 𝑒0, 𝑒1, … }

and call this the language of finite graphs.

Given any pseudograph 𝐺 = (𝑉 , 𝐸, ⦉_⦊) with finite vertex and edge sets
in any reasonable encoding, one can then compute in linear time an 𝔉-hy-
pergraph 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈) which is isomorphic to 𝐺: the “reasonable”
encoding should allow one to enumerate the elements of 𝑉 ∪ 𝐸 in some
order. Traverse this enumeration. When a vertex comes up, assign to it the
lowest-index unassigned vertex symbol from 𝔙. When an edge comes up,
assign to it the lowest-index unassigned edge symbol from 𝔈. When the
enumeration is finished, we have produced a bijective mapping 𝑓 from 𝑉 ∪𝐸
to some finite subset of 𝔙 ∪ 𝔈. For an edge 𝑒′ ∈ 𝐸′, computing ⦇𝑒′⦈ is as
simple as computing 𝑓−1𝑒′ and applying 𝑓 to its end points.
Given an encoding that does not itself already blow up the time to compute
elements of 𝐺, the above conversion procedure uses time linear in |𝑉 | + |𝐸|.
We shall hence assume that any reasonably encoded finite graph is really
an 𝔉-graph, since adding a linear preprocessing step does not slow down
any of our algorithms.

Notation 4.1.12
By graph, we always mean an undirected 𝔉-hypergraph with finitely
many vertices and edges.

Since 𝔉 admits only countably many hypergraphs, we have thus achieved
our goal of paring down the class of graphs to a set.
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2. Directed Graphs
For the sake of completeness, we also introduce formally the notion of
directed hypergraph. All of our constructions in later chapters will work
equally well on directed as on undirected graphs. The reader who wishes
to avoid the technical construction may well skip this section and pretend
that there is some intuitive notion of edges going “from” one vertex “to”
another.
For our formal approach, we have chosen to define directed graphs in a way
that takes an undirected graph and “enhances” it by adding an orientation
to each edge. This provides the added bonus that a directed graph becomes
undirected by simply forgetting its orientation function.

Definition 4.2.1
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be an undirected graph. An orientation for 𝐺 is a
map ⭐ ∶ 𝐸 → ℕ with

∀𝑒 ∈ 𝐸∶ 0 < ⭐(𝑒) < |⦉𝑒⦊|.

For an edge 𝑒 ∈ 𝐸 with ⦉𝑒⦊ = 𝑣1 … 𝑣𝑛, we call 𝑣1 … 𝑣⭐(𝑒) the start points
of 𝑒 and 𝑣⭐(𝑒)+1 … 𝑣𝑛 its end points.
A directed graph is a pair (𝐺,⭐), where 𝐺 is a graph and ⭐ is an
orientation for 𝐺.

For ordinary (non-hyper) graphs, this coincides with the classical notion
of directedness. For hypergraphs, note that an edge of type 3 cannot go
“from 𝑣1 to 𝑣2 to 𝑣3”. It only has start and end points, with no particular
distinction between starts. Hence it can only go “from 𝑣1 and 𝑣2 to 𝑣3”
or “from 𝑣1 to 𝑣2 and 𝑣3” (or other permutations on the vertex order, of
course).
We also prohibit edges with no start points or no end points; in particular, a
directed hypergraph cannot contain edges of type 1. If the reader disagrees
with this convention, it should be straightforward to adapt the definitions,
taking some care to fix the definition of a tree in section 4.4.
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Definition 4.2.2
Let 𝐺 = ((𝑉 , 𝐸, ⦉_⦊),⭐) and 𝐺′ = ((𝑉 ′, 𝐸′, ⦇_⦈),⭑) be directed
graphs. A directed graph morphism from 𝐺 to 𝐺′ is a graph mor-
phism (𝑔, ℎ) ∶ (𝑉 , 𝐸, ⦉_⦊) → (𝑉 ′, 𝐸′, ⦇_⦈) such that for all 𝑒 ∈ 𝐸, we
have ⭑(ℎ𝑒) = ⭐(𝑒) and such that for every 𝑒 ∈ 𝐸 with ⦉𝑒⦊ = 𝑣1 … 𝑣𝑛
and ⦇ℎ𝑒⦈ = 𝑤1 … 𝑤𝑛, we have 𝑤1 … 𝑤⭐(𝑒) ≈ 𝑔∗(𝑣1 … 𝑣⭐(𝑒)).

Note that this immediately implies that
For an ordinary directed
graph as we know it (where
an edge goes from one vertex
to another), definition 4.2.2
coincides with the classical
definition (since there is ex-
actly one start and one end
for each edge).

𝑤⭐(𝑒)+1 … 𝑤𝑛 ≈ 𝑔∗(𝑣⭐(𝑒)+1 … 𝑣𝑛).

In other words, a directed graph morphism
is simply a graph morphism which leaves
start points as start points and end points
as end points (both up to reordering).

Definition 4.2.3
A directed graph morphism whose underlying hypergraph morphism is a
hypergraph isomorphism is called a directed graph isomorphism.

The reader is reminded that, where no confusion is likely to occur, we abuse
notation to let (𝑉 , 𝐸, ⦉_⦊,⭐) mean the same thing as ((𝑉 , 𝐸, ⦉_⦊),⭐).

3. More Definitions
We now introduce notation for several useful concepts.

Definition 4.3.1
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be a graph.
For an edge 𝑒 ∈ 𝐸 and a vertex 𝑣 ∈ 𝑉, the number of times that the
symbol 𝑣 occurs in the string ⦉𝑒⦊ is called the incidence of 𝑣 in 𝑒, denoted
by inc𝑒𝑣.
For a vertex 𝑣 ∈ 𝑉, the number deg 𝑣 ≔ ∑𝑒∈𝐸 inc𝑒𝑣 is called the degree
of 𝑣.
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Chapter 4: Graphs

Two vertices 𝑣, 𝑤 ∈ 𝑉 , 𝑣 ≠ 𝑤 are called adjacent if there is an edge 𝑒
such that both 𝑣 and 𝑤 occur in ⦉𝑒⦊.
For a vertex 𝑣 ∈ 𝑉, the set of all vertices adjacent to 𝑣 is called its
neighbourhood, denoted N𝑣.

Definition 4.3.2
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊,⭐) be a directed graph.
For a vertex 𝑣 ∈ 𝑉 and an edge 𝑒 ∈ 𝐸, the number of times that the
symbol 𝑣 occurs in the start points of 𝑒 is called the out-incidence of 𝑣
in 𝑒, denoted incout

𝑒 𝑣. The number of times that the symbol 𝑣 occurs in
the end points of 𝑒 is called the in-incidence of 𝑣 in 𝑒, denoted incin

𝑒 𝑣.
For a vertex 𝑣 ∈ 𝑉, the number degin𝑣 ≔ ∑𝑒∈𝐸 incin

𝑒 𝑣 is called the in-
degree of 𝑣. The number degout𝑣 ≔ ∑𝑒∈𝐸 incout

𝑒 𝑣 is called the out-degree
of 𝑣.
Let 𝑣, 𝑤 ∈ 𝑉 , 𝑣 ≠ 𝑤. If there is an edge 𝑒 ∈ 𝐸 with incout

𝑒 𝑣 > 0
and incin

𝑒 𝑤 > 0, we say that 𝑣 is a predecessor of 𝑤 and that 𝑤 is a
successor of 𝑣.
For 𝑣 ∈ 𝑉, the set of all its successors is called its out-neighbourhood,
denoted Nout𝑣. The set of all its predecessors is called its in-neighbourhood,
denoted Nin𝑣.

We can now look at paths through a hypergraph.

Definition 4.3.3
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be a graph. An undirected path in 𝐺 from 𝑣 ∈ 𝑉
to 𝑤 ∈ 𝑉 is a word 𝑃 ∈ (𝑉 ∪ 𝐸)∗ fulfilling the following conditions.

• 𝑃 alternates between symbols from 𝑉 and symbols from 𝐸.
• The first symbol of 𝑃 is 𝑣, its last symbol is 𝑤. In particular, they

both lie in 𝑉.
• Let 𝑒 be an edge symbol in 𝑃 such that 𝑃 = … 𝑥𝑒𝑦 … . Then 𝑥

and 𝑦 must be incident to 𝑒, that is, inc𝑒𝑥 > 0 and inc𝑒𝑦 > 0.
The length of 𝑃, denoted |𝑃 |, is the number of edge symbols in 𝑃, or
equivalently, |𝑃 | ≔ |𝑃 |−1

2 , where the |_| used on the right hand is the
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4.3: More Definitions

ordinary string length.
If the first and last symbol of a path 𝑃 of length at least 1 are identical, 𝑃
is called a cycle.
A path 𝑃 is called simple if no vertex symbol and no edge symbol occurs
more than once, except that the first and last symbol may be the same.
The graph 𝐺 is called acyclic if it admits no simple cycles.
It is called connected if for any 𝑣, 𝑤 ∈ 𝑉, there is a path in 𝐺 from 𝑣 to 𝑤.

Definition 4.3.4
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊,⭐) be a directed graph. A directed path in 𝐺
from 𝑣 ∈ 𝑉 to 𝑤 ∈ 𝑉 is a word 𝑃 ∈ (𝑉 ∪ 𝐸)∗ fulfilling the following
conditions.

• 𝑃 alternates between symbols from 𝑉 and symbols from 𝐸.
• The first symbol of 𝑃 is 𝑣, its last symbol is 𝑤. In particular, they

both lie in 𝑉.
• Let 𝑒 be an edge symbol in 𝑃 such that 𝑃 = … 𝑥𝑒𝑦 … . Then we

have incout
𝑒 𝑥 > 0 and incin

𝑒 𝑦 > 0.
The length of 𝑃, denoted |𝑃 |, is the number of edge symbols in 𝑃, or
equivalently, |𝑃 | ≔ |𝑃 |−1

2 , where the |_| used on the right hand is the
ordinary string length.
If the first and last symbol are identical and |𝑃 | ≥ 1, then 𝑃 is called a
cycle.
It is called simple if no vertex symbol and no edge symbol occurs more
than once, except that the first and last symbol may be the same.
The graph 𝐺 is called acyclic if it admits no simple cycles.
It is called strongly acyclic if (𝑉 , 𝐸, ⦉_⦊) is acyclic.
It is called connected (or weakly connected) if for any 𝑣, 𝑤 ∈ 𝑉, there is
an undirected path from 𝑣 to 𝑤 in (𝑉 , 𝐸, ⦉_⦊).
It is called strongly connected if for any 𝑣, 𝑤 ∈ 𝑉, there is a directed path
in 𝐺 from 𝑣 to 𝑤.
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Chapter 4: Graphs

Definition 4.3.5
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be a graph. A graph 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈) is called a
subgraph of 𝐺 if 𝑉 ′ ⊆ 𝑉, 𝐸′ ⊆ 𝐸, and ⦇_⦈ = ⦉_⦊

𝐸′
.

It is called a full or induced subgraph of 𝐺 if it is maximal among
subgraphs with vertex set 𝑉 ′, that is, if it contains all edges which are
not incident to a vertex in 𝑉 ⧵ 𝑉 ′. In this case, we say that it is the (full)
subgraph induced by 𝑉 ′ and write 𝐺[𝑉 ′] ≔ 𝐺′.
For any 𝑉 ′ ⊆ 𝑉, we write 𝐺 − 𝑉 ′ ≔ 𝐺[𝑉 ⧵ 𝑉 ′].
For any 𝐸′ ⊆ 𝐸, we write 𝐺 − 𝐸′ ≔ (𝑉 , 𝐸 ⧵ 𝐸′, ⦉_⦊

𝐸⧵𝐸′
).

Definition 4.3.6
Let 𝐺 be a directed or undirected graph, 𝑣 a vertex of 𝐺. The connected
component of 𝑣 is the largest connected full subgraph of 𝐺 containing 𝑣,
that is, the full subgraph induced by all vertices (weakly) connected to 𝑣.

Definition 4.3.7
Le 𝑘 ∈ ℕ. We say that a directed or undirected graph 𝐺 is 𝑘-uniform if
every edge of 𝐺 has type 𝑘.

In particular, a non-hyper graph is the same thing as a 2-uniform graph.

4. Trees
For the study of trees, we restrict ourselves to 2-uniform graphs, that is,
graphs where every edge has exactly two end points (both of which may be
the same vertex).

Definition 4.4.1
A 2-uniform graph 𝐺 is called a forest if it is acyclic.
A connected forest is called a tree.

This is a tree:

32



4.4: Trees

Definition 4.4.2
A 2-uniform directed graph 𝐺 is called a directed tree (or rooted tree) if
it is strongly acyclic and there exists a 𝑣 ∈ 𝑉 such that for every 𝑤 ∈ 𝑉
there is a directed path from 𝑣 to 𝑤.
We call 𝑣 the root of 𝐺, denoted

√
𝐺 ≔ 𝑣.

A vertex without successors in a rooted tree is called a leaf.
A directed graph 𝐺 is called a directed forest if each of its connected
components is a rooted tree.

This is a directed tree with root 𝑣:

𝑣
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In particular, the underlying undirected graph of a rooted tree is always a
tree, whereas a directed graph whose underlying undirected graph is a tree
need not be a rooted tree itself.
Definition 4.4.3

Let 𝑇 be a rooted tree, 𝑣 ∈ 𝑇. The largest subtree of 𝑇 with root 𝑣 is
called the induced subtree of 𝑣, denoted 𝑇 [𝑣].

𝑣

Note that, unlike most of our definitions, this notion makes sense only for
directed graphs because for an undirected tree, any vertex can serve as a
“root” for the entire tree.
The following notion is another we only need for directed trees.

Definition 4.4.4
The height of a rooted tree 𝑇 is one plus the length of the longest directed
path in 𝑇, that is, the number of vertices in that path.

In addition to these classical mathematical notions of trees, we need a way
to impose an ordering on the successors of a vertex.

Definition 4.4.5
A traversal tree is a pair (𝑇 , ≼) where 𝑇 = (𝑉 , 𝐸, ⦉_⦊,⭐) is a rooted
tree and ≼ = {≼𝑣}𝑣∈𝑉 is a set of relations such that for all 𝑣 ∈ 𝑉, ≼𝑣 is
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4.4: Trees

a total ordering of Nout𝑣.

One can visualise a traversal tree as follows.

≼𝑣1

≼𝑣2
≼𝑣2

≼𝑣4

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8

The reason this is called a “traversal tree” is that, given a traversal strategy
such as inorder, preorder or postorder5, the orderings given by ≼ suffice to
uniquely determine the traversal order of 𝑇.
In the future, we adopt the (hopefully intuitive) convention that in a
traversal tree …

• … edges are always directed from top to bottom.
• … successors are always ordered from left to right according to ≼.

Our example above hence becomes simply the following.

5 For more on this, check [Knu68]. We shall not actually need these definitions though.
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Chapter 4: Graphs

𝑣1

𝑣2 𝑣3

𝑣4 𝑣5 𝑣6

𝑣7 𝑣8

Whenever we talk about traversal trees, we shall make use of the following
shorthand.
Notation 4.4.6

Let 𝑇 = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼) be a traversal tree, and let 𝑣 ∈ 𝑉. We write

Nout𝑣 = [𝑣1, … , 𝑣𝑛]

to mean that Nout𝑣 = { 𝑣1, … , 𝑣𝑛 } and 𝑣1 ≼𝑣 𝑣2 ≼𝑣 … ≼𝑣 𝑣𝑛.

In the example above, we would write

Nout𝑣1 = [𝑣2, 𝑣3], Nout𝑣2 = [𝑣4, 𝑣5, 𝑣6],

and so forth.
Definition 4.4.7

Let (𝑇 , ≼) and (𝑆,⪨) be traversal trees. A traversal tree morphism
from (𝑇 , ≼) to (𝑆,⪨) is a directed hypergraph morphism (𝑔, ℎ) ∶ 𝑇 → 𝑆
such that

∀𝑣 ∈ 𝑇∶ ∀𝑥, 𝑦 ∈ Nout𝑣∶ 𝑥 ≼𝑣 𝑦 ⇒ 𝑔𝑥 ⪨𝑔𝑣 𝑔𝑦.
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4.5: Typed Graphs

In other words, we require morphisms between traversal trees to be com-
patible with the imposed ordering. Note that we need not worry about the
fact that hypergraph morphisms allow reordering of end points since we
are in the realm of directed trees, where every edge has exactly one start
point and one end point.

5. Typed Graphs
Later on, we shall want to build every graph from a few simple constituents.
In short, we would like the following graph:

𝑣1

𝑣2 𝑣3

𝑣4

to be constructed from the two smaller graphs

𝑣1

𝑣2

𝑣3

𝑣4

𝑣2

𝑣4
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by somehow “gluing” the same-label vertices together:

𝑣1

𝑣2

𝑣3

𝑣4

𝑣2

𝑣4

The reason we desire this is that in the proof of Courcelle’s Theorem, we
can then use the trick that if a graph 𝐺 is obtained by gluing together
graphs 𝐺1 and 𝐺2, then certain properties of 𝐺 can be checked by only
looking at 𝐺1 and 𝐺2, which are smaller than the original graph – effectively
a divide and conquer approach to the proof.
The reader can easily imagine that, given arbitrarily many copies of the
graph with one edge and two vertices and the ability to glue vertices
together, they can build any finite 2-uniform graph they desire.6 However,
the structures we develop in chapter 6 to prove Courcelle’s Theorem only
allow gluing at “some” vertices in order to preserve the properties we need.
To prepare for this restriction, we slightly extend our definition of “graph”.
A typed graph is a graph as we know it, with the additional provision that
some of its vertices are marked as special. Courcelle calls these vertices
“sources”, but the reader should be advised that these bear no relation to
the sources of a network flow. We choose the less overloaded denomination
“terminals” instead.
The only special property of these terminals is that they mark the vertices
at which we are allowed to “glue”. All other vertices are glue-resistant.

6 This is proven in a more general form in theorem 6.4.2.
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4.5: Typed Graphs

All definitions in this section work equally well for directed as for undirected
graphs. We give the undirected version and trust the reader to be able to
extend the concepts as necessary.

Definition 4.5.1
Let 𝑛 ∈ ℕ. A typed graph of type 𝑛 is a pair (𝐺, 𝑡) where 𝐺 = (𝑉 , 𝐸, ⦉_⦊)
is an undirected graph and 𝑡 ∶ { 1, … , 𝑛 } → 𝑉.
The vertices in the range of 𝑡 are called terminals.
For ease of notation, we denote the 𝑖-th terminal vertex by 𝑡𝑖 ≔ 𝑡(𝑖).

In our examples, we shall colour the terminal vertices, and since non-
terminal vertices are inherently uninteresting, we usually omit their labels
and only label the terminal vertices (by their terminal index or indices). In
the example above, we would have 𝑣2 = 𝑡(1) and 𝑣4 = 𝑡(2).

1

2

1

2

We give a name to the collection of graphs of a certain type.

Definition 4.5.2
We denote the set of all finite graphs of type 𝑛 ∈ ℕ by 𝔊𝑛.
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Chapter 4: Graphs

We now define procedures that operate on graphs. Whenever we are given
finitely many graphs, we assume without loss of generality that their sets
of vertex and edge symbols are disjoint.
For each construction in this section, we give an intuitive explanation and
then a formal definition.
The first construction, the disjoint sum of two graphs, will be familiar to
most readers. We simply take two graphs, draw them side by side, and
take this as our new graph.

⊕ =

Definition 4.5.3
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡), 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈, 𝑡′) be graphs of type 𝑛 and 𝑚,
respectively. Then 𝐺 ⊕ 𝐺′, called the disjoint sum of 𝐺 and 𝐺′, is the
typed graph (𝑉 ′′, 𝐸′′, ⟬_⟭, 𝑡″) of type 𝑛 + 𝑚 with

• 𝑉 ′′ ≔ 𝑉 ∪ 𝑉 ′,
• 𝐸′′ ≔ 𝐸 ∪ 𝐸′′,

• ⟬_⟭ ∶ 𝑒 ↦ {
⦉𝑒⦊ if 𝑒 ∈ 𝐸
⦇𝑒⦈ if 𝑒 ∈ 𝐸′,

• 𝑡″ ∶ { 1, … , 𝑛 + 𝑚 } → 𝑉 ′′, 𝑖 ↦ {
𝑡𝑖 if 𝑖 ≤ 𝑛
𝑡′
𝑖−𝑛 if 𝑖 > 𝑛.

Next we introduce a way to switch the order of terminals or forget about
one or more terminal vertices, essentially changing the labels under which
the terminals are known.

40



4.5: Typed Graphs

Say we are given the following type 3 graph.

1 2

3

We would like a type 2 graph instead, dropping the first terminal. Con-
sequently, the other vertices must be relabeled. We can model this by
expressing the “new” terminals in terms of the old ones: terminal 1 should
be the old terminal 2, while terminal 2 should be the old terminal 3.

⇆1↦2,2↦3
1

2

1 2

3

Definition 4.5.4
Let 𝑛 ∈ ℕ and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) be a graph of type 𝑛. Let
further 𝑘 ∈ ℕ and let 𝜎∶ { 1, … , 𝑘 } → { 1, … , 𝑛 } be an arbitrary map.
Then ⇆𝜎𝐺 is the typed graph (𝑉 ′, 𝐸′, ⦇_⦈, 𝑡′) of type 𝑘 with

• 𝑉 ′ ≔ 𝑉,
• 𝐸′ ≔ 𝐸,
• ⦇_⦈ ≔ ⦉_⦊,
• 𝑡′ ≔ 𝑡 ∘ 𝜎.
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媲 (tsureai) is a
Japanese character
meaning to marry,

to pair off.

Chapter 4: Graphs

We call this construction terminal redefinition.

Terminal redefinition makes a graph of type 𝑛 into a graph of type 𝑘.
If 𝑘 = 0, this results in a graph without terminal vertices. If 𝑘 > 𝑛, the
resulting graph will necessarily have at least one vertex that occurs more
than once in the sequence of terminal vertices, because source redefinition
cannot promote a non-terminal vertex to a terminal vertex.
The latter is an important fact to remember – once a vertex loses its
terminal status, it can never regain it.
Last in our list of constructions is a way to glue exactly two terminal
vertices together.

媲
2
1 1,21

2

Definition 4.5.5
Let 𝑛 ∈ ℕ and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) be a graph of type 𝑛. Let
now 𝑎, 𝑏 ∈ { 1, … , 𝑛 }.

For 𝑡𝑎 ≠ 𝑡𝑏, we set 媲𝑏
𝑎𝐺 to be the type 𝑛 graph 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈, 𝑡′),

called the fusion of 𝐺 with respect to 𝑎 and 𝑏, with
• 𝑉 ′ ≔ 𝑉 ⧵ {𝑡(𝑏)},
• 𝐸′ ≔ 𝐸,

• ⦇_⦈ ∶ 𝑒 ↦ 𝜁∗(⦉𝑒⦊), where 𝜁 ∶ 𝑉 → 𝑉 ′, 𝑣 ↦ {
𝑣 𝑣 ≠ 𝑡(𝑏)
𝑡(𝑎) 𝑣 = 𝑡(𝑏),
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• 𝑡′ ∶ { 1, … , 𝑛 } → 𝑉 ′, 𝑖 ↦ {
𝑡(𝑖) 𝑡(𝑖) ≠ 𝑡(𝑏)
𝑡(𝑎) 𝑡(𝑖) = 𝑡(𝑏).

.

For 𝑡𝑎 = 𝑡𝑏, we set 媲𝑏
𝑎𝐺 ≔ 𝐺.

In other words, fusion identifies two terminal vertices with each other,
regluing edges as needed. The multiplicity of the new terminal vertex grows
accordingly such that the graph’s type remains unchanged.
Last but not least we introduce the basic building blocks from which all
other graphs will eventually be constructed using the above tools.

Definition 4.5.6
We denote by 𝔳 the type 1 graph with one vertex and no edges.
For 𝑛 ∈ ℕ> 0, we denote by 𝔢𝑛 the type 𝑛 graph (𝑉 , 𝐸, ⦉_⦊, 𝑡) with 𝑛
vertices 𝑣1, … , 𝑣𝑛, one edge 𝑒 connecting all the vertices of 𝑉 (that
is, ⦉𝑒⦊ = 𝑣1 … 𝑣𝑛) and 𝑡 ∶ 𝑖 ↦ 𝑣𝑖.

We draw the first few graphs from the above definition. Note how 𝔢1 is
the peculiar hypergraph with an edge with only one end point, which is
particularly hard to draw.

𝔳 1

𝔢1 1

𝔢2 1 2

I do not want to build hy-
pergraphs!

For the reader interested
solely in 2-uniform graphs,
only two trivial graphs are
needed: 𝔳 and 𝔢2. These
suffice to build all “normal”
graphs.

𝔢3 1 2 3

We call these building blocks the “trivial graphs”. They suffice to build
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from scratch any finite (typed) hypergraph in finitely many steps, as we
prove in theorem 6.4.2.

6. Tree- and Path-Decompositions
In chapter 9, we show how to

I want to build more hypergraphs!

The classical definition of hypergraphs pro-
hibits having an edge 𝑒 with ⦉𝑒⦊ = 𝜀. If
the reader wishes to allow such edges, how-
ever, it is trivial to add an additional step
to each of the algorithms presented later on
that simply adds the requisite amount of
end point-less edges to the hypergraph.

apply the theoretical result of
Courcelle’s Theorem to obtain
information on graphs of a cer-
tain tree- or path-width. We
present here the relevant ba-
sics; additional (but entirely
optional) information can be
found in [Die05].

Definition 4.6.1
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be graph. A tree-decomposition of 𝐺 is a tu-
ple (𝑇 , 𝑋, 𝑏) with the following properties.

• 𝑋 is a family of subsets of 𝑉, called the bags of the decomposition.
• ⋃𝑥∈𝑋 𝑥 = 𝑉, that is, every vertex of 𝐺 is contained in at least one

bag.
• ∀𝑒 ∈ 𝐸∶ ⦉𝑒⦊ = 𝑣1 … 𝑣|𝑒| ⇒ ∃𝑥 ∈ 𝑋∶ 𝑣1, … , 𝑣|𝑒| ∈ 𝑥, that is, the

collection of vertices of a given edge always shares at least one
bag.7

• 𝑇 = (𝑉 ′, 𝐸′, ⦇_⦈) is a tree.
• 𝑏 is a function 𝑉 ′ → 𝑋, that is, it associates with each node of 𝑇 a

bag of vertices of 𝐺.
• 𝑏 is bijective.
• For any 𝑣 ∈ 𝑉, the subgraph of 𝑇 induced by { 𝑤 ∈ 𝑇 : 𝑣 ∈ 𝑏(𝑤) }

is connected, that is, if 𝑣 is contained in two bags 𝑥, 𝑦, it must also
be contained in all bags on the path from 𝑏−1(𝑥) to 𝑏−1(𝑦).
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The integer
max
𝑥∈𝑋

|𝑥| − 1

is called the width of the decomposition, denoted |(𝑇 , 𝑋, 𝑏)|.

Note well that 𝑋 is a family, not a
Node-ice something?

When talking about graphs, whether
directed or undirected, we always talk
about “vertices” and “edges”, never
“nodes” or “arcs”. The only exception are
tree- and path-decompositions, where we
shall refer to the vertices of the underly-
ing tree exclusively as “nodes” in order
to make it easier for the reader to dis-
tinguish between vertices of the decom-
posed graph and nodes of the decompo-
sition itself.

set – more than one node of 𝑇 can
be associated the same set of ver-
tices of 𝐺, which we still consider
as different “bags”. An alterna-
tive way to write this would be
to index 𝑋 with the nodes of 𝑇,
writing 𝑋𝑣 instead of 𝑏(𝑣).
Tree-decompositions allow us to
define an important graph prop-
erty, namely the smallest possi-
ble width of a tree-decomposition
of 𝐺.
Definition 4.6.2

Let 𝐺 be a graph. The number

min
(𝑇 ,𝑋,𝑏) is a tree-decomposition of 𝐺

|(𝑇 , 𝑋, 𝑏)|

is called the tree-width of 𝐺, denoted tw(𝐺).

Tree-decompositions lend themselves nicely to dynamic programming. We
make them even nicer in order to run algorithms on them later on. Since
these algorithms need to decide in which order to descend into a tree, we
usually assign an arbitrary orientation to the underlying tree.

Definition 4.6.3
Let 𝐺 be a graph. A tree-decomposition (𝑇 , 𝑋, 𝑏) for 𝐺 is called rooted
if 𝑇 is a directed tree. The root of 𝑇 is then also called the root of the
tree-decomposition, and we write √(𝑇 , 𝑋, 𝑏) ≔

√
𝑇.

7 For 2-uniform graphs, this condition simplifies to ⦉𝑒⦊ = 𝑣1𝑣2 ⇒ ∃𝑥 ∈ 𝑋∶ 𝑣1, 𝑣2 ∈ 𝑥.
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Chapter 4: Graphs

Definition 4.6.4
Let 𝐺 = (𝑉 , 𝐸) be a graph. A rooted tree-decomposition (𝑇 , 𝑋, 𝑏) for 𝐺
is called nice if every node 𝑣 ∈ 𝑇 is of one of the following types.

• 𝑣 is a leaf, and |𝑏(𝑣)| = 1.
• 𝑣 has exactly one successor 𝑤, and there is a vertex 𝑣′ ∈ 𝑏(𝑣) such

that 𝑏(𝑤) = 𝑏(𝑣) ⧵ { 𝑣′ }. We then call 𝑣 an introduce node.
• 𝑣 has exactly one successor 𝑤, and there is a vertex 𝑣′ ∈ 𝑏(𝑤) such

that 𝑏(𝑣) = 𝑏(𝑤) ⧵ { 𝑣′ }. We then call 𝑣 a forget node.
• 𝑣 has exactly two successors 𝑤1 and 𝑤2, and they contain the same

vertices, that is, 𝑏(𝑣) = 𝑏(𝑤1) = 𝑏(𝑤2). We then call 𝑣 a join node.

It is well-known that once a tree-decomposition is found, one can turn it
into a nice tree-decomposition.

Theorem 4.6.5
Let 𝐺 be a graph, and let 𝑍 = (𝑇 , 𝑋, 𝑏) be a rooted tree-decomposition
for 𝐺. Then there exists also a nice tree-decomposition 𝑍′ = (𝑆, 𝑌 , 𝑐)
for 𝐺 with |𝑍′| ≤ |𝑍| and 𝑐(

√
𝑍′) = 𝑏(

√
𝑍), and such a decomposition

can be computed in time 𝒪(|𝑍| ⋅ |𝑇 |).

Proof. While the base result is well-known, an algorithm which also pre-
serves the root bag (an additional property we need in chapter 9 for some
constructions which explicitly invoke the root of a given tree-decomposition)
can be found in [KN12, pp. 359–362]. The runtime of their algorithm is
straightforward to see.

�

In [RS83], Robertson and Seymour introduce in addition the notion of
path-decomposition.

Definition 4.6.6
A path-decomposition of a graph 𝐺 is a tree-decomposition (𝑇 , 𝑋, 𝑏) of 𝐺
such that 𝑇 is a path graph, that is, there is a simple path in 𝑇 such that
all nodes of 𝑇 lie on that path.
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The integer
min

(𝑇 ,𝑋,𝑏) is a path-decomposition of 𝐺
|(𝑇 , 𝑋, 𝑏)|

is called the path-width of 𝐺, denoted pw(𝐺).
The decomposition (𝑇 , 𝑋, 𝑏) is called rooted if 𝑇 is, and the root of 𝑇 is
then also called the root of the decomposition, written √(𝑇 , 𝑋, 𝑏) ≔

√
𝑇.

A rooted path-decomposition is called nice if it is nice as a tree-decom-
position.

Note that the root of a rooted path-decomposition is not required to be
one of the end points of the path. Thus, a nice path-decomposition can
have up to one join node.
Just as with tree-decompositions, we can always find a particularly nice
path-decomposition.

Theorem 4.6.7
Let 𝐺 be a graph, and let 𝑍 = (𝑇 , 𝑋, 𝑏) be a rooted path-decomposition of
width 𝑘 for 𝐺. Then there exists a nice path-decomposition 𝑍′ = (𝑆, 𝑌 , 𝑐)
for 𝐺 of width at most 𝑘 and with 𝑐(

√
𝑍′) = 𝑏(

√
𝑍), and such a decom-

position can be computed in time 𝒪(𝑘 ⋅ |𝑇 |).

Proof. Let 𝐺 be a graph and let (𝑇 , 𝑋, 𝑏) be a rooted path-decomposition
for 𝐺 of width 𝑘 with

√
𝑇 = 𝑣. Since a path-decomposition is in particular a

tree-decomposition, theorem 4.6.5 yields a nice tree-decomposition (𝑆, 𝑌 , 𝑐)
of the same or smaller width with

√
𝑆 = 𝑣′ and 𝑐(𝑣′) = 𝑏(𝑣). But the only

time the proof of theorem 4.6.5 creates a join node is when it encounters a
node in 𝑇 with more than two successors, of which there are none.
Hence (𝑆, 𝑌 , 𝑐) is nice with at most one join node and thus actually a
path-decomposition.

�
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Chapter 5
Logic

When giving a proof for Courcelle’s Theorem, one can hardly avoid talking
at least a little bit about formal logic. After all, the statement itself already
talks about monadic second-order logic.
On the other hand, once one starts digging into the formal foundations of
logic, one is often compelled to keep digging until one emerges somewhere
in New Zealand, exhausted and covered in dirt.
We shall try an intermediate approach where we introduce only the parts
of formal logic vital to our explanations.
This chapter introduces the formal foundations in a way that assumes no
prior knowledge on the part of the reader. A reader already familiar with
mathematical logic should feel free to skim only the graph-related sections.
Any introduction we give here must necessarily be incomplete and in parts
informal due to space constraints. For a more complete picture, the reader
is welcome to check [End72], after which much of our notation is modeled.
Sections 5.1 and 5.2 should be read as a mostly intuitive (as opposed to
formally sound) introduction. Formal definitions are given in section 5.3.
Sections 5.4 to 5.6 apply our newly acquired knowledge to the realm of
finite graphs.
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1. Propositional Logic
By the principles of induction, the journey to understanding 𝑘-th-order
logic is begun by understanding 0th-order logic and then incrementing 𝑘.
Propositional logic is what can conceivably be called 0th-order logic, and is
something with which any first-year undergrad is familiar. Syntactically,
the language of propositional logic consists of so-called well-formed formulas
built from the four symbols (, ), ¬, ∧ and countably many proposition
symbols 𝜆0, 𝜆1, … (remember how we use colour to visually distinguish the
symbols of formal languages). It is easy to define formally what “well-
formed” actually means, but there is little to be gained from such an
excursion in the current context. We instead trust that the reader possesses
mathematical intuition enough to see that the formula

(𝜆0∧𝜆1)∧¬𝜆2

is well-formed, while
)))𝜆0∧¬∧

is not so.
Traditionally, one also allows symbols such as ∨, →, or even ∨̇1 as shortcuts
for commonly used constructions. An example for those confused by our
omission of these symbols from the formal base language: the expression

𝜆0∨𝜆1

is tautologically equivalent to the expression

¬(¬𝜆0∧¬𝜆1),

which is to say, no matter which combination of truth values2 we assign
to 𝜆0 and 𝜆1, the formulas yield the same boolean result.
The decision to use ∧ as a base symbol is somewhat arbitrary; all results in
logic follow just as well if we use ∨ (or even →) as the base and demote ∧

to the status of shortcut.
1 This being one of the many symbols logicians over the years have proposed for the

exclusive or.
2 We have indeed not defined truth values yet. The impatient reader may skip ahead

about three sentences to see what they are about.
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5.1: Propositional Logic

Semantically, the proposition symbols represent statements that are either
true or false, such as

𝜆0 = “Sokrates loves chocolate.”

In the coldhearted world of propositional logic, Sokrates either loves choco-
late or does not love it; there is no middle ground. Formally, in order to
do anything useful with a well-formed formula, we need to assign truth
values to all its propositional symbols.3 The truth values are the elements
of the set { ⊤, ⊥ }, where the verum ⊤ is interpreted as “true” (Sokrates
does love chocolate) and the falsum ⊥ is interpreted as “false” (Sokrates’
feelings toward chocolate are not of an adoring nature).
A truth assignment for a set 𝛬 of proposition symbols is then a func-
tion 𝜏 ∶ 𝛬 → { ⊤, ⊥ }. One can show4 that any such truth assignment
uniquely extends to an assignment of truth values to the well-formed formu-
las using only proposition symbols in 𝛬, whence it is reasonable to speak of
the truth or falsity of not just propositional variables, but also of formulas.
Given a propositional formula like, for example, 𝜑 = 𝜆0 ∧ 𝜆1 and a truth
assignment 𝜏 ∶ { 𝜆0, 𝜆1 } → { ⊤, ⊥ }, we write 𝜑[𝜏] to mean “the formula 𝜑
with each proposition symbol replaced by its image under 𝜏”. In particular,
we note again the difference between syntax and semantics: while 𝜑 is an
abstract string of symbols, 𝜑[𝜏] can be assigned a truth value – in this
example, it is true if 𝜏(𝜆0) = 𝜏(𝜆1) = ⊤ and false otherwise.
As a shorthand, we allow writing the values assigned to the proposition
symbols in 𝜑 as a list, like 𝜑[⊤, ⊥], where the list is sorted by the index of
the variables.
In a certain sense, this covers (informally) everything there is to know about
propositional logic, at least for the purposes of this work. As a result of
this simplicity, propositional logic is of severely limited expressiveness.
Enter the first induction step.

3 Remember our example at the beginning of section 3.1 where we talked about the
difference between syntax and semantics!

4 This statement follows from the recursion and unique readability theorems, both of
which can be found in [End72].
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2. Predicate Logic
Whilst perusing the previous section, the reader might well have wondered
about the lack of mention of the quantifier symbols ∃ and ∀. The reason for
this is now revealed: propositional logic has no notion of “universe”, that
is, no notion of a certain space where variables can live. Consequently, it
cannot talk about “all” variables, and indeed not even assert that a variable
“exists” satisfying some property, because it would have no idea where to
look for this object.
This oversight is fixed by first-order logic, often called predicate logic for
its introduction of predicate variables. Of course, the added expressiveness
(indeed, predicate logic is the tool that a mathematician uses, perhaps
unwittingly, in most of their proofs) comes at the price of greater complexity.

2.1. Syntactical Building Blocks
As with propositional logic, our predicate syntax admits the atomic sym-
bols (, ), ¬, and ∧. However, the propositional variables are replaced by
the following. We give a short intuition of what these symbols are going to
represent, even though right now they are purely syntactical.
First, we introduce countably many variable symbols 𝜈0, 𝜈1, and so forth.
These are going to be just that: variables, to facilitate expressions like
“∀𝜈0 ∶ 𝜈0 likes chocolate”.
Next are the fabled predicates. For every positive integer 𝑛, we introduce
a set 𝛬𝑛 of 𝑛-place predicate symbols. The set 𝛬𝑛 may be empty, finite,
or infinite, and need not be countable. These will be relations between
the constants of our universe. For example, by introducing the 1-place
predicate symbol 𝛬1 0 with the meaning “loves chocolate”, our previous
assertion about Sokrates becomes “ 𝛬1 0(Sokrates)”. If our universe happens
to contain more foodstuffs than just cocoa derivatives, we might instead
introduce a 2-place predicate symbol 𝛬2 0(𝜈0, 𝜈1) with the meaning “𝜈0
loves 𝜈1” and reformulate the assertion as “ 𝛬2 0(Sokrates, chocolate)”. Of
course, there is nothing preventing us from introducing both 𝛬1 0 and 𝛬2 0
into our syntax. The intuitive notion that the predicates should agree (that
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is, it cannot be that 𝛬1 0(Sokrates) is true, but 𝛬2 0(Sokrates, chocolate)
is false) is a purely semantic one and hence not relevant at this stage. In
the language of numbers, a well-known 2-place predicate symbol is the
symbol <.
Now, for every non-negative integer 𝑛 (note well that this is one integer
more than in the previous paragraph) we introduce a set 𝛥𝑛 of 𝑛-place
function symbols, again empty, finite, or even infinite. These will, as is
the wont of functions, provide ways to turn 𝑛 elements of our universe
into a different element of that same universe. In the language of numbers,
addition is a 2-place function symbol.
Finally, we have enticed the reader with the promise of quantifiers. We
deliver half of that promise by introducing the universal quantifier ∀. Given
a well-formed formula 𝜑, we decree that also the formula ∀𝜈𝑛(𝜑) shall be
considered well-formed for all 𝑛 ∈ ℕ. (Note that quantification is thus only
allowed over variable symbols, not over predicates or functions.)
Any collection of symbols such as these defines a viable first-order language.
As before, the language itself is a purely syntactical construct with no
inherent meaning. Semantics are defined only once we choose an appropriate
structure, which will be taking the place of the truth assignments from the
previous section.
The smallest possible first-order language in our definition is the alphabet

{ (, ), ∧, ¬, ∀, 𝜈0, 𝜈1, … },

which contains no predicate symbols and no function symbols. This is
also the least exciting first-order language, since it contains exactly zero
well-formed formulas.

2.2. Shorthands
As before, it is convenient to agree upon several shorthand notations. For
example, the reader might have been expecting an existential quantifier in
the previous section. This is however not an atomic building block, as for a
well-formed formula 𝜑 depending on a variable symbol 𝜈0, the formula

∃𝜈0(𝜑)
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is tautologically equivalent to the formula

¬∀𝜈0(¬𝜑).

Likewise, we have not defined any symbols to refer to the constants of our
universe. For example, if we were working in the universe of real numbers
(that is, variables are understood to range over (−∞, ∞)), the formula

∃𝜈0(𝜈0 < 3)

would not actually be valid, because the symbol “3” has been assigned no
meaning. However, a 0-place function symbol readily serves this function:
it takes no parameters, then outputs an element of our universe. In our
example, it makes sense to name the 0-place function symbols after the
number they represent, that is, the constant function that outputs the
number 3 would itself be called 3. Then the expression

∃𝜈0(𝜈0 < 3())

is well-formed and has exactly the meaning we intended. As a shorthand,
it is only natural to drop the empty parentheses after the symbol 3 and
arrive at the expression we had originally planned on using.
Another shorthand that we have already snuck in is the use of infix notation.
Syntactically, in our language of real numbers, the assertion that one and
one makes two would use the 2-place function symbol + and the 2-place
predicate symbol =, hence reading

= (+(1, 1), 2).

This is quite convenient for formally defining which formulas are well-formed,
but the average human might be more comfortable reading the formula

1 + 1 = 2.

Where no confusion is likely to occur, we silently drop prefix notation,
as well as many, many “obvious” parentheses. We also sneak the symbol
“∶” into our formulas, which serves no semantic purpose, but can make
statements such as

∀𝜈0 ∶ ∀𝜈1 ∶ 𝛬2 0(𝜈0, 𝜈1)
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more readable. Similarly, we use commas to separate symbols in expressions
like

𝛬3 0(𝜈0, 𝜈1, 𝜈2)
even though the correct formula would read

𝛬3 0(𝜈0𝜈1𝜈2).

2.3. Semantics of Predicate Logic
With predicates and functions, a simple truth assignment will no longer
do. With the concepts involved being less widely-known, we give a formal
definition this time.
Definition 5.2.1

Let 𝛤 be a first-order language.
A structure for 𝛤 is a function 𝛺 that satisfies the following properties:

• The domain of 𝛺 is the union of {∀} with all sets of predicates and
all sets of functions.

• The universe |𝛺| ≔ 𝛺(∀) of 𝛤 is a nonempty set.
• Let 𝛬 be an 𝑛-place predicate symbol of 𝛤. Then 𝛺(𝛬) ⊆ |𝛺|𝑛.
• Let 𝛥 be an 𝑛-place function symbol of 𝛤. Then 𝛺(𝛥) is a

function |𝛺|𝑛 → |𝛺|.5

Intuitively, these conditions mean the following:
• The universe is the collection of “all things about which we want to

say something”. When we write “∀𝜈0”, we mean “for all elements 𝜈0
of the universe”.

• Every 𝑛-place predicate is associated with an 𝑛-ary relation on
the universe. Thus, for a 3-place predicate symbol 𝛬, we mean
that 𝛬(𝜈0, 𝜈1, 𝜈2) is true if and only if (𝜈0, 𝜈1, 𝜈2) ∈ 𝛺(𝛬).

• Every 𝑛-place function symbol 𝛥 is associated with an actual function
(as distinct from the function symbol) that takes 𝑛 elements from the

5 Recall that for any set 𝑋, we have 𝑋0 = { () }, a one-element set.
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universe and outputs a new element from the universe. In particular,
this fits with what we have said before about constants in 𝛤 being
defined by 0-place function symbols.

If the reader has ever dabbled in set theory, they should by now be saying:
this cannot be right, the above definition does not even let me define a
structure in which to state the Zermelo-Fraenkel axioms, since the universe
of such a structure would have to contain all sets and therefore cannot
be a set itself. Indeed, some authors allow for universes that are not
sets. However, since everything described in this work fits into a set, we
have opted to circumnavigate this additional rock in our already stormy
logical sea. For the reader not satisfied with this constraint, it should be
straightforward to adapt the definitions to include proper classes.
We can now use the structure 𝛺 to talk about the validity of formulas.

Definition 5.2.2
A well-formed first-order formula with no free variable symbols is called
a sentence.

As always, a “free” variable symbol is one that is not “captured” by a
preceding quantifier, that is, the expression

∀𝜈0(𝛬(𝜈0) ∧ 𝛬(𝜈1))

contains 𝜈1 as a free variable symbol and 𝜈0 as a non-free variable symbol.
By assigning to each logical symbol its usual meaning, this means that
given a structure 𝛺 and a sentence 𝜑, either 𝜑 is true in that structure, or
it is not.

Definition 5.2.3
Let 𝛤 be a first-order language, 𝛺 a structure for 𝛤, and let 𝜑 be a
sentence of 𝛤. If 𝜑, interpreted as an ordinary logical formula6 in 𝛺, is
true, we say that 𝛺 is a model for 𝜑 and write ⊧𝛺 𝜑.

6 This is of course informal, but we trust that the reader knows exactly how to deal with
concrete logical formulas. If an even more rigorous definition is desired, the reader may
want to read the entirety of [End72].
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For formulas which are not sentences, this notion makes no sense: consider
again the language of numbers, endowed with the structure of the real
numbers. While the two sentences

1 + 1 = 2, ∃𝜈0(1 + 𝜈0 = 2)

are both true and the sentences

1 + 2 = 2, ∀𝜈0(1 + 𝜈0 = 2)

are false, the well-formed formula

1 + 𝜈0 = 2

is neither true nor false, since it still contains a free variable with no assigned
meaning.

3. Second-Order Logic
Predicate logic can express much more than its propositional cousin, but
there is still room for improvement. Consider, for example, the following
first-order statement for a 1-place predicate symbol 𝛬.

(∀𝜈0𝛬(𝜈0)) → (∃𝜈0𝛬(𝜈0)).

This is a sentence as defined in definition 5.2.2, and since we have required
the universe to be nonempty, it is clearly true.
Does it matter what exactly 𝛬 is? Forsooth, it does not, since the truth of
this sentence does not actually depend on 𝛬 – if all 𝜈0 satisfy 𝛬, then the
nonempty universe contains at least one 𝜈0 satisfying 𝛬, and if not all 𝜈0
satisfy 𝛬, then the implication is vacuously true.
Consequently, anyone with an intuitive understanding of the concepts would
agree that the “sentence”

∀𝛬 ((∀𝜈0𝛬(𝜈0)) → (∃𝜈0𝛬(𝜈0)))

should be true. However, this is not even a well-formed formula in predicate
logic, because we can quantify only over variable symbols, not over predicate
or function symbols.
This is where second-order logic comes in.

57



Chapter 5: Logic

3.1. Syntax of Second-Order Logic
A second-order language is defined just as a first-order language, except
that we drop the variables 𝜈0, 𝜈1, … and instead introduce the following:

• For each positive integer 𝑛, countably many 𝑛-place predicate vari-
ables 𝜆𝑛 0, 𝜆𝑛 1, …. These will allow quantification over predicates, as
seen in the motivating example above.

• For each non-negative integer 𝑛, countably many 𝑛-place function
variables 𝛿𝑛 0, 𝛿𝑛 1, …. These, of course, allow quantification over
functions.

Note that the role of variables previously played by 𝜈0, 𝜈1, … is now covered
by the 0-place function variables 𝛿0 0, 𝛿0 1, … – not to be confused with
the 0-place function symbols: a 0-place function symbol represents a fixed
constant in our universe, while a 0-place function variable represents a
single non-fixed element in our universe over which we can quantify.
Consequently, we widen the definition of a well-formed formula to include
expressions built by quantification over the new symbols and specify that a
sentence is a well-formed formula that contains no free predicate or function
variables.

3.2. Second-Order Structures
Surprisingly, the transition to second-order brings nothing new in the
semantics department. A structure is defined just as in definition 5.2.1
(recall that the definition makes no use of the variables). The truth or
falsity of a sentence now takes into consideration quantification over the
new variables.

3.3. Formal Definitions
We take the concepts introduced intuitively in the previous sections and
roll them into a series of formal definitions for later reference. The fact that
we assign names and notation to every little subset of a language might
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seem over-designed at first, but it will come in handy in chapter 6 when we
carry out inductions over the structure of a well-formed formula.

Definition 5.3.1
A second-order language is an alphabet

𝛤 = 𝛾𝛤 ∪ ⋃
𝑖∈ℕ> 0

𝜆𝑖 𝛤 ∪ ⋃
𝑖∈ℕ

𝛿𝑖 𝛤 ∪ ⋃
𝑖∈ℕ> 0

𝛬𝑖 𝛤 ∪ ⋃
𝑖∈ℕ

𝛥𝑖 𝛤

consisting of the following symbols.
• The set 𝛾𝛤 ≔ { (, ), ∧, ¬ } ∪ { ∀𝜆

𝑛 : 𝑛 ∈ ℕ> 0 } ∪ { ∀𝛿
𝑛 : 𝑛 ∈ ℕ } of

atomic symbols.
• For every 𝑛 ∈ ℕ> 0, the set 𝜆𝑛 𝛤 ≔ { 𝜆𝑛 0, 𝜆𝑛 1, … } of 𝑛-place predi-

cate variables.
• For every 𝑛 ∈ ℕ, the set 𝛿𝑛 𝛤 ≔ { 𝛿𝑛 0, 𝛿𝑛 1, … } of 𝑛-place function

variables.
• For every 𝑛 ∈ ℕ> 0, a set 𝛬𝑛 𝛤 of 𝑛-place predicate symbols. Any of

these may be empty.
• For every 𝑛 ∈ ℕ, a set 𝛥𝑛 𝛤 of 𝑛-place function symbols. Any of

these may be empty.
All of these sets are pairwise disjoint.

The separation of the universal quantifiers into different symbols is purely
for the benefit of notation in some later definitions. In virtually all circum-
stances we shall simply write ∀ and trust that it is clear from context which
universal quantifier is meant.
As before, we allow shortcuts and clarifying notation such as commas and
colons as long as their meaning seems clear.
Whenever we talk about variable symbols, we use the symbols defined above
if we know what kind of variable symbol is meant, or the symbols 𝜇0, 𝜇1, …
if we know not whether the variable symbol is a predicate or a function.
Note that, since the first three bullet points are fixed, defining a new
second-order language only means specifying the sets 𝛬𝑛 𝛤 and 𝛥𝑛 𝛤.
We now define recursively exactly which words of 𝛤 ∗ we consider to be well-
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formed. The elementary building blocks are the 0-place function symbols
and 0-place function variables: like a magician from his hat, they fetch an
element out of our universe |𝛺| without needing any input.

Definition 5.3.2
Let 𝛤 be a second-order language. An elementary term over 𝛤 is a string
of the form

𝜒

for some 𝜒 ∈ 𝛿0 𝛤 ∪ 𝛥0 𝛤.
The set of all elementary terms over 𝛤 is denoted 𝛤Elem.

Now that we have, from thin air, procured at least one element of |𝛺|, we
can use it as input for functions of higher arity.

Definition 5.3.3
Let 𝛤 be a second-order language. We set

𝛤 0
Term ≔ 𝛤Elem

and for 𝑛 ∈ ℕ> 0

𝛤 𝑛
Term ≔ { 𝜁(𝜒1, … , 𝜒𝑘) : 𝑘 ∈ ℕ> 0, 𝜁 ∈ 𝛿𝑘 𝛤 ∪ 𝛥𝑘 𝛤, 𝜒1, … , 𝜒𝑘 ∈ 𝛤 𝑛−1

Term }

and call
𝛤Term ≔ ⋃

𝑖∈ℕ
𝛤 𝑖

Term

the set of terms over 𝛤.

This allows us to write all combinations of constants and functions in |𝛺|.
Next, we want to apply predicates to these objects to arrive at a truth
value.
Definition 5.3.4

Let 𝛤 be a second-order language. An atomic formula over 𝛤 is a string
of the form

𝜌(𝜒1, … , 𝜒𝑛)
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for some 𝑛 ∈ ℕ> 0, some 𝜌 ∈ 𝜆𝑛 𝛤 ∪ 𝛬𝑛 𝛤 and some 𝜒1, … , 𝜒𝑛 ∈ 𝛤Term.
The set of all atomic formulas over 𝛤 is denoted 𝛤Atom.

Note that once we have put a term or terms into a predicate, we have
converted it from an element of the universe (for example, a number) to a
truth value in { ⊤, ⊥ }. This process is irreversible – all information about
the element of |𝛺| has been lost, we only know whether it has the property
encoded by 𝜌. For this reason, the inductive definition is one-way – we
do not provide a way to go from atomic formulas back to terms. Instead,
everything we do from this point on deals with truth values, meaning that
we can introduce logical symbols like ∧ which make sense between two
truth values, but not for example between two numbers.

Definition 5.3.5
Let 𝛤 be a second-order language. We set

|𝛤 |0,0 ≔ 𝛤Atom

and for ℎ, 𝑤 ∈ ℕ with ℎ + 𝑤 > 0

|𝛤 |ℎ,𝑤 ≔ ⋃
𝑖,𝑗∈ℕ,𝑖<ℎ,𝑗<𝑤

|𝛤 |𝑖,𝑗

∪{ ¬(𝜑) : 𝜑 ∈ |𝛤 |ℎ−1,𝑤 }
∪{ (𝜑)∧(𝜓) : 𝜑, 𝜓 ∈ |𝛤 |ℎ−1,𝑤 }
∪{ ∀𝜆

𝑛 𝜆(𝜑) : 𝜑 ∈ |𝛤 |ℎ,𝑤−1, 𝑛 ∈ ℕ> 0, 𝜆 ∈ 𝜆𝑛 𝛤 }
∪{ ∀𝛿

𝑛 𝛿(𝜑) : 𝜑 ∈ |𝛤 |ℎ,𝑤−1, 𝑛 ∈ ℕ, 𝛿 ∈ 𝛿𝑛 𝛤 }.

The elements of the set

|𝛤 | ≔ ⋃
ℎ,𝑤∈ℕ

|𝛤 |ℎ,𝑤

are called the well-formed formulas of 𝛤.
For a well-formed formula 𝜑, the integer

min{ ℎ ∈ ℕ : ∃𝑤 ∈ ℕ ∶ 𝜑 ∈ |𝛤 |ℎ,𝑤 }
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is called the height of 𝜑, while the integer

min{ 𝑤 ∈ ℕ : ∃ℎ ∈ ℕ ∶ 𝜑 ∈ |𝛤 |ℎ,𝑤 }

is called its width.

Intuitively, the height of a formula denotes the height of its logical tree, while
the width of a formula tells us the maximum number of nested quantifiers.
We have thus provided a way to construct all well-formed formulas over 𝛤.
If a string in 𝛤 ∗ cannot be constructed by the rules above, then it is not
well-formed.
We already know from section 5.2 what a free variable is.

Definition 5.3.6
Let 𝛤 be a second-order language, and let 𝜒 ∈ 𝛤Term. We denote by �⃖�
the set of all variable symbols occurring in 𝜒.
Let now 𝜑 ∈ |𝛤 |. We denote by �⃖� the set of all free variable symbols
occurring in 𝜑.7

The formula 𝜑 is called a sentence if it contains no free variables, that is,
if �⃖� = ∅.
The set of all sentences over 𝛤 is denoted by ‖𝛤‖ ≔ { 𝜑 ∈ |𝛤 | : �⃖� = ∅ }.

For the sake of completeness, we also note again what a structure looks like
in this case.

7 The definitions for terms and well-formed formulas are compatible, but in a term, all
variables are automatically free (since a term cannot contain quantifiers), whereas a
well-formed formula may contain non-free variables.
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Definition 5.3.7
Let 𝛤 be a second-order language. A structure for 𝛤 is a function 𝛺 that
satisfies the following conditions.

• The domain of 𝛺 is the set

{ ∀𝜆
𝑛 : 𝑛 ∈ ℕ> 0 } ∪ { ∀𝛿

𝑛 : 𝑛 ∈ ℕ } ∪ ⋃
𝑛∈ℕ> 0

𝛬𝑛 𝛤 ∪ ⋃
𝑛∈ℕ

𝛥𝑛 𝛤.

• The universe |𝛺| ≔ |𝛺|𝛿
0 ≔ 𝛺( ∀𝛿

0 ) is a nonempty set.
• For 𝑛 ∈ ℕ> 0, the 𝑛-place predicate universe |𝛺|𝜆

𝑛 ≔ 𝛺( ∀𝜆
𝑛 ) is a set

of subsets of |𝛺|𝑛.
• For 𝑛 ∈ ℕ> 0, the 𝑛-place function universe |𝛺|𝛿

𝑛 ≔ 𝛺( ∀𝛿
𝑛 ) is a set

of functions |𝛺|𝑛 → |𝛺|.
• Let 𝑛 ∈ ℕ, 𝛬 ∈ 𝛬𝑛 𝛤. Then 𝛺(𝛬) ⊆ |𝛺|𝑛.
• Let 𝑛 ∈ ℕ, 𝛥 ∈ 𝛥𝑛 𝛤. Then 𝛺(𝛥) is a function |𝛺|𝑛 → |𝛺|.

The universe tells us over which variables we can quantify, the predicate
and function universes allow quantification over a chosen subset of functions
and predicates, and the existing function and predicate symbols in formulas
are assigned meaning.
Note that the 𝑛-place predicate universe |𝛺|𝜆

𝑛 need not contain all subsets
that are available for 𝑛-place predicate symbols, or it may contain entirely
different ones. The same goes for functions. This means that the universal
quantifier might “see” fewer (or more) predicates than there are available
for building well-formed formulas.
As before, truth values are only assigned to sentences, that is, well-formed
formulas without free variables. However, we shall need to deal with free
variables in several proofs.
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Definition 5.3.8
Let 𝛤 be a second-order language, and let 𝛺 be a structure for 𝛤. A
variable assignment in 𝛺 is a function 𝜏 whose domain is a subset of all
variable symbols of 𝛤, that is, a set

𝑋 ⊆ ⋃
𝑛∈ℕ> 0

𝜆𝑛 𝛤 ∪ ⋃
𝑛∈ℕ

𝛿𝑛 𝛤

and which fulfils
• ∀𝑛 ∈ ℕ> 0 ∶ 𝜏(𝑋 ∩ 𝜆𝑛 𝛤) ⊆ |𝛺|𝜆

𝑛 ,
• ∀𝑛 ∈ ℕ ∶ 𝜏(𝑋 ∩ 𝛿𝑛 𝛤) ⊆ |𝛺|𝛿

𝑛 .
We write 𝜀 for the variable assignment with domain ∅ and call this the
empty assignment.

In other words, a variable assignment takes some (but not necessarily all)
variable symbols and assigns to them elements from the universe of the
“correct” kind – predicates to predicate variables, functions to function
variables, and of the arity the symbol expects.

Definition 5.3.9
Let 𝛤 be a second-order language, 𝛺 a structure for 𝛤, 𝜏 a variable
assignment in 𝛺, and 𝜑 a term or a well-formed formula of 𝛤.
We say that 𝜏 is a full variable assignment for 𝜑 if every free variable
in 𝜑 is in the domain of 𝜏.

We can now define recursively what “truth” means.8 First, a variable
assignment takes all terms and transforms them from meaningless symbols
into elements of our universe.

8 Not to be confused with the circular definition of truth, which we shall leave to the
attorneys.
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Definition 5.3.10
Let 𝛤 be a second-order language, 𝛺 a structure for 𝛤, 𝜒 a term of 𝛤,
and 𝜏 a full variable assignment for 𝜒 in 𝛺.
We write 𝜒[𝜏] to mean the following.

• If 𝜒 ∈ 𝛤Elem:

𝜒[𝜏] ≔ {
𝛺(𝛥)() if 𝜒 = 𝛥 for some 𝛥 ∈ 𝛥0 𝛤
𝜏(𝛿)() if 𝜒 = 𝛿 for some 𝛿 ∈ 𝛿0 𝛤.

• If 𝜒 ∈ 𝛤 𝑛
Term for some 𝑛 ∈ ℕ> 0, 𝜒 = 𝜁(𝜒1, … , 𝜒𝑘):

𝜒[𝜏] ≔ {
𝛺(𝛥)(𝜒1[𝜏 ], … , 𝜒𝑘[𝜏 ]) if 𝜁 = 𝛥 for some 𝛥 ∈ 𝛥𝑘 𝛤
𝜏(𝛿)(𝜒1[𝜏 ], … , 𝜒𝑘[𝜏 ]) if 𝜁 = 𝛿 for some 𝛿 ∈ 𝛿𝑘 𝛤.

We can then take a well-formed formula and see whether the elements
yielded by the variable assignment fulfil it.

Definition 5.3.11
Let 𝛤 be a second-order language, 𝛺 a structure for 𝛤, 𝜑 a well-formed
formula of 𝛤, and 𝜏 a full variable assignment for 𝜑 in 𝛺.
We write 𝜑[𝜏]↔⊤, pronounced “𝜑 is true under 𝜏”, to mean the following.

• If 𝜑 is atomic, say 𝜑 = 𝜌(𝜒1, … , 𝜒𝑛):

𝜑[𝜏] ↔ ⊤ ∶⇔

⎧{{
⎨{{⎩

(𝜒1[𝜏 ], … , 𝜒𝑛[𝜏 ]) ∈ 𝛺(𝛬)
if 𝜌 = 𝛬
for some 𝛬 ∈ 𝛬𝑛 𝛤

(𝜒1[𝜏 ], … , 𝜒𝑛[𝜏 ]) ∈ 𝜏(𝜆)
if 𝜌 = 𝜆
for some 𝜆 ∈ 𝜆𝑛 𝛤.

• If 𝜑 = ¬(𝜓):
𝜑[𝜏] ↔ ⊤ ∶⇔ 𝜓[𝜏] ↮ ⊤.

• If 𝜑 = (𝜓) ∧ (𝜁):

𝜑[𝜏] ↔ ⊤ ∶⇔ 𝜓[𝜏] ↔ ⊤ and 𝜁[𝜏 ] ↔ ⊤.

65



⃖⃖ ⃖⃖ ⃖⃖𝜑 denotes the set of
free variables of 𝜑.

(def. 5.3.6, p. 62)

‖𝛤‖ denotes the set
of sentences over 𝛤.

(def. 5.3.6, p. 62)

|𝛤 | is the set of all
well-formed

formulas over 𝛤.
(def. 5.3.5, p. 61)

Chapter 5: Logic

• If 𝜑 = ∀𝜆
𝑛 𝜆(𝜓):

𝜑[𝜏] ↔ ⊤ ∶⇔ 𝜓[𝜅] ↔ ⊤ for every full variable assignment 𝜅
for 𝜓 in 𝛺 with 𝜅

⃖⃖ ⃖⃖ ⃖⃖𝜑
= 𝜏

⃖⃖ ⃖⃖ ⃖⃖𝜑
.

• If 𝜑 = ∀𝛿
𝑛 𝛿(𝜓):

𝜑[𝜏] ↔ ⊤ ∶⇔ 𝜓[𝜅] ↔ ⊤ for every full variable assignment 𝜅
for 𝜓 in 𝛺 with 𝜅

⃖⃖ ⃖⃖ ⃖⃖𝜑
= 𝜏

⃖⃖ ⃖⃖ ⃖⃖𝜑
.

We write 𝜑[𝜏]↔⊥ to mean 𝜑[𝜏]↮⊤, pronounced “𝜑 is false under 𝜏”, and
given a second formula 𝜓 such that 𝜏 is also full for 𝜓, we write 𝜑[𝜏]↔𝜓[𝜏]
to mean that either both formulas are true or both formulas are false
under 𝜏.

Note again that a truth value can only be assigned if every free variable is
taken care of by a variable assignment.
Since a sentence has no free variables, the empty assignment is a full variable
assignment for every sentence. We restate the definition of a sentence’s
truth value for future reference.
Definition 5.3.12

Let 𝛤 be a second-order language, 𝜑 ∈ ‖𝛤‖, and let 𝛺 be a structure
for 𝛤. We say that 𝛺 is a model for 𝜑, written

⊧𝛺 𝜑,

if 𝜑[𝜀] ↔ ⊤.

Of course, since there are no free variables to replace, any other variable
assignment on a sentence will produce the same truth value.
We use the same notation to denote samety of truth values.

Notation 5.3.13
Let 𝛤 be a second-order language, 𝛺 a structure for 𝛤, 𝜑, 𝜓 ∈ |𝛤 |, and

66

https://tvtropes.org/pmwiki/pmwiki.php/Main/BuffySpeak


5.3: Second-Order Logic

let 𝜏 be a full variable assignment for 𝜑 in 𝛺 and 𝜅 a full variable
assignment for 𝜓 in 𝛺. We write

𝜑[𝜏] ↔ 𝜓[𝜅]

to mean

(𝜑[𝜏] ↔ ⊤ ∧ 𝜓[𝜅] ↔ ⊤) ∨ (𝜑[𝜏] ↔ ⊥ ∧ 𝜓[𝜅] ↔ ⊥) .

This notation differs subtly from the final sentence of definition 5.3.11:
there, the variable assignment was the same on both sides.
This finishes all that we need to know in order to define a second-order
language and fill it with meaning.

3.4. A Note on Typed Universes
Seeing as how our interest lies not in the sublime complexity of logic in
all its generality, but in graph theory, the inhabitants of our universe will
necessarily be vertices and edges.9

This, however, presents a problem. Consider a 2-place predicate 𝛬 which
checks whether its parameters are adjacent vertices, that is, 𝛬(𝛿0, 𝛿1)
returns ⊤ if 𝛿0, 𝛿1 are vertices and are adjacent and ⊥ if 𝛿0, 𝛿1 are not
adjacent or if at least one of them is an edge.
Suppose now that we want to express the property “𝐺 is a complete graph”.
This is equivalent to all vertices being neighbours, so the sentence

∀𝛿0(∀𝛿1(𝛬(𝛿0, 𝛿1)))

should satisfy our needs.
Except that it does not, because the universal quantifier ranges over the
entire universe, including edges, and we know that for an edge 𝑒, the

9 Remember that while we want to know whether a given graph fulfils a property, the
graph is not the logical object of our language. The formulas we consider will always be
something like “all vertices have at most two neighbours”, which is a statement about
the constituent particles of the graph.
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statement 𝛬(𝑒, 𝛿1) is always false.
One approach, used for example in Courcelle’s original paper [Cou90], is
to introduce a notion of “type” into our universe. Every element of the
universe |𝛺| is assigned exactly one type (in our case, either “vertex” or
“edge”), and rather than introducing predicate variables 𝜆𝑛 0, 𝜆𝑛 1, … and
function variables 𝛿𝑛 0, 𝛿𝑛 1, …, we introduce the typed predicate and function
variables 𝜆𝑉

𝑛 0, 𝜆𝑉
𝑛 1, … , 𝛿𝑉

𝑛 0, 𝛿𝑉
𝑛 1, … for vertices and 𝜆𝐸

𝑛 0, 𝜆𝐸
𝑛 1, … , 𝛿𝐸

𝑛 0, 𝛿𝐸
𝑛 1, …

for edges and prescribe that the vertex variables can only range over
vertices (respectively predicates or functions that take only vertices as their
arguments) and the edge variables can only range over edges (respectively
predicates or functions that take only edges as their arguments).
This may at first seem like a radical change in our approach, but it is in
fact equivalent to non-sorted second-order logic with one small adjustment.
Consider for instance the typed sentence

∀ 𝛿𝑉
0 0(∀ 𝛿𝑉

0 1(𝛬( 𝛿𝑉
0 0, 𝛿𝑉

0 1)))

(where 𝛬 is as before), which now correctly expresses our thought “the
graph is complete”.
Suppose we were to introduce a 1-place predicate 𝛬𝑉 that returns ⊤ if and
only if its argument is a vertex. We could then achieve the same statement
in an untyped second-order language by means of the sentence

∀ 𝛿0 0(∀ 𝛿0 1((𝛬𝑉( 𝛿0 0) ∧ 𝛬𝑉( 𝛿0 1)) → 𝛬( 𝛿0 0, 𝛿0 1)))

type check

or, without the shorthands,

∀ 𝛿0 0(∀ 𝛿0 1(¬(𝛬𝑉( 𝛿0 0) ∧ 𝛬𝑉( 𝛿0 1) ∧ ¬𝛬( 𝛿0 0, 𝛿0 1))))

(or indeed with more intuitive shorthands, ∀𝛿0, 𝛿1 ∶ 𝛿0, 𝛿1 ∈ 𝑉 → 𝛬(𝛿0, 𝛿1)).
By analogous means, any second-order language with finitely many types
can be expressed in an untyped second-order language by

• introducing finitely many 1-place predicates and
• extending formula length by a constant factor.
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A more rigorous treatment of the topic may be found in [End72].
Since the additional complexity comes in the form of a constant factor
(which, additionally, is relatively low since we only have two types) and
will thus not increase the runtimes discussed in chapter 9, we shall ignore
the distinction for the sake of ease of notation. We continue to work in the
framework of untyped second-order logic as introduced in this chapter, but
whenever it is convenient, we allow ourselves to make our formulas easier
to read by omitting the type check and instead telling the reader which
type of variable is expected.

3.5. Different Logical Frameworks
Structures as we have introduced them are quite powerful, but also difficult
to handle in their generality. It will at times prove useful to restrict the
type of universe we want to consider. For example, we may want to allow
only universes that contain a certain predicate, or indeed ones that do not
contain a certain construction that would hamper our progress.

Definition 5.3.14
A logical framework is a pair 𝛹 = (𝛤 , 𝛯), where 𝛤 is a language and 𝛯 is a
collection of structures for 𝛤, called the multiverse of 𝛹. The framework 𝛹
is called first-order if 𝛤 is a first-order language and every 𝛺 ∈ 𝛯 is
a first-order structure. It is called second-order if 𝛤 is a second-order
language and every 𝛺 ∈ 𝛯 is a second-order structure.

3.6. Monadic Second-Order Logic
In the previous sections, we have seen that second-order logic is more
expressive than first-order logic. Regrettably, this additional expressiveness
is too powerful even for Courcelle’s Theorem. In order to rescue as strong
a statement as possible, we restrict to a subset of second-order logic which
is still a bit stronger than first-order logic.
Monadic second-order logic is the fragment of second-order logic in which
quantification is allowed only over 0-place function variables (which already
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subsumes first-order logic) and over 1-place predicate variables (hence the
name “monadic”).
Because a monadic predicate is equivalent to a set10, some authors ([CE12])
like to call this “quantification over sets” rather than over 1-place predicate
variable symbols.

Definition 5.3.15
A second-order logical framework (𝛤 , 𝛯) is called monadic if every struc-
ture 𝛺 ∈ 𝛯 of its multiverse satisfies the following conditions.

• For 𝑛 ∈ ℕ> 0, the 𝑛-place function universe is empty: |𝛺|𝛿
𝑛 = ∅.

• For 𝑛 ∈ ℕ> 1, the 𝑛-place predicate universe is empty: |𝛺|𝜆
𝑛 = ∅.

Since this renders the higher-arity universal quantifiers moot (if there are
no 3-place functions, the sentence ∀𝛿

3 𝛿3 0( 𝛿3 0(𝛿0, 𝛿1, 𝛿2)) is vacuously true),
we allow ourselves to treat the language as if these symbols did not exist,
thus cutting down on notation overhead.
Courcelle’s Theorem actually works on a slight extension of monadic second-
order logic called counting monadic second-order logic where one can
ascertain whether a given set’s cardinality is equal to 𝑛 ∈ ℕ modulo
some 𝑚 ∈ ℕ> 0. Expressibility-wise, counting monadic second-order logic
is stronger than monadic second-order logic and weaker than second-order
logic, but it introduces much additional notation. Since none of our exam-
ples use it, we have opted to restrict ourselves to monadic second-order logic
for the main part of this thesis. The definition of counting monadic second-
order logic, as well as formal proofs that all of our constructions also work
for this larger framework, are instead included separately in appendix A.
We advise the reader to completely understand the non-counting proof of
Courcelle’s Theorem before attempting to move on to said appendix.

10 Every element of our universe either satisfies the predicate or not; equivalently, every
element of our universe is either in the set (of elements which satisfy the predicate) or
not.
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𝔉 denotes the
language of finite
graphs.
(def. 4.1.11, p. 27)

5.4: The Monadic Second-Order Language of Graphs

4. The Monadic Second-Order
Language of Graphs

In order to prove the result that we can decide whether a given graph fulfils
a logical formula, we must first define what “fulfilling” a logical formula
even means.
Consider once again our toy formula to check whether a given 2-uniform
graph is complete:

∀ 𝛿0 0(∀ 𝛿0 1((𝛬𝑉( 𝛿0 0) ∧ 𝛬𝑉( 𝛿0 1)) ⇒ 𝛬( 𝛿0 0, 𝛿0 1))).

Remember that 𝛬𝑉 checks whether its argument is a vertex, while 𝛬 checks
whether its arguments are neighbours. This means that given a graph 𝐺
which we want to check, the “inputs” of our formula are the vertices and
edges of 𝐺. What are the inputs of a second-order formula? They are the
elements of some universe |𝛺|! Consequently, we must model our logic on
graphs in a way that ensures that the vertices and edges of every graph are
somehow contained in the universe of some structure.
One approach one might consider would be to use as our universe the
graph language 𝔉, such that all vertex and edge symbols are contained in
it. One would then have to define a structure 𝛺 assigning to the predicate
symbol 𝛬𝑉 the set of all vertex symbols and to the predicate symbol 𝛬
… what, exactly? The set 𝛺(𝛬) must contain all pairs of vertices (𝑣, 𝑣′)
such that 𝑣 and 𝑣′ are adjacent. But which pairs of vertex symbols are
adjacent depends on 𝐺 itself! Do we now introduce for every graph 𝐺 its
own predicate symbol 𝛬𝐺 meaning “𝑣 and 𝑣′ are adjacent in 𝐺”? But then
we would have to adapt our formula to each graph by changing the index 𝐺.
This motivates a different approach: rather than look for one “big” struc-
ture 𝛺 and then somehow specify on which graph we are, we let each
graph 𝐺 induce its own “small” universe containing just the vertices and
edges of 𝐺. This way, we can fix the above formula to mean “our graph is
complete” and then evaluate it on any given graph 𝐺 by checking whether
the structure induced by 𝐺 is a model for this formula.
We begin by specifying the valid symbols of our language. The reader may
want to cross-reference notation with definition 5.3.1.
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Definition 5.4.1
We denote by 𝔏 the second-order language with

• 𝛬1 𝔏 ≔ { 𝜆0
conn, 𝜆vert, 𝜆edge },

• 𝛬2 𝔏 ≔ { 𝜆1
conn, ≡ },

• ∀𝑛 ∈ ℕ> 2 ∶ 𝛬𝑛 𝔏 ≔ {𝜆𝑛−1
conn},

• ∀𝑛 ∈ ℕ ∶ 𝛥𝑛 𝔏 ≔ ∅
and call this the direct monadic second-order language of graphs.

These symbols will shortly be as-
The Direct Monadic Second-
Order Language of 2-Uniform
Graphs

For 2-uniform graphs and using a
typed universe as discussed in sec-
tion 5.3.4, the number of symbols in
definition 5.4.1 shrinks considerably:

• 𝛬1 𝔏 ≔ ∅,

• 𝛬2 𝔏 ≔ { ≡ },

• 𝛬3 𝔏 ≔ { 𝜆2
conn },

• ∀𝑛 ∈ ℕ> 3 ∶ 𝛬𝑛 𝔏 ≔ ∅,

• ∀𝑛 ∈ ℕ ∶ 𝛥𝑛 𝔏 ≔ ∅.

signed the following meanings:
The 2-place predicate ≡ checks ver-
tices or edges for equality, while
the (𝑛 + 1)-place predicate 𝜆𝑛

conn
takes an edge 𝑒 and 𝑛 vertices,
say 𝑣1, … , 𝑣𝑛, and checks whether
the vertex sequence of 𝑒 is pre-
cisely 𝑣1 … 𝑣𝑛. The 0-place func-
tion variables will represent ver-
tices and edges, and 1-place predi-
cate variables will allow quantifica-
tion over sets of vertices or edges.
Lastly, the 1-place predicates 𝜆vert
and 𝜆edge check whether their ar-
gument is a vertex or an edge, re-
spectively.11

The reason that this is called the “direct” language of graphs is that it is
an immediate formalisation of our intuitive requirements. We shall later
see a second logical language on graphs which will be less “direct”.
In order to assign a truth value to a formula “in” a graph, we view the
graph as a structure for 𝔏. The reader is welcome to cross-reference with
definition 5.3.7.

11 As discussed in section 5.3.4, the reader may pretend that these predicates do not exist
and that instead our variable symbols are typed.
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𝟚𝑉denotes the
power set of 𝑉.

𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

5.4: The Monadic Second-Order Language of Graphs

Definition 5.4.2
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be a graph. The induced direct second-order
structure of 𝐺, denoted 𝛺(𝐺), is the following second-order structure
on 𝔏.

• The universe of 𝛺(𝐺) is |𝛺(𝐺)| ≔ |𝛺(𝐺)|𝛿
0 ≔ 𝑉 ∪ 𝐸.

• The 1-place predicate universe of 𝛺(𝐺) is |𝛺(𝐺)|𝜆
1 ≔ 𝟚𝑉 ∪ 𝟚𝐸.

• For 𝑛 ∈ ℕ> 1, |𝛺(𝐺)|𝜆
𝑛 ≔ ∅.

• For 𝑛 ∈ ℕ> 0, |𝛺(𝐺)|𝛿
𝑛 ≔ ∅.

• 𝛺(𝐺)(𝜆vert) ≔ 𝑉 ⊆ |𝛺(𝐺)|𝛿
0 .

• 𝛺(𝐺)(𝜆edge) ≔ 𝐸 ⊆ |𝛺(𝐺)|𝛿
0 .

• 𝛺(𝐺)(≡) ≔ { (𝑥, 𝑥) : 𝑥 ∈ |𝛺(𝐺)|𝛿
0 } ⊆ ( |𝛺(𝐺)|𝛿

0 )2.
• For every 𝑛 ∈ ℕ,

𝛺(𝐺)(𝜆𝑛
conn) ≔ { (𝑒, 𝑣1, … , 𝑣𝑛) : 𝑒 ∈ 𝐸, ⦉𝑒⦊ = 𝑣1 … 𝑣𝑛 }

⊆ ( |𝛺(𝐺)|𝛿
0 )𝑛+1 .

This definition finally enables us to give meaning to the intuitive notion of a
“graph property”: a graph property is any sentence 𝜑 in 𝔏, and a graph 𝐺
fulfils this property if ⊧𝛺(𝐺) 𝜑.
The reader should take a minute to convince themselves that the definitions
above adequately represent the intuitive meaning of the language.
We gather up all of these structures to form the logical framework for our
proof.

Definition 5.4.3
We call

𝔐 ≔ ⋃
𝑛∈ℕ

{ 𝛺(𝐺) : 𝐺 ∈ 𝔊𝑛 }

the direct multiverse of finite graphs and

𝔛 ≔ (𝔏, 𝔐)

the direct logical framework of finite graphs.
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Note that, in contrast to “most” multiverses one might encounter, the
multiverse of graphs is actually small enough to be a set.
Note also that 𝔛, by definition, is a second-order logical framework, and
due to the way we have defined induced structures, it is monadic.

5. Staging an Example

We use this opportunity to take a break from all the definitions and come up
for breath.12 Now that we know, in theory, how to encode graph-theoretic
properties in logical formulas, we should have a look at some practical
examples. The reader who cares not about such applied mathematics may
of course skip to the next section for even more definitions and, eventually,
even a theorem.

5.1. A Question of Colour

One question that is famously hard is whether or not a (2-uniform, loop-free)
graph is vertex-colourable with at most 𝑘 colours for some 𝑘 ∈ ℕ, 𝑘 > 2.
To turn this into a decision problem, we fix 𝑘. Since 1-colourability is not
too interesting, let us first ask “is our graph 2-colourable?”
In order to turn this question into a monadic second-order formula, we
formulate it in terms of sets: a 2-colouring partitions the graph’s vertices
into sets 𝑉 , 𝑉 ′ such that no two vertices of 𝑉 are adjacent, nor are any two
vertices of 𝑉 ′.

12 Remember the nautical metaphor we had at one time?
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𝜆vert checks
whether its
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vertex.

5.5: Staging an Example

In mathematical terms:

𝜑 ≔ ∃𝜆0∃𝜆1 ∶
∀𝛿0 ∶ 𝜆0(𝛿0) → 𝜆vert(𝛿0)

∧∀𝛿0 ∶ 𝜆1(𝛿0) → 𝜆vert(𝛿0)
∧¬(∃𝛿0 ∶ 𝜆0(𝛿0) ∧ 𝜆1(𝛿0))
∧∀𝛿0 ∶ 𝜆vert(𝛿0) → (𝜆0(𝛿0) ∨ 𝜆1(𝛿0))
∧¬(∃𝛿0∃𝛿1∃𝛿2 ∶ 𝜆0(𝛿0) ∧ 𝜆0(𝛿1) ∧ 𝜆2

conn(𝛿2, 𝛿0, 𝛿1))
∧¬(∃𝛿0∃𝛿1∃𝛿2 ∶ 𝜆1(𝛿0) ∧ 𝜆1(𝛿1) ∧ 𝜆2

conn(𝛿2, 𝛿0, 𝛿1)).

Once the pattern is detected, it is easily expanded to detect 𝑘-colourability
for any constant 𝑘 ∈ ℕ:

𝜑 ≔ ∃𝜆1 … ∃𝜆𝑘 ∶
∀𝛿0 ∶ 𝜆1(𝛿0) → 𝜆vert(𝛿0)

∧ …
∧∀𝛿0 ∶ 𝜆𝑘(𝛿0) → 𝜆vert(𝛿0)
∧∀𝛿0 ∶ 𝜆1(𝛿0) → (¬𝜆2(𝛿0)∧ … ∧¬𝜆𝑘(𝛿0))
∧ …
∧∀𝛿0 ∶ 𝜆𝑘(𝛿0) → (¬𝜆1(𝛿0)∧ … ∧¬𝜆𝑘−1(𝛿0))
∧∀𝛿0 ∶ 𝜆vert(𝛿0) → (𝜆1(𝛿0)∨ … ∨𝜆𝑘(𝛿0))
∧¬(∃𝛿0∃𝛿1∃𝛿2 ∶ 𝜆1(𝛿0) ∧ 𝜆1(𝛿1) ∧ 𝜆2

conn(𝛿2, 𝛿0, 𝛿1))
∧ …
∧¬(∃𝛿0∃𝛿1∃𝛿2 ∶ 𝜆𝑘(𝛿0) ∧ 𝜆𝑘(𝛿1) ∧ 𝜆2

conn(𝛿2, 𝛿0, 𝛿1)).

One should note how here, as in other cases, the formula differs for different 𝑘
– since our language has no symbols for numbers, we cannot encode “𝐺
is 𝑘-colourable” with both 𝐺 and 𝑘 as part of the input.
The example also illustrates the importance of second-order structures – in
a first-order language, we could not quantify over the two sets of vertices in
the first line.
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6. The Other Language of Graphs

The logical framework we have just introduced is very nice for encoding
graph properties “by hand”, because it breaks down to simple questions
of equality and adjacency. Regrettably, it is not well-suited for the proof
technique we use to show Courcelle’s Theorem. We introduce a second
second-order logical framework of graphs that is uglier to use, but much nicer
to work with in our proofs.13 We then show that any formula expressible
in our first framework has an equivalent in the second, meaning that we
“lose” nothing by using the second framework – given a graph property
expressible in the first framework, we can simply convert its formula into
the equivalent formula in the second framework and work with that. The
result we thus show will actually be slightly stronger than the one we need,
as the framework we construct is strictly more expressive than 𝔛.
In our new language, there are no vertices or edges. All variables 𝛿0 𝑛 will be
sets of vertices or edges. For this reason, we can dispense with the 1-place
predicates we have used in 𝔏 to check for sets.

13 The first-time reader shall erstwhile have to trust us that this second framework somehow
has nicer properties than the first one. The repeat customer might remember that we
need to prove inductiveness of our formulas, a proof which relies in crucial places on the
second framework’s ability to distinguish terminal vertices. The reader is invited to try
their hand at a proof using only the first framework and, in case of success, send it to
the author for inclusion as an addendum.
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𝛬
1 �̊�

is the set of
1-place predicate
symbols of �̊�.

𝛥
0 �̊�

is the set of
0-place function
symbols of �̊�.

𝟚{ 1,…,𝑘 }denotes the
power set of
{ 1, … , 𝑘 }.

5.6: The Other Language of Graphs

Definition 5.6.1

We denote by ̊𝔏 the second-order language with
• 𝛬1 �̊� ≔ { 𝜆0

conn, 𝜆sgl, 𝜆vert, 𝜆edge },

• 𝛬2 �̊� ≔ { 𝜆1
conn, ⊑ },

• ∀𝑛 ∈ ℕ> 2 ∶ 𝛬𝑛 �̊� ≔ {𝜆𝑛−1
conn},

• 𝛥0 �̊� ≔ {∅},

• 𝛥1 �̊� ≔ ⋃𝑘∈ℕ> 0
{ 𝛿𝐾

term : 𝐾 ∈ 𝟚{ 1,…,𝑘 } },

• ∀𝑛 ∈ ℕ> 1 ∶ 𝛥𝑛 �̊� ≔ ∅.
and call this the circuitous monadic second-order language of graphs.

The predicate symbols will soon be assigned the following meanings.

• 𝑥 ⊑ 𝑦 is true if and only if 𝑥 is a subset of 𝑦 (keep in mind that all
variables are sets).

• 𝜆sgl(𝑥) is true if and only if |𝑥| = 1, that is, if 𝑥 is a “singleton” set.
• 𝜆vert(𝑥) is true if and only if all elements of 𝑥 are vertices, and 𝜆edge(𝑥)

is true if and only if all elements of 𝑥 are edges.
• 𝜆𝑛

conn(𝐸, 𝑉1, … , 𝑉𝑛) is true if and only if there is at least one ele-
ment 𝑒 ∈ 𝐸 which is an edge and elements 𝑣1 ∈ 𝑉1, … , 𝑣𝑛 ∈ 𝑉𝑛 which
are vertices such that ⦉𝑒⦊ = 𝑣1 … 𝑣𝑛.

The function symbols will mean the following.

• ∅ yields the empty set.
• For a graph of type 𝑛 ∈ ℕ with terminals 𝑡(1), … , 𝑡(𝑛), a set 𝑉

containing only vertices, and a set 𝐾 ⊆ { 1, … , 𝑛 }, the term 𝛿𝐾
term(𝑉)

denotes the set 𝑉 ∪ { 𝑡(𝑖) : 𝑖 ∈ 𝐾 }.
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The Circuitous Monadic Second-Order Language of 2-Uni-
form Graphs

For 2-uniform graphs and using a typed universe, the number of
symbols in definition 5.6.1 shrinks again:

• 𝛬
1 �̊�

≔ { 𝜆sgl },

• 𝛬
2 �̊�

≔ { ⊑ },

• 𝛬
3 �̊�

≔ { 𝜆2
conn },

• ∀𝑛 ∈ ℕ> 3 ∶ 𝛬
𝑛 �̊�

≔ ∅,

• 𝛥
0 �̊�

≔ {∅ },

• 𝛥
1 �̊�

≔ ⋃𝑘∈ℕ> 0
{ 𝛿𝐾

term : 𝐾 ∈ 𝟚{ 1,…,𝑘 } },

• ∀𝑛 ∈ ℕ> 1 ∶ 𝛥
𝑛 �̊�

≔ ∅.

Completely analogously to definition 5.4.2, we define an induced structure
for this language.

Definition 5.6.2
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) be a graph of type 𝑘. The induced circuitous
second-order structure of 𝐺, denoted ̊𝛺(𝐺), is the following second-order
structure on ̊𝔏.

• The universe of ̊𝛺(𝐺) is | ̊𝛺(𝐺)| ≔ | ̊𝛺(𝐺)|𝛿
0 ≔ 𝟚𝑉 ∪ 𝟚𝐸.

• For 𝑛 ∈ ℕ> 0, | ̊𝛺(𝐺)|𝜆
𝑛 ≔ ∅.

• For 𝑛 ∈ ℕ> 0, | ̊𝛺(𝐺)|𝛿
𝑛 ≔ ∅.

• ̊𝛺(𝐺)(𝜆sgl) ≔ { 𝑥 : 𝑥 ∈ | ̊𝛺(𝐺)|, |𝑥| = 1 } ⊆ | ̊𝛺(𝐺)|.

• ̊𝛺(𝐺)(𝜆vert) ≔ 𝟚𝑉 ⊆ | ̊𝛺(𝐺)|.

• ̊𝛺(𝐺)(𝜆edge) ≔ 𝟚𝐸 ⊆ | ̊𝛺(𝐺)|.

• ̊𝛺(𝐺)(⊑) ≔ { (𝑥, 𝑦) ∈ | ̊𝛺(𝐺)|
2
: 𝑥 ⊆ 𝑦 }.
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5.6: The Other Language of Graphs

• For every 𝑛 ∈ ℕ,

̊𝛺(𝐺)(𝜆𝑛
conn) ≔{ (𝐸′, 𝑉1, … , 𝑉𝑛) : ∃𝑒 ∈ 𝐸′ ∶

∃𝑣1 ∈ 𝑉1, … , ∃𝑣𝑛 ∈ 𝑉𝑛 ∶
𝑒 ∈ 𝐸, ⦉𝑒⦊ = 𝑣1 … 𝑣𝑛 }

⊆ | ̊𝛺(𝐺)|𝑛+1.

• ̊𝛺(𝐺)(∅) ∶ | ̊𝛺(𝐺)|
0

→ | ̊𝛺(𝐺)|, () ↦ ∅.
• For 𝑛 ∈ ℕ> 0, for 𝐾 ⊆ { 1, … , 𝑛 },

̊𝛺(𝐺)(𝛿𝐾
term) ∶ | ̊𝛺(𝐺)| → | ̊𝛺(𝐺)|,

𝑥 ↦ {
𝑥 ∪ { 𝑡(𝑖) : 𝑖 ∈ 𝐾, 𝑖 ≤ 𝑘 } if 𝑥 ⊆ 𝑉
𝑥 otherwise.

As always, the reader is at their leisure to ignore the predicates 𝜆vert
and 𝜆edge and instead assume a typed universe as discussed in section 5.3.4.

Definition 5.6.3
We call

�̊� ≔ ⋃
𝑛∈ℕ

{ ̊𝛺(𝐺) : 𝐺 ∈ 𝔊𝑛 }

the circuitous multiverse of finite graphs and

�̊� ≔ ( ̊𝔏, �̊�)

the circuitous logical framework of finite graphs.

We now show that our new language is at least as expressive as the old one.
To this end, we adopt the following convention.
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�̊� is the circuitous
language of graphs.

(def. 5.6.1, p. 77)
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(def. 5.3.6, p. 62)
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Notation 5.6.4

We use as 0-place variable symbols for ̊𝔏 the set

{ 𝛿0, 𝛿1, … } ∪ { 𝜆0, 𝜆1, … }.

While this “doubles” the number of available variable symbols in some
sense, it is clear that this is purely notational, since the number of symbols
is still countable. We can safely reuse the symbols 𝜆0, … since ̊𝔏 has no
predicate variables.
The only reason for this notational trick is that it makes the proof of
theorem 5.6.6 easier to read.
Recall that we use 𝜇0 to denote a symbol that could be either 𝛿0 or 𝜆0.

Definition 5.6.5
Let 𝐺 be a graph, and let 𝜏 be a variable assignment in 𝛺(𝐺) with
domain 𝑋 = { 𝜇1, … , 𝜇𝑛 } for some 𝑛 ∈ ℕ.
The induced circuitous assignment of 𝜏 is the variable assignment ̊𝜏
in 𝛺(𝐺) with domain 𝑋 and

̊𝜏 ∶ 𝜇𝑖 ↦ {
{𝜏(𝜇𝑖)} if 𝜇𝑖 ∈ 𝛿0 𝔏
𝜏(𝜇𝑖) if 𝜇𝑖 ∈ 𝜆1 𝔏

.

Note that, while 𝜏(𝜇𝑖) is either an edge or a vertex of 𝐺 or a 1-place
predicate (also known as a set), the values of ̊𝜏 are all sets.
We can now formulate what we mean by “at least as expressive”.

Theorem 5.6.6

Let 𝜑 ∈ |𝔏|. Then there exists a formula �̊� ∈ | ̊𝔏| with ⃖�̊� = �⃖� such that
for every graph 𝐺 and for every full variable assignment 𝜏 in 𝛺(𝐺) for 𝜑,
we have

𝜑[𝜏] ↔ ⊤ ⇔ �̊�[ ̊𝜏 ] ↔ ⊤.
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𝔏 denotes the
second-order
language of graphs.
(def. 5.4.1, p. 72)

|𝔏| is the set of all
well-formed
formulas over 𝔏.
(def. 5.3.5, p. 61)

�̊� is the circuitous
language of graphs.
(def. 5.6.1, p. 77)

𝛺(𝐺) is the induced
structure of 𝐺.
(def. 5.4.2, p. 73)

�̊�(𝐺) is the
circuitous induced
structure of 𝐺.
(def. 5.6.2, p. 78)

5.6: The Other Language of Graphs

Proof. We proceed by induction on the structure of a well-formed formula
in 𝔏.
Let 𝜑 ∈ |𝔏|. We construct recursively a formula �̊� ∈ | ̊𝔏| and show two
things: that the two formulas have the same set of free variable symbols
(albeit in different languages), and that the equivalence from the statement
holds.
Note that the former property implies that if 𝜏 is a full variable assignment
for 𝜑, then ̊𝜏 is full for �̊�, which is necessary for the latter property to even
make sense.
The reader may want to consult definitions 5.3.2 to 5.3.5 to remind them-
selves of the structure over which we run our induction.
Note first that since 𝔏 has no function symbols, all terms over the language
are elementary (definition 5.3.2).
We run over the various cases from definition 5.3.5.

Case 1: 𝜑 is atomic.

Case 1.1: 𝜑 = 𝜆𝑛
conn(𝛿0, 𝛿1, … , 𝛿𝑛) for some 𝑛 ∈ ℕ. This is an easy case to

warm up our proof-writing fingers. We set �̊� ≔ 𝜆𝑛
conn(𝛿0, 𝛿1, … , 𝛿𝑛). This

preserves the set of free variables, and if 𝜏 is a full variable assignment for 𝜑
in 𝛺(𝐺) for some graph 𝐺, we immediately see that

𝜑[𝜏] ↔ ⊤ ⇔ (𝜏(𝛿0), 𝜏(𝛿1), … , 𝜏(𝛿𝑛)) ∈ 𝛺(𝐺)(𝜆𝑛
conn)

⇔ ({𝜏(𝛿0)}, {𝜏(𝛿1)}, … , {𝜏(𝛿𝑛)}) ∈ ̊𝛺(𝐺)(𝜆𝑛
conn)

⇔ ( ̊𝜏(𝛿0), ̊𝜏(𝛿1), … , ̊𝜏(𝛿𝑛)) ∈ ̊𝛺(𝐺)(𝜆𝑛
conn)

⇔ �̊�[ ̊𝜏 ] ↔ ⊤,

which is exactly what we wanted.
Since most cases are rather similar, we shall omit easy computations like
the one above. We shall also not mention the sets of free variables again
when it is obvious that they are the same.

Case 1.2: 𝜑 = 𝛿0 ≡ 𝛿1. We set �̊� ≔ 𝛿0 ⊑ 𝛿1 ∧ 𝛿1 ⊑ 𝛿0. Equivalence is im-
mediate.

Case 1.3: 𝜑 = 𝜆0(𝛿0). Recall that all predicate variables are unary, where-
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𝜆vert checks
whether its

argument is a
vertex.
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whether its

argument is a set of
vertices.
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whether its

argument is an
edge.
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fore this is the only case of this type that we need to check. Recall also that
while 𝜏(𝜆0) is a unary predicate and 𝜏(𝛿0) is a vertex or an edge, ̊𝜏 (𝜆0)
and ̊𝜏 (𝛿0) are both sets.
We set �̊� ≔ 𝛿0 ⊑ 𝜆0 and get

𝜑[𝜏] ↔ ⊤ ⇔ 𝜏(𝛿0) ∈ 𝜏(𝜆0)
⇔ {𝜏(𝛿0)} ⊆ 𝜏(𝜆0)
⇔ ̊𝜏(𝛿0) ⊆ ̊𝜏(𝜆0)
⇔ �̊�[ ̊𝜏 ] ↔ ⊤,

as expected.

Case 1.4: 𝜑 = 𝜆vert(𝛿0). As discussed before, the reader is welcome to ig-
nore this predicate and instead assume a typed universe. Otherwise, they
should set �̊� ≔ 𝜆vert(𝛿0).

Case 1.5: 𝜑 = 𝜆edge(𝛿0). This is analogous to the previous case.

This proves the claims for all atomic formulas. Any other formula we
encounter must be a composite, where we assume that the claims hold for
its constituent parts.

Case 2: 𝜑 = ¬𝜓. We set, unsurprisingly, �̊� ≔ ¬ ̊𝜓 and get

𝜑[𝜏] ↔ ⊤ ⇔ 𝜓[𝜏] ↔ ⊥
⇔ ̊𝜓[ ̊𝜏 ] ↔ ⊥
⇔ �̊�[ ̊𝜏 ] ↔ ⊤

by induction.

Case 3: 𝜑 = 𝜓 ∧ 𝜁. We set �̊� ≔ ̊𝜓 ∧ ̊𝜁 and get equivalence by induction.

Case 4: 𝜑 = ∀𝜇0𝜓. We set

�̊� ≔ ∀𝜇0(𝜆sgl(𝜇0)→ ̊𝜓)
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and get14

𝜑[𝜏] ↔ ⊤ ⇔ (∀𝜇0𝜓)[𝜏] ↔ ⊤
⇔ ∀𝑥 ∈ |𝛺(𝐺)| ∶ 𝜓[𝜏, 𝜇0 ↦ 𝑥] ↔ ⊤
⇔ ∀𝑥 ∈ |𝛺(𝐺)| ∶ ̊𝜓[ ̊𝜏 , 𝜇0 ↦ { 𝑥 }] ↔ ⊤
⇔ ∀𝑥 ∈ | ̊𝛺(𝐺)| ∶ |𝑥| = 1 ⇒ ̊𝜓[ ̊𝜏 , 𝜇0 ↦ 𝑥] ↔ ⊤
⇔ ∀𝑥 ∈ | ̊𝛺(𝐺)| ∶ (𝜆sgl(𝑥) → ̊𝜓)[ ̊𝜏 , 𝜇0 ↦ 𝑥] ↔ ⊤
⇔ (∀𝜇0(𝜆sgl(𝜇0) → ̊𝜓))[ ̊𝜏 ] ↔ ⊤
⇔ �̊�[ ̊𝜏 ] ↔ ⊤,

finishing this case.

The two claims hence hold for any well-formed formula.
�

The reader might notice that the formula constructed in the proof, while
longer than the original, is only larger by a constant factor, and the growth
caused by translating into ̊𝔏 is thus linear. This is nice, but not actually
needed – later on, the formula will not be part of our input, so its length is
irrelevant when looking at the asymptotic running time of our algorithms.
We get the following nice corollary.

14 Note that the obvious choice, ∀𝜇0
̊𝜓, does not work: while the universal quan-

tifier of 𝛺(𝐺) ranges over the vertices and edges of 𝐺, the universal quan-
tifier of �̊�(𝐺) ranges over sets of vertices and edges. Consider the for-
mula 𝜑 = ∀𝜇0∀𝜇1 ∶ ¬(𝜇0 ≡ 𝜇1) → ¬(∃𝜇2 ∶ 𝜆2

conn(𝜇2, 𝜇0, 𝜇1)) expressing that
the 2-uniform graph 𝐺 contains only loops, but no edges between different
vertices. Consider further a graph 𝐺 with three vertice 𝑣1, 𝑣2, 𝑣3 and an
edge 𝑒 with ⦉𝑒⦊ = 𝑣1𝑣1. While 𝜑 ↔ ⊤ for this graph, the circuitous for-
mula �̊� = ∀𝜇0∀𝜇1 ∶ ¬(𝜇0 ⊑ 𝜇1 ∧ 𝜇1 ⊑ 𝜇0) → ¬(∃𝜇2 ∶ 𝜆2

conn(𝜇2, 𝜇0, 𝜇1)) is false:
the sets 𝑋1 ≔ {𝑣1, 𝑣2} and 𝑋2 ≔ {𝑣1, 𝑣3} are not equal, but the state-
ment 𝜆2

conn({𝑒}, 𝑋1, 𝑋2) is nonetheless true because the circuitous predicate 𝜆2
conn

only cares whether there is any vertex in 𝑋1 connected to any vertex in 𝑋2 by any edge
in {𝑒}.
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𝔏 denotes the
second-order

language of graphs.
(def. 5.4.1, p. 72)

‖𝔏‖ denotes the set
of sentences over 𝔏.

(def. 5.3.6, p. 62)

�̊� is the circuitous
language of graphs.

(def. 5.6.1, p. 77)

𝛺(𝐺) is the induced
structure of 𝐺.
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redefinition.
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Corollary 5.6.7

Let 𝜑 ∈ ‖𝔏‖. Then there exists a sentence �̊� ∈ ‖ ̊𝔏‖ such that for every
graph 𝐺, we have

⊧𝛺(𝐺) 𝜑 ⇔ ⊧�̊�(𝐺) �̊� .

The converse of theorem 5.6.6 is not true.
Theorem 5.6.8

There exists a sentence �̊� ∈ ‖ ̊𝔏‖ for which there is no sentence 𝜑 ∈ ‖𝔏‖
which satisfies

⊧𝛺(𝐺) 𝜑 ⇔ ⊧�̊�(𝐺) �̊�

for every graph 𝐺.

Proof. This is actually easy to see, since ̊𝔏 can detect terminal ver-
tices, whereas 𝔏 cannot. Consider the two type 2 graphs (𝐺, 𝑡) ≔ 𝔢2
and (𝐺, 𝑡′) ≔ ⇆1,2↦1𝐺.

1 2 1,2

These have the same underlying graph 𝐺. A quick look back at defini-
tion 5.4.2 reveals that 𝛺(𝐺) is defined purely on this underlying graph,
without accounting for terminals. Therefore, for any sentence 𝜑 ∈ ‖𝔏‖, we
have

⊧𝛺((𝐺,𝑡)) 𝜑 ⇔ ⊧𝛺((𝐺,𝑡′)) 𝜑 .

Consider now the circuitous sentence

�̊� ≔ ∃𝛿0 ∶ 𝜆2
conn(𝛿0, 𝛿{1}

term(∅), 𝛿{2}
term(∅)).

We have ⊧𝛺((𝐺,𝑡)) �̊�, but ⊧𝛺((𝐺,𝑡)) ¬�̊�, whence no sentence of 𝔏 can have the
same truth values even on just the two graphs shown here.

�
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The only problem are, of course, the terminal vertices, so the languages are
indeed equivalent if evaluated only on type 0 graphs. Either way, this is not
relevant to the proof of Courcelle’s Theorem, since we shall always start
with a sentence from 𝔏 which we then convert to an equivalent sentence
of ̊𝔏 using theorem 5.6.6.
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Chapter 6
Typed Algebras

In our journey to answering the question “which graphs fulfil a certain
property 𝜑”, we have now reached the point where we are able to properly
formulate the question.
In order to also find the answer (without seven and a half million years
of computation), we need to construct a framework in which the question
whether a given graph fulfils a certain property can be answered efficiently,
preferably in time linear in the number of vertices and edges.
To this end, we show that certain classes of graphs form a so-called “typed
algebra”, and that any typed algebra with certain niceness properties admits
a linear-time algorithm. The latter result is the topic of chapter 8, while
the former is discussed right here.

1. Basic Definitions

In analogy to our treatment of formal languages in chapter 5, we begin
by specifying a purely syntactical basis, called a signature. It provides a
list of “sorts” for variables and a list of function symbols. Each function
symbol is assigned a “type”, that is, it knows which sorts of variables go
into it and what sort of variable comes out. For languages, this was the
arity of a function symbol. This time around, we need not only the number
of variables that fit into a function symbol, but also the sort of variables it
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takes.1

Definition 6.1.1
A signature is a triple (𝒯, ℱ, ⟨_⟩) consisting of the following data:

• a set 𝒯 of sorts or types,
• a set ℱ of function symbols,
• and a typing ⟨_⟩ ∶ ℱ → 𝒯∗ × 𝒯.

For any 𝒻 ∈ ℱ, we call ⟨𝒻⟩ the type of 𝒻.

For ⟨𝒻⟩ = (𝓉1 … 𝓉𝑛, 𝓉), we call ⟨𝒻⟩in ≔ (𝓉1, … , 𝓉𝑛) the in-type of 𝒻, we
call ⟨𝒻⟩out ≔ 𝓉 the out-type of 𝒻, and we call |𝒻| ≔ 𝑛 the arity of 𝒻.

The reader familiar with functional programming has seen signatures and
algebras before: one simple example for a signature would be the tu-
ple 𝒮 = (𝒯, ℱ, ⟨_⟩) with

𝒯 = { 𝓃, 𝓌 }
ℱ = { +, −, Str }
⟨+⟩ = (𝓃𝓃, 𝓃)
⟨−⟩ = (𝓃𝓃, 𝓃)
⟨Str⟩ = (𝓃, 𝓌).

This, as with all of our syntactic constructs, means nothing on its own.
However, one could fill it with meaning in the following way:

• Prescribe 𝓃 to be the set of natural numbers.
• Let 𝓌 be all number words of the English language.
• Identify + with the addition function _ + _ ∶ ℕ×ℕ → ℕ.
• Identify − with the subtraction ℕ×ℕ → ℕ, capped at a minimum

of 0, that is, 5 − 7 = 0.
• And let Str ∶ ℕ → 𝓌 take a natural number and output its English

name, that is, Str(5) = “five” and so forth.
1 Since standard literature has found no consensus, we shall be using the words “sort” and

“type” interchangeably for the elements of 𝒯. Everything else is always called a “type”,
so if we say “sort” in this thesis, it is clear that we mean an element of 𝒯.
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Let us call this structure, for now, ℕEnglish.
One can see now why 𝒮 is called a “signature”: it prescribes for each
function symbol a number of input types and an output type – addition
takes two numbers and outputs another number, while stringification takes
only one number and outputs a string.
Of course, ℕEnglish is not the only way to assign semantics to our toy
signature. If one dislikes throwing away negative numbers, one could easily
use the following instead, which we shall call ℚEnglish:

• Prescribe 𝓃 to be the set of rational numbers.
• Let 𝓌 be strings of the form “𝜔 divided by 𝜂”, where 𝜔 and 𝜂 are

English number words.
• Identify + with the addition function _ + _ ∶ ℚ×ℚ → ℚ.
• Identify − with the subtraction ℚ×ℚ → ℚ.
• And let Str ∶ ℚ → 𝓌 take a rational number and output English name

of its reduced form, that is, Str(3
6) = Str(1

2) = “one divided by two”
and so forth.

Both of the above, as realisations of the signature 𝒮, are valid 𝒮-algebras2.
They are to signatures what structures were to languages.

Definition 6.1.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature. An 𝒮-algebra is a pair (𝒞, 𝒪)
with the following data.

• A family of disjoint carrier sets 𝒞 = {𝒞𝓉}𝓉∈𝒯.
• A family of functions or operations 𝒪 = {𝒪𝒻}𝒻∈ℱ such that

∀𝒻 ∈ ℱ ∶ ⟨𝒻⟩ = (𝓉1 … 𝓉𝑛, 𝓉) ⇒ 𝒪𝒻 ∶ 𝒞𝓉1
× ⋯ × 𝒞𝓉𝑛

→ 𝒞𝓉.

An algebra defines for every sort of variable a set of constants of that sort
and for every function symbol an actual function that takes constants from

2 Courcelle [Cou90] calls the construction a typed magma, but this is not how it is known
in standard literature.
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the sets indicated by the function symbol’s type and outputs a constant of
the appropriate sort.
We allow a shorthand similar to that which we use on graphs.

Notation 6.1.3
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪) be an 𝒮-alge-
bra. We write 𝒸 ∈ 𝒜 to mean ∃𝓉 ∈ 𝒯 ∶ 𝒸 ∈ 𝒞𝓉.

We also need morphisms between such structures. Consider again our toy
signature above, and consider a mathematician from the planet Kronos,
who might want the following algebra instead, called ℕKlingon:

• Prescribe 𝓃 to be the set of natural numbers.
• Let 𝓌 be all number words of the Klingon language.3

• Identify + with the addition function _ + _ ∶ ℕ×ℕ → ℕ.
• Identify − with the subtraction ℕ×ℕ → ℕ, capped at a minimum

of 0, that is, 5 − 7 = 0.
• And let Str ∶ ℕ → 𝓌 take a natural number and output its Klingon

name, that is, Str(5) = “vagh” and so forth.

This is almost the same thing as the first algebra we defined, and we
can easily imagine a “translation function” ℕEnglish → ℕKlingon which
leaves the numbers alone and maps strings to their translations, that
is, “zero” ↦ “pagh”, “one” ↦ “wa’”, and so forth.
Of course, our translation also needs to map the functions: it leaves addition
and subtraction alone (since they depend not on the language), and it maps
English stringification to Klingon stringification.
Even if we translate also the number representations into a different system,
we can expect a reasonable translation 𝒽 to be consistent in the sense that

Str(𝒽(1 + 1)) = Str(𝒽(1) + 𝒽(1)).

In mathematical lingo, our translation should commute with the functions
involved.

3 Klingon cardinal numbers start with “pagh”, “wa’”, “cha’”, “wej”, “loS”, “vagh”, “jav”,
“Soch”, “chorgh”, “Hut”, “wa’maH”. Pronunciations can be found in [Okr92].
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Definition 6.1.4
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪), ℬ = (𝒟, 𝒬)
be 𝒮-algebras. An 𝒮-algebra morphism from 𝒜 to ℬ is a family of
maps { 𝒽𝓉 ∶ 𝒞𝓉 → 𝒟𝓉 }𝓉∈𝒯 such that

∀𝒻 ∈ ℱ ∶ ⟨𝒻⟩in = (𝓉1, … , 𝓉𝑛) ⇒
∀𝒸1 ∈ 𝒞𝓉1

… ∀𝒸𝑛 ∈ 𝒞𝓉𝑛
∶

𝒽𝓉(𝒪𝒻(𝒸1, … , 𝒸𝑛)) = 𝒬𝒻(𝒽𝓉1
(𝒸1), … , 𝒽𝓉𝑛

(𝒸𝑛)).

Equivalently, one may require that all diagrams of the following form
commute.

𝒞𝓉1
× … × 𝒞𝓉𝑛

𝒞𝓉

𝒟𝓉1
× … × 𝒟𝓉𝑛

𝒟𝓉

𝒪𝒻

𝒽𝓉1×…×𝒽𝓉𝑛 𝒽𝓉	

𝒬𝒻

We introduce the first niceness property for later use: a signature or algebra
is called “locally finite” if something is finite for every sort. For signatures,
this “something” are the function symbols outputting that sort, while for
algebras, we can require that there should only be finitely many elements
of that sort. The reason we want these properties is that later, we often
construct something on “all function symbols of a certain type” or similar,
and we would like those constructions to stay finite.

Definition 6.1.5
A signature (𝒯, ℱ, ⟨_⟩) is called locally finite if for every 𝓉 ∈ 𝒯, the set

{ 𝒻 ∈ ℱ : ⟨𝒻⟩out = 𝓉 }

is finite.

Definition 6.1.6
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature. An 𝒮-algebra (𝒞, 𝒪) is called

91



⊕ is the disjoint
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locally finite if for every 𝓉 ∈ 𝒯, the set 𝒞𝓉 is finite.

2. The Algebra of Graphs
In section 4.5, we have seen some functions which map one or two typed
graphs to another typed graph: the disjoint sum, the terminal redefinition,
and the terminal fusion. We now interpret these functions as symbols of
a signature and show that the set of all typed graphs is a typed algebra,
where the set of sorts is simply ℕ – the sort of a graph is its number of
terminal vertices.
We first define the set of function symbols. As always, these are for now
purely syntactical.

Definition 6.2.1
We set

• 𝔉⊕ ≔ { ⊕𝑚
𝑛 : 𝑛, 𝑚 ∈ ℕ },

• 𝔉𝑚
𝑛 ⇆ ≔ { ⇆𝑛 𝜎 : 𝜎∶ { 1, … , 𝑛 } → { 1, … , 𝑚 } },

• 𝔉𝑛 媲
≔ { 媲𝑏

𝑛 𝑎 : 𝑎, 𝑏 ∈ { 1, … , 𝑛 } },
• 𝔉triv ≔ { 𝔳, 𝔢𝑛 : 𝑛 ∈ ℕ> 0 },

• and 𝔉 ≔ 𝔉⊕ ∪ (⋃𝑖∈ℕ ⋃𝑗∈ℕ 𝔉𝑗
𝑖 ⇆) ∪ (⋃𝑖∈ℕ 𝔉𝑖 媲) ∪ 𝔉triv.

We then define ⟨_⟩ ∶ 𝔉 → ℕ∗ ×ℕ,

⟨𝔣⟩ ≔

⎧
{{{
⎨
{{{
⎩

(𝑛𝑚, 𝑛 + 𝑚)4 𝔣 = ⊕𝑚
𝑛

(𝑚, 𝑛) 𝔣 ∈ 𝔉𝑚
𝑛 ⇆

(𝑛, 𝑛) 𝔣 ∈ 𝔉𝑛 媲

(𝜀, 1) 𝔣 = 𝔳
(𝜀, 𝑛) 𝔣 = 𝔢𝑛

and set 𝔖 ≔ (ℕ, 𝔉, ⟨_⟩).

4 Here, 𝑛𝑚 denotes the word 𝑛 followed by the word 𝑚, not a product.
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𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

𝔳 is the type 1
graph with one
vertex.
(def. 4.5.6, p. 43)

𝔢𝑛 is the type 𝑛
graph with 𝑛
vertices and one
edge.
(def. 4.5.6, p. 43)

𝔊 is the algebra of
graphs.
(def. 6.2.2, p. 93)

6.3: Expressions

With this definition, the triple (ℕ, 𝔉, ⟨_⟩) is a valid signature.
Note how we have added a left subscript to the function symbols to ensure
that the sets of symbols for different input types are disjoint. We will of
course silently drop these left subscripts whenever the context allows.
We now have to fill these symbols with meaning, and we do so in the
canonical way.

Definition 6.2.2
We define an (ℕ, 𝔉, ⟨_⟩)-algebra 𝔊 = (ℭ, 𝔒) by setting

ℭ𝑛 ≔ 𝔊𝑛

and by letting 𝔒 assign to each function symbol the corresponding graph
construction from definitions 4.5.3 to 4.5.5 respectively the corresponding
graph from definition 4.5.6.

The functions 𝔳 and 𝔢𝑛 are nullary functions.
Of course, we chose ⟨_⟩ in just such a way that this makes 𝔊 into a
valid (ℕ, 𝔉, ⟨_⟩)-algebra. The reader is invited to turn back to definition
definition 4.5.3 and its colleagues to verify this.

3. Expressions
We have mentioned before that the trivial graphs 𝔳 and 𝔢𝑛, 𝑛 ∈ ℕ to-
gether with disjoint sum, redefinition, and fusion suffice to build all finite
hypergraphs, and that 𝔳 and 𝔢2 together with those functions can build
all 2-uniform graphs.
In this section, we make this statement precise.
Consider the following 2-uniform graph of type 1, where the only terminal
vertex is the middle one. We shall call it 𝐺.
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𝔢2 is the type 2
graph with 2

vertices and one
edge.

(def. 4.5.6, p. 43)

媲 (tsureai,
Japanese for to

marry) denotes the
source fusion.

(def. 4.5.5, p. 42)

⇆ denotes the
terminal

redefinition.
(def. 4.5.4, p. 41)

⊕ is the disjoint
sum.

(def. 4.5.3, p. 40)

Chapter 6: Typed Algebras

It is obvious how to build this graph using our basic building blocks: take
two copies of 𝔢2, the graph with two vertices and one edge, and glue them
together.

媲
3
2 1 2,3 4

1

2

3

4

One can then discard the superfluous terminal labels using terminal redefi-
nition.

⇆1↦2
11 2,3 4

Mathematically, we could write

𝐺 = ⇆1↦2媲
3
2 (𝔢2 ⊕ 𝔢2) ,
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𝔢2 is the type 2
graph with 2
vertices and one
edge.
(def. 4.5.6, p. 43)

⊕ is the disjoint
sum.
(def. 4.5.3, p. 40)

媲 (tsureai,
Japanese for to
marry) denotes the
source fusion.
(def. 4.5.5, p. 42)

⇆ denotes the
terminal
redefinition.
(def. 4.5.4, p. 41)

6.3: Expressions

which is reasonably parseable, but this approach becomes unreadable quickly
for larger graphs – the complete 2-uniform graph on four vertices is

⇆∅媲
9
6媲

11
4 媲

10
2 媲

12
1 (媲8

4媲
5
1 (媲3

2 (𝔢2 ⊕ 𝔢2) ⊕媲7
6 (𝔢2 ⊕ 𝔢2)) ⊕ 𝔢2 ⊕ 𝔢2) .

We can instead visualise the building instructions pictorially:

1 2 1 2

1 2

3 4

1 2,3 4

1

Since the graphs obtained in the intermediate steps are uniquely determined
by the functions used, it is actually more informative to only give the
function symbols:
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graph with 2

vertices and one
edge.

(def. 4.5.6, p. 43)

⊕ is the disjoint
sum.

(def. 4.5.3, p. 40)
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⇆1↦2

媲
3
2

⊕

𝔢2𝔢2

Flipping this picture upside down yields something that looks suspiciously
akin to a rooted tree.

⇆1↦2

媲
3
2

⊕

𝔢2 𝔢2

The vertices of this tree are labeled with function symbols in the algebra 𝔊,
and the inputs of each function are the values of the labels of the successor
vertices. The leaves are nullary functions yielding the graph 𝔢2.
A tree like this is called an expression in 𝔊. Returning to our other favourite
example, an expression could look something like this:
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6.3: Expressions

Str

+

− +

+1 1 1

1 1

In ℕEnglish, this should evaluate to the word “three”.
What if we want to plug in different numbers than just all ones? Do we
change the entire expression?
Of course not. Rather, we cleverly cut the leaves off our tree to arrive at
something like the following:

Str

+

− +

+
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The height of a tree
is defined in

definition 4.4.4.

Chapter 6: Typed Algebras

Here, the dashed arrows indicate places where we can “plug in” values from
our algebra.
Any values? No: our algebra contains numbers (which are valid inputs
for + and −) and English or Klingon words, which are not valid inputs.
Since the type of input can be checked at signature level (independent of,
for example, the language of the number words), it makes sense to define
expressions not for algebras, but already on signatures.
We collect the properties that we have discovered so far into a formal
definition.
Definition 6.3.1

Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature. A pre-expression over 𝒮 is a
pair ℯ = (𝑇 , ⟨_⟩) fulfilling the following conditions.

• 𝑇 = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼) is a traversal tree.
• ⟨_⟩ ∶ 𝑉 → ℱ is a function assigning to each vertex a function

symbol.
• ∀𝑣 ∈ 𝑉∶ degout𝑣 = 0 ∨ degout𝑣 = |⟨𝑣⟩|.
• For every 𝑣 ∈ 𝑉 with ⟨⟨𝑣⟩⟩in = (𝓉1, … , 𝓉𝑛) and Nout𝑣 = [𝑣1, … , 𝑣𝑛]

we have
∀𝑖 ∈ { 1, … , 𝑛 }∶ ⟨⟨𝑣𝑖⟩⟩

out = 𝓉𝑖.

We call ⟨ℯ⟩out ≔ ⟨⟨
√

𝑇⟩⟩out the output sort of ℯ.
If the leaves of 𝑇, in traversal order, are 𝑣1, … , 𝑣𝑚 for some 𝑚 ∈ ℕ

with ⟨⟨𝑣𝑖⟩⟩
in = (𝓉𝑖

1, … , 𝓉𝑖
𝑘𝑖

), we call

⟨ℯ⟩in ≔ (𝓉1
1, 𝓉1

2, … , 𝓉1
𝑘1

, 𝓉2
1, … , 𝓉2

𝑘2
, … , 𝓉𝑛

1 , … , 𝓉𝑛
𝑘𝑛

)

the input sort of ℯ.
The height of ℯ is the height of the underlying tree.
We write

⟨ℯ⟩ ≔ (𝓉1
1𝓉1

2 … 𝓉1
𝑘1

𝓉2
1 … 𝓉2

𝑘2
… 𝓉𝑛

1 … 𝓉𝑛
𝑘𝑛

, ⟨ℯ⟩out) .

The set of all pre-expressions over 𝒮 is denoted by |𝒮|.
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6.3: Expressions

Note that we require a traversal tree (which orders the children of a vertex,
see definition 4.4.5) because some operations may not be commutative – it
is relevant whether we compute 1 − 3 or 3 − 1.
In our example signature, the following should be valid pre-expressions:

+ Str

+

- +

Again, we have indicated the missing inputs by dashed arrows. The input
sort of the left-hand pre-expression is 𝓃𝓃, and its output sort is 𝓃. The
input sort of the right-hand pre-expression is 𝓃𝓃𝓃𝓃, while its output sort
is 𝓌.
Meanwhile, the following should not be valid pre-expressions – one violates
the type constraint, while the other tries to cram two numbers into one
string function.

+

Str

Str

+ -
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Note that the following is also not a pre-expression as by our definition,
because the marked vertex expects an input, but is not a leaf.

Str

+

− +

+

However, if our algebra contains an identity function id for every type, a
functionally equivalent expression is easily constructed:

Str

+

− +

id +

We therefore adopt the convention that we treat the two pictures as the
same – the algebras with which we are dealing always contain the identity5,
which we omit from pictorial representations.

5 The identity function for graphs of type 𝑛 ∈ ℕ is the same function as ⇆𝑛 𝑖↦𝑖.
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6.3: Expressions

As always, it is now time to fill this syntactical construct with meaning.
Essentially, we take elements from the carrier sets of our algebra which
have the correct types to “fit into” the leaves and evaluate the tree from
the bottom up. Again, a pre-expression over a signature is purely abstract.
One needs to choose an algebra (a concrete realisation of the signature) in
order to “do” something with the pre-expression. In this sense, algebras
are to pre-expressions as structures were to well-formed formulas.
We give first the definition, followed by an example.

Definition 6.3.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature and let 𝒜 = (𝒞, 𝒪) be a 𝒮-algebra.
Let further ℯ = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) be a pre-expression in 𝒮 with
leaves 𝑤1, … , 𝑤𝑛 and ⟨⟨𝑤𝑖⟩⟩

in = (𝓉𝑖
1, … , 𝓉𝑖

𝑘𝑖
).

Let finally for 𝑖 ∈ { 1, … , 𝑛 } and for 𝑗 ∈ { 1, … , 𝑘𝑖 } elements 𝒸𝑖
𝑗 ∈ 𝒞𝓉𝑖

𝑗

be given.
We recursively set for 𝑣 ∈ 𝑉 with Nout𝑣 = [𝑣1, … , 𝑣𝑚]

ℯ[𝑣]𝒜(𝒸1
1, … , 𝒸𝑛

𝑘𝑛
) ≔

⎧{
⎨{⎩

𝒪⟨𝑤𝑖⟩(𝒸
𝑖
1, … , 𝒸𝑖

𝑘𝑖
) if 𝑣 = 𝑤𝑖

𝒪⟨𝑣⟩(ℯ[𝑣1]𝒜(𝒸1
1, … , 𝒸𝑛

𝑘𝑛
), … ,

ℯ[𝑣𝑚]𝒜(𝒸1
1, … , 𝒸𝑛

𝑘𝑛
))

otherwise

and call

ℯ𝒜(𝒸1
1, 𝒸1

2, … , 𝒸1
𝑘1

, 𝒸2
1, … , 𝒸𝑛

𝑘𝑛
) ≔ ℯ[

√
ℯ]𝒜(𝒸1

1, 𝒸1
2, … , 𝒸1

𝑘1
, 𝒸2

1, … , 𝒸𝑛
𝑘𝑛

)

the value of ℯ at 𝒸1
1, 𝒸1

2, … , 𝒸1
𝑘1

, 𝒸2
1, … , 𝒸𝑛

𝑘𝑛
.

We apply this definition to the example on the previous page, silently
extending our toy signature and algebra by the identity functions. The
input type of our example pre-expression is 𝔫𝔫𝔫𝔫𝔫, so we choose five natural
numbers, say 5, 2, 1, 0, 3. We note to the left the values if the pre-expression
is evaluated in ℚEnglish (where 5 is actually 5

1 and so forth), to the right
the evaluation in ℕKlingon.
We represent the inputs (which are not vertices of our traversal tree) as
circles.
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Str

+

- +

-

Str

+

-

5 55
1 2 22

1

+

1 11
1

-

0 00
1 3 33

1

Str

+

- 33
1

5 55
1 2 22

1

+

1 11
1

- 0−3
1

0 00
1 3 33

1

Str

+

- 33
1

5 55
1 2 22

1

+ 1−2
1

1 11
1

- 0−3
1

0 00
1 3 33

1
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ℯ𝒜(… ) denotes the
result of ℯ when
evaluated in 𝒜.
(def. 6.3.2, p. 101)

6.3: Expressions

Str

+ 41
1

- 33
1

5 55
1 2 22

1

+ 1−2
1

1 11
1

- 0−3
1

0 00
1 3 33

1

Str “loS”“one divided
by one”

+ 41
1

- 33
1

5 55
1 2 22

1

+ 1−2
1

1 11
1

- 0−3
1

0 00
1 3 33

1

The value of the pre-expression at (5, 2, 1, 0, 3) is then the label assigned
to the root vertex that is, “one divided by one” in ℚEnglish and “loS”
in ℕKlingon.
The reader should keep in mind this intuitive understanding of how a
pre-expression is evaluated.
If there are pre-expressions, there should probably be expressions as well.
Indeed, an expression shall be the special case of a pre-expression that
requires no input.

Definition 6.3.3
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature. An expression over 𝒮 is a pre-
expression over 𝒮 with input type 𝜀.
The set of all 𝒮-expressions is denoted ‖𝒮‖.
For an 𝒮-algebra 𝒜 and an 𝒮-expression ℯ, we call

val𝒜ℯ ≔ ℯ𝒜()

the value of ℯ in 𝒜.
We call ⟨ℯ⟩ ≔ ⟨ℯ⟩out the sort of ℯ.
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‖𝒮‖ denotes the set
of expressions over

𝒮.
(def. 6.3.3, p. 103)

val𝒜ℯ denotes the
result of ℯ when
evaluated in 𝒜.

(def. 6.3.3, p. 103)

Chapter 6: Typed Algebras

Since pre-expressions cannot be empty, an expression will always “end”
with nullary function symbols on the leaves, which replace the input we
had before.
We note a quick observation about the interaction between algebra mor-
phisms and expressions.

Lemma 6.3.4
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) and ℬ = (𝒟, 𝒬) two
𝒮-algebras, and let {𝒽𝓉}𝓉∈𝒯 ∶ 𝒜 → ℬ be an 𝒮-algebra morphism.
Then for every expression ℯ ∈ ‖𝒮‖ of sort 𝓉 ∈ 𝒯, we have

𝒽𝓉(val𝒜ℯ) = valℬℯ.

Proof. This is a simple observation from induction. Suppose we have an
expression ℯ = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) of sort 𝓉 as in the assumptions above,
say of height ℎ ∈ ℕ> 0.
For ℎ = 1, 𝑉 consists of a single vertex 𝑣 with no children, so we must
have ⟨⟨𝑣⟩⟩ = (𝜀, 𝓉). By definition, this means

𝒽𝓉val𝒜ℯ = 𝒽𝓉𝒪⟨𝑣⟩() = 𝒬⟨𝑣⟩() = valℬℯ.

For ℎ > 1, assume the claim has been proven for expressions of height ℎ− 1.
Let 𝑣 be the root of ℯ, ⟨⟨𝑣⟩⟩ = (𝓉1 … 𝓉𝑛, 𝓉), and Nout𝑣 = [𝑣1, … , 𝑣𝑛]. But
then again by definition, we have

𝒽𝓉(val𝒜ℯ) = 𝒽𝓉(val𝒜ℯ[𝑣])
= 𝒽𝓉(𝒪⟨𝑣⟩(val𝒜ℯ[𝑣1], … , val𝒜ℯ[𝑣𝑛]))
= 𝒬⟨𝑣⟩(𝒽𝓉1

(val𝒜ℯ[𝑣1]), … , 𝒽𝓉𝑛
(val𝒜ℯ[𝑣𝑛]))

= 𝒬⟨𝑣⟩(valℬℯ[𝑣1], … , valℬℯ[𝑣𝑛])
= valℬℯ[𝑣]
= valℬℯ,

proving the claim.
�
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‖𝒮‖ denotes the set
of expressions over
𝒮.
(def. 6.3.3, p. 103)

val𝒜ℯ denotes the
result of ℯ when
evaluated in 𝒜.
(def. 6.3.3, p. 103)

6.3: Expressions

For practical applications, some finiteness assumptions will be needed. We
give a name to expressions where not only inputs and output, but even
all intermediary values lie in a certain subset of sorts. Algorithmically,
this will be useful because when explicitly computing the value of such an
expression, we never exceed a certain bound on the values kept in memory.

Definition 6.3.5
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒴 ⊆ 𝒯. An expres-
sion ℯ = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) ∈ ‖𝒮‖ is called 𝒴-local if

∀𝑣 ∈ 𝑉∶ ⟨⟨𝑣⟩⟩out ∈ 𝒴.

Note that due to the recursive structure of expressions, definition 6.3.5
automatically implies that also the input sorts of every vertex are in 𝒴.
We extend this nomenclature to sets of expressions.

Definition 6.3.6
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒴 ⊆ 𝒯. A set of 𝒮-expressions is
called 𝒴-local if all of its elements are.
A set 𝒦 of 𝒮-expressions is called finitely typed if there exists a
set 𝒴 ⊆ 𝒯 with |𝒴| < ∞ such that 𝒦 is 𝒴-local.

As we have stated more than once, we want to build graphs from smaller
graphs, such that our graphs can be seen as the value of an expression in a
certain algebra. This necessarily means that there should in the first place
exist an expression that evaluates to the desired graph.

Definition 6.3.7
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) an 𝒮-algebra,
let 𝓉 ∈ 𝒯, and let 𝒴 ⊆ 𝒯. A set ℒ ⊆ 𝒞𝓉 is called 𝒴-expressible
if for every 𝒸 ∈ ℒ, there exists a 𝒴-local expression ℯ ∈ ‖𝒮‖ such
that 𝒸 = val𝒜ℯ.
A set ℒ ⊆ 𝒞𝓉 is called expressible if it is 𝒯-expressible.
A set ℒ ⊆ 𝒞𝓉 is called finitely expressible if it is 𝒴-expressible for some
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𝔊 is the algebra of
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(def. 6.2.2, p. 93)
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terminal
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(def. 4.5.4, p. 41)
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finite set 𝒴 ⊆ 𝒯.
An algebra is called 𝒴-expressible respectively expressible respectively
finitely expressible if all of its carrier sets are.

It is important to note that for arbitrary algebras, being expressible is not
a trivial requirement. Even if our set of function symbols admits enough
constants (that is, nullary functions) to build useful expressions at all, not
every element of a carrier set needs to be the output of a function, let alone
of an expression tree. Even given an expressible algebra, simply adding
a new element to one of the carrier sets and letting all functions map it
to something other than itself makes that element inexpressible while still
leading to a valid algebra.
However, finitely expressible algebras have properties that we shall need in
chapter 7.

4. Building Graphs
As promised, we can now formally prove that every finite graph can be built
with the tools from section 4.5. We first need a small technical lemma.

Lemma 6.4.1
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be an undirected hypergraph with 𝑉 = { 𝑣1, … , 𝑣𝑛 }.
If the type 𝑛 graph (𝐺, 𝑖 ↦ 𝑣𝑖) is the value of some expression in 𝔊,
then any graph of the form (𝐺, 𝑡), 𝑡 ∶ { 1, … , 𝑘 } → 𝑉 for any 𝑘 ∈ ℕ is the
value of some expression in 𝔊.

Proof. Suppose we are given an undirected hypergraph 𝐺 = (𝑉 , 𝐸, ⦉_⦊)
with 𝑉 = { 𝑣1, … , 𝑣𝑛 } such that the type 𝑛 graph (𝐺, 𝑖 ↦ 𝑣𝑖) can be
obtained from a graph expression. Let 𝑘 ∈ ℕ, 𝑡 ∶ { 1, … , 𝑘 } → 𝑉. It suffices
now to show that we can obtain the type 𝑘 graph (𝐺, 𝑡) from (𝐺, 𝑖 ↦ 𝑣𝑖)
by finite application of direct sum, source redefinition, and source fusion.
But one can now simply find a map 𝜎∶ { 1, … , 𝑘 } → { 1, … , 𝑛 } such
that ⇆𝜎(𝐺, 𝑖 ↦ 𝑣𝑖) = (𝐺, 𝑡).

�
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𝔖 is the signature
of 𝔊.
(def. 6.2.1, p. 92)

‖𝔖‖ denotes the set
of expressions over
𝔖.
(def. 6.3.3, p. 103)

val𝔊ℯ denotes the
result of ℯ when
evaluated in 𝔊.
(def. 6.3.3, p. 103)

𝔊 is the algebra of
graphs.
(def. 6.2.2, p. 93)

𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

𝔳 is the type 1
graph with one
vertex.
(def. 4.5.6, p. 43)

⊕ is the disjoint
sum.
(def. 4.5.3, p. 40)

𝔢|⦉𝑒⦊| is the type
|⦉𝑒⦊| graph with
|⦉𝑒⦊| vertices and
one edge.
(def. 4.5.6, p. 43)

媲 (tsureai,
Japanese for to
marry) denotes the
source fusion.
(def. 4.5.5, p. 42)

6.4: Building Graphs

Theorem 6.4.2
For every expression ℯ ∈ ‖𝔖‖, its value val𝔊ℯ is a finite graph. Conversely,
every finite graph is the value of an 𝔖-expression in 𝔊.

Proof. For ℯ ∈ ‖𝔖‖, the value val𝔊ℯ is by definition an element of 𝔊𝑛 for
some 𝑛 ∈ ℕ.
We prove the converse by induction on the number of edges of the desired
hypergraph.
By lemma 6.4.1, it suffices to show that for any given graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊)
with 𝑉 = { 𝑣1, … , 𝑣𝑛 }, we can construct the type 𝑛 graph (𝐺, 𝑖 ↦ 𝑣𝑖).
For |𝐸| = 0, this is easily achieved by taking the disjoint sum over 𝑛 copies
of the graph 𝔳.
Suppose now that we have proven our statement for graphs with up to 𝑚−1
edges, 𝑚 ∈ ℕ> 0. Given 𝐺 = (𝑉 , 𝐸, ⦉_⦊) with |𝐸| = 𝑚, we pick an
arbitrary edge 𝑒 ∈ 𝐸. We denote by 𝐺′ = (𝑉 , 𝐸′, ⦇_⦈) the graph obtained
by removing this edge, that is, 𝐸′ = 𝐸 ⧵ {𝑒}, ⦇_⦈ = ⦉_⦊|𝐸′ .
By induction hypothesis, the type 𝑛 graph 𝑋 ≔ (𝐺′, 𝑖 ↦ 𝑣𝑖) can be
constructed.
Set 𝑌 = (𝑉 ′′, 𝐸′′, ⟬_⟭, 𝑡″) ≔ 𝑋 ⊕ 𝔢|⦉𝑒⦊|.

We assume without loss of generality6 that the end points of the (removed)
edge 𝑒 are 𝑡″(1), … , 𝑡″(|⦉𝑒⦊|) and that the vertices of the newly added 𝔢|⦉𝑒⦊|
are 𝑡″(|𝑉 ′′| + 1), … , 𝑡″(|𝑉 ′′| + |⦉𝑒⦊|).
But now

媲
|𝑉 ′′|+1
1 媲

|𝑉 ′′|+2
2 …媲|𝑉 ′′|+|⦉𝑒⦊|

|⦉𝑒⦊| 𝑌

is the desired graph up to terminal redefinition.
�

Thus, every finite graph can be thought of as a tree in ‖𝔖‖ and vice versa.
This is good news for us, because we shall show that we can detect certain

6 The terminals can be reordered to satisfy this assumption by means of a single terminal
redefinition.
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subsets of such trees in linear time, without explicitly computing the graph
to which the expression evaluates.
A caveat, however, is that this naïve construction only shows that 𝔊 is
expressible, but not finitely so. For 𝑛 ∈ ℕ, constructing a graph 𝐺 ∈ 𝔊𝑛
as in the proof above can cause an arbitrary blowup of the types of input
graphs needed: for the graph with no edges and 𝑘 ∈ ℕ vertices, we begin by
taking the disjoint sum over 𝑘 copies of 𝔳, ending up with a type 𝑘 graph.
As 𝑘 was not bounded, this means that we can put no upper bound on
the type of graphs from which we draw during our construction. However,
if the reader refers forward to definition 6.3.7, they will discover that for
a set of graphs to be finitely expressible (which would in turn enable us
to apply theorem 8.6.2), the input graph types would have to be bounded
from above.
We shall later refine our approach to get finitely expressible algebras of
graphs. For now, we table this observation and focus on the theoretical
result. Chapter 8 will pick up where we left off.

5. Recognisable Sets
This section is entirely based on [Cou90].
We want to show that certain subsets of the set of all graphs are “recognis-
able”, which will then in certain cases allow the construction of a linear-time
detection algorithm. Intuitively, we now know that all graphs form an ex-
pressible algebra, and we want to show that the set of graphs fulfilling a
certain monadic second-order property 𝜑 is a “nice” subset of this algebra.
We now define what “nice” means.
Definition 6.5.1

Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) an 𝒮-algebra, 𝓉 ∈ 𝒯.
A subset ℒ ⊆ 𝒞𝓉 is called 𝒜-recognisable if there exist an 𝒮-alge-
bra ℬ = (𝒟, 𝒬) and an 𝒮-algebra morphism { 𝒽𝓉 }𝓉∈𝒯 fulfilling the
following conditions.

• ℬ is locally finite.
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• There is a subset ℳ ⊆ 𝒟𝓉 such that ℒ = 𝒽−1
𝓉 ℳ.

Recall that a locally finite algebra is one where every sort admits only
finitely many elements. In particular, ℒ is the preimage of a finite set.

6. Congruences
The following will, in a minute, turn out to yield an equivalent characteri-
sation of recognisability.

Definition 6.6.1
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) an 𝒮-algebra. A
congruence on 𝒜 is a family { ∼𝓉 }𝓉∈𝒯 such that for every 𝓉 ∈ 𝒯, ∼𝓉 is
an equivalence relation on 𝒞𝓉 and compatible with function symbols in
the following sense:

∀𝒻 ∈ ℱ with ⟨𝒻⟩in = (𝓉1, … , 𝓉𝑛) ∶ ∀𝒸1, 𝒹1 ∈𝒞𝓉1
, … , ∀𝒸𝑛, 𝒹𝑛 ∈𝒞𝓉𝑛

∶
𝒸1 ∼𝓉1

𝒹1 ∧ … ∧ 𝒸𝑛 ∼𝓉𝑛
𝒹𝑛 ⇒ 𝒪𝒻(𝒸1, … , 𝒸𝑛) ∼𝓉 𝒪𝒻(𝒹1, … , 𝒹𝑛).

In other words, a congruence is a family of equivalence relations that
commutes with all operations.
It is easy to see that this definition ensures that the intuitive notion of a
quotient algebra 𝒜�{ ∼𝓉 }𝓉∈𝒯

is well-defined.

Definition 6.6.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) an 𝒮-algebra, and
let { ∼𝓉 }𝓉∈𝒯 be a congruence on 𝒜. The quotient algebra 𝒜�{ ∼𝓉 }𝓉∈𝒯
is the 𝒮-algebra ({𝒟𝓉}𝓉∈𝒯, {𝒬𝒻}𝒻∈ℱ) with

∀𝓉 ∈ 𝒯 ∶ 𝒟𝓉 ≔ 𝒞𝓉�∼𝓉

and
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∀𝒻 ∈ ℱ with ⟨𝒻⟩in = (𝓉1, … , 𝓉𝑛) ∶ ∀𝒸1 ∈ 𝒞𝓉1
, … , 𝒸𝑛 ∈ 𝒞𝓉𝑛

∶
𝒬𝒻([𝒸1], … , [𝒸𝑛]) ≔ [𝒪𝒻(𝒸1, … , 𝒸𝑛)],

where [𝒸] denotes the equivalence class of 𝒸 ∈ 𝒞𝓉 under ∼𝓉.

In order to relate quotient algebras to recognisability, we need local finite-
ness.

Definition 6.6.3
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) an 𝒮-algebra, and
let { ∼𝓉 }𝓉∈𝒯 be a congruence on 𝒜. We call { ∼𝓉 }𝓉∈𝒯 locally finite
if for every 𝓉 ∈ 𝒯, the equivalence relation ∼𝓉 has only finitely many
equivalence classes.

A set ℒ that is recognisable will (in the section 6.8) turn out to be exactly
a set which admits a locally finite congruence such that ℒ is a union of
equivalence classes under that congruence. We give a name to this.

Definition 6.6.4
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) an 𝒮-algebra,
and ∼ = { ∼𝓉 }𝓉∈𝒯 a congruence on 𝒜. Let 𝓉 ∈ 𝒯. A subset ℒ ⊆ 𝒞𝓉 is
called ∼-saturated if for every equivalence class, either all representatives
of the class are in ℒ or none of them, that is,

∀𝒸, 𝒹 ∈ 𝒞𝓉 ∶ 𝒸 ∈ ℒ ∧ 𝒸 ∼𝓉 𝒹 ⇒ 𝒹 ∈ ℒ.

7. Inductive Sets
Recall that in monadic second-order logic, any predicate can be seen as “set
membership”, or as dividing the universe into “true” and “false” objects.
We now introduce predicates whose universe is an 𝒮-algebra in order to
work with formal logic within such an algebra. The predicates with which
we shall be primarily concerned are those which map a graph 𝐺 to ⊤ if 𝐺
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fulfils a certain property (for example, if it is 2-colourable) and to ⊥ if it
does not.
Definition 6.7.1

Let 𝑋 be a set. A predicate on 𝑋 is a map 𝑋 → { ⊤, ⊥ }.

The extension to typed algebras looks as follows.

Definition 6.7.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪) be an 𝒮-alge-
bra. A family of predicates on 𝒜 is a pair (𝒫, ⟨_⟩) such that

• 𝒫 is a set of functions,
• ⟨_⟩ ∶ 𝒫 → 𝒯,
• and each 𝓅 ∈ 𝒫 is a predicate on 𝒞⟨𝓅⟩.

That is, a family of predicates is simply a collection of predicates together
with the information to which carrier set each predicate can be applied.
We are later interested in the set of all graphs fulfilling a certain predicate,
say “the set of all 3-colourable graphs”. So interested are we in this, we
introduce a notation for it.
Definition 6.7.3

Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 = (𝒞, 𝒪) be an 𝒮-algebra,
and let (𝒫, ⟨_⟩) be a family of predicates on 𝒜. For 𝓅 ∈ 𝒫, we
write ⌈𝓅⌉ ≔ { 𝒸 ∈ 𝒞⟨𝓅⟩ : 𝓅(𝒸) = ⊤ } ⊆ 𝒞⟨𝓅⟩.

Our main concern will be to show that certain sets of the form ⌈𝓅⌉ are
recognisable. To this end, we meet a special class of predicate families.

7.1. Intuition
Say we are given a 2-uniform graph 𝐺, and we want to know whether its
vertices are of bounded degree, say whether no vertex has more than 𝑘
neighbours. To this end, we are given a family of predicates 𝓅0, 𝓅1, …
where 𝓅𝑖(𝐺) = ⊤ if and only if no vertex of 𝐺 has more than 𝑖 neighbours.
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Of course, we can check this in linear time by iterating over the vertices
of 𝐺 and counting the neighbours. But what if we have already checked
the degrees for some smaller graphs? Can we use this to speed up our
computation?
Assume we know that our graph 𝐺 is the direct sum of two smaller graphs,
say 𝐺 = 𝐺′ ⊕ 𝐺′′.

Does the number of neighbours of the marked vertex change? Of course
not, since disjoint sum adds no edges.
Hence, if we have already computed in an earlier step that 𝓅2(𝐺′) = ⊤
and 𝓅2(𝐺′′) = ⊤, then we know instantly that 𝓅2(𝐺) = ⊤!
More generally, we can “decompose” any 𝓅𝑖 on a graph 𝐺 = 𝐺′ ⊕ 𝐺′′ into

𝓅𝑖(𝐺) = {
⊤ if 𝓅𝑖(𝐺′) = 𝓅𝑖(𝐺′′) = ⊤
⊥ otherwise.
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What about terminal fusion?

媲
2
1 1,21

2

The non-terminal vertices do not change, while the vertices 1 and 2 fuse
into one vertex whose degree is the sum of the degrees of the original
vertices. Hence, for a graph 𝐺 with exactly two terminal vertices, we
have 𝓅2(媲2

1𝐺) = ⊤ if and only if 𝓅2(𝐺) and the terminal vertices are the
same or their degrees add up to at most two (which is not the case in our
picture, whence 𝓅2(媲2

1𝐺) = ⊥).
Therefore, if we restrict ourselves to graphs of type at most 2, we can
answer our original question via dynamic programming by breaking down
the graph into its constituent parts:
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2

1

1
2

1,2

To see whether the graph at the root vertex fulfils 𝓅2, we simply check
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whether the graph at its child vertex fulfils
a. 𝓅2

b. The two terminal vertices are the same or their degrees add up to at
most two.

To see whether property a is true, we simply check whether the graphs at
the leaves both fulfil 𝓅2. To see whether property b is true, we check the
terminals of the graphs at the leaves.
In this way, we have “broken down” a question about the root graph into
a series of questions about its constituent paths. This is not very useful
in this particular example, but for more complex questions, examining the
smaller constituent graphs may be significantly easier than answering the
question directly.
Note how, in order to compute the truth value of the predicate 𝓅2, we had to
introduce a second predicate checking a statement about terminal vertices
(even though we did not give it a name). This property of predicates,
where we can answer one given question about a graph by computing
more and potentially different questions on its constituent parts, is called
inductiveness.
Due to the need for additional predicates, inductiveness is not a property
of a single predicate, but always of a set or family of predicates. More
generally, a family of predicates on some (𝒯, ℱ, ⟨_⟩)-algebra (𝒞, 𝒪) will
be called “inductive” if for every function symbol 𝒻 ∈ ℱ and every pred-
icate 𝓅 ∈ 𝒫 that “knows” how to handle that function (that is, where
the types are compatible such that evaluating 𝓅(𝒪𝒻(… )) makes sense),
instead of evaluating 𝓅(𝒪𝒻(𝒸1, … , 𝒸𝑛)), we can find a logical formula
like 𝓅1(𝒸1) ∧ 𝓅2(𝒸2) ∨ 𝓅3(𝒸3) … that tells us whether 𝓅(𝒪𝒻(𝒸1, … , 𝒸𝑛))
is true without using 𝒻, where𝓅1, … are other predicates in 𝒫. If this
formula depends only on 𝓅 and 𝒻, this allows us to determine the truth
of 𝓅(𝒪𝒻(… )) without ever actually having to compute 𝒪𝒻.

7.2. Formal Definition
The reader is invited to cross-reference the definition with the example from
the previous section to see what is going on.
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Definition 6.7.4
Let 𝒜 = (𝒞, 𝒪) be a (𝒯, ℱ, ⟨_⟩)-algebra, and let ℋ ⊆ ℱ. A family
of predicates (𝒫, ⟨_⟩) on 𝒜 is called ℋ-inductive if for every 𝒻 ∈ ℋ
with ⟨𝒻⟩ = (𝓉1 … 𝓉𝑛, 𝓉) and for every predicate 𝓅 ∈ 𝒫 with ⟨𝓅⟩ = 𝓉,
the following conditions are fulfilled:
There are integers 𝑚1, … , 𝑚𝑛 ∈ ℕ such that:
There exists a formula of propositional logic 𝛷 with 𝑚 ≔ ∑𝑛

𝑖=1 𝑚𝑖
variable symbols and a sequence of 𝑚 elements of 𝒫, say

𝓅1,1, … , 𝓅1,𝑚1
, 𝓅2,1, … , 𝓅𝑛,𝑚𝑛

,

such that

∀𝑖 ∈ { 1, … , 𝑖 }, ∀𝑗 ∈ { 1, … , 𝑚𝑖 }∶ ⟨𝓅𝑖,𝑗⟩ = 𝓉𝑖

and

∀𝒸1 ∈ 𝒞𝓉1
, … , ∀𝒸𝑛 ∈ 𝒞𝓉𝑛

∶
𝓅(𝒪𝒻(𝒸1, … , 𝒸𝑛))
= 𝛷[𝓅1,1(𝒸1), … , 𝓅1,𝑚1

(𝒸1), 𝓅2,1(𝒸2), … , 𝓅𝑛,𝑚𝑛
(𝒸𝑛)].

The tuple (𝛷, 𝓅1,1, … , 𝓅1,𝑚1
, 𝓅2,1, … , 𝓅𝑛,𝑚𝑛

) is called an inductive de-
composition for 𝓅 with regard to 𝒻.

Note that while recognisability is a global property (we either know the
algebra morphism generating our set, or we know nothing), inductiveness
is a local property – to show that a family of predicates is inductive, we
can iterate over all pairs (𝓅, 𝒻) of a predicate 𝓅 and a function symbol 𝒻
and construct an inductive decomposition for 𝓅 with regard to 𝒻.
This is precisely what we shall do to prove Courcelle’s Theorem: we want to
show that a certain set of graphs is recognisable, but constructing abstract
algebra morphisms is hard. Rather than bash our head against this wall,
we show inductively that the set of graphs is of the form ⌈𝓅⌉ for some
predicate 𝓅 in an inductive family of predicates.
Theorem 6.8.2 shows that the three concepts we have introduced are in fact
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equivalent, whence the approach just described yields the desired result.

8. Equivalent Characterisations
We now show that the three concepts above can be reduced to one another.

Definition 6.8.1
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪) be an 𝒮-alge-
bra. A family of predicates (𝒫, ⟨_⟩) on 𝒜 is called locally finite if for
every 𝓉 ∈ 𝒯, the set { 𝓅 ∈ 𝒫 : ⟨𝓅⟩ = 𝓉 } is finite.

Theorem 6.8.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 = (𝒞, 𝒪) be an 𝒮-algebra,
let 𝓉 ∈ 𝒯, and let ℒ ⊆ 𝒞𝓉. Then the following statements are equivalent.

• ℒ is 𝒜-recognisable.
• There exists a locally finite ℱ-inductive family (𝒫, ⟨_⟩) of predi-

cates on 𝒜 and a 𝓅 ∈ 𝒫 such that ℒ = ⌈𝓅⌉.
• There exists a locally finite congruence ∼ on 𝒜 such that ℒ is

saturated with regard to ∼.

Proof. Fix for the entirety of this proof a signature 𝒮 = (𝒯, ℱ, ⟨_⟩),
an 𝒮-algebra 𝒜 = (𝒞, 𝒪), a type 𝓉 ∈ 𝒯, and a set ℒ ⊆ 𝒞𝓉.
Suppose first that ℒ is 𝒜-recognisable with ℒ = 𝒽𝓉

−1
�� for a locally

finite 𝒮-algebra ℬ = (𝒟, 𝒬), an 𝒮-algebra morphism {𝒽𝓉}𝓉∈𝒯 ∶ 𝒜 → ℬ,
and some �� ⊆ 𝒟𝓉.We construct a locally finite ℱ-inductive family of
predicates such that ℒ is of the form ⌈𝓅⌉ for some predicate 𝑝.
We fix a set of functions (whose values will be defined in a second)

𝒫 ≔ { 𝓅𝓊
𝒹 ∶ 𝒞𝓊 → { ⊤, ⊥ } : 𝓊 ∈ 𝒯, 𝒹 ∈ 𝒟𝓊 }

as well as one additional function 𝓅 ∶ 𝒞𝓉 → { ⊤, ⊥ } and set

⟨_⟩ ∶ 𝒫 ∪ { 𝓅 } → 𝒯, 𝑥 ↦ {
𝓊 𝑥 = 𝓅𝓊

𝒹 for some 𝒹
𝓉 𝑥 = 𝑝,
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making 𝒫 ∪ {𝓅} into a family of predicates on 𝒜.
The predicates’ values are defined as

∀𝓊 ∈ 𝒯∀𝒹 ∈ 𝒟𝓊 ∶ 𝓅𝓊
𝒹 ∶ 𝒸 ↦ {

⊤ 𝒽𝓊𝒸 = 𝒹
⊥ otherwise.

In other words, the predicate 𝓅𝓊
𝒹 is a sort of indicator function for the set

of preimages of 𝒹. The predicate 𝓅, then, shall be an indicator function
for the preimage of :��

𝓅 ∶ 𝒸 ↦ {
⊤ 𝒽𝓉𝒸 ∈ ��

⊥ otherwise.

Thus by definition, we have ℒ = ⌈𝓅⌉.
Since ℬ is locally finite, so is (𝒫 ∪ {𝓅}, ⟨_⟩). It remains to show that this
family is ℱ-inductive.
Take a symbol 𝑓 ∈ ℱ with ⟨𝒻⟩ = (𝓊1 … 𝓊𝑛, 𝓊) and a predicate 𝓅𝓊

𝒹 ∈ 𝒫.7

We want to find predicates 𝓅𝑖,𝑗 and a propositional formula 𝛷 such that
we have 𝓅𝓊

𝒹(𝒪𝒻(… )) = 𝛷[𝓅𝑖,𝑗(… )].
Fix for now some 𝒸1 ∈ 𝒞𝓊1

, … , 𝒸𝑛 ∈ 𝒞𝓊𝑛
. Because {𝒽𝓉}𝓉∈𝒯 is an algebra

morphism, by definition we know that

𝒽𝓊𝒪𝒻(𝒸1, … , 𝒸𝑛) = 𝒬𝒻(𝒽𝓊1
𝒸1, … , 𝒽𝓊𝑛

𝒸𝑛)

and thus

𝓅𝓊
𝒹(𝒪𝒻(𝒸1, … , 𝒸𝑛)) = ⊤ ⇔ 𝒬𝒻(𝒽𝓊1

𝒸1, … , 𝒽𝓊𝑛
𝒸𝑛) = 𝒹.

Since each 𝒟𝓊𝑖
is finite, the inputs for which 𝒬𝒻 equals 𝒹 can be written

down and expressed as a logical disjunction of conjunctions, that is,

𝒬𝒻(𝑥1, … , 𝑥𝑛) = 𝒹
⇔ (𝑥1 = 𝒹1

1 ∧ … ∧ 𝑥𝑛 = 𝒹𝑛
1 ) ∨ (𝑥1 = 𝒹1

2 ∧ … ∧ 𝑥𝑛 = 𝒹𝑛
2 ) ∨ …

Essentially, we build a giant table of the possible inputs of 𝒬𝒻 (which is a
function in ℬ) and express it as a propositional formula.

7 Apart from potentially 𝓅, this covers all predicates of compatible type.
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6.8: Equivalent Characterisations

Using our family of predicates, we conclude that for 𝑦1 ∈ 𝒞𝓊1
, … , 𝑦𝑛 ∈ 𝒞𝓊𝑛

we have

𝒬𝒻(𝒽𝓊1
𝑦1, … , 𝒽𝓊𝑛

𝑦𝑛) = 𝒹
⇔ 𝓅𝓊1

𝒹1
1
𝑦1 = ⊤ ∧ … ∧ 𝓅𝓊𝑛

𝒹𝑛
1
𝑦𝑛 = ⊤

∨ 𝓅𝓊1
𝒹1

2
𝑦1 = ⊤ ∧ … ∧ 𝓅𝓊𝑛

𝒹𝑛
2
𝑦𝑛 = ⊤

∨ … ,

whence

𝓅𝓊
𝒹(𝒪𝒻(𝑦1, … , 𝑦𝑛)) = ⊤

⇔ 𝓅𝓊1
𝒹1

1
𝑦1 = ⊤ ∧ … ∧ 𝓅𝓊𝑛

𝒹𝑛
1
𝑦𝑛 = ⊤

∨ 𝓅𝓊1
𝒹1

2
𝑦1 = ⊤ ∧ … ∧ 𝓅𝓊𝑛

𝒹𝑛
2
𝑦𝑛 = ⊤

∨ …

The right-hand side depends only on 𝒻 and 𝓅𝓊
𝒹, so we have found an

inductive decomposition for 𝓅𝓊
𝒹 with regard to 𝒻.

The only predicate which we have not examined is 𝓅, but the construction
here is analogous, except that the formula is even longer since we have to
allow any of the values in the (finite) set .��
We have now constructed an inductive decomposition for every predicate
in 𝒫 ∪ {𝓅} with regard to every compatible function symbol, proving that
the family (𝒫 ∪ {𝓅}, ⟨_⟩) is ℱ-inductive, showing the first implication
from the theorem.
Let now (𝒫, ⟨_⟩) be a locally finite ℱ-inductive family of predicates on 𝒜
such that ℒ = ⌈𝓅⌉ for some 𝓅 ∈ 𝒫. We construct a locally finite
congruence ∼ on 𝒜 such that ℒ is saturated with regard to ∼.
For every 𝓊 ∈ 𝒯, we define the following equivalence relation on 𝒞𝓊:

∀𝒸, 𝒹 ∈ 𝒞𝓊 ∶ 𝒸 ∼𝓊 𝒹 ∶⇔ ∀𝓅 ∈ ⟨_⟩−1{𝓊}∶ 𝓅(𝒸) = 𝓅(𝒹),

that is, two elements are equivalent if all compatible predicates agree on
their truth or falsity.
Due to the inductiveness of (𝒫, ⟨_⟩), we can evaluate predicates on functions
by considering only their inputs and a propositional formula, whence it is
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straightforward to see that the set { ∼𝓊 }𝓊∈𝒯 is a congruence on 𝒜. The
reader is invited to turn back to definition 6.6.1 to convince themselves of
this.
Consider now a set { 𝒸1, … } ⊆ 𝒞𝓊 of elements of pairwise different equiv-
alence classes under ∼𝓊. By definition of ∼𝓊, this means that every
pair (𝒸𝑖, 𝒸𝑗) disagrees on at least one predicate 𝓅 ∈ 𝒫. Since there are only
finitely many predicates of type 𝓊, the equivalence relation ∼𝓊 has only
finitely many equivalence classes.
Having thus constructed a locally finite congruence on 𝒜, it remains to
show that ℒ is saturated with regard to it. But ℒ = ⌈𝓅⌉ for some
predicate 𝓅 ∈ 𝒫, so if 𝒸 ∈ ℒ and 𝒹 ∈ 𝒞𝓉 with 𝒸 ∼𝓉 𝒹, by definition of ∼𝓉
we must have 𝒹 ∈ ℒ.
This shows the second implication.
Let finally ℒ be saturated with regard to some locally finite congru-
ence ∼ = { ∼𝓊 }𝓊∈𝒯 on 𝒜. We must show that ℒ is then 𝒜-recognisable.

Consider the canonical algebra morphism 𝜋∶ 𝒜 → 𝒜�∼ mapping each
element to its equivalence class. Since ∼ is locally finite, the sets 𝒞𝓊�∼𝓊
are finite, and hence 𝒜�∼ is locally finite.
Set �� ≔ 𝜋𝓉ℒ. Because ℒ is ∼-saturated, all elements of 𝒞𝓉 that would
be mapped to 𝜋𝓉ℒ must already be in ℒ, whence 𝜋−1

𝓉 �� = ℒ, proving the
final implication.

�

9. From Formulas to Predicates
The predicates with which we shall be working are essentially the functions
that, for a given sentence 𝜑 in ̊𝔏, map a graph 𝐺 to ⊤ if ⊧�̊�(𝐺) 𝜑 and to ⊥
if not. However, in order to apply theorem 6.8.2, we need this family to be
locally finite, and we can certainly build infinitely many logical formulas
in ̊𝔏.
We get around this restriction by bounding various parameters of 𝜑. Recall

120



�̊� is the circuitous
language of graphs.
(def. 5.6.1, p. 77)

The width of a
formula is the
maximum number
of nested quantifiers
– see definition 5.3.5.

|�̊�| is the set of all
well-formed
formulas over �̊�.
(def. 5.3.5, p. 61)

‖�̊�‖ denotes the set
of sentences over �̊�.
(def. 5.3.6, p. 62)

𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

�̊�(𝐺) is the
circuitous induced
structure of 𝐺.
(def. 5.6.2, p. 78)
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that, in the end, we shall only care about one particular given sentence
(for which we want to build a tree automaton), so these bounds are no
real restrictions – once given a sentence, we simply choose our parameters
accordingly.

Definition 6.9.1

Let 𝑤 ∈ ℕ. The set of well-formed formulas respectively sentences of ̊𝔏
that have width at most 𝑤 is denoted by | ̊𝔏|𝑤 respectively by ‖ ̊𝔏‖𝑤.
Let further 𝑙 ∈ ℕ. The set of well-formed formulas respectively sentences
of ‖ ̊𝔏‖𝑤 that use no variable symbol except 𝛿0, … , 𝛿𝑙 is denoted by | ̊𝔏|𝑙𝑤
respectively by ‖ ̊𝔏‖𝑙

𝑤.
Let finally 𝑘 ∈ ℕ. The set of well-formed formulas respectively sentences
of ‖ ̊𝔏‖𝑙

𝑤 that use no predicate symbol 𝜆𝑡
conn for 𝑡 > 𝑘 is denoted by | ̊𝔏|𝑙,𝑘𝑤

respectively by ‖ ̊𝔏‖𝑙,𝑘
𝑤 .

These restrictions almost suffice to make ‖ ̊𝔏‖ into a finite set up to tauto-
logical equivalence8, but ̊𝔏 has an additional infinite amount of function
symbols 𝛿term for us to worry about. We get around this by adopting an
equivalence relation that is slightly different from tautological equivalence.

Definition 6.9.2

Let 𝑛 ∈ ℕ. Two sentences 𝜑, 𝜓 ∈ ‖ ̊𝔏‖ are called type 𝑛 equivalent,
written 𝜑 𝑛∼ 𝜓, if

∀𝐺 ∈ 𝔊𝑛 ∶ ⊧�̊�(𝐺) 𝜑 ⇔ ⊧�̊�(𝐺) 𝜓 .

In other words, two type 𝑛 equivalent sentences hold true for exactly the
same set of graphs of type 𝑛. The definition says nothing about graphs of
other types, which is indeed an important fact since the functions 𝛿term can
detect terminal vertices and might thus lead to different truth values on the

8 Two sentences being “tautologically equivalent”, in layperson’s terms, means that one
can take the first formula, do a finite sequence of trivial transformations on it such as
resolving parentheses or applying de Morgan’s laws, and end up with the second formula.
This certainly implies (and is often even equivalent to) both formulas yielding the same
truth value on all variable assignments. An in-depth discussion can be found in [End72].
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same underlying graph depending on how many terminal vertices one adds.
Definition 6.9.2 is actually a special case of the following definition, which
will make our proof easier to read.

Definition 6.9.3

Let 𝑛 ∈ ℕ. Two terms 𝜒, 𝜉 ∈ ̊𝔏Term are called type 𝑛 equivalent, writ-
ten 𝜒 𝑛∼ 𝜉, if

• �⃖� = ⃖𝜉 and
• for every graph 𝐺 ∈ 𝔊𝑛 and for every variable assignment 𝜏 in ̊𝛺(𝐺)

which is full for 𝜒, we have

𝜒[𝜏] = 𝜉[𝜏].

Two well-formed formulas 𝜑, 𝜓 ∈ | ̊𝔏| are called type 𝑛 equivalent, writ-
ten 𝜑 𝑛∼ 𝜓, if

• �⃖� = ⃖𝜓 and
• for every graph 𝐺 ∈ 𝔊𝑛 and for every variable assignment 𝜏 in ̊𝛺(𝐺)

which is full for 𝜑, we have

𝜑[𝜏] ↔ 𝜓[𝜏].

Type 𝑛 equivalence is manifestly an equivalence relation. We now show that
for every 𝑛 ∈ ℕ, the number of equivalence classes of sentences under 𝑛∼ is
finite, yielding the local finiteness we so desperately desire.
First, a small technical observation.

Lemma 6.9.4

Let 𝑛 ∈ ℕ, and let 𝜑 ∈ | ̊𝔏|. Let further 𝜒 be a term occurring in 𝜑,
let 𝜉 be a term with 𝜉 𝑛∼ 𝜒, and let 𝜑′ denote the formula where every
occurrence of 𝜒 is replaced by 𝜉.
Then 𝜑 𝑛∼ 𝜑′.

Proof. Let 𝑛 ∈ ℕ, and let 𝜑 ∈ | ̊𝔏|. Let 𝜒 be a term occurring in 𝜑, 𝜉 a
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term with 𝜉 𝑛∼ 𝜒, and denote for any formula the same formula with every
occurrence of 𝜒 replaced by 𝜉 with a prime.
We prove the claim by induction over the cases of definition 5.3.5.

Case 1: 𝜑 is atomic, say 𝜑 = 𝜌(𝜒1, … , 𝜒𝑘) for some 𝑘 ∈ ℕ. If 𝑘 = 0, then
there is nothing to show.
If 𝑘 > 0, without loss of generality, the term to replace is 𝜒1. We are given
another term 𝜉 with 𝜉 𝑛∼ 𝜒1, in particular, ⃖𝜉 = �⃖�1, whence �⃖�′ = �⃖�.

Let now 𝐺 ∈ 𝔊𝑛 and let 𝜏 be a variable assignment in ̊𝛺(𝐺) which is full
for 𝜑. Then by definition 5.3.11, we have

𝜑[𝜏] ↔ ⊤ ⇔

⎧{{
⎨{{⎩

(𝜒1[𝜏 ], 𝜒2[𝜏 ], … , 𝜒𝑛[𝜏 ]) ∈ ̊𝛺(𝐺)(𝛬) if 𝜌 = 𝛬
for some 𝛬 ∈ 𝛬𝑛 �̊�

(𝜒1[𝜏 ], 𝜒2[𝜏 ], … , 𝜒𝑛[𝜏 ]) ∈ 𝜏(𝜆) if 𝜌 = 𝜆
for some 𝜆 ∈ 𝜆𝑛 �̊�

⇔

⎧{{
⎨{{⎩

(𝜉[𝜏], 𝜒2[𝜏 ], … , 𝜒𝑛[𝜏 ]) ∈ ̊𝛺(𝐺)(𝛬) if 𝜌 = 𝛬
for some 𝛬 ∈ 𝛬𝑛 �̊�

(𝜉[𝜏 ], 𝜒2[𝜏 ], … , 𝜒𝑛[𝜏 ]) ∈ 𝜏(𝜆) if 𝜌 = 𝜆
for some 𝜆 ∈ 𝜆𝑛 �̊�

⇔ 𝜑′[𝜏 ] ↔ ⊤,

whence 𝜑 𝑛∼ 𝜑′.

Case 2: 𝜑 = ¬𝜓 for some 𝜓 ∈ | ̊𝔏|. The claim follows immediately since by
induction hypothesis, we have 𝜓 𝑛∼ 𝜓′.

Case 3: 𝜑 = 𝜓 ∧ 𝜁 for some 𝜓, 𝜁 ∈ | ̊𝔏|. Again, the claim follows immedi-
ately since by induction hypothesis, we have 𝜓 𝑛∼ 𝜓′ and 𝜁 𝑛∼ 𝜁′.

Case 4: 𝜑 = ∀𝛿0𝜓 for some 𝜓 ∈ | ̊𝔏| and some 𝛿0 ∈ 𝛿0 �̊�. By induction hy-
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pothesis, we have 𝜓 𝑛∼ 𝜓′, and checking definition 5.3.11 reveals that

𝜑[𝜏] ⇔ 𝜓[𝜅] ↔ ⊤ for every full variable assignment 𝜅
for 𝜓 in ̊𝛺(𝐺) with 𝜅

⃖⃖ ⃖⃖ ⃖⃖𝜑
= 𝜏

⃖⃖ ⃖⃖ ⃖⃖𝜑

⇔ 𝜓′[𝜅] ↔ ⊤ for every full variable assignment 𝜅
for 𝜓′ in ̊𝛺(𝐺) with 𝜅

⃖⃖ ⃖⃖ ⃖⃖𝜑
= 𝜏

⃖⃖ ⃖⃖ ⃖⃖𝜑

⇔ 𝜑′[𝜏 ],

as desired.

The claim is hence proven for all well-formed formulas of ̊𝔏.
�

The reader should now refer back to definition 6.9.1 to remind themselves
of the restrictions on our formulas.
Theorem 6.9.5

Let 𝑛 ∈ ℕ, and let 𝑤, 𝑙, 𝑘 ∈ ℕ. Then the set

| ̊𝔏|𝑙,𝑘𝑤�𝑛∼

is finite.

Proof. Let 𝑛 ∈ ℕ. Let further 𝑤, 𝑙, 𝑘 ∈ ℕ. We show that the set | ̊𝔏|𝑙,𝑘𝑤
admits only finitely many pairwise nonequivalent well-formed formulas for
type 𝑛, implying the claim.
As always, we move along the trail of definitions 5.3.2 to 5.3.5.
We first ascertain that there are only finitely many terms to consider before
applying the recursive procedure from definition 5.3.5.
The function symbol ∅ can only be used to build a single term, ∅().
Let now 𝜒 be an elementary term, that is, either a nullary function variable
symbol or the term ∅(). There are exactly 𝑙 + 2 different such terms,
a finite number.9 Let further 𝐾, 𝐾′ ⊆ ℕ> 0 be finite. If 𝜒 is a variable

9 There are variable symbols indexed 0, … , 𝑙 plus the symbol ∅.
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symbol and 𝜏 is a variable assignment on a type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡)
with 𝜏(𝜒) ⊆ 𝑉, then

𝛿𝐾′

term(𝛿𝐾
term(𝜒))[𝜏 ] = 𝜏(𝜒) ∪ {𝑡(𝑖) : 𝑖 ∈ 𝐾, 𝑖 ≤ 𝑛} ∪ {𝑡(𝑖) : 𝑖 ∈ 𝐾′, 𝑖 ≤ 𝑛}

= 𝜏(𝜒) ∪ { 𝑡(𝑖) : 𝑖 ∈ 𝐾 ∪ 𝐾′, 𝑖 ≤ 𝑛 }
= 𝛿𝐾∪𝐾′

term (𝜒)[𝜏 ].

If, on the other hand, 𝜏(𝜒) ⊆ 𝐸, then

𝛿𝐾′

term(𝛿𝐾
term(𝜒))[𝜏 ] = 𝜒[𝜏] = 𝛿𝐾∪𝐾′

term (𝜒)[𝜏 ].

For 𝜒 = ∅, we have 𝛿𝐾′

term(𝛿𝐾
term(∅)) = 𝛿𝐾∪𝐾′

term (∅) by the same reasoning as
for a vertex variable.
By induction, it is now clear that any term with nested occurrences of 𝛿term
is type 𝑛 equivalent to the same term with those nested occurrences replaced
by single 𝛿term symbols. Since there are no other function symbols in ̊𝔏,
this shows that there are only finitely many type 𝑛 non-equivalent terms
in ̊𝔏.
Using lemma 6.9.4, we can now assume without loss of generality that all
terms are of the form 𝛿0, ∅, 𝛿𝐾

term(𝛿0), or 𝛿𝐾
term(∅), where 𝛿0 is a variable

symbol and 𝐾 ⊆ ℕ> 0 is finite, because if the formula we are considering
contains a term not of this form, we can replace this term by one of ours
and obtain a type 𝑛 equivalent formula.
It remains to show that we can restrict ourselves to finitely many of the
function symbols 𝛿𝐾

term.
For a finite set 𝐾 ⊆ ℕ> 0, denote by 𝐾≤ 𝑛 the set { 𝑖 ∈ 𝐾 : 𝑖 ≤ 𝑛 }.
Consider a term of the form 𝛿𝐾

term(𝜒), where 𝜒 is an elementary term
and 𝐾 ⊆ ℕ> 0 is finite, and consider a type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡)
with a variable assignment 𝜏. If 𝜒 is a variable symbol with 𝜏(𝜒) ⊆ 𝑉, then

𝛿𝐾
term(𝜒)[𝜏 ] = 𝜏(𝜒) ∪ { 𝑡(𝑖) : 𝑖 ∈ 𝐾, 𝑖 ≤ 𝑛 }

= 𝜏(𝜒) ∪ { 𝑡(𝑖) : 𝑖 ∈ 𝐾≤ 𝑛 }

= 𝛿𝐾≤ 𝑛
term(𝜒)[𝜏 ],

and analogously for 𝜒 = ∅. For 𝜏(𝜒) ⊆ 𝐸, we get even more easily

𝛿𝐾
term(𝜒)[𝜏 ] = 𝜒[𝜏] = 𝛿𝐾≤ 𝑛

term(𝜒)[𝜏 ].
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Since the only thing that went into this reasoning was the type of 𝐺, we
can henceforth (again by virtue of lemma 6.9.4) assume without loss of
generality that no function symbol 𝛿𝐾

term references a set 𝐾 with any element
greater than 𝑛.
Because ⋃𝑛

𝑖=1 𝟚
{ 1,…,𝑖 } = 𝟚{ 1,…,𝑛 } is finite and there are no non-nullary

function symbols except for the 𝛿𝐾
term, this implies that, if we restrict

ourselves to the first 𝑙 + 1 variable symbols, there are without loss of
generality only finitely many terms that can occur in a formula up to type 𝑛
equivalence.
We now move on to atomic formulas.
We restrict our predicate symbols to use of the symbols of type 𝜆conn only
the first 𝑘 + 1 many, 𝜆0

conn, … , 𝜆𝑘
conn, leaving only finitely many predicate

symbols in total. Because the set of terms is also finite, this yields only
finitely many atomic formulas.
We show that these combine to only finitely many non-equivalent well-
formed formulas by induction on 𝑤, that is, on the maximum number of
nested quantifiers.
We assume without loss of generality that no formula contains the sub-
string ¬¬ since for any formula 𝜑, we have 𝜑 𝑛∼ ¬¬𝜑.
For 𝑤 = 0, formulas cannot contain quantifiers. Hence every formula is of
the form 𝜑1 ∧ … ∧ 𝜑𝑟 for some 𝑟 ∈ ℕ> 0, where every 𝜑𝑖 is either an atomic
formula or the negation of an atomic formula.
Since there are only finitely many atomic formulas and two occurrences of
the same 𝜑𝑖 are type 𝑛 equivalent to one occurrence of 𝜑𝑖 (indeed, 𝜑 ∧ 𝜑
always has the same truth value as 𝜑 under all full variable assignments),
there can only be finitely many non-equivalent formulas of this form.
Suppose now the claim has been proven for formulas of width at most 𝑤 ∈ ℕ.
For a formula of the form ∀𝛿0𝜑 of width 𝑤 + 1, the formula 𝜑 has width 𝑤.
In particular, there are only finitely many choices for 𝜑. There are also
only 𝑙 + 1 choices for 𝛿0, meaning that there are only finitely many well-
formed formulas of the form ∀𝛿0𝜑.
But an arbitrary formula of width 𝑤 + 1 must be of the form 𝜑1 ∧ … ∧ 𝜑𝑟
for some 𝑟 ∈ ℕ> 0, where each 𝜑𝑖 is of the form ∀𝛿0𝜑, ¬∀𝛿0𝜑, 𝜑, or ¬𝜑
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for some variable symbol 𝛿0 and some well-formed formula 𝜑 of width at
most 𝑤. By the same argument as before, there can only be finitely many
non-equivalent well-formed formulas of this form.

�

Since every sentence is in particular a well-formed formula, we get an
immediate special case.

Corollary 6.9.6
Let 𝑛 ∈ ℕ, and let 𝑤, 𝑙, 𝑘 ∈ ℕ. Then the set

‖ ̊𝔏‖𝑙,𝑘
𝑤�𝑛∼

is finite.

We now define a family of predicates on the algebra of graphs which will
transform a graph property (given as a monadic second-order sentence) into
the language of algebras for use in our proofs.

Definition 6.9.7

Let 𝑤, 𝑙, 𝑘 ∈ ℕ, let 𝑛 ∈ ℕ, and let 𝜑 ∈ ‖ ̊𝔏‖𝑙,𝑘
𝑤�𝑛∼. We set

𝓅𝑛
𝜑 ∶ 𝔊𝑛 → { ⊤, ⊥ }, 𝐺 ↦ {

⊤ if ⊧�̊�(𝐺) 𝜑 for some10 𝜑 ∈ 𝜑
⊥ otherwise

and
𝒫𝑛

𝑤,𝑙,𝑘 ≔ { 𝓅𝑛
𝜑 : 𝜑 ∈ ‖ ̊𝔏‖𝑙,𝑘

𝑤�𝑛∼ }.

With this definition, for any 𝑤, 𝑙, 𝑘 ∈ ℕ, the pair ({ 𝒫𝑛
𝑤,𝑙,𝑘 }𝑛∈ℕ, 𝓅𝑛

𝜑 ↦ 𝑛)
is a family of predicates on 𝔊 (see definition 6.7.2). For a given monadic
second order sentence 𝜑, the predicate 𝓅𝑛

𝜑 tells us about every graph of
type 𝑛 whether or not it fulfils the formula 𝜑. Since the predicates for
type 𝑛 equivalent formulas would be the same anyway, we have immediately
identified them.

10 Here, “for some” is equivalent to “for all”, since all formulas in 𝜑 are type 𝑛 equivalent.
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We give this family a name for later reference.

Definition 6.9.8
Let 𝑤, 𝑙, 𝑘 ∈ ℕ. We set

𝒫𝑙,𝑘
𝑤 ≔ ({ 𝒫𝑛

𝑤,𝑙,𝑘 }𝑛∈ℕ, ⟨_⟩ ∶ 𝓅𝑛
�̊� ↦ 𝑛) .

Remembering why we are doing all this, we want to show that we can apply
theorem 6.8.2.
Lemma 6.9.9

Let 𝑤, 𝑙, 𝑘 ∈ ℕ. Then 𝒫𝑙,𝑘
𝑤 is locally finite.

Proof. Let 𝑤, 𝑙, 𝑘 ∈ ℕ. Recall that “locally finite”, by definition 6.8.1,
means that for every 𝑛 ∈ ℕ, the set { 𝓅 ∈ 𝒫𝑙,𝑘

𝑤 : ⟨𝓅⟩ = 𝑛 } should be finite.
But this is precisely the statement of corollary 6.9.6.

�

We are now ready for the final strike: we prove that the family of predicates
so defined is inductive. Afterwards, all the obstacles will fall like dominoes
before the combined might of our theorems.
We split the proof into three theorems, one for each kind of function symbol
in 𝔊.
Theorem 6.9.10

Let 𝑤, 𝑙, 𝑘 ∈ ℕ. Then 𝒫𝑙,𝑘
𝑤 is 𝔉⊕-inductive.

Proof. Let us fix some 𝑤, 𝑙, 𝑘 ∈ ℕ.
Recall first from definition 6.2.1 that 𝔉⊕ = { ⊕𝑏

𝑎 : 𝑎, 𝑏 ∈ ℕ }. Checking
definition 6.7.4, we discover that we need to find an inductive decomposition
for every pair (𝓅𝑛

𝜑, ⊕𝑏
𝑎 ) with 𝓅𝑛

𝜑 ∈ 𝒫𝑙,𝑘
𝑤 and 𝑎 + 𝑏 = 𝑛.

We first observe that in order to decompose a predicate 𝓅𝑛
𝜑 with regard

to ⊕𝑏
𝑎 with 𝑎 + 𝑏 = 𝑛, we can simply decompose a sentence 𝜑 ∈ 𝜑: if we
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find a formula 𝛷 of propositional logic and sentences 𝜑a
1, … , 𝜑a

𝑟, 𝜑b
1, … , 𝜑b

𝑠
such that for all 𝐺 ∈ 𝔊𝑎 and for all 𝐺′ ∈ 𝔊𝑏 we have

⊧�̊�(𝐺⊕𝐺′) 𝜑 ⇔ 𝛷[⊧�̊�(𝐺) 𝜑a
1, … , ⊧�̊�(𝐺) 𝜑a

𝑟, ⊧�̊�(𝐺) 𝜑b
1, … , ⊧�̊�(𝐺) 𝜑b

𝑠 ]

and we can choose 𝜑a
1, … , 𝜑a

𝑟, 𝜑b
1, … , 𝜑b

𝑠 to be in ‖ ̊𝔏‖𝑙,𝑘
𝑤 , then for all 𝐺 ∈ 𝔊𝑎

and for all 𝐺′ ∈ 𝔊𝑏 we have

𝓅𝑛
𝜑(𝐺 ⊕ 𝐺′) = 𝛷[𝓅𝑎

𝜑a
1
(𝐺), … , 𝓅𝑎

𝜑a
𝑟
(𝐺), 𝓅𝑏

𝜑b
1
(𝐺′), … , 𝓅𝑏

𝜑b
𝑠
(𝐺′)]

and thus an inductive decomposition for 𝓅𝑛
𝜑 with regard to ⊕𝑏

𝑎 .
In order to show that every sentence decomposes like this, we need to
once again use the recursive structure of definition 5.3.5 and allow free
variables. We proceed as follows: suppose we are given graphs 𝐺 ∈ 𝔊𝑎
and 𝐺′ ∈ 𝔊𝑏 and a variable assignment 𝜏 in ̊𝛺(𝐺 ⊕ 𝐺′). We define new
variable assignments 𝜏𝐺 in ̊𝛺(𝐺) and 𝜏𝐺′ in ̊𝛺(𝐺′) with each at most
as many variables as 𝜏. If we are now given a formula 𝜑 with width at
most 𝑤, at most 𝑙 different variable symbols, and predicates constrained
by 𝑘, possibly containing free variables, and a full variable assignment 𝜏
for 𝜑 in ̊𝛺(𝐺 ⊕ 𝐺′), we show that there are formulas 𝜑a

1, … , 𝜑a
𝑟, 𝜑b

1, … , 𝜑b
𝑠

and a propositional formula 𝛷 such that 𝜏𝐺 is a full variable assignment
for 𝜑a

1, … , 𝜑a
𝑟, 𝜏𝐺′ is a full variable assignment for 𝜑b

1, … , 𝜑b
𝑠 , we have

𝜑[𝜏] ↔ 𝛷[𝜑a
1[𝜏𝐺], … 𝜑a

𝑟[𝜏𝐺], 𝜑b
1[𝜏𝐺′ ], … 𝜑b

𝑠 [𝜏𝐺′ ]],

and such that all the formulas 𝜑a
1, … , 𝜑a

𝑟, 𝜑b
1, … , 𝜑b

𝑠 still obey the same
restrictions (according to 𝑤, 𝑙, 𝑘) as the original formula.

Then in particular, we can decompose every sentence in ‖ ̊𝔏‖𝑙,𝑘
𝑤 as discussed

above, and the theorem follows.
Note that we need not check that the new formulas obey the type re-
striction (that is, only use the functions 𝛿𝐾

term for 𝐾 ⊆ { 1, … , 𝑎 } respec-
tively 𝐾 ⊆ { 1, … , 𝑏 }) because once we find any formula that works on 𝐺,
we can find a type 𝑎 equivalent one which obeys the restriction by the
construction in the proof of theorem 6.9.5.
We first construct the new variable assignments. Fix to this end two
graphs 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔊𝑎 and 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈, 𝑡′) ∈ 𝔊𝑏.
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Let now 𝜏 be a variable assignment in ̊𝛺(𝐺 ⊕ 𝐺′) with domain 𝑋.
We set

𝜏𝐺 ∶ 𝑋 → | ̊𝛺(𝐺)|, 𝑥 ↦ 𝜏(𝑥) ∩ (𝑉 ∪ 𝐸) ,

recalling that all variables in ̊𝔏 are set-valued and that all vertices and
edges of 𝐺 are contained in 𝐺 ⊕ 𝐺′. (As always, we assume that 𝐺 and 𝐺′

are disjoint.)
Analogously, we set

𝜏𝐺′ ∶ 𝑋 → | ̊𝛺(𝐺′)|, 𝑥 ↦ 𝜏(𝑥) ∩ (𝑉 ′ ∪ 𝐸′) ,

ending up with variable assignments in ̊𝛺(𝐺) and ̊𝛺(𝐺′), respectively.
Let now a well-formed formula 𝜑 be given, and let 𝜏 be a full variable
assignment for 𝜑 in ̊𝛺(𝐺 ⊕ 𝐺′). We show the existence of the claimed
formulas by induction.
We introduce the following notation: let 𝐾 ⊆ { 1, … , 𝑎 + 𝑏 }. We set

𝐾𝑎 ≔ { 𝑖 : 𝑖 ∈ 𝐾, 𝑖 ≤ 𝑎 }

and
𝐾𝑏 ≔ { 𝑖 − 𝑎 : 𝑖 ∈ 𝐾, 𝑖 > 𝑎 }.

If 𝐾 is a set of indices of terminal vertices, that means that 𝐾𝑎 contains
just the terminal vertices in 𝐺 that correspond to these indices in 𝐺 ⊕ 𝐺′,
and 𝐾𝑏 contains those in 𝐺′. The indices in 𝐾𝑏, consequently, must be
shifted down to reach the correct correspondence since the terminal vertices
of 𝐺 ⊕ 𝐺′ are those of 𝐺 concatenated with those of 𝐺′.
For every term 𝜒, we set

𝜒𝑎 ≔
⎧{
⎨{⎩

𝜒 if 𝜒 elementary

𝛿𝐾𝑎
term(𝜉)

if 𝜒 = 𝛿𝐾
term(𝜉)

for some 𝐾 ⊆ { 1, … , 𝑎 + 𝑏 }, 𝜉 elementary

and analogously

𝜒𝑏 ≔
⎧{
⎨{⎩

𝜒 if 𝜒 elementary

𝛿𝐾𝑏
term(𝜉)

if 𝜒 = 𝛿𝐾
term(𝜉)

for some 𝐾 ⊆ { 1, … , 𝑎 + 𝑏 }, 𝜉 elementary.
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In the following, let 𝜒0, … be arbitrary terms. Let 𝜑 be a well-formed
formula in | ̊𝔏|𝑙,𝑘𝑤 .

Case 1: 𝜑 is atomic. Recall that all terms are either elementary or of the
form 𝛿𝐾

term(𝜒) for an elementary term 𝜒 and that there are no predicate
variables in ̊𝔏.

Case 1.1: 𝜑 = 𝜆sgl(𝜒0). We set

𝜑a
1 ≔ 𝜆sgl(𝜒𝑎

0),
𝜑b

1 ≔ 𝜆sgl(𝜒𝑏
0),

𝜑a
2 ≔ 𝜒𝑎

0⊑∅(),
𝜑b

2 ≔ 𝜒𝑏
0⊑∅(),

and
𝛷 ≔ (𝜑a

1 ∧ 𝜑b
2) ∨ (𝜑b

1 ∧ 𝜑a
2).

Then 𝜑a
1, 𝜑a

2, 𝜑b
1, and 𝜑b

2 have the same width, number of variables, and
predicate restrictions as 𝜑, they have the same set of free variables (mak-
ing 𝜏𝐺 and 𝜏𝐺′ full), and due to the definition of 𝜏𝐺 and 𝜏𝐺′ , we have

𝜑[𝜏] ↔ |𝜒0[𝜏 ]| = 1
↔ |𝜒𝑎

0 [𝜏 ] ∩ | ̊𝛺(𝐺)|| = 1 ∧ 𝜒𝑏
0[𝜏 ] ∩ | ̊𝛺(𝐺′)| = ∅

∨ |𝜒𝑏
0[𝜏 ] ∩ | ̊𝛺(𝐺′)|| = 1 ∧ 𝜒𝑎

0 [𝜏 ] ∩ | ̊𝛺(𝐺)| = ∅
↔ (𝜑a

1[𝜏𝐺] ∧ 𝜑b
2[𝜏𝐺′ ]) ∨ (𝜑b

1[𝜏𝐺′ ] ∧ 𝜑a
2[𝜏𝐺])

↔ 𝛷[𝜑a
1[𝜏𝐺], 𝜑a

2[𝜏𝐺], 𝜑b
1[𝜏𝐺′ ], 𝜑b

2[𝜏𝐺′ ]],

as desired.
In the following cases, we shall omit the step-by-step transformation of 𝜑[𝜏]
and trust that the reader can follow our arguments without this aid (or
with a pen and paper).

Case 1.2: 𝜑 = 𝜒0 ⊑ 𝜒1. We set 𝜑a ≔ 𝜒𝑎
0 ⊑ 𝜒𝑎

1 , analogously 𝜑b ≔ 𝜒𝑏
0 ⊑ 𝜒𝑏

1,
and 𝛷 ≔ 𝜑a∧𝜑b. Width, number of variables, predicate restrictions, and set
of free variables again do not change, and since 𝐺 and 𝐺′ partition 𝐺 ⊕ 𝐺′,
we have 𝜑[𝜏] ↔ 𝜑a[𝜏𝐺] ∧ 𝜑b[𝜏𝐺′ ].
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Case 1.3: 𝜑 = 𝜆𝑖
conn(𝜒0, 𝜒1, … , 𝜒𝑖) for some 𝑖 ∈ ℕ, 𝑖 ≤ 𝑘. We set

𝜑a ≔ 𝜆𝑖
conn(𝜒𝑎

0 , 𝜒𝑎
1 , … , 𝜒𝑎

𝑖 ), 𝜑b ≔ 𝜆𝑖
conn(𝜒𝑏

0, 𝜒𝑏
1, … , 𝜒𝑏

𝑖 ),

and 𝛷 ≔ 𝜑a ∨ 𝜑b. Width, number of variables, predicate restrictions, and
set of free variables again do not change, and since no edge in 𝐺 ⊕ 𝐺′ can
connect a vertex from 𝐺 to a vertex from 𝐺′, the claim follows.

The claim is thus shown for all atomic formulas.

Case 2: 𝜑 is built from formulas for which the claim has been proven.

Case 2.1: 𝜑 = ¬𝜓. Let (𝛷𝜓, 𝜓a
1, … , 𝜓a

𝑟, 𝜓b
1, … , 𝜓b

𝑠) be the decomposition
of 𝜓. We set

𝜑a
1 ≔ 𝜓a

1, … , 𝜑a
𝑟 ≔ 𝜓a

𝑟, 𝜑b
1 ≔ 𝜓b

1, … , 𝜑b
𝑠 ≔ 𝜓b

𝑠 ,

and 𝛷 ≔ ¬𝛷𝜓. Once more, the restrictions do not change (by induction
hypothesis), and of course

𝜑[𝜏] ↔ (¬𝜓)[𝜏] ↔ ¬(𝜓[𝜏]) ↔ ¬𝛷[𝜓a
1[𝜏𝐺], … , 𝜓a

𝑟[𝜏𝐺], 𝜓b
1[𝜏𝐺′ ], … , 𝜓b

𝑠 [𝜏𝐺′ ]].

Case 2.2: 𝜑 = 𝜓 ∧ 𝜁. Let (𝛷𝜓, 𝜓a
1, … , 𝜓a

𝑟𝜓
, 𝜓b

1, … , 𝜓b
𝑠𝜓

) be the decomposi-
tion of 𝜓 and let (𝛷𝜁, 𝜁a

1 , … , 𝜁a
𝑠𝜁

, 𝜁b
1 , … , 𝜁b

𝑠𝜁
) be the decomposition of 𝜁. Set

𝜑a
1 ≔ 𝜓a

1, … , 𝜑a
𝑟𝜓

≔ 𝜓a
𝑟𝜓

, 𝜑a
𝑟𝜓+1 ≔ 𝜁a

1 , … , 𝜑a
𝑟𝜓+𝑟𝜁

≔ 𝜓a
𝑟𝜁

and
𝜑b

1 ≔ 𝜓b
1, … , 𝜑b

𝑟𝜓
≔ 𝜓b

𝑟𝜓
, 𝜑b

𝑟𝜓+1 ≔ 𝜁b
1 , … , 𝜑b

𝑟𝜓+𝑟𝜁
≔ 𝜓b

𝑟𝜁
,

which again preserves all restrictions as per the induction hypothesis. Set-
ting 𝛷 ≔ 𝛷𝜓 ∧ 𝛷𝜁 yields the desired result by virtue of

𝜑[𝜏] ↔ 𝜓[𝜏] ∧ 𝜁[𝜏]
↔ 𝛷𝜓[𝜓a

1[𝜏𝐺], … , 𝜓a
𝑟𝜓

[𝜏𝐺], 𝜓b
1[𝜏𝐺′ ], … , 𝜓b

𝑠𝜓
[𝜏𝐺′ ]]

∧ 𝛷𝜁[𝜁a
1 [𝜏𝐺], … , 𝜁a

𝑠𝜁
[𝜏𝐺], 𝜁b

1 [𝜏𝐺′ ], … , 𝜁b
𝑠𝜁

[𝜏𝐺′ ]]
↔ (𝛷𝜓 ∧ 𝛷𝜁)[𝜓a

1[𝜏𝐺], … , 𝜓a
𝑟𝜓

[𝜏𝐺], 𝜓b
1[𝜏𝐺′ ], … , 𝜓b

𝑠𝜓
[𝜏𝐺′ ],

𝜁a
1 [𝜏𝐺], … , 𝜁a

𝑠𝜁
[𝜏𝐺], 𝜁b

1 [𝜏𝐺′ ], … , 𝜁b
𝑠𝜁

[𝜏𝐺′ ]].
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Case 3: 𝜑 = ∃𝜇0𝜓. We use the existential quantifier rather than the univer-
sal one simply for convenience. As the reader might remember, it matters
not which we use to define our language and which is a shorthand.
Let (𝛷𝜓, 𝜓a

1, … , 𝜓a
𝑟, 𝜓b

1, … , 𝜓b
𝑠) be the decomposition of 𝜓.

For a full variable assignment 𝜏 for 𝜑 whose domain (without loss of
generality) does not include 𝜇0, we have

𝜑[𝜏] ↔ (∃𝜇0𝜓)[𝜏]
↔ ∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶

𝜓[𝜏, 𝜇0 ↦ 𝑋]
↔ ∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶

𝛷𝜓[𝜓a
1[𝜏𝐺, 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺)|], … , 𝜓a

𝑟𝜓
[𝜏𝐺, 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺)|],

𝜓b
1[𝜏𝐺′ , 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺′)|], … , 𝜓b

𝑠𝜓
[𝜏𝐺′ , 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺′)|]].

Without loss of generality, we can assume that 𝛷𝜓 is in disjunctive normal
form, that is,

𝛷𝜓 = 𝛷1 ∨ … ∨ 𝛷𝑐

for some ∈ ℕ> 0 such that for all 𝑖 ∈ { 1, … , 𝑐 } we have

𝛷𝑖 = 𝛷a,1
𝑖 ∧ … ∧ 𝛷a,𝑡a

𝑖 ∧ 𝛷b,1
𝑖 ∧ … ∧ 𝛷b,𝑡b

𝑖

for some 𝑡a, 𝑡b ∈ ℕ such that for every 𝑗 ∈ { 1, … , 𝑡a }, the expression 𝛷𝑗
𝑖

is either 𝜓a
𝑢 or ¬𝜓a

𝑢 for some 𝑢 ∈ { 1, … , 𝑟 } and for every 𝑗 ∈ { 1, … , 𝑡b },
the expression 𝛷𝑗

𝑖 is either 𝜓b
𝑢 or ¬𝜓b

𝑢 for some 𝑢 ∈ { 1, … , 𝑠 }.
Hence

∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶ 𝛷𝜓[…] ↔ ∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶ 𝛷1[…] ∨ … ∨ 𝛷𝑐[…]
↔ (∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶ 𝛷1[…])

∨ …
∨ (∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶ 𝛷𝑐[…]) .

We pick an 𝑖 ∈ { 1, … , 𝑐 } and notice that, since | ̊𝛺(𝐺)| and | ̊𝛺(𝐺′)|
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partition | ̊𝛺(𝐺 ⊕ 𝐺′)|, we have

∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶ 𝛷𝑖[…]
↔ ∃𝑋 ⊆ | ̊𝛺(𝐺 ⊕ 𝐺′)| ∶ 𝛷a,1

𝑖 [𝜏𝐺, 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺)|]
∧ …
∧ 𝛷a,𝑡a

𝑖 [𝜏𝐺, 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺)|]
∧ 𝛷b,1

𝑖 [𝜏𝐺′ , 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺′)|]
∧ …
∧ 𝛷b,𝑡b

𝑖 [𝜏𝐺′ , 𝜇0 ↦ 𝑋 ∩ | ̊𝛺(𝐺′)|]
↔ ∃𝑋𝐺 ⊆ | ̊𝛺(𝐺)|, ∃𝑋𝐺′ ⊆ | ̊𝛺(𝐺′)| ∶

𝛷a,1
𝑖 [𝜏𝐺, 𝜇0 ↦ 𝑋𝐺]

∧ …
∧ 𝛷a,𝑡a

𝑖 [𝜏𝐺, 𝜇0 ↦ 𝑋𝐺]
∧ 𝛷b,1

𝑖 [𝜏𝐺′ , 𝜇0 ↦ 𝑋𝐺′ ]
∧ …
∧ 𝛷b,𝑡b

𝑖 [𝜏𝐺′ , 𝜇0 ↦ 𝑋𝐺′ ]
↔ ∃𝑋𝐺 ⊆ | ̊𝛺(𝐺)| ∶ (𝛷a,1

𝑖 [𝜏𝐺, 𝜇0 ↦ 𝑋𝐺]
∧ …
∧ 𝛷a,𝑡a

𝑖 [𝜏𝐺, 𝜇0 ↦ 𝑋𝐺])
∧ ∃𝑋𝐺′ ⊆ | ̊𝛺(𝐺′)| ∶ (𝛷b,1

𝑖 [𝜏𝐺′ , 𝜇0 ↦ 𝑋𝐺′ ]
∧ …
∧ 𝛷b,𝑡b

𝑖 [𝜏𝐺′ , 𝜇0 ↦ 𝑋𝐺′ ]).

We set 𝜑a
𝑖 ≔ ∃𝜇0(𝛷a,1

𝑖 ∧ … ∧ 𝛷a,𝑡a
𝑖 ) and 𝜑b

𝑖 ≔ ∃𝜇0(𝛷b,1
𝑖 ∧ … ∧ 𝛷b,𝑡b

𝑖 ) and
notice that although the height of these formulas is potentially much larger
than the height of 𝜑, their width is exactly the width of 𝜑. Likewise, the sets
of free variables have not grown, and no new variable or predicate symbols
have been used, meaning that each of these formulas fulfils the restrictions
imposed. We finally set 𝛷 ≔ (𝜑a

1 ∧ 𝜑b
1) ∨ … ∨ (𝜑a

𝑐 ∧ 𝜑b
𝑐) , yielding

𝜑[𝜏] ↔ 𝛷 [𝜑a
1[𝜏𝐺], … , 𝜑a

𝑐[𝜏𝐺], 𝜑b
1[𝜏𝐺′ ], … , 𝜑b

𝑐 [𝜏𝐺′ ]] ,
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as desired.

The claim thus holds for all well-formed formulas, hence in particular for
sentences. By the considerations at the beginning of this proof, this implies
the statement of the theorem.

�

That 𝒫𝑙,𝑘
𝑤 𝑚 is also inductive with regard to source redefinition should

come as no surprise, since the only way in which terminal vertices are even
detected in a formula is via the functions 𝛿term.

Theorem 6.9.11

Let 𝑤, 𝑙, 𝑘 ∈ ℕ. Then 𝒫𝑙,𝑘
𝑤 is (⋃𝑖∈ℕ ⋃𝑗∈ℕ 𝔉𝑗

𝑖 ⇆)-inductive.

Proof. Recall that 𝔉𝑗
𝑖 ⇆ is the set of all possible source redefinitions between

graphs of type 𝑖 and 𝑗.
Fix two graph types 𝑛, 𝑛′ ∈ ℕ and a function 𝜎∶ { 1, … , 𝑛 } → { 1, … , 𝑛′ }.
For 𝐾 ⊆ { 1, … , 𝑛 }, set

𝐾′ ≔ { 𝜎(𝑖) : 𝑖 ∈ 𝐾 } ⊆ { 1, … , 𝑛′ }.

Consider now a term of the form 𝛿𝐾
term(𝜒), where 𝐾 ⊆ { 1, … , 𝑛 } and 𝜒

is an elementary term, and consider a graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) of type 𝑛
with 𝐺 = ⇆𝜎𝐺′ for some graph 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈, 𝑡′) of type 𝑛′.
For a full variable assignment 𝜏 for 𝛿𝐾

term(𝜒), we then have

𝛿𝐾
term(𝜒)[𝜏 ] = 𝜒[𝜏] ∪ { 𝑡(𝑖) : 𝑖 ∈ 𝐾 }

= 𝜒[𝜏] ∪ { 𝑡′(𝜎(𝑖)) : 𝑖 ∈ 𝐾 }
= 𝜒[𝜏] ∪ { 𝑡′(𝑗) : 𝑗 = 𝜎(𝑖) for some 𝑖 ∈ 𝐾 }
= 𝜒[𝜏] ∪ { 𝑡′(𝑖) : 𝑖 ∈ 𝐾′ }
= 𝛿𝐾′

term(𝜒)[𝜏 ].

Thus by replacing all occurrences of 𝛿𝐾
term in a sentence 𝜑 with 𝛿𝐾′

term, we
obtain a sentence 𝜓 where all terms evaluate to the same sets on 𝐺′ as the
original terms on 𝐺.
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Since source redefinition does not change the vertices and edges of a graph
(only which vertices are terminals with what multiplicity) and the predicates
of ̊𝔏 have no way to detect terminal vertices (that is, they cannot detect
the difference between a set {𝑣} where 𝑣 is a terminal vertex and the same
set where 𝑣 is not a terminal vertex), we have

⊧�̊�(𝐺) 𝜑 ⇔ ⊧�̊�(⇆𝜎𝐺) 𝜓,

yielding a (trivial) decomposition for 𝜑.
�

It remains to show that our family plays well with the source fusion.

Theorem 6.9.12

Let 𝑤, 𝑙, 𝑘 ∈ ℕ. Then 𝒫𝑙,𝑘
𝑤 is (⋃𝑖∈ℕ 𝔉𝑖 媲)-inductive.

Proof. Recall that 𝔉𝑖 媲 is the set of all possible source fusions on graphs
of type 𝑖. We proceed very similarly to the proof of theorem 6.9.10. We fix
now until the end of the proof restrictions 𝑤, 𝑙, 𝑘 ∈ ℕ, a graph type 𝑛 ∈ ℕ,
and two elements 𝑎, 𝑏 ∈ { 1, … , 𝑛 }.

For any variable assignment 𝜏 on ̊𝛺(𝐺) for some graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡)
of type 𝑛 with 𝐺 =媲𝑏

𝑎𝐺′ for some graph 𝐺′ = (𝑉 ′, 𝐸′, ⦇_⦈, 𝑡′) of type 𝑛,
we set

𝜏𝑎,𝑏 ∶ 𝑥 ↦
⎧{
⎨{⎩

𝜏(𝑥) ⊆ 𝐸′ = 𝐸 if 𝜏(𝑥) ⊆ 𝐸
𝜏(𝑥) ⊆ 𝑉 ′ if 𝜏(𝑥) ⊆ 𝑉 ⧵ {𝑡(𝑎)}
𝜏(𝑥) ∪ {𝑡′(𝑏)} ⊆ 𝑉 ′ if 𝜏(𝑥) ⊆ 𝑉 , 𝑡(𝑎) ∈ 𝜏(𝑥),

recalling that due to 𝐺 being a fusion, 𝑡(𝑎) = 𝑡(𝑏) while 𝑡′(𝑎) and 𝑡′(𝑏)
need not coincide.
This yields a variable assignment in 𝐺′. Intuitively, we simply use “the same”
assignment, just “expanding” the vertex 𝑡(𝑎) into its preimages 𝑡′(𝑎), 𝑡′(𝑏).
That this works might already be apparent to the reader at this point. We
prove it nonetheless.
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We use the same trick on sets of terminal vertices by setting, for any term 𝜒,

𝜒𝑎,𝑏 ≔

⎧{{{
⎨{{{⎩

𝜒 if 𝜒 elementary

𝛿𝐾
term(𝜉)

if 𝜒 = 𝛿𝐾
term(𝜉)

for some 𝐾 ⊆ { 1, … , 𝑛 } ⧵ { 𝑎, 𝑏 }

𝛿𝐾∪{ 𝑎,𝑏 }
term (𝜉)

if 𝜒 = 𝛿𝐾
term(𝜉)

for some 𝐾 ⊆ { 1, … , 𝑛 }, 𝑎 ∈ 𝐾 ∨ 𝑏 ∈ 𝐾

Given a well-formed formula 𝜑 with a full variable assignment 𝜏, we construct
formulas 𝜑1, … and a propositional formula 𝛷 such that

𝜑[𝜏] ↔ 𝛷[𝜑1[𝜏𝑎,𝑏], …],

yielding an inductive decomposition.
We proceed by induction over the structure of 𝜑.

Case 1: 𝜑 is atomic.

Case 1.1: 𝜑 = 𝜆sgl(𝜒) for some term 𝜒. We set

𝜑0 ≔ 𝜆sgl(𝜒𝑎,𝑏) ∨ (𝛿{ 𝑎,𝑏 }
term (∅)⊑𝜒𝑎,𝑏 ∧ 𝜒𝑎,𝑏 ⊑𝛿{ 𝑎,𝑏 }

term (∅)).

Then 𝜑0 has the same width, number of variables, and predicate restrictions
as 𝜑, and they have the same set of free variables, making 𝜏𝑎,𝑏 full. We
omit this note in the remaining cases.
We set 𝛷 ≔ 𝜑0.
Now if 𝜒𝑎,𝑏[𝜏 ] is a singleton that does not contain 𝑡(𝑎) (and hence not 𝑡(𝑏)
either, since 𝑡(𝑎) = 𝑡(𝑏)), then 𝜒𝑎,𝑏[𝜏𝑎,𝑏] = 𝜒𝑎,𝑏[𝜏 ] and 𝜑0 evaluates to ⊤.
If 𝜒𝑎,𝑏[𝜏 ] is a singleton that does contain 𝑡(𝑎), then it is equal to {𝑡(𝑎)} and
we have 𝜒𝑎,𝑏[𝜏𝑎,𝑏] = { 𝑡′(𝑎), 𝑡′(𝑏) } = 𝛿{ 𝑎,𝑏 }

term (∅)[𝜏𝑎,𝑏], whence 𝜑0 evaluates
to ⊤.
If 𝜒𝑎,𝑏[𝜏 ] is not a singleton in the first place, then its “expanded” ver-
sion 𝜒𝑎,𝑏[𝜏𝑎,𝑏] can be neither a singleton nor the set { 𝑎, 𝑏 }, making 𝜑0
evaluate to ⊥.

Case 1.2: 𝜑 = 𝜒0 ⊑ 𝜒1 for some terms 𝜒0, 𝜒1. We set 𝜑0 ≔ 𝜒0
𝑎,𝑏 ⊑ 𝜒1

𝑎,𝑏
and 𝛷 ≔ 𝜑0. By definition, we know that 𝜒0[𝜏 ] ⊆ 𝜒1[𝜏 ] if and only
if 𝜒0

𝑎,𝑏[𝜏𝑎,𝑏] ⊆ 𝜒1
𝑎,𝑏[𝜏𝑎,𝑏].
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Case 1.3: 𝜑 = 𝜆𝑖
conn(𝜒0, 𝜒1, … , 𝜒𝑖) for some 𝑖 ∈ ℕ with 𝑖 < 𝑘 and

terms 𝜒0, … , 𝜒𝑖. We set

𝜑0 ≔ 𝜆𝑖
conn(𝜒0

𝑎,𝑏, 𝜒1
𝑎,𝑏, … , 𝜒𝑖

𝑎,𝑏)

and 𝛷 ≔ 𝜑0. Since fusion changes connections only for the vertices 𝑡′(𝑎)
and 𝑡′(𝑏) and an edge 𝑒 has 𝑡(𝑎) as its 𝑗-th endpoint in 𝐺 if and only if it
had 𝑡′(𝑎) or 𝑡′(𝑏) as its 𝑗-th endpoint in 𝐺′, we are done.

The claim is thus proven for all atomic formulas.

Case 2: 𝜑 is built from formulas for which the claim has been proven.

Case 2.1: 𝜑 = ¬𝜓. Let (𝛹, 𝜓0, … , 𝜓𝑖) be the decomposition of 𝜓. We
set 𝜑0 ≔ 𝜓0, … , 𝜑𝑖 ≔ 𝜓𝑖 and 𝛷 ≔ ¬ 𝛹, trivially fulfilling the require-
ments.

Case 2.2: 𝜑 = 𝜓 ∧ 𝜁. Let (𝛹𝜓, 𝜓0, … , 𝜓𝑖) be the decomposition of 𝜓, and
let (𝛹𝜁, 𝜁0, … , 𝜁𝑗) be the decomposition of 𝜁. We set

𝜑0 ≔ 𝜓0, … , 𝜑𝑖 ≔ 𝜓𝑖, 𝜑𝑖+1 ≔ 𝜁0, … , 𝜑𝑖+𝑗 ≔ 𝜁𝑗

and 𝛷 ≔ 𝛹𝜓 ∧ 𝛹𝜁. This yields a valid decomposition for 𝜑.

Case 3: 𝜑 = ∃𝜇0𝜓 for some variable 𝜇0 and a formula 𝜓 for which the
claim holds. We are now in the exact situation of case 3 in the proof of
theorem 6.9.10 (page 133), which we shall not reproduce here.

The claim is thus proven for all well-formed formulas, hence in particular
for sentences.

�

Theorems 6.9.10 to 6.9.12, combined with the fact that the only remaining
symbols in 𝔉, the trivial graphs, are nullary function symbols, yield the
inductiveness we desire.

Corollary 6.9.13
Let 𝑤, 𝑙, 𝑘 ∈ ℕ. Then 𝒫𝑙,𝑘

𝑤 is 𝔉-inductive.
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6.10: Inheritance

10. Inheritance
In chapter 9, we shall see that in

Typing Lessons

When dealing with inherited sig-
natures, notation becomes tedious
quickly.
For convenience, we allow our-
selves to drop the typing if
it is clear from context, writ-
ing (𝒯, ℱ) ≔ (𝒯, ℱ, ⟨_⟩). We
usually do this in cases where the
set ℱ is simply a set of symbols for
functions we already know, such
as ⊕ or 媲, whose input type (a
graph with the correct number of
terminal vertices) is obvious.

order to design efficient algorithms
to detect graph properties, we need
our algebra to be finitely expressible.
However, the algebra of all graphs is
not so – we shall have to restrict our
algorithm to certain subalgebras.
Do we now need to re-prove every-
thing we have just proven, ending
up with another ten pages of tedious
work?
Luckily, the answer is “no”. We in-
troduce in this section the notion of
inherited algebra, a type of smaller
algebra which we then prove inherits
(hence the name) many desirable qualities from its parent algebra; in our
case from the algebra of all finite graphs.
One’s first intuition might be to simply use a subalgebra, obtained by

• making the carrier sets of our algebra smaller and
• “forgetting” some function symbols.

The latter may be necessary in order to ensure that the output of all
remaining functions lands again in the subalgebra’s (smaller) carrier sets.

Definition 6.10.1
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature. A subsignature of 𝒮 is a signa-
ture ℐ = (𝒰, 𝒢, ⧼_⧽) with the following properties.

• 𝒰 = 𝒯.
• 𝒢 ⊆ ℱ.
• ⧼_⧽ = ⟨_⟩

𝒢
.

We write ℐ ≤ 𝒮.
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Definition 6.10.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪) be an 𝒮-alge-
bra. A subalgebra of 𝒜 is an ℐ-algebra ℬ = (𝒟, 𝒬) with the following
properties.

• ℐ = (𝒰, 𝒢, ⧼_⧽) is a subsignature of 𝒮.
• ∀𝓉 ∈ 𝒯 ∶ 𝒟𝓉 ⊆ 𝒞𝓉.

• ∀𝒻 ∈ 𝒢 ∶ ⟨𝒻⟩in = (𝓉1, … , 𝓉𝑛) ⇒ 𝒬𝒻 = (𝒪𝒻)
(𝒟𝓉1×…×𝒟𝓉𝑛)

.

We write ℬ ≤ 𝒜.

In other words, a subalgebra has smaller carrier sets, but all the function
symbols that it retains are the same functions on those carrier sets. Of
course, some function symbols may become “useless” in the smaller algebra,
for instance if one of their input carrier sets becomes empty.
Families of predicates restrict to subalgebras in a natural way.

Definition 6.10.3
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 = (𝒞, 𝒪) be an 𝒮-algebra,
let ℬ = (𝒟, 𝒬) be a subalgebra of 𝒜, and let (𝒫, ⟨_⟩) be a family of
predicates on 𝒜. We denote by (𝒫

ℬ
, ⟨_⟩) the family of predicates on ℬ

with
𝒫

ℬ
≔ { 𝓅

𝒟⟨𝓅⟩
: 𝓅 ∈ 𝒫 }.

With these definitions, we are ready to see that our desired property carries
over.

Lemma 6.10.4
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 = (𝒞, 𝒪) be an 𝒮-alge-
bra, let ℐ = (𝒰, 𝒢, ⧼_⧽) be a subsignature of 𝒮, let ℬ = (𝒟, 𝒬) be
a ℐ-subalgebra of 𝒜, and let (𝒫, ⟨_⟩) be a family of predicates on 𝒜.
Let further ℋ ⊆ ℱ such that (𝒫, ⟨_⟩) is ℋ-inductive.
Then (𝒫

ℬ
, ⟨_⟩) is ℋ ∩ 𝒢-inductive.
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Proof. There is nothing to show – an inductive decomposition for 𝓅 ∈ 𝒫
is, in particular, an inductive decomposition for 𝓅 ∈ 𝒫

ℬ
.

�

Sadly, it turns out that this construction is too restrictive. For instance,
the algebra of graphs of tree-width at most 𝑘 (for some 𝑘 ∈ ℕ) cannot
be obtained as a subalgebra of the algebra of all graphs. However, it still
exhibits all the properties we wish for – it is finitely expressible, and the
family of predicates we have defined is inductive on it.
We extend the notion of subalgebra by allowing the construction of new
functions from existing ones.
First, a quick observation on families of predicates.

Observation 6.10.5
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) and ℐ = (𝒰, 𝒢, ⧼_⧽) be signatures with 𝒯 ⊆ 𝒰,
let 𝒜 = (𝒞, 𝒪) be an 𝒮-algebra, and let ℬ = (𝒟, 𝒬) be an ℐ-algebra.
Let further (𝒫, ⟨_⟩) be a family of predicates on 𝒜.
If for every 𝓉 ∈ 𝒯 we have 𝒞𝓉 = 𝒟𝓉, then (𝒫, ⟨_⟩) is also a family of
predicates on ℬ.

In particular, as long as we are not talking about inductiveness, the function
symbols of an algebra are irrelevant for defining a family of predicates. We
now extend a given algebra to include for every element a nullary function
which outputs that element.

Definition 6.10.6
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪) be an 𝒮-alge-
bra.
The closure of 𝒮 with regard to 𝒜 is the signature

𝒮𝒜 ≔ (𝒯, ℱ𝒜, ⟨_⟩
𝒜

)

with
ℱ𝒜 ≔ ℱ ∪ { 𝒻𝓉

𝒸 : 𝓉 ∈ 𝒯, 𝒸 ∈ 𝒞𝓉 }
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and

∀𝒻 ∈ ℱ𝒜 ∶ ⧼𝒻⧽ ≔ {
⟨𝒻⟩ if 𝒻 ∈ ℱ
(𝜀, 𝓉) if 𝒻 = 𝒻𝓉

𝒸 for some 𝓉 ∈ 𝒯, 𝒸 ∈ 𝒞𝓉.

The closure of 𝒜 is the 𝒮𝒜-algebra 𝒜 ≔ (𝒞, 𝒪) with

∀𝒻 ∈ ℱ𝒜 ∶ 𝒪𝒻 ≔ {
𝒪𝒻 if 𝒻 ∈ ℱ
() ↦ 𝒸 if 𝒻 = 𝒻𝓉

𝒸 for some 𝓉 ∈ 𝒯, 𝒸 ∈ 𝒞𝓉.

We can observe several features right away.

Observation 6.10.7
Let 𝒜 be an algebra. Then the following statements are true.

• 𝒜 = 𝒜.
• The closure of 𝒜 is finitely expressible.
• Every family of predicates on 𝒜 is also a family of predicates

on 𝒜.
• Let ℋ ⊆ ℱ, and let (𝒫, ⟨_⟩) be an ℋ-inductive family of predi-

cates on 𝒜. Then (𝒫, ⟨_⟩) is (ℋ ∪ ℱ𝒜 ⧵ ℱ)-inductive on 𝒜.

The final property is true because all function symbols in ℱ𝒜 ⧵ ℱ are
nullary, yielding a trivial decomposition for any predicate – for a nullary
function symbol 𝒻, we either have 𝓅(𝒪𝒻()) = ⊤ or 𝓅(𝒪𝒻()) = ⊥.
We now forget about this construction for a second and look at a different
way to extend a given algebra: given a pre-expression ℯ ∈ |𝒜|, this pre-
expression has a type ⟨ℯ⟩ = (𝓉1 … 𝓉𝑛, 𝓉), and given elements of the correct
types, we can plug them into ℯ and obtain a new element of type 𝓉. In other
words, ℯ behaves exactly like a function symbol! It is only natural to extend
our signature to include function symbols that arise as pre-expressions.
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|𝒮| denotes the set
of pre-expressions
over 𝒮.
(def. 6.3.1, p. 98)

ℯ𝒜(… ) denotes the
result of ℯ when
evaluated in 𝒜.
(def. 6.3.2, p. 101)

6.10: Inheritance

Definition 6.10.8
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature. The flattening of 𝒮 is the signature

Fl(𝒮) = (𝒯,Fl(ℱ),Fl⟨_⟩)

with
Fl(ℱ) ≔ ℱ ∪ { 𝒻ℯ : ℯ ∈ |𝒮| }

and

∀𝒻 ∈ Fl(ℱ) ∶ Fl⟨𝒻⟩ ≔ {
⟨𝒻⟩ if 𝒻 ∈ ℱ
⟨ℯ⟩ if 𝒻 = 𝒻ℯ for some ℯ ∈ |𝒮|.

Let now 𝒜 be an 𝒮-algebra. The flattening of 𝒜 is the Fl(𝒮)-alge-
bra Fl(𝒜) = (𝒞,Fl(𝒪)) with ∀𝒻 ∈ Fl(ℱ):

Fl(𝒪)𝒻 ≔
⎧{
⎨{⎩

𝒪𝒻 if 𝒻 ∈ ℱ

(𝒸1, … , 𝒸|⟨ℯ⟩in|) ↦ ℯ𝒜(𝒸1, … , 𝒸|⟨ℯ⟩in|)
if 𝒻 = 𝒻ℯ

for some ℯ ∈ |𝒮|.

Another way to look at this construction is to think of the composition
of unary functions 𝑔 ∘ 𝑓, generalised to functions of arbitrary arity. The
reason this process is called flattening is that every computation that can
be carried out in 𝒜 by evaluating an expression tree can be carried out by
a single function call in Fl(𝒜).
While repeated closure is idempotent, repeated flattening always adds new
function symbols. Still, it does not make the algebra any “flatter”, as
formalised in the following lemma.

Lemma 6.10.9
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪) be an 𝒮-al-
gebra. Let further ℯ ∈ |Fl(𝒮)| with ⟨ℯ⟩in = (𝓉1, … , 𝓉𝑛) for some 𝑛 ∈ ℕ.
Then there is a function symbol 𝒻 ∈ Fl(ℱ) with Fl⟨𝒻⟩ = ⟨ℯ⟩ such that

∀𝒸1 ∈ 𝒞𝓉1
… ∀𝒸𝑛 ∈ 𝒞𝓉𝑛

∶ Fl(𝒪)𝒻(𝒸1, … , 𝒸𝑛) = ℯFl(𝒜)(𝒸1, … , 𝒸𝑛).
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(def. 6.3.2, p. 101)
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Proof. Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 = (𝒞, 𝒪) be
an 𝒮-algebra. Take a pre-expression

ℯ = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) ∈ |Fl(𝒮)|

with ⟨ℯ⟩ = (𝓉1 … 𝓉𝑛, 𝓉) for some 𝑛 ∈ ℕ.
Because this is a pre-expression in Fl(𝒮), every vertex label ⟨𝑣⟩, 𝑣 ∈ 𝑉 arises
in turn from a pre-expression in 𝒮 of the same type. Stitching all of these
pre-expressions together yields a pre-expression ℯ′ ∈ |𝒮| with ⟨ℯ′⟩ = ⟨ℯ⟩
and

∀𝒸1 ∈ 𝒞𝓉1
… ∀𝒸𝑛 ∈ 𝒞𝓉𝑛

∶ ℯ′
𝒜(𝒸1, … , 𝒸𝑛) = ℯFl(𝒜)(𝒸1, … , 𝒸𝑛).

The following sketch illustrates this point. Input types are indicated at
the dashed lines. Primed function symbols are in ℱ, non-primed ones are
in Fl(ℱ). We see first the pre-expression ℯ ∈ |Fl(𝒮)|, then the transforma-
tion into the expression ℯ′ ∈ |𝒮|.

𝒻1

𝒻2

𝓉2 𝓉3 𝓉4 𝓉5

𝓉1 𝒻3

𝓉6 𝓉7
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𝒻′
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𝓉6 𝒻′
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𝒻′
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𝒻′
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𝒻′
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5 𝒻′
6

𝓉2 𝓉3 𝓉4 𝓉5

𝒻2

𝒻′
1

𝒻′
2

⟨𝒻2⟩
out 𝓉1

⟨𝒻3⟩
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𝒻1

𝒻′
1

𝒻′
2

𝒻′
3 𝓉1

𝒻′
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4 𝒻′
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6

𝓉2 𝓉3 𝓉4 𝓉5

𝓉6 𝒻′
11

𝒻′
12

𝓉7

Because Fl(𝒜) is the flattening of 𝒜, by definition there must be a function
symbol ℊ ∈ Fl(ℱ) with Fl⟨ℊ⟩ = ⟨ℯ′⟩

∀𝒸1 ∈ 𝒞𝓉1
… ∀𝒸𝑛 ∈ 𝒞𝓉𝑛

∶ Fl(𝒪)ℊ(𝒸1, … , 𝒸𝑛) = ℯ′
𝒜(𝒸1, … , 𝒸𝑛)

= ℯFl(𝒜)(𝒸1, … , 𝒸𝑛),

which was the claim.
�

We note some further properties of the flattening for future reference.

Observation 6.10.10
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let 𝒜 be an 𝒮-algebra. Then
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the following are true.
• Fl(𝒜) is expressible if and only if 𝒜 is expressible.
• If 𝒜 is finitely expressible, then so is Fl(𝒜). The converse is not

true.
• Let ℋ ⊆ ℱ, and let (𝒫, ⟨_⟩) be an ℋ-inductive family of predi-

cates on 𝒜. Then (𝒫, ⟨_⟩) is also ℋ-inductive on Fl(𝒜).

Of course, what we really want to know is the following stronger result.

Lemma 6.10.11
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 be an 𝒮-algebra, and
let (𝒫, ⟨_⟩) be an ℱ-inductive family of predicates on 𝒜. Then (𝒫, ⟨_⟩)
is Fl(ℱ)-inductive on Fl(𝒜).

Proof. Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 = (𝒞, 𝒪) be an 𝒮-al-
gebra, and let (𝒫, ⟨_⟩) be an ℱ-inductive family of predicates on 𝒜.
Let 𝓅 ∈ 𝒫, and let 𝒻 ∈ Fl(ℱ) with Fl⟨𝒻⟩in = (𝓉1, … , 𝓉𝑛) for some 𝑛 ∈ ℕ
and with Fl⟨𝒻⟩out = ⟨𝓅⟩. Without loss of generality, we have 𝒻 ∉ ℱ, since
otherwise an inductive decomposition already exists by assumption.
Hence, we find a pre-expression ℯ ∈ |𝒮| such that ⟨ℯ⟩ = Fl⟨𝒻⟩ and

∀𝒸1 ∈ 𝒞𝓉1
… ∀𝒸𝑛 ∈ 𝒞𝓉𝑛

∶ Fl(𝒪)𝒻(𝒸1, … , 𝒸𝑛) = ℯ𝒜(𝒸1, … , 𝒸𝑛).

For every function symbol ℊ labelling the vertices of ℯ, there is by as-
sumption an inductive decomposition for every 𝓅′ ∈ 𝒫 with regard to ℊ.
Therefore, we can find an inductive decomposition for 𝓅 with regard to 𝒻
by induction over the vertices of ℯ.

�

We are now ready to define inheritance algebras. Intuitively, we want to do
the following to our original algebra:

• Make our carrier sets smaller, if desired.
• Introduce any number of new nullary functions, that is, constants (in

our new, smaller carrier sets).
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• Take any number of pre-expressions in the original algebra, possibly
with new nullary functions included, and make them into functions
in the canonical way.

• Forget any number of function symbols.
• Restrict the remaining function symbols to our new carrier sets.

The reader should take a moment to convince themselves that the following
definition achieves all of these goals.

Definition 6.10.12
Let 𝒜 be an algebra. We say that an algebra ℬ is inherited from 𝒜 if
it is a subalgebra of the flattening of the closure of 𝒜, that is, if

ℬ ≤ Fl(𝒜).

Useful graph classes such as the graphs of tree-width bounded by a constant
𝑘 ∈ ℕ will (in chapter 9) turn out to be inheritance algebras of 𝔊, so we
want them to retain our favourite property. Of course, we have crafted our
definitions in just such a way that the following works out nicely.

Theorem 6.10.13
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 be an 𝒮-algebra, and
let (𝒫, ⟨_⟩) be an ℱ-inductive family of predicates on 𝒜. Let further-
more ℐ = (𝒯, 𝒢, ⧼_⧽) be another signature and let ℬ be an ℐ-algebra
inherited from 𝒜.11 Then (𝒫

ℬ
, ⟨_⟩) is 𝒢-inductive on ℬ.

Proof. Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 be an 𝒮-algebra,
and let (𝒫, ⟨_⟩) be an ℱ-inductive family of predicates on 𝒜. Let
now ℐ = (𝒰, 𝒢, ⧼_⧽) be another signature and let ℬ be a ℐ-algebra
inherited from 𝒜, that is, a subalgebra of Fl(𝒜).
We know from our earlier observations that (𝒫, ⟨_⟩) is a family of pred-
icates on 𝒜 and hence on Fl(𝒜), and we know from observation 6.10.7
and lemma 6.10.11 that it is Fl(ℱ𝒜)-inductive on Fl(𝒜).

11 In particular, we have 𝒰 = 𝒯 and 𝒢 ⊆ Fl(ℱ𝒜).

147



Chapter 6: Typed Algebras

The result now follows from lemma 6.10.4.
�

Armed with all this knowledge, we are ready to prove Courcelle’s Theorem.
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𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

𝔊 is the algebra of
graphs.
(def. 6.2.2, p. 93)

𝛺(𝐺) is the induced
structure of 𝐺.
(def. 5.4.2, p. 73)

Chapter 7
Courcelle’s Theorem

We have finally accrued all the machinery necessary to prove Courcelle’s
Theorem. In chapter 9, we show explicitly some special cases which easily
follow from our inheritance technique in a way that has not previously been
possible.

1. Proof
We remind ourselves what it is that we are trying to prove.

Theorem 7.1.1
Let 𝜑 be a sentence of the monadic second-order language of graphs.
Then for every 𝑛 ∈ ℕ, the set { 𝐺 ∈ 𝔊𝑛 : ⊧𝛺(𝐺) 𝜑 } is 𝔊-recognisable.

The corollary for the practical-minded graph theorist, that there exists
for certain classes of graphs a linear-time algorithm to detect members of
this subset, is proven in chapter 9. The extension to “counting” monadic
second-order logic is proven in appendix A.
We prove, in fact, the following stronger result.

Theorem 7.1.2
Let 𝒜 = (𝒞, 𝒪) be an algebra inherited from 𝔊, and let 𝜑 be a sentence
of the monadic second-order language of graphs. Then for every 𝑛 ∈ ℕ,
the set { 𝐺 ∈ 𝒞𝑛 : ⊧𝛺(𝐺) 𝜑 } is 𝒜-recognisable.
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⌈𝓅⌉ denotes the set
of elements which

satisfy 𝓅.
(def. 6.7.3, p. 111)
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Theorem 7.1.1 follows immediately from theorem 7.1.2 since every algebra
inherits from itself.

Proof of theorem 7.1.2. Let 𝜑 be a sentence of 𝔛, and let 𝒜 = (𝒞, 𝒪)
be a (𝒰, 𝒢, ⧼_⧽)-algebra inherited from 𝔊.

By corollary 5.6.7, we can find a sentence �̊� ∈ �̊� such that
∀𝑛 ∈ ℕ ∶ ∀𝐺 ∈ 𝒞𝑛 ∶ ⊧𝛺(𝐺) 𝜑 ⇔ ⊧�̊�(𝐺) �̊� .

This sentence has some width (possibly larger than the width of 𝜑). Call
it 𝑤. Say further that the highest-indexed variable symbol occurring in �̊�
is 𝜇𝑙 for some 𝑙 ∈ ℕ, and that 𝑘 ∈ ℕ is a number such that no predicate
symbol 𝜆𝑡

conn occurs in �̊� for 𝑡 > 𝑘.
Let now 𝑛 ∈ ℕ.
We set 𝓅 ≔ 𝓅𝑛

�̊� ∈ 𝒫𝑛
𝑤,𝑙,𝑘, which we consider as a predicate of the family

𝒫 ≔ (({ 𝒫𝑛
𝑤,𝑙,𝑘 }𝑛∈ℕ)

|𝒜
, 𝓅𝑛

𝜓 ↦ 𝑛)

of predicates on 𝒜.
We thus have

{ 𝐺 ∈ 𝒞𝑛 : ⊧𝛺(𝐺) 𝜑 } = { 𝐺 ∈ 𝒞𝑛 : ⊧�̊�(𝐺) �̊� } = ⌈𝓅⌉.

By lemma 6.9.9, ({ 𝒫𝑛
𝑤,𝑙,𝑘 }𝑛∈ℕ, 𝓅𝑛

𝜓 ↦ 𝑛) is locally finite. Since the un-
derlying sets of predicates are the same, so is 𝒫.

By corollary 6.9.13, ({ 𝒫𝑛
𝑤,𝑙,𝑘 }𝑛∈ℕ, 𝓅𝑛

𝜓 ↦ 𝑛) is 𝔉-inductive, and thus (by
theorem 6.10.13) 𝒫 is 𝒢-inductive.
Hence by theorem 6.8.2, the set ⌈𝓅⌉ is 𝒜-recognisable.

�

2. A Practical Theorem?
Now that we have proven that graphs modelling a monadic second-order
formula are recognisable in 𝔊, can we turn this knowledge into an algorithm?
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7.2: A Practical Theorem?

In other words, can we explicitly compute the algebra morphism whose
preimage is our desired set?
Sadly, many of the graph properties expressible in monadic second-order
logic are well-known to be NP-hard, so even if we could compute said
morphism, we could not expect a polynomial-time algorithm.
Does this mean that all of our hard work has been in vain?
Of course not. In the next chapter, we shall show that if the algebra under
consideration is finitely expressible (definition 6.3.7), then there is a linear-
time algorithm for deciding whether an element is in a given recognisable
set. In chapter 9, we then show that classes of graphs bounded by constant
tree-width and classes of graphs bounded by constant path-width are finitely
expressible and give the reader the requisite tools to build their own finitely
expressible classes of graphs.
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In order to prove the existence of an algorithm that decides whether a
given graph satisfies some monadic second-order formula, we shall construct
a so-called deterministic bottom-up finite tree automaton. The reader
familiar with tree automata may skip right to section 8.6, where we show
how to construct a deterministic bottom-up finite tree automaton for a
given recognisable set in a typed algebra.

1. Automayton, Automahton

Intuitively, a finite-state automaton is a machine that starts in a certain
“state” and is fed a finite string of symbols of some alphabet. For each
symbol, it transitions to a new state, depending only on its current state
and the symbol currently being digested. Once the entire string is digested,
the machine halts in whatever state it ended up in.
A certain subset of the machine’s possible states is marked as “accepting”. If
the state in which the machine halts is such a state, the string is “accepted”.
Otherwise, it is “rejected”.
A very simple example shall illustrate the idea. Suppose we are given the
alphabet 𝛴 = { 0, 1 } for some binary encoding, and we want for some
reason to determine whether the number of times the symbol 0 occurs in a
string is divisible by 3. An automaton that accomplishes this might look as
follows.
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A

B

C

1

1

1

0

0

0

The automaton starts in state 𝐴 (indicated by the bold arrow) and processes
one symbol at a time. State transitions are indicated by edges. The only
accepting state is 𝐴, indicated by the double circle.
Whenever the automaton encounters the symbol 1, its state does not change
since the number of ones is irrelevant. Hence all edges labeled 1 are loops.
In its initial state, if the string ends after only ones, the automaton has
encountered zero zeroes and accepts. If it encounters a zero, it has now
encountered exactly one (which is not divisible by 3) and switches to state 𝐵,
which is not an accepting state. If in state 𝐵 it encounters a second zero, it
switches to state 𝐶. Two is not divisible by 3, so this is not an accepting
state either.
If in state 𝐶, our automaton encounters another zero, it has now encountered
three of them and switches back to state 𝐴 – if the string ends here, it
accepts since three is divisible by 3.
If the string does not end here, the cycle begins anew.
In this manner, the automaton processes any string of zeroes and ones
symbol by symbol and finally tells us whether the number of zeroes was
divisible by three.
The above is what is called a deterministic finite-state automaton, and it is
not quite what we are interested in. Rather than a linear string of symbols,
the automaton we want to build should process a tree of symbols – in the
end, we want to feed it an expression over some graph algebra.
We introduce the basic structure our automaton expects before defining
the automaton itself.
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2. Ranked Strings
Consider the alphabet 𝛴 = { 𝛼, 𝛽, 𝛾 }. Possible words in this alphabet
look like, for example, 𝛼𝛽𝛾, 𝛼𝛼𝛽𝛼, or 𝛼𝛽𝛼𝛾𝛼. From the perspective of a
finite-state automaton, these strings come as a chain of symbols:

𝛼 𝛽 𝛾

𝛼 𝛼 𝛽 𝛼

𝛼 𝛽 𝛼 𝛾 𝛼

The strings which we need to process, however, arise from repeated ap-
plication of not necessarily unary functions (think of the disjoint sum),
that is, they look something like 𝑓(𝑔(𝛼, 𝛽), 𝛼, 𝑓(𝛼, 𝛽, 𝛾)) for some 3-place
function 𝑓 and some 2-place function 𝑔. This structure is more intuitively
represented as a tree, like we did for expressions already:

𝑓

𝑔 𝑓𝛼

𝛼 𝛽 𝛼 𝛽 𝛾

We introduce a variation on alphabets that supports this construction,
independently of whether we are actually in an algebra. Expressions will
later turn out to be a special case of this.
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Definition 8.2.1
A ranked alphabet is a pair (𝛴, |_|) fulfilling the following conditions.

• 𝛴 is an alphabet.
• |_| ∶ 𝛴 → ℕ is a function, called the alphabet’s arity function.

A ranked alphabet (𝛴, |_|) is called finite if 𝛴 is.

The arity function tells us how many successors a symbol should have in the
string’s tree representation. In the example above, 𝛼, 𝛽, 𝛾 are of arity 0, 𝑓
is of arity 3, and 𝑔 is of arity 2.
Nullary elements again correspond to constants. They are the leaves of our
tree, like the symbols 𝛼, 𝛽, 𝛾 in the example above.
Terms built only with unary symbols and constants are the same as strings
over a non-ranked alphabet if one interprets the constant as an end-of-string
symbol:

𝛼 𝛽 𝛾

𝛼

𝛽

𝛾

end

Terms built with symbols of higher arity lead to a tree structure as seen
before.
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Definition 8.2.2
Let 𝛱 = (𝛴, |_|) be a ranked alphabet. A ranked string in 𝛱 is a
pair (𝐺, ⟨_⟩) fulfilling the following conditions.

• 𝐺 = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼) is a traversal tree.
• ⟨_⟩ ∶ 𝑉 → 𝛴 is a function.
• ∀𝑣 ∈ 𝑉∶ degout𝑣 = |⟨𝑣⟩|.

The set of all ranked strings over 𝛱 is denoted ||𝛱||.
We say that two strings (𝐺, ⟨_⟩) and (𝐺′, ⧼_⧽) are isomorphic if 𝐺 and 𝐺′

are isomorphic, say via (𝑔, ℎ) ∶ 𝐺 → 𝐺′, and for every vertex 𝑣 of 𝐺 we
have ⧼𝑔𝑣⧽ = ⟨𝑣⟩.

Note that since our trees are finite, not every alphabet admits a string – an
alphabet without nullary symbols admits no leaves, so it cannot be used
to build a nonempty finite tree.1 Note also that the empty word is not a
ranked string since we do not allow graphs to be empty.
Note finally that since strings are traversal trees (definition 4.4.5), the
isomorphism mentioned is an isomorphism of traversal trees and hence must
preserve the ordering of child vertices.
In order to restrict ourselves to those strings that “make sense” (for example,
respect type considerations in an algebra), we need to choose a suitable
subset of all possible strings. The following definition then ensures that all
of our constructions still work.
Definition 8.2.3

Let 𝛱 be a ranked alphabet. A 𝛱-vocabulary is a nonempty set 𝛶 ⊆ ||𝛱||
such that

∀(𝐺, ⟨_⟩) ∈ 𝛶∶ ∀𝑣 ∈ 𝐺∶ (𝐺[𝑣], ⟨_⟩
𝐺[𝑣]

) ∈ 𝛶 .

In other words, a vocabulary is a subset of strings that is closed with
regard to substrings. This will be helpful when we want to recurse over
the structure of a string, as we need not check whether a given substring is

1 In particular, pre-expressions which expect input are never ranked strings.
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contained in our vocabulary – it always is.
Observe that just because a ranked alphabet is finite does not mean that a
vocabulary in said alphabet admits only finitely many strings.

3. Automata
We know now the structures that will form the input for our automaton. It
remains to define how an automaton processes them.

Definition 8.3.1
A deterministic bottom-up finite tree automaton is a tuple ,��) 𝛱, 𝛶 , (��,��
consisting of the following data:

• a nonempty finite set �� of states,
• a finite ranked alphabet 𝛱 = (𝛴, |_|),
• a 𝛱-vocabulary 𝛶,
• a set �� ⊆ �� of accepting states,
• and a transition function �� ∶ 𝛴 × ��

∗ → .��

Technically it is sufficient if �� is defined on a subset 𝐴 ⊆ (𝛴 × ��

∗) that
contains all tuples of the form (𝑓, 𝑤) with |𝑤| = |𝑓|.
Intuitively, a deterministic bottom-up finite tree automaton starts eating
a ranked string from the leaves. Each leaf is assigned a state �� ∈ �� by
the transition function. The automaton then moves up one level. For a
vertex 𝑓 with successors 𝑎, 𝑏, 𝑐, the transition function looks at the states
of 𝑎, 𝑏, 𝑐 and the symbol 𝑓 ∈ 𝛴 and assigns on this basis a new state to the
vertex 𝑓. The automaton continues moving up and recursively assigning
states to vertices until it reaches the root of the string. The state assigned
to the root is the state in which the automaton halts. If it is an accepting
state, the entire ranked string is accepted.
As an example, let us build a parser for propositional logic. Consider the
alphabet 𝛴 = { ⊤, ⊥, ∧, ¬, ∨, (, ) } where we use only two propositions (one
true, one false) for brevity.
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Given a string in 𝛴∗ that is well-formed, like (⊤ ∨ ⊥) ∧ ¬(⊤ ∧ (⊤ ∨ ⊥)),
it is nontrivial to build a linear automaton that recognises whether this
formula evaluates to true or to false.
If we consider instead a ranked alphabet

𝛱 = ({ ⊤, ⊥, ∧, ¬, ∨ }, |_|)

with |⊤| = |⊥| = 0, |¬| = 1 and |∧| = |∨| = 2, the same formula is
represented as the following tree:

∧

∨

⊤ ⊥

¬

∧

⊤ ∨

⊤ ⊥

Note how we did not need to include parentheses to make the order of
operations well-defined.
Now, in order to know the truth value of the entire formula, we need to
know the truth value of the “topmost” expression, which just so happens
to be located at the root of our tree. Of course, the value of this ∧ depends
on the value of the ∨ and the ¬ below it, whose values depend on …
The only expressions whose values are known a priori are the nullary
symbols ⊤ and ⊥, which correspond to the leaves of our tree. Let us hence
assign truth values to these.
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∧

∨

⊤ ⊤ ⊥ ⊥

¬

∧

⊤ ⊤ ∨

⊤ ⊤ ⊥ ⊥

With the leaves translated from syntactical symbols to semantic meaning
(even if represented by the same symbol in this particular case), we can
now evaluate those vertices of the tree whose only children are leaves.

∧

∨ ⊤

⊤ ⊤ ⊥ ⊥

¬

∧ *

⊤ ⊤ ∨ ⊤

⊤ ⊤ ⊥ ⊥

Note how we could not yet evaluate the vertex marked with ∗ because its
right successor did not yet have a value assigned to it at the beginning of
this step.
We do two more evaluation steps.
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∧

∨ ⊤

⊤ ⊤ ⊥ ⊥

¬

∧ ⊤

⊤ ⊤ ∨ ⊤

⊤ ⊤ ⊥ ⊥

∧

∨ ⊤

⊤ ⊤ ⊥ ⊥

¬ ⊥

∧ ⊤

⊤ ⊤ ∨ ⊤

⊤ ⊤ ⊥ ⊥

Finally, all successors of the root have been assigned a value, so we can
evaluate the root vertex.

∧ ⊥

∨ ⊤

⊤ ⊤ ⊥ ⊥

¬ ⊥

∧ ⊤

⊤ ⊤ ∨ ⊤

⊤ ⊤ ⊥ ⊥

What does this mean? Since the value of the entire formula is equal to
the value of the topmost expression, we have discovered that the formula
evaluates to “False”.
The reader has of course noticed that the procedure above was exactly the
same as that of computing the value of an expression in a typed algebra.

161



‖𝒮‖ denotes the set
of expressions over

𝒮.
(def. 6.3.3, p. 103)

�� is the Phoenician
letter “mem”.

�� is the Phoenician
letter “nun”.

�� is the Phoenician
letter “semk”.

Chapter 8: Tree Automata

Indeed, expressions will be the ranked strings which we input into the
deterministic bottom-up finite tree automaton constructed later on.

Lemma 8.3.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature.
Then ‖𝒮‖ is an (ℱ, 𝒻 ↦ |𝒻|)-vocabulary.
In particular, every 𝒮-expression is a ranked string of the ranked alpha-
bet (ℱ, 𝒻 ↦ |𝒻|).

Proof. Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, and let ℯ ∈ ‖𝒮‖. That ℯ is
a ranked string over (ℱ, 𝒻 ↦ |𝒻|) follows directly from definitions 6.3.1
and 6.3.3. It remains to show that every subtree of ℯ is again an expression,
but this is automatic due to the fact that every tree of function symbols
which respects input types defines an expression over 𝒮.

�

Coming back to our propositional parser, for an automaton that accepts
true formulas and rejects false ones, this means that the automaton eating
our example tree should end in a non-accepting state. Indeed, we have done
here exactly what a deterministic bottom-up finite tree automaton would
do: start eating the expression at the leaves, evaluate a vertex as soon as
all of its successors are ready, and finally check the value of the root vertex
to decide whether the entire tree should be accepted.
Let us formally construct the corresponding automaton. We need a quin-
tuple ,��) 𝛱, 𝛶 , .(��,�� We already know the ranked alphabet, and the
vocabulary 𝛶 that our automaton can understand should be the set of all
well-formed formulas buildable in 𝛱. In this particular case, this is equal
to ||𝛱||, but it could be smaller for a different use case.
The states of our automaton are simply the labels we attach to vertices
during its run. In our case, that means the values ⊤ and ⊥, so we set

�� ≔ { ⊤, ⊥ }.

The automaton should accept the tree if the expression evaluates to “True”,
that is, if the label of the top vertex is ⊤. Formally, we set the set of
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accepting states to
�� ≔ {⊤} ⊆ .��

All that is left is the transition function .�� We remind ourselves how it was
defined: �� should take a symbol from 𝛱 and a word from ��

∗ and output a
new state. What this means is simply that �� does precisely what we did
above: it looks at a vertex (the symbol from 𝛱) and at the labels of all of
that vertex’s successors (which are ordered into a word because our trees
are traversal trees) and decides what label the new vertex should get.
The relevant parts of �� are essentially a truth table:

,⊤)�� 𝜀) = ⊤
,⊥)�� 𝜀) = ⊥
,¬)�� ⊤) = ⊥
,¬)�� ⊥) = ⊤
,∧)�� ⊥⊥) = ⊥
,∧)�� ⊤⊥) = ⊥
,∧)�� ⊥⊤) = ⊥
,∧)�� ⊤⊤) = ⊤
,∨)�� ⊥⊥) = ⊥
,∨)�� ⊤⊥) = ⊤
,∨)�� ⊥⊤) = ⊤
,∨)�� ⊤⊤) = ⊤

As per our definition, �� should assign labels to all other combinations as
well, but since these can never be reached by our automaton, it matters not
what �� does with them. We shall for this reason omit unreachable states
from definitions of tree automata.
The automaton, just like we did, applies the transition function recursively
until every vertex is assigned a label. It then simply checks whether the
state of the root vertex is an accepting state.
Every tree in 𝛶 is hence assigned a unique vertex labelling by our determin-
istic bottom-up finite tree automaton. We give a name to this labelling.
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Definition 8.3.3
Let �� = ,��) 𝛱, 𝛶 , (��,�� be a deterministic bottom-up finite tree au-
tomaton, and let 𝑇 = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) ∈ 𝛶. The unique func-
tion �� ∶ 𝑉 → �� such that

∀𝑣 ∈ 𝑉∶ Nout𝑣 = [𝑣1, … , 𝑣𝑛] ⇒ 𝑣1��,⟨𝑣⟩)�� (𝑣𝑛��… = 𝑣��

is called the interpretation of 𝑇 in ,�� denoted by ��

,�� 𝑇.

That the function ��

,�� 𝑇 exists and is uniquely determined can be seen by the
fact that �� is a function.
Interpretations make it easy to formally define what an accepted string is.

Definition 8.3.4
We say that the automaton �� = ,��) 𝛱, 𝛶 , (��,�� accepts a string 𝑇 ∈ 𝛶
if ��

,�� 𝑇

√
𝑇 ∈ .��

Otherwise, we say that �� rejects 𝑇.

Intuitively, ��
,�� 𝑇 traces the path the tree 𝑇 takes through the states of the

automaton while being processed. For this reason, we should expect any
subtree of 𝑇 to be interpreted in the same way on its own as it is inside 𝑇 –
in our example above, we did not take into consideration the predecessors
of a vertex when deciding upon its label.

Lemma 8.3.5
Let �� = ,��) 𝛱, 𝛶 , (��,�� be a deterministic bottom-up finite tree automa-
ton, 𝑇 ∈ 𝛶. Then for any 𝑣 ∈ 𝑇, we have

��

,�� 𝑇 [𝑣] = ��)
,�� 𝑇) { 𝑤∈𝑇 [𝑣] }

.

Proof. Note first that since 𝛶 is a vocabulary, all subtrees involved in the
statement lie again in 𝛶.
We proceed by induction on the height 𝑡 of 𝑣 in 𝑇.
For 𝑡 = 1, 𝑣 has no children, so ��

,�� 𝑇 [𝑣]𝑣 = ,⟨𝑣⟩)�� 𝜀) = ��

,�� 𝑇𝑣.
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For 𝑡 > 1, let Nout𝑣 = [𝑣1, … , 𝑣𝑛]. By induction and noticing the fact
that 𝑇 [𝑣𝑖] = 𝑇 [𝑣][𝑣𝑖], we have

��)
,�� 𝑇) { 𝑤∈𝑇 [𝑣𝑖] }

= ��

,�� 𝑇 [𝑣𝑖]
= ��

,�� 𝑇 [𝑣][𝑣𝑖]
= ��)

,�� 𝑇 [𝑣]) { 𝑤∈𝑇 [𝑣][𝑣𝑖] }
.

But now

��

,�� 𝑇𝑣 = ��,⟨𝑣⟩)��
,�� 𝑇𝑣1 ��…

,�� 𝑇𝑣𝑛) = ��,⟨𝑣⟩)��
,�� 𝑇 [𝑣]𝑣1 ��…

,�� 𝑇 [𝑣]𝑣𝑛) = ��

,�� 𝑇 [𝑣]𝑣,

which proves the claim.
�

4. A Note on Runtime
Runtimes and algorithmical considerations are discussed in more depth
in chapter 9, but we want to give a short intuition about how “good”
deterministic bottom-up finite tree automata are.
Suppose someone hands us a deterministic bottom-up finite tree automa-
ton �� = ,��) 𝛱, 𝛶 , (��,�� where the transition function �� is given by a
constant-time oracle.
Then we can compute the final state of a given input string 𝑇 as follows.

Algorithm 1: Evaluating a deterministic bottom-up finite tree
automaton
label each vertex of 𝑇 with its number of successors
put all vertices with label 0 into a first-in-first-out queue
while the queue is not empty do

pop the oldest vertex 𝑣 off the queue
compute ��

,�� 𝑇(𝑣)
decrease the label of 𝑣’s predecessor by 1
if predecessor’s label has become 0 then

# we know the states of all its successors now
push predecessor onto queue

This runs in time linear in the number of vertices of 𝑇, a fact which depends
only on the constant-time evaluation of .��
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Lemma 8.4.1
Let �� be a deterministic bottom-up finite tree automaton. Then there is
an algorithm which, for any input string 𝑇, decides in time linear in the
number of vertices of 𝑇 whether �� accepts 𝑇.

Proof. Let �� = ,��) 𝛱, 𝛶 , (��,�� be a deterministic bottom-up finite tree
automaton. We need only show that in algorithm 1, the computation
of ��

,�� 𝑇(𝑣) runs in constant time.
By definition of a deterministic bottom-up finite tree automaton, both the
alphabet 𝛱 and the set of states �� are finite.
Let now

𝑛 ≔ max{ |𝛼| : 𝛼 ∈ 𝛱 }.
Then to compute any transition of ,�� it suffices to know �� on the set

𝛱 ×
𝑛

⋃
𝑖=0

��

𝑖.

But this is a finite set of constant size, and this size is independent of 𝑇,
whence we can simply save �� as a lookup table.

�

In summary, once we have constructed a deterministic bottom-up finite
tree automaton, evaluating whether a given ranked string is accepted runs
quickly. In order to turn this into an algorithm on finite graphs, two
problems remain to solve: construct a deterministic bottom-up finite tree
automaton that accepts precisely those graph expressions whose value fulfils
a given monadic second-order property, and show that given a graph, we
can algorithmically compute a reasonably small 𝔖-expression for it.
We address the former problem first.

5. Dictionaries
Suppose we are given for every possible string in a vocabulary a function
that tells us which state our automaton should assign to which vertex.
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Definition 8.5.1
Let 𝛱 = (𝛴, |_|) be a finite ranked alphabet, 𝛶 a 𝛱-vocabulary, and
let �� be a finite set. A family

𝑉)��} ,𝐸,⦉_⦊,⭐,⟨_⟩,≼) ∶ 𝑉 → �� }(𝑉 ,𝐸,⦉_⦊,⭐,⟨_⟩,≼)∈𝛶

of functions which assigns to every string in 𝛶 a vertex labelling in �� is
called a dictionary-�� for 𝛶.

What we expect a dictionary to do is to give us the interpretations of
strings in 𝛶 under a deterministic bottom-up finite tree automaton with
state set .�� This, however, prohibits those dictionaries where the labellings
are not compatible with each other.

Definition 8.5.2
Let �� be a finite set, 𝛱 = (𝛴, |_|) a finite ranked alphabet, and 𝛶
a 𝛱-vocabulary. We say that a dictionary-�� 𝑇��} }𝑇 ∈𝛶 for 𝛶 is consistent
if it fulfills the following property.

∀𝑇 = (𝑉𝑇, 𝐸𝑇, ⦉_⦊𝑇,⭐𝑇, ≼𝑇, ⟨_⟩)) ∈ 𝛶∶
∀𝑆 = (𝑉𝑆, 𝐸𝑆, ⦉_⦊𝑆,⭐𝑆, ≼𝑆, ⧼_⧽) ∈ 𝛶∶
∀𝑣 ∈ 𝑇∶
∀𝑣′ ∈ 𝑆 with Nout𝑣 = [𝑣1, … , 𝑣𝑛],Nout𝑣′ = [𝑣′

1, … , 𝑣′
𝑛] ∶

⟨𝑣⟩ = ⧼𝑣′⧽
∧ 𝑇(𝑣1)�� = ′𝑆(𝑣��

1)
∧ …
∧ 𝑇(𝑣𝑛)�� = ′𝑆(𝑣��

𝑛)
⇒ 𝑇(𝑣)�� = .𝑆(𝑣′)��

In other words, in a consistent dictionary, the interpretation of a vertex
depends only on the vertex’s symbol and the interpretation of its children,
which coincides with our notion of what a deterministic tree automaton
should do.
In particular, a consistent dictionary agrees with itself on subtrees. We
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note this observation.
Lemma 8.5.3

Let 𝛱 = (𝛴, |_|) be a ranked alphabet, 𝛶 a 𝛱-vocabulary, �� a finite set,
and let 𝑇{𝑇��} ∈𝛶 be a consistent dictionary-�� for 𝛶.
Then for any 𝑇 ∈ 𝛶 and any 𝑣 ∈ 𝑇, we have

𝑇�� [𝑣] = 𝑇�� { 𝑤∈𝑇 [𝑣] }
.

Proof. This follows by induction from the definition of consistency, similar
to the proof of lemma 8.3.5.

�

We now claim that, given a consistent dictionary, we can construct a deter-
ministic bottom-up finite tree automaton that agrees with that dictionary.

Lemma 8.5.4
Let 𝛱 = (𝛴, |_|) be a finite ranked alphabet, 𝛶 a 𝛱-vocabulary, �� a
finite set, �� ⊆ ,�� and let 𝑇{𝑇��} ∈𝛶 be a dictionary-�� for 𝛶.
Then if 𝑇{𝑇��} ∈𝛶 is consistent, there exists a deterministic bottom-up
finite tree automaton �� = ,��) 𝛱, 𝛶 , (��,�� such that ∀𝑇 ∈ 𝛶∶ ��

,�� 𝑇 = .𝑇��

Proof. We need only construct the transition function ,�� and of this only
the relevant parts.
For later convenience, we choose once and for all an arbitrary symbol �� ∈ .��
Let (𝑓, 𝑤) ∈ 𝛴 × ��

∗ with |𝑤| = |𝑓|, 𝑤 = 𝑤1 … 𝑤𝑛.
Case 1: there is a 𝑇 = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) ∈ 𝛶 with root 𝑣 and ⟨𝑣⟩ = 𝑓
that fulfils Nout𝑣 = [𝑣1, … , 𝑣𝑛] and ∀𝑖 ∈ { 1, … , 𝑛 }∶ 𝑇𝑣𝑖�� = 𝑤𝑖. Then we
set ,𝑓)�� 𝑤) ≔ .𝑇𝑣��
By definition of a consistent dictionary, this is well-defined.
Case 2: there is no such 𝑇 ∈ 𝛶. Intuitively, this means that the collection 𝑤
of states can never be reached anyway, so the transition function for them
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should not matter (as we shall show in a moment). We set ,𝑓)�� 𝑤) ≔ .��
We now claim that the function thus constructed makes �� ≔ ,��) 𝛱, 𝛶 , (��,��
into a deterministic bottom-up finite tree automaton that satisfies our needs,
that is, ∀𝑇 ∈ 𝛶∶ ��

,�� 𝑇 = .𝑇��
That �� is a deterministic bottom-up finite tree automaton is not a spectac-
ular claim, as any old function �� suffices to make a deterministic bottom-up
finite tree automaton. It remains to show that the interpretations coincide
with our dictionary.
Let therefore 𝑇 = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) ∈ 𝛶, say with height 𝑡.
For 𝑡 = 1, 𝑇 has only one vertex 𝑣 and we have ��

,�� 𝑇𝑣 = ,⟨𝑣⟩)�� 𝜖) = .𝑇𝑣��
For 𝑡 > 1, let 𝑣 be the root of 𝑇, Nout𝑣 = [𝑣1, … , 𝑣𝑛]. By induction, the
claim holds for 𝑇 [𝑣1], … , 𝑇 [𝑣𝑛]. But now by lemma 8.3.5, we have

��

,�� 𝑇𝑣 = ��,⟨𝑣⟩)��
,�� 𝑇𝑣1, … ��,

,�� 𝑇𝑣𝑛)
= ��,⟨𝑣⟩)��

,�� 𝑇 [𝑣1]𝑣1, … ��,
,�� 𝑇 [𝑣𝑛]𝑣𝑛)

= 𝑇��,⟨𝑣⟩)�� [𝑣1]𝑣1, … 𝑇��, [𝑣𝑛]𝑣𝑛)
= ,𝑇𝑣1��,⟨𝑣⟩)�� … (𝑇𝑣𝑛��,
= .𝑇𝑣��

Here, the first equality is due to the definition of ��
,�� 𝑇, the second is due

to lemma 8.3.5, the third is the induction hypothesis, the second-to-last is
lemma 8.5.3, and the final equality is the definition of �� according to case 1
since we have found a tree with the required labels.

�

We use this fact in the following section: given a recognisable set 𝑋 (of
graphs, for example), we show the existence of a consistent dictionary for
the set of expressions that yield values in 𝑋, which immediately yields a
deterministic bottom-up finite tree automaton.
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6. Algebras and Tree Automata
It is now time for the reader to recall all that they have forgotten from
chapter 6 in order for us to explore the connection between typed algebras
and tree automata. There is a whole theory to be developed here, as seen in
[GS15] and [Cou89]. We, however, constrain ourselves to the niche pertinent
to Courcelle’s Theorem and hence focus on finitely expressible algebras.

Definition 8.6.1
A signature (𝒯, ℱ, ⟨_⟩) is called weakly locally finite if for every fi-
nite 𝒴 ⊆ 𝒯, the set

{ 𝒻 ∈ ℱ : ⟨𝒻⟩ ∈ 𝒴∗ × 𝒴 }

is finite.

Theorem 8.6.2
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, 𝒜 = (𝒞, 𝒪) an 𝒮-algebra,
let 𝓉 ∈ 𝒯, let ℒ ⊆ 𝒞𝓉, and let the following conditions be fulfilled:

• 𝒮 is weakly locally finite.
• ℒ is 𝒜-recognisable.
• ℒ is finitely expressible, say 𝒴-expressible for some finite 𝒴 ⊆ 𝒯.

Then there exists a deterministic bottom-up finite tree automaton ��

that takes as input all 𝒴-local expressions from ‖𝒮‖ and accepts an
expression ℯ if and only if val𝒜ℯ ∈ ℒ.

Proof. Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a weakly locally finite signature. Let
furthermore 𝒜 = (𝒞, 𝒪) be an 𝒮-algebra, let 𝓉 ∈ 𝒯, and let ℒ ⊆ 𝒞𝓉
be 𝒜-recognisable and finitely expressible, say 𝒴-expressible for some
finite 𝒴 ⊆ 𝒯.
We obtain first the ranked alphabet from which our input strings will
stem. We set 𝛴 ≔ { 𝒻 ∈ ℱ : ⟨𝒻⟩ ∈ 𝒴∗ × 𝒴 } and |_| ∶ 𝛴 → ℕ, 𝒻 ↦ |𝒻|.
Then 𝛱 ≔ (𝛴, |_|) is a ranked alphabet, and the set of all 𝒴-local expres-
sions in ‖𝒮‖ is a 𝛱-vocabulary. Let us call it 𝛶.
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Since 𝒴 is finite and 𝒮 is weakly locally finite, the alphabet 𝛱 is finite.
Next, we determine the states of our automaton. Since ℒ is 𝒜-recog-
nisable, by definition we can find a locally finite 𝒮-algebra ℬ = (𝒟, 𝒬),
an 𝒮-algebra morphism {𝒽𝓊}𝓊∈𝒯 ∶ 𝒜 → ℬ, and a set ℳ ⊆ 𝒟𝓉 such
that ℒ = 𝒽𝓉

−1ℳ. We set

�� ≔ ⋃
𝓊∈𝒴

𝒟𝓊.

Because 𝒴 is finite and ℬ is locally finite, this is a finite (if potentially
large) set.
The accepting states shall be �� ≔ ℳ ⊆ .��
We construct a consistent dictionary-�� for 𝛶 in order to apply lemma 8.5.4.
But this is easily done: given a string 𝑇 = (𝑉 , 𝐸, ⦉_⦊,⭐, ≼, ⟨_⟩) ∈ ||𝛱||,
we remember that 𝑇 is actually also an expression in ‖𝒮‖ and set

𝑇�� ∶ 𝑉 → ,�� 𝑣 ↦ valℬ𝑇 [𝑣].

The value valℬ𝑇 [𝑣] lies in �� since all function symbols in 𝛴 have their
output sort in 𝒴. Thus the family 𝑇{𝑇��} ∈𝛶 is a .dictionary-�� Comparing
definitions 8.5.2 and 6.3.3 reveals that by construction, this dictionary is
consistent. Hence lemma 8.5.4 provides us a function �� and a deterministic
bottom-up finite tree automaton

�� = ,��) 𝛱, 𝛶 , (��,��

such that
∀𝑇 ∈ 𝛶∶ ��

,�� 𝑇 = ,𝑇��
or in other words, such that

∀ℯ ∈ ‖𝒮‖ such that ℯ is 𝒴-local ∶ ��
,�� 𝑇 = valℬℯ.

Thus, �� accepts an expression ℯ if and only if valℬℯ ∈ �� = ℳ. By
lemma 6.3.4, this is equivalent to 𝒽𝓉(val𝒜ℯ) = valℬℯ ∈ ℳ, or equiv-
alently, val𝒜ℯ ∈ 𝒽𝓉

−1ℳ = ℒ, proving that �� accepts precisely those
expressions that take values in our recognisable set.

�

We state a special case that will be our primary concern in the next chapter.
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Corollary 8.6.3
Let 𝒮 = (𝒯, ℱ, ⟨_⟩) be a signature, let 𝒜 = (𝒞, 𝒪) be a 𝒮-algebra,
let 𝓉 ∈ 𝒯, and let ℒ ⊆ 𝒞𝓉.
Suppose now that the following conditions are fulfilled.

• 𝒮 is weakly locally finite.
• ℒ is 𝒜-recognisable.
• 𝒜 is finitely expressible.

Then for any finite 𝒴 ⊆ 𝒯 such that ℒ is 𝒴-expressible, there exists
a deterministic bottom-up finite tree automaton �� that takes as input
expressions from the set

{ ℯ ∈ ‖𝒮‖ : ℯ is 𝒴-local and val𝒜ℯ ∈ 𝒞𝓉 }

and accepts an expression ℯ if and only if val𝒜ℯ ∈ ℒ.

Combined with lemma 8.4.1, this yields a membership algorithm which,
given an expression ℯ, is linear in the size of ℯ. It remains only to check
how large these expressions become and how hard it is to compute them
for graphs. The next chapter concerns itself with these questions.
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Chapter 9
Practical Considerations

For the entirety of this chapter, we assume that our graphs have no loops,
that is, no edge is allowed to visit the same vertex more than once. This is
done not because the results become false when one introduces loops, but
to declutter the proofs. In fact, every result from this chapter holds just as
well for graphs with loops. Appendix B shows how to formally arrive at this
conclusion. Because of this fact, we do not mention the lack of loops when
stating results in this chapter, while at the same time silently assuming
all graphs are loop-free in our proofs. The reader may decide whether to
restrict themselves to graphs without loops or whether to complement their
reading by studying appendix B.

1. Applying the Theorem
Using the final result of the previous chapter, we arrive at a more practical
version of Courcelle’s Theorem.
Theorem 9.1.1

Let 𝒮 be a signature, let 𝒜 = (𝒞, 𝒪) be an 𝒮-algebra, and let the
following properties be fulfilled:

• 𝒜 is inherited from 𝔊.
• 𝒜 is finitely expressible.
• 𝒮 is weakly locally finite.

Let further 𝜑 be a sentence of the monadic second-order language of
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graphs, and let 𝑛 ∈ ℕ.
Then there exists a deterministic bottom-up finite tree automaton that
takes as input a set 𝒦 of 𝒮-expressions with 𝒜-values in 𝒞𝑛 and accepts
an expression ℯ if and only if ⊧𝛺(val𝒜ℯ) 𝜑, and every element of 𝒞𝑛 is the
value of some expression in 𝒦.

Proof. Suppose we have a weakly locally finite signature 𝒮, a finitely ex-
pressible 𝒮-algebra 𝒜 = (𝒞, 𝒪) inherited from 𝔊, and a graph type 𝑛 ∈ ℕ.
Because 𝒜 is finitely expressible, we find a finite set 𝒴 ⊆ ℕ such that 𝒞𝑛
is 𝒴-expressible.

Let further 𝜑 ∈ ‖ ̊𝔏‖. By theorem 7.1.2, the set { 𝐺 ∈ 𝒞𝑛 : ⊧𝛺(𝐺) 𝜑 }
is 𝒜-recognisable.
Now the assumptions of corollary 8.6.3 are fulfilled, and we get a determin-
istic bottom-up finite tree automaton �� that takes as inputs expressions
from the set

𝒦 ≔ { ℯ ∈ ‖𝒮‖ : ℯ is 𝒴-local and val𝒜ℯ ∈ 𝒞𝓉 }

and accepts an expression ℯ if and only if ⊧𝛺(val𝒜ℯ) 𝜑.
Because 𝒞𝑛 is 𝒴-expressible, every element of 𝒞𝑛 is the value of some
expression in 𝒦.

�

Of course, it remains to show that there are nontrivial classes of graphs
which fulfil these requirements; otherwise, theorem 9.1.1 would be true, but
also purely academic1.
In section 9.3, we show that, for example, the algebra of all graphs of tree-
width at most 𝑘 for some 𝑘 ∈ ℕ, equipped with certain graph operations,
fulfils the assumptions of theorem 9.1.1.
Believing for now that such algebras exist, how does the existence of such
an automaton translate into an algorithm?
Suppose we are given a finitely expressible algebra 𝒜 of weakly locally finite

1 A polite term for “useless”.
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signature inherited from 𝔊, where the type 0 graphs in 𝒜 are 𝒴-expressible
for some 𝒴 ⊆ ℕ, |𝒴| < ∞. Suppose we are further given a sentence 𝜑 ∈ 𝔛.
By Courcelle’s Theorem, we build a deterministic bottom-up finite tree
automaton �� = ,��) 𝛱, 𝛶 , (��,�� that accepts an 𝒴-local graph expression if
and only if its value in 𝒜 fulfils 𝜑.
Then an algorithm to decide 𝜑-fulfilment would look as follows.

Algorithm 2: Applying Courcelle’s Theorem
find 𝒴-local expression ℯ such that val𝒜ℯ = 𝐺
if ��

,�� ℯ ∈ �� then
return yes

else
return no

Step two, checking whether �� accepts the ranked string ℯ, runs in time
linear in the number of vertices of the input tree ℯ (lemma 8.4.1).
All that remains to analyse is how many vertices the expression ℯ has, and
how long it takes to construct ℯ in the first place.

2. Computing Graph Expressions
Before we restrict our multiverse to graphs of a certain tree-width, we take
another look at our original algebra 𝔊.
In theorem 6.4.2, we showed that every finite hypergraph can be constructed
with only disjoint sum, terminal redefinition, and fusion. So why can we
not stay in this algebra, if it is already so nice?
While the signature 𝔖 is indeed weakly locally finite, the algebra 𝔊 is not
finitely expressible. Nevertheless, we turn the procedure outlined in the
proof of theorem 6.4.2 into an algorithm just to see what goes wrong.
The input is a type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) with |𝑉 | = 𝑛 such that
all elements of 𝑉 are terminal vertices. The output is an expression ℯ
with val𝔊ℯ = 𝐺.
Note that the ℯ defined in the algorithm is an expression, not a graph –
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when we write ℯ ≔ ℯ ⊕ 𝐺′, we mean the literal (ranked) string “ℯ ⊕ 𝐺′”,
not the value resulting from this disjoint sum.

Algorithm 3: Constructing a graph expression
𝑤𝑡(1) ≔ 𝔳
ℯ ≔ 𝑤𝑡(1)
for 𝑖 ∈ { 2, … , 𝑛 } do

𝑤𝑡(𝑖) ≔ 𝔳
ℯ ≔ ℯ ⊕ 𝑤𝑡(𝑖)

for 𝑒 ∈ 𝐸 do
𝑉 𝑒 ≔ 𝔢|𝑒|

# denote the vertices of 𝑉 𝑒 as { 𝑉 𝑒
1 , … , 𝑉 𝑒

|𝑒| }
ℯ ≔ ℯ ⊕ 𝑉 𝑒

for 𝚤 ∈ { 1, … , |𝑒| } do
find 𝑏 ∈ ℕ such that 𝑡′(𝑏) = 𝑉 𝑒

𝑖
set 𝑣 to be the 𝑖-th vertex in ⦉𝑒⦊
find 𝑎 ∈ ℕ such that 𝑡′(𝑎) = 𝑤𝑣

ℯ ≔媲𝑏
𝑎ℯ

set 𝜎 to correct the terminal vertices
return ⇆𝜎ℯ

The correctness of this algorithm has already been shown in the proof of
theorem 6.4.2.
Theorem 9.2.1

Given a type 𝑛 ∈ ℕ graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) with |𝑉 | = 𝑛 such
that all elements of 𝑉 are terminal vertices, algorithm 3 outputs an
expression ℯ ∈ ‖𝔊‖ with val𝔊ℯ = 𝐺 in time 𝒪(|𝑉 | + |𝐸| + 𝑢|𝐸|), where

𝑢 ≔ max
𝑒∈𝐸

|𝑒|.

The number of vertices of ℯ is also in 𝒪(|𝑉 | + |𝐸| + 𝑢|𝐸|).2

Proof. Only the runtime and the size of the resulting expression remain
2 It might seem strange at first that we do not simply write 𝒪(|𝑉 | + 𝑢|𝐸|), but the two

differ in the case 𝑢 = 0.
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to be shown.
We start with an expression (a ranked string) with one vertex. The first
loop in algorithm 3 takes |𝑉 | − 1 steps and adds |𝑉 | − 1 vertices to ℯ.
The second loop takes |𝐸| steps. Each step adds one vertex to ℯ, then goes
into the nested loop of at most |𝑒| ≤ 𝑢 steps and adds as many vertices
to ℯ. Finding 𝑎 and 𝑏 runs in linear time, provided we use a reasonable
data structure that allows us to look up where in the list of terminals a
given vertex lives and we remember at which natural number we “left off”
after the previous edge.
This finishes the proof.

�

As seen in lemma 6.4.1, it is a trivial step from here to constructing all
possible typed graphs.
The input is an arbitrary type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡). The output is
an expression ℯ with val𝔊ℯ = 𝐺.

Algorithm 4: Type Schmype
enumerate 𝑉 = { 𝑣1, … , 𝑣|𝑉 | }
use algorithm 3 to find ℯ ∈ ‖𝔖‖

with val𝔊ℯ = (𝑉 , 𝐸, ⦉_⦊, 𝑖 ↦ 𝑣𝑖) ∈ 𝔊|𝑉 |
set 𝜎∶ 𝑣𝑖 ↦ 𝑖
ℯ ≔ ⇆𝜎∘𝑡ℯ
return ℯ

This adds a constant number of steps on top of algorithm 3. We restate
theorem 9.2.1 in full generality.

Theorem 9.2.2
Given a typed graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡), algorithm 4 outputs an expres-
sion ℯ ∈ ‖𝔖‖ with val𝔊ℯ = 𝐺 in time 𝒪(|𝑉 | + |𝐸| + 𝑢|𝐸|), where

𝑢 ≔ max
𝑒∈𝐸

|𝑒|.

The number of vertices of ℯ is also in 𝒪(|𝑉 | + |𝐸| + 𝑢|𝐸|).
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Chapter 9: Practical Considerations

For arbitrary graphs, the 𝑢 defined in theorem 9.2.2 can grow inconveniently
large. We state two special cases as corollaries, abusing notation to omit
the terminal function – the reader may imagine their favourite number of
terminals, for example zero.

Corollary 9.2.3
For any hypergraph 𝐺 = (𝑉 , 𝐸, ⦉_⦊), algorithm 4 outputs an expres-
sion ℯ ∈ ‖𝔖‖ with val𝔊ℯ = 𝐺 in time 𝒪(|𝑉 | + |𝑉 | ⋅ |𝐸|). The number of
vertices of ℯ is also in 𝒪(|𝑉 | + |𝑉 | ⋅ |𝐸|).

Corollary 9.2.4
Let 𝑘 ∈ ℕ. For a 𝑘-uniform hypergraph 𝐺 = (𝑉 , 𝐸, ⦉_⦊), algorithm 4
outputs an expression ℯ ∈ ‖𝔖‖ with val𝔊ℯ = 𝐺 in time 𝒪(|𝑉 | + 𝑘|𝐸|).
The number of vertices of ℯ is also in 𝒪(|𝑉 | + 𝑘|𝐸|).

So, why can we not find an automaton to detect sets of 2-uniform graphs
and solve the minimum vertex cover problem in linear time?
The crux is, of course, the non-finite expressibility. Recall that a determin-
istic bottom-up finite tree automaton can only deal with a finite alphabet;
otherwise the transition table becomes infinite and computing the inter-
pretation function can no longer be accomplished in linear time. But this
means that we can not end up with a deterministic bottom-up finite tree
automaton detecting a recognisable set ℒ if ℒ is not finitely expressible –
if there are graphs for which the expressions need arbitrarily large types,
our ranked alphabet becomes infinite.
We show that there are such graphs in 𝔊.

Theorem 9.2.5
Let 𝑘 ∈ ℕ> 0. Let ℯ ∈ ‖𝔖‖ such that val𝔊ℯ is the complete 2-uniform graph
on 𝑘 vertices with 0 terminal vertices. Then ℯ is not { 1, … , 𝑘 − 1 }-local.

Proof. Fix a positive integer 𝑘 ∈ ℕ> 0 and denote by 𝐺 the complete
2-uniform type 0 graph on 𝑘 vertices. Let further ℯ = (𝑇 , ⟨_⟩) ∈ ‖𝔖‖ such
that val𝔊ℯ = 𝐺. Suppose now ℯ were { 1, … , 𝑘 − 1 }-local.
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9.2: Computing Graph Expressions

Consider a subtree 𝑆 of 𝑇 such that 𝐺′ ≔ val𝔊(𝑆, ⟨_⟩
𝑆
) already contains

a vertex of degree 𝑘 − 1. We choose 𝑆 to be minimal with this property,
that is, such that for every proper subtree 𝑈 of 𝑆, the graph val𝔊(𝑈, ⟨_⟩

𝑈
)

has no vertex of degree more than 𝑘 − 2.
Then ⟨

√
𝑆⟩ must be a fusion symbol: if it were a redefinition, then the

subtree rooted at the sole child of
√

𝑆 would result in the same graph except
for terminals and would thus contain a vertex of degree 𝑘 − 1. If it were a
disjoint sum, then the subtree rooted at at least one of its children would
contain a vertex of degree 𝑘 − 1 because a disjoint sum creates no edges.

We can thus assume without loss of generality that ⟨
√

𝑆⟩ = 媲2
1. Denote

the first terminal of 𝐺′ (the result of this fusion) by 𝑣.
Since 𝐺′ contains a vertex of degree 𝑘 − 1, it must have at least 𝑘 ver-
tices. Because ℯ is { 1, … , 𝑘 − 1 }-local, this implies that there exists a
vertex 𝑣′ ∈ 𝐺′ which is not a terminal. Since 𝑣 is a terminal, we have 𝑣′ ≠ 𝑣.
Because 𝑣′ is not a terminal, it can never become a terminal in any operation
on the path from

√
𝑆 to

√
𝑇. In particular, there can be no fusion involving 𝑣′

on said path, which means its degree cannot change between 𝐺′ and 𝐺.
But 𝐺 contains only vertices of degree 𝑘 − 1, whence 𝑣′ must already have
degree 𝑘 − 1 in 𝐺′.

Since the fusion媲2
1 did not change the degree of 𝑣′, we can conclude that, for

the sole child 𝑤 of
√

𝑆, we must have that in the graph val𝔊(𝑆[𝑤], ⟨_⟩
𝑆[𝑤]

),
the vertex 𝑣′ already has degree 𝑘 − 1.
But 𝑆[𝑤] is a proper subtree of 𝑆, a contradiction.

�

Thus we have proven the following.

Corollary 9.2.6
The algebra 𝔊 is not finitely expressible.

For this reason, we must restrict ourselves to “smaller” algebras inherited
from 𝔊. Maybe the opposite extreme? Can we simply add enough function
symbols to make our algebra finitely expressible?
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The extreme version of this is the closure 𝔊. It is trivially finitely expressible,
since for any element 𝒸, there exists a nullary function symbol (and hence
a very small expression) evaluating to 𝒸.
Great! We simply use this algebra and all our problems go away.
This is, of course, nonsense. This time, our algebra is finitely expressible,
but its signature is no longer weakly locally finite: one nullary function
symbol for every finite graph translates into infinitely many nullary function
symbols of each type. Looking back at the proof of theorem 8.6.2, we see
that if the signature is not weakly locally finite, the ranked alphabet becomes
(again!) infinite.
Could there be a sweet spot in between these two extremes that is both
finitely expressible and of weakly locally finite signature? Possibly, but it
would still not be of much practical use.

Theorem 9.2.7
Let 𝒜 = (𝒞, 𝒪) be an algebra of weakly locally finite signature inherited
from 𝔊 such that there is some 𝑛 ∈ ℕ with 𝒞𝑛 = 𝔊𝑛, and let 𝒞𝑛
be { 1, … , 𝑘 }-expressible for some 𝑘 ∈ ℕ.
Then unless P = NP, there does not exist a polynomial-time algorithm
which, given a type 𝑛 graph 𝐺, computes a { 1, … , 𝑘 }-local expression ℯ
with val𝒜ℯ = 𝐺.

Proof. Let 𝒜 = (𝒞, 𝒪) be an algebra of weakly locally finite signature
inherited from 𝔊 such that there is some 𝑛 ∈ ℕ with 𝒞𝑛 = 𝔊𝑛, and let 𝒞𝑛
be { 1, … , 𝑘 }-expressible for some 𝑘 ∈ ℕ.
If the reader has read the example on page 74, they might remember that
the property “this graph is 3-colourable” can be encoded in monadic second-
order logic. Let 𝜑 be the sentence of the monadic second-order language of
graphs encoding 3-colourability.
By theorem 7.1.2, the set ℒ ≔ { 𝐺 ∈ 𝒞𝑛 : ⊧𝛺(𝐺) 𝜑 } is 𝒜-recognisable.
We set 𝒴 ≔ { 1, … , 𝑘 }, a finite set. Then by corollary 8.6.3, there exists
a deterministic bottom-up finite tree automaton �� that takes as input
all 𝒴-local expressions that result in a graph from 𝒞𝑛 and accepts an
expression if and only if its value lies in ℒ.
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9.2: Computing Graph Expressions

Suppose now that we know an algorithm that, given a graph 𝐺 ∈ 𝒞𝑛,
computes a { 1, … , 𝑘 }-local expression ℯ with val𝒜ℯ = 𝐺 in polynomial
time.
Given any (untyped) 2-uniform graph 𝐺, we can arbitrarily designate one
of its vertices to be a terminal with multiplicity 𝑛, yielding a type 𝑛 graph,
also called 𝐺. Since 𝒞𝑛 = 𝔊𝑛, we then have 𝐺 ∈ 𝒞𝑛 and can compute in
polynomial time a { 1, … , 𝑘 }-local expression ℯ with val𝒜ℯ = 𝐺. Since the
algorithm outputs ℯ in polynomial time, the number of vertices of ℯ must
also be polynomial in the size of 𝐺.
Because ℯ is { 1, … , 𝑘 }-local, it is a valid input for �� and we can decide in
time linear in the size of ℯ whether �� accepts ℯ, in other words, whether 𝐺
is 3-colourable. We have thus constructed an algorithm which, given any
graph 𝐺, decides in polynomial time whether 𝐺 is 3-colourable.
Since 3-colourability is NP-complete, this implies P = NP.

�

Therefore, when examining a class of graphs, one must do two things:
• Show that the class is a finitely expressible algebra inherited from 𝔊

with weakly locally finite signature and
• provide an algorithm that, given a graph in the class, actually con-

structs an expression in this inherited algebra in reasonable time.
We give two examples of such classes. The first, graphs of tree-width
bounded by a constant, is well known.3 The second one, the narrower case
of graphs with path-width bounded by a constant, makes use of the more
general formulation of Courcelle’s Theorem that we have developed. We
include this case as an example of how the reader may construct their own
inherited algebra of graphs for use with Courcelle’s Theorem.

3 This result is already mentioned in the 1993 paper [Bod93], which can also point the
reader to many more interesting results on graphs of tree-width bounded by a constant.
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3. Graphs of Bounded Tree-Width

The reader, if not familiar with the concept of tree-decompositions, may
want to refer back to section 4.6 for the pertinent definitions.
We now construct, for any given 𝑘 ∈ ℕ, a graph algebra inherited from 𝔊
where the carrier sets are the graphs of tree-width at most 𝑘. What remains
to construct are the function symbols – we need the range of each function
symbol to again lie in our inherited algebra; in other words, the tree-width
bound needs to be preserved.
It is easy to see that fusion is “too powerful” for this:

媲
2
1 1,21

2

The problem, as the reader can see, is that allowing to fuse arbitrary vertices
of a connected graphs can introduce a clique of a larger size into the graph.
We hence replace fusion by a construction that is closer (but not equal)
to how one constructs partial 𝑘-trees4: we disallow fusing vertices from
the same connected component and instead allow to fuse vertices from two
different graphs at the same time as we take their direct sum:

4 The curious reader can learn all about partial 𝑘-trees in chapter 7 of [Bod98].
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1

2

3

21 3

1

2

3

We call this a “3-twine”, or more generally a 𝑘-twine when we want a graph
of type 𝑘 – the 2-twine simply forgets the third terminal after fusing it:

1

2
21 3

1

2

3
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We might sometimes want to fuse only some, not all, of the terminal
vertices. To distinguish this, the above is more precisely called the 2-twine
over { 1, 2, 3 }. The 2-twine over {1} would look different:

1

2

21 3

1

2

3

We turn this idea into a formal definition, which the reader may want to
check is indeed inherited from 𝔊 (as a composition of existing function
symbols).

Definition 9.3.1
Let 𝐺 be a graph of type 𝑛 and let 𝐺′ be a graph of type 𝑚. Let further

𝐾 = { 𝑙1, … , 𝑙|𝐾| } ⊆ { 1, … ,min{ 𝑛, 𝑚 } }

and let 𝑘 ∈ ℕ, 𝑘 ≤ 𝑛 + 𝑚 − |𝐾|. We call

𝐺 ⊗𝑛 𝑘
𝑚 𝐾 𝐺′ ≔ ⇆𝜎媲

𝑙|𝐾|+𝑛
𝑙|𝐾|

媲
𝑙|𝐾|−1+𝑛
𝑙|𝐾|−1

…媲𝑙1+𝑛
𝑙1

(𝐺 ⊕ 𝐺′)

with

𝜎∶ { 1, … , 𝑘 } → { 1, … , 𝑛 + 𝑚 }, 𝑖 ↦ {
𝑖 if 𝑖 ≤ 𝑛
𝑥𝑖 otherwise,
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9.3: Graphs of Bounded Tree-Width

where 𝑥𝑖 denotes the 𝑖-th smallest element of

{ 1 + 𝑛, … , 𝑚 + 𝑛 } ⧵ { 𝑥 + 𝑛 : 𝑥 ∈ 𝐾 },

the 𝑘-twine of 𝐺 and 𝐺′ over 𝐾.

In words, entwining puts the two graphs side by side and identifies with
each other some of the equal-numbered terminals, but without adding to
their multiplicity (as ordinary fusion does). If 𝑘 < 𝑛 + 𝑚 − |𝐾|, it then
throws away the “superfluous” terminal vertices.
Note that entwining does not allow one to create loops.
We now define the carrier sets of our algebra. They will not be exactly the
sets of graphs of a certain tree-width (the proof of theorem 9.3.6 reveals
why), though the latter are a good starting point.

Definition 9.3.2
Let 𝑘, 𝑛 ∈ ℕ. We denote

𝔱𝑘
𝑛 ≔ { 𝐺 ∈ 𝔊𝑛 : tw(𝐺) ≤ 𝑘 }.

The carrier sets shall be as follows.

Definition 9.3.3
Let 𝑘 ∈ ℕ. A tree-decomposition for a graph 𝐺 ∈ 𝔊 is called 𝑘-verdant
if it has width at most 𝑘 and there is a bag which contains all terminal
vertices of 𝐺.
A graph 𝐺 ∈ 𝔊 is called 𝑘-verdant if it admits a 𝑘-verdant tree-de-
composition.
For 𝑛 ∈ ℕ, the set of all 𝑘-verdant graphs of type 𝑛 is denoted by 𝔗𝑘

𝑛.

In particular, we have
∀𝑘 ∈ ℕ ∶ 𝔗𝑘

0 = 𝔱𝑘
0 ,

which, if we are honest with ourselves, is all that we really care about.
We note the obvious inclusions in one place.
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Observation 9.3.4
Let 𝑘, 𝑛 ∈ ℕ. Then we have the following.

• 𝔱𝑘
𝑛 ⊆ 𝔱𝑘+1

𝑛 .
• 𝔗𝑘

𝑛 ⊆ 𝔗𝑘+1
𝑛 .

• 𝔗𝑘
𝑛 ⊆ 𝔱𝑘

𝑛.
• 𝔗𝑘

0 = 𝔱𝑘
0 .

• 𝔗𝑘
1 = 𝔱𝑘

1 .

For graphs of type larger than 1, the second and third inclusions are strict
– for example, the following type 2 graph of tree-width 1 is 2-verdant but
not 1-verdant.

We take the trivial graphs, all entwinements, and all terminal redefinitions,
and throw them into an algebra with the 𝑘-verdant graphs.

Definition 9.3.5
Let 𝑘 ∈ ℕ. We set

𝔒𝑘 ≔ 𝔒𝑘
triv ∪ 𝔒𝑘

⊗ ∪ (⋃
𝑖∈ℕ

⋃
𝑗∈ℕ

𝔉𝑗
𝑖 ⇆)

with
𝔒𝑘

triv ≔ { 𝔳, 𝔢1, … , 𝔢𝑘+1 }

and

𝔒𝑘
⊗ ≔ { ⊗𝑛 𝑙

𝑚 𝐾 :𝑛, 𝑚, 𝑙 ∈ ℕ, 𝐾 ⊆ { 1, … ,min{ 𝑛, 𝑚 } },
𝑙 ≤ 𝑛 + 𝑚 − |𝐾|, 𝑙 ≤ 𝑘 + 1 },

while 𝔉𝑗
𝑖 ⇆ is as in definition 6.2.1. We denote

𝔗𝑘 ≔ ({𝔗𝑘
𝑛}𝑛∈ℕ, {Fl(𝔒)𝔣 (⋃𝑛∈ℕ 𝔗𝑘

𝑛)
∗ }𝔣∈𝔒𝑘)
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and call this the algebra of graphs of tree-width at most 𝑘 (without loops).

We can call this an algebra all we want, but we should probably show that
it deserves this name.
Theorem 9.3.6

Let 𝑘 ∈ ℕ, and let 𝔣 ∈ 𝔒𝑘. Then the range of Fl(𝔒)𝔣 (⋃𝑛∈ℕ 𝔗𝑘
𝑛)

∗ lies

in 𝔗𝑘
⟨𝔣⟩out .

Proof. Let 𝑘 ∈ ℕ. For each possible function symbol, we verify that
plugging in only 𝑘-verdant graphs yields again a 𝑘-verdant graph.
Let 𝔣 ∈ 𝔒𝑘.

Case 1: 𝔣 is nullary. None of the nullary function symbols in 𝔒𝑘 yields a
graph with more than 𝑘 + 1 vertices, so a bag consisting of all vertices is of
width at most 𝑘, and it trivially contains all terminal vertices.

Case 2: 𝔣 = ⇆𝜎 for some function 𝜎. Let 𝐺 ∈ 𝔗𝑘
𝑛 for some 𝑛 ∈ ℕ and

let 𝜎∶ { 1, … , 𝑛′ } → { 1, … , 𝑛 } for some 𝑛′ ∈ ℕ. Take the tree-decom-
position for 𝐺 of width at most 𝑘 which has all 𝑛 terminals of 𝐺 in some
bag 𝑥.
Terminal redefinition does not change vertices or edges, so the same tree-
decomposition is also a tree-decomposition for ⇆𝜎𝐺. Terminal redefinition
can not promote nonterminal vertices to terminals, so all terminal vertices
of ⇆𝜎𝐺 are again in 𝑥.

Case 3: 𝔣 = ⊗𝑛 𝐾
𝑚 𝑙 for some set 𝐾 and some 𝑛, 𝑚, 𝑙 ∈ ℕ. This is the inter-

esting of the three cases: let 𝐺 = (𝑉 , 𝐸, 𝑡) ∈ 𝔗𝑘
𝑛, let 𝐺′ ∈ 𝔗𝑘

𝑚, and
let 𝐾 ⊆ { 1, … ,min{ 𝑛, 𝑚 } }, 𝑙 ≤ 𝑚 + 𝑛 − |𝐾| and 𝑙 ≤ 𝑘 + 1.
Let (𝑇 , 𝑋, 𝑏) be a tree-decomposition for 𝐺 of width at most 𝑘 with all
terminals of 𝐺 contained in a single bag 𝑥 ∈ 𝑋. Let similarly (𝑆, 𝑌 , 𝑐) be
a tree-decomposition for 𝐺′ of width at most 𝑘 with all terminals of 𝐺′

contained in a single bag 𝑦 ∈ 𝑌.
Without loss of generality, we assume that 𝐾 = { 1, … , 𝑝 } for some 𝑝 ∈ ℕ
with 𝑝 ≤ min{ 𝑛, 𝑚 }.
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We set 𝑎 ≔ min{ 𝑛, 𝑙 } and

𝑧 ≔ { 𝑡(𝑖) : 𝑖 ≤ 𝑎 } ∪ { 𝑡′(𝑖 + 𝑝) : 𝑖 ∈ { 𝑎 + 1, … , 𝑙 } },

in other words, exactly the vertices that will be terminal in 𝐺 ⊗𝐾
𝑙 𝐺′. Note

that |𝑧| ≤ 𝑙 ≤ 𝑘 + 1.5

We introduce a new node 𝑟 and attach to it as subtrees the trees 𝑇 and 𝑆
at the nodes 𝑏−1(𝑥) and 𝑐−1(𝑦). Call this new tree 𝑈.
We now set

𝑑∶ 𝑈 → 𝑋 ∪ 𝑌 ∪ {𝑧}, 𝑣 ↦
⎧{
⎨{⎩

𝑏(𝑣) 𝑣 ∈ 𝑇
𝑐(𝑣) 𝑣 ∈ 𝑆
𝑧 𝑣 = 𝑟.

We claim that this makes (𝑈, 𝑋 ∪ 𝑌 ∪ {𝑧}, 𝑑) into a 𝑘-verdant tree-decom-
position for 𝐺 ⊗𝐾 𝐺′.
The terminal vertices of 𝐺 ⊗𝐾 𝐺′ are by definition all in 𝑧. Hence
if (𝑈, 𝑋 ∪ 𝑌 ∪ {𝑧}, 𝑑) is a tree-decomposition for 𝐺 ⊗𝐾 𝐺′, it is imme-
diately 𝑘-verdant (since 𝑧 contains at most 𝑘 + 1 vertices).
Since (𝑇 , 𝑋, 𝑏) and (𝑆, 𝑌 , 𝑐) were tree-decompositions, all vertices of 𝐺
and 𝐺′ are contained in our new decomposition, and hence so are all vertices
of 𝐺 ⊗𝐾 𝐺′.
Entwining introduces no edges, so every edge of 𝐺 ⊗𝐾 𝐺′ is still contained
in a bag.
Let now 𝑣 ∈ 𝐺 ⊗𝐾 𝐺′ and consider the subgraph 𝑈 ′ of 𝑈 induced
by { 𝑣′ ∈ 𝑈 : 𝑣 ∈ 𝑑(𝑣′) }.

Case 3.1: 𝑣 ∉ 𝑧. Then 𝑈 ′ is entirely contained in either 𝑇 or 𝑆 and hence
connected since they are tree-decompositions.

Case 3.2: 𝑣 ∈ 𝑧 and 𝑣 ∉ { 𝑡(𝑖) : 𝑖 ∈ 𝐾 }. Without loss of generality, 𝑣 ∈ 𝐺.
Since 𝑣 is a terminal of 𝐺 (by virtue of being in 𝑧), we have 𝑣 ∈ 𝑥. Since 𝑣
was not glued, we have 𝑣 ∉ 𝐺′.
Hence 𝑈 ′ ∩ 𝑆 = ∅ and 𝑈 ′ is connected since 𝑇 was a tree-decomposition.

5 Strict inequality can occur if either graph has terminals of multiplicity larger than 1.
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Case 3.3: 𝑣 ∈ { 𝑡(𝑖) : 𝑖 ∈ 𝐾 }. Then 𝑣 was a terminal of 𝐺 and of 𝐺′ and is
hence in 𝑥 and in 𝑦. It is also in 𝑧, whence 𝑈 ′ is connected.

We have thus shown that (𝑈, 𝑋 ∪ 𝑌 ∪ {𝑧}, 𝑑) is indeed a tree-decomposition
for 𝐺 ⊗𝐾 𝐺′.

This concludes the proof for all allowed function symbols.
�

This is all we need to note the following.

Corollary 9.3.7
Let 𝑘 ∈ ℕ. Then 𝔗𝑘 is an inherited (ℕ, 𝔒𝑘)-algebra of 𝔊.

A short examination of definition 6.2.1 also reveals that there are not too
many function symbols of each type.

Observation 9.3.8
Let 𝑘 ∈ ℕ. Then 𝔗𝑘 is of weakly locally finite signature.

It remains to show that this algebra is finitely expressible – otherwise, all
of our hard work would have been in vain.
Theorem 9.3.9

Let 𝑘, 𝑛 ∈ ℕ. Then for any 𝑘-verdant graph 𝐺 ∈ 𝔊𝑛, there exists
a { 0, … ,max{ 𝑛, 𝑘+1 } }-local expression ℯ ∈ ‖(ℕ, 𝔒𝑘)‖ with val𝔗𝑘ℯ = 𝐺.

Proof. Let 𝑘, 𝑛 ∈ ℕ, and let 𝐺 = (𝐺′, 𝑡) ∈ 𝔊𝑛 be 𝑘-verdant.
Since 𝐺 is 𝑘-verdant, we can find a tree-decomposition of width at most 𝑘
and some bag 𝑥 which contains all terminal vertices of 𝐺. We root this
tree-decomposition at 𝑥. By theorem 4.6.5, we can then find a nice tree-
decomposition (𝑇 , 𝑋, 𝑏) for 𝐺 of width at most 𝑘 with the same root bag.
In particular, all terminal vertices of 𝐺 are in 𝑏(

√
𝑇).

We denote for 𝑣 ∈ 𝑇 by 𝐺𝑣 the induced subgraph 𝐺′[𝑋], where

𝑋 ≔ ⋃
𝑣′∈𝑇 [𝑣]

𝑏𝑣′,
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that is, the underlying (untyped) graph induced by the vertices that one
can find from the bag 𝑣 “downward”.
Lastly, for 𝑣 ∈ 𝑇 with 𝑏(𝑣) = { 𝑥1, … , 𝑥𝑙 } for some 𝑙 ∈ ℕ, we denote by 𝑡𝑣
the function { 1, … , 𝑙 } → 𝐺𝑣, 𝑖 ↦ 𝑥𝑖.
We now make use of the following property: we call a node 𝑣 ∈ 𝑇 friendly if
for every set 𝐸 of edges in 𝐺𝑣, there exists a { 0, … ,max{ 𝑛, 𝑘 + 1 } }-local
expression ℯ ∈ ‖(ℕ, 𝔒𝑘)‖ with val𝔗𝑘ℯ = (𝐺𝑣 − 𝐸, 𝑡𝑣).
In other words, a node is friendly if we can construct the subgraph it induces
in the tree-decomposition of 𝐺 and all versions of that subgraph with some
or all of its edges removed.
The reader should first convince themselves that if we can show that the root
node

√
𝑇 is friendly, then our proof is complete: we have 𝐺′ = 𝐺𝑟 since every

vertex of 𝐺 must be contained in some bag of the decomposition and all bags
can be reached from

√
𝑇. If we can construct the graph (𝐺′, 𝑡√

𝑇), then every
vertex in 𝑏(

√
𝑇) is a terminal vertex of (𝐺′, 𝑡√

𝑇). Since all terminal vertices
of 𝐺 = (𝐺′, 𝑡) are contained in 𝑏(

√
𝑇), we can obtain 𝐺 from (𝐺′, 𝑡√

𝑇) by
one terminal redefinition. Because 𝑏(

√
𝑇) can not contain more than 𝑘 + 1

vertices, this terminal redefinition is { 0, … ,max{ 𝑛, 𝑘 +1 } }-local. Hence if
we show that

√
𝑇 is friendly, we have shown that 𝐺 can indeed be obtained

as the result of a { 0, … ,max{ 𝑛, 𝑘 + 1 } }-local expression in 𝔗𝑘.
We now show that if all children of a node 𝑣 ∈ 𝑇 are friendly, then so is 𝑣
itself. By induction, the root 𝑟 of 𝑇 must then be friendly.
Let thus 𝑣 ∈ 𝑇.

Case 1: 𝑣 is a leaf. Then 𝐺𝑣 contains exactly one vertex and no edges, so
it is the result of evaluating the function symbol 𝔳, which is { 0, 1 }-local.

Case 2: 𝑣 is a forget node. Let 𝑣′ be the sole child of 𝑣. Since 𝑏(𝑣) ⊆ 𝑏(𝑣′),
this implies that 𝐺𝑣 = 𝐺𝑣′ . The terminal vertices are corrected by a simple
terminal redefinition. Since before we correct the root, no terminal vertex
we use has multiplicity more than one, this is { 0, … , 𝑘 + 1 }-local because
no bag can contain more than 𝑘 + 1 vertices.

Case 3: 𝑣 is an introduce node. Let 𝑣′ be the sole child of 𝑣, let the corre-
sponding bag be 𝑏(𝑣′) = { 𝑥1, … , 𝑥𝑙 } for some 𝑙 ∈ ℕ, and let the bag of 𝑣
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be 𝑏(𝑣) = 𝑏(𝑣′) ∪ {𝑥𝑙+1}.
Note that since (𝑇 , 𝑋, 𝑏) is of width at most 𝑘, we have 𝑙 + 1 ≤ 𝑘 + 1
(and 𝑙 ≤ 𝑘 < 𝑘 + 1), meaning that the graph (𝐺𝑣, 𝑡𝑣), once constructed,
is 𝑘-verdant.
Let now 𝐸 be any set of edges of 𝐺𝑣. As a shorthand, we write 𝐺𝐸 ≔ 𝐺𝑣−𝐸
for the graph 𝐺𝑣 with those edges removed.
By the induction hypothesis, we can construct the type 𝑙 graph

(𝐺𝐸 − {𝑥𝑙+1}, 𝑡𝑣′) = (𝐺𝑣′ − 𝐸, 𝑡𝑣′) .

Consider now the neighbours of 𝑥𝑙+1 in 𝐺𝑣. Take any vertex 𝑦 ∈ 𝐺𝑣′

such that 𝑥𝑙+1 and 𝑦 are connected by an edge in 𝐺𝑣. Then the tree-
decomposition (𝑇 , 𝑋, 𝑏) must contain a node 𝑣′′ such that 𝑥𝑙+1, 𝑦 ∈ 𝑏(𝑣′′).
This node cannot be in 𝑇 [𝑣′] since 𝑥𝑙+1 ∉ 𝑏(𝑣′). But we also have 𝑦 ∈ 𝐺𝑣′ ,
whence we must have 𝑦 ∈ 𝑏(𝑣) by the definition of a tree-decomposition.
Because 𝑦 ≠ 𝑥𝑙+1, this implies 𝑦 ∈ 𝑏(𝑣′).
We know thus that every vertex in 𝐺𝑣 that is adjacent to 𝑥𝑙+1 is already
contained in 𝑏(𝑣′); in particular, it is a terminal vertex of (𝐺𝐸 − {𝑥𝑙+1}, 𝑡𝑣′).

We denote 𝐺′

𝐸 ≔ (𝐺𝐸 − {𝑥𝑙+1}, 𝑡𝑣′) ⊕ 𝔳, which is a { 0, … , 𝑘 + 1 }-local
construction since the former has at most 𝑘 terminal vertices. The vertex
added by adjoining 𝔳 is of course the vertex 𝑥𝑙+1.
Now for every edge 𝑒 incident to 𝑥𝑙+1 in 𝐺𝐸, take the trivial graph 𝔢|𝑒| and
attach it by graph entwining.

Case 4: 𝑣 is a join node. Let us denote the children of 𝑣 by 𝑣1 and 𝑣2. By
induction, assume that the graphs 𝐺𝑣1

and 𝐺𝑣2
have been constructed such

that the terminals of 𝐺𝑣1
are exactly the vertices of 𝑏(𝑣1) and the terminals

of 𝐺𝑣2
are exactly the vertices of 𝑏(𝑣2).6

Suppose we have a set 𝐸 of edges in 𝐺𝑣 and want to construct 𝐺𝑣 − 𝐸. The
vertices of 𝐺𝑣 are of course the same as those in 𝐺𝑣1

∪𝐺𝑣2
. Furthermore, 𝐺𝑣

cannot contain edges that are not contained in 𝐺𝑣1
or 𝐺𝑣2

: consider an
edge 𝑒 of 𝐺𝑣. All of its end points must be contained in some bag 𝑥.
Either 𝑥 is contained in the left or right subtree of 𝑣, in which case 𝑒

6 Remember that while 𝑏(𝑣1) and 𝑏(𝑣2) contain the same vertices, the graphs 𝐺𝑣1
and 𝐺𝑣2

are in general not the same.

191



𝔗𝑘 is the algebra of
𝑘-verdant graphs.

(def. 9.3.3, p. 185)

𝔊 is the algebra of
graphs.

(def. 6.2.2, p. 93)

𝔒𝑘 is the set of
function symbols of

𝔗𝑘.
(def. 9.3.5, p. 186)

𝔗𝑘
𝑛 denotes the

𝑘-verdant graphs of
type 𝑛.

(def. 9.3.3, p. 185)

val𝔗𝑘ℯ denotes the
result of ℯ when
evaluated in 𝔗𝑘.

(def. 6.3.3, p. 103)

𝛺(val𝔗𝑘ℯ) is the
induced structure of

val𝔗𝑘ℯ.
(def. 5.4.2, p. 73)

Chapter 9: Practical Considerations

lies in the corresponding graph, or 𝑥 is a predecessor of 𝑣, in which case,
since 𝑒 is contained in 𝐺𝑣, every end point of 𝑒 must be in one of the
subtrees and hence (because we have a tree-decomposition) also in 𝑏(𝑣).
But since 𝑏(𝑣) = 𝑏(𝑣1), the latter case also implies that 𝑒 lies in 𝐺𝑣1

.
Consider now an edge 𝑒 which is in 𝐺𝑣 but not in 𝐺𝑣1

. By the now-
familiar tree-decomposition argument, this edge (contained in 𝐺𝑣2

) cannot
be incident to any vertex in 𝐺𝑣1

⧵ 𝑏(𝑣1).
Denote by 𝐸′ the set of all edges contained in 𝐺𝑣1

and 𝐺𝑣2
. Per the induction

hypothesis, we can construct the graphs 𝐺𝑣1
− 𝐸 and 𝐺𝑣2

− 𝐸 − 𝐸′ with
terminals being the vertices in 𝑏(𝑣). By construction, we know that every
edge of 𝐺𝑣 is contained in exactly one of those graphs and that the only
vertices they have in common are the ones in 𝑏(𝑣), which are all terminals
and of which there are no more than 𝑘 + 1. Hence a { 0, … , 𝑘 + 1 }-local
entwinement yields the desired result.

We have thus shown that every node of 𝑇 is friendly, in particular the root
of 𝑇, concluding the proof.

�

We restate what we have learnt.
Corollary 9.3.10

Let 𝑘 ∈ ℕ. Then 𝔗𝑘 is a finitely expressible inherited algebra of 𝔊 of
weakly locally finite signature.

Hence Courcelle’s Theorem becomes for this special case the following.

Corollary 9.3.11
Let 𝜑 be a sentence of the monadic second-order language of graphs, and
let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists a deterministic bottom-up
finite tree automaton that takes as input a set 𝒦 of (ℕ, 𝔒𝑘)-expressions
with 𝔗𝑘-values in 𝔗𝑘

𝑛 and accepts an expression ℯ if and only if ⊧𝛺(val𝔗𝑘ℯ) 𝜑,
and every element of 𝔗𝑘

𝑛 is the value of some expression in 𝒦.

We already know from algorithm 2 that once a graph expression is given,
applying the theorem can be done in time linear in the number of vertices
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9.3: Graphs of Bounded Tree-Width

of said expression. What remains to analyse is how big that number of
vertices is, and how long it takes to construct said expression in the first
place.
We turn the procedure from the proof of theorem 9.3.9 into an algorithm.
Recall how, in the proof, we relied on the fact that for any node 𝑣 of the nice
tree-decomposition, we could build an expression for a certain subgraph
of 𝐺 that we then recursively glue together.
The following subroutine does just that: given a node of the tree-de-
composition and a subgraph we want to build, it recurses into the tree-
decomposition to build an expression for that subgraph.
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Algorithm 5: The Building Routine
Input: a tree-decomposition, a node in that decomposition, and a

typed graph we want to build
Output: an expression resulting in that graph
Build (𝑍, 𝑣, (𝐺, 𝑡)):

if 𝑣 is a leaf then
return 𝔳

else if 𝑣 is a forget node with successor 𝑣′ then
write 𝑏(𝑣) = { 𝑥1, … , 𝑥𝑙 }, 𝑏(𝑣′) = 𝑏(𝑣) ∪ {𝑥𝑙+1}
set 𝜎∶ { 1, … , 𝑙 } ↪ { 1, … , 𝑙 + 1 }, 𝑖 ↦ 𝑖

set 𝑡′ ∶ { 1, … , 𝑙 + 1 } → 𝑏(𝑣′), 𝑖 ↦ {
𝑡(𝑖) if 𝑖 < 𝑙 + 1
𝑥𝑙+1 if 𝑖 = 𝑙 + 1

return ⇆𝜎Build(𝑍, 𝑣′, (𝐺, 𝑡′))
else if 𝑣 is an introduce node with successor 𝑣′ then

write 𝑏(𝑣′) = { 𝑥1, … , 𝑥𝑙 }, 𝑏(𝑣) = 𝑏(𝑣′) ∪ {𝑥𝑙+1}
ℯ ≔ Build(𝑍, 𝑣′, (𝐺 − {𝑥𝑙+1}, 𝑖 ↦ 𝑥𝑖))
ℯ ≔ ℯ ⊕ 𝔳
for every edge 𝑒 incident to 𝑥𝑙+1 in 𝐺 do

for ⦉𝑒⦊ = 𝑥𝑖𝑥𝑗 …, write 𝐾 = { 𝑖, 𝑗, … }
if 𝐺 is directed then

set 𝜎∶ { 1, … , |𝑒| } → { 1, … , 𝑙 + 1 }, 1 ↦ 𝑖, 2 ↦ 𝑗, …
ℯ ≔ ℯ ⊗𝑙+1

𝐾 ⇆𝜎𝔢|𝑒|
else

ℯ ≔ ℯ ⊗𝑙+1
𝐾 𝔢|𝑒|

set 𝜎∶ { 1, … , 𝑙 + 1 } → { 1, … , 𝑙 + 1 }, 𝑖 ↦ 𝑥𝑡(𝑖)
return ⇆𝜎ℯ

else if 𝑣 is a join node with successors 𝑣1 and 𝑣2 then
𝐸′ ≔ the set of edges contained in both 𝐺𝑣1

and 𝐺𝑣2

# the notation 𝐺𝑣1
is as in the proof of theorem 9.3.9:

# the graph induced by all vertices in bags reachable from 𝑣1
ℯ1 ≔ Build(𝑍, 𝑣1, 𝐺𝑣1

), ℯ2 ≔ Build(𝑍, 𝑣2, 𝐺𝑣2
− 𝐸)

set 𝜎∶ { 1, … , 𝑙 + 1 } → { 1, … , 𝑙 + 1 }, 𝑖 ↦ 𝑥𝑡(𝑖)

return ⇆𝜎(ℯ1 ⊗|𝑏(𝑣)|
{ 1,…,|𝑏(𝑣)| } ℯ2)
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Once we have this subroutine, building an expression for the original graph
is a simple matter of applying it to the root of the tree-decomposition.

Algorithm 6: Expressing Yourself
Input: a graph (𝐺, 𝑡) ∈ 𝔗𝑘

𝑛
Output: an expression evaluating to (𝐺, 𝑡)
compute a nice 𝑘-verdant tree-decomposition 𝑍 = (𝑇 , 𝑋, 𝑏) of 𝐺
write 𝑏(

√
𝑇) = { 𝑥1, … , 𝑥𝑙 }

set 𝑡′ ∶ { 1, … , 𝑘 } → 𝑏(
√

𝑇), 𝑖 ↦ 𝑥𝑖
ℯ ≔ Build(𝑍,

√
𝑍, (𝐺, 𝑡′))

set 𝜎∶ { 1, … , 𝑛 } → { 1, … , 𝑘 } such that 𝑡(𝑖) = 𝜎(𝑡′(𝑖))
return ⇆𝜎ℯ

The reader who has understood (and not just read) the proof of theorem 9.3.9
should have no problems with this algorithm.

Theorem 9.3.12
Let 𝑛, 𝑘 ∈ ℕ, and let 𝐺 ∈ 𝔗𝑘

𝑛. Then algorithm 6 terminates and returns
an ‖(ℕ, 𝔒𝑘)‖-expression ℯ with val𝔗𝑘ℯ = 𝐺.

Proof. This is straight-forward from the proof of theorem 9.3.9.
�

Of course, what we really want to know is the runtime, which hinges on
our ability to quickly compute a verdant tree-decomposition.
Luckily, the following result by Bodlaender helps us out.

Theorem 9.3.13
Let 𝑘 ∈ ℕ. Then there exists an algorithm which, for any given
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊) of tree-width at most 𝑘, computes a tree-
decomposition of width at most 𝑘 for 𝐺 in time 𝒪(|𝑉 | + |𝐸|). This
tree-decomposition has at most 𝒪(|𝑉 | + |𝐸|) bags.

Proof. That such a linear-time algorithm exists is the main result of
[Bod96].
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Since the algorithm runs in linear time, it cannot output superlinearly many
bags.

�

The reader should check the following fact by looking at the definition of a
tree-decomposition.

Observation 9.3.14
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊) be a graph, 𝑍 a tree-decomposition for 𝐺, and
let 𝐸′ ⊆ 𝐸. Then 𝑍 is also a tree-decomposition for 𝐺 − 𝐸′.

We use this to apply Bodlaender’s result to verdant tree-decompositions.

Theorem 9.3.15
Let 𝑛, 𝑘 ∈ ℕ. Then there exists an algorithm which, for any given
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔗𝑛

𝑘 , computes a 𝑘-verdant tree-decomposition
with at most 𝒪(|𝑉 | + |𝐸|) bags for 𝐺 in time 𝒪(|𝑉 | + |𝐸|).

Proof. Let 𝑘, 𝑛 ∈ ℕ, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔗𝑛
𝑘 . In particular, 𝐺

is 𝑘-verdant.
Denote the set of terminal vertices of 𝐺 as { 𝑣1, … , 𝑣𝑙 } for some 𝑙 ∈ ℕ
(implying that 𝑙 ≤ 𝑘 + 1, 𝑙 ≤ 𝑛) and by 𝐺′ the graph 𝐺 with an additional
edge 𝑒 with ⦉𝑒⦊ = 𝑣1 … 𝑣𝑙.
Consider a 𝑘-verdant tree-decomposition for 𝐺. This tree-decomposition
has a bag which contains 𝑣1, … , 𝑣𝑙 and hence all vertices incident to 𝑒. Thus,
it is also a tree-decomposition for 𝐺′, showing that 𝐺′ is 𝑘-verdant as well.
The algorithm by Bodlaender (theorem 9.3.13) enables us to compute in
time 𝒪(|𝑉 | + |𝐸 ∪ {𝑒}|) = 𝒪(|𝑉 | + |𝐸|) a tree-decomposition 𝑍 for 𝐺′ of
width at most 𝑘 with at most 𝒪(|𝑉 | + |𝐸 ∪ {𝑒}|) = 𝒪(|𝑉 | + |𝐸|) bags.
Since 𝐺′ contains an edge incident to all vertices in { 𝑣1, … , 𝑣𝑙 }, 𝑍 must
have a bag containing { 𝑣1, … , 𝑣𝑙 }. Therefore, 𝑍 is 𝑘-verdant, and by
observation 9.3.14, it is also a tree-decomposition for 𝐺.

�
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Theorem 9.3.16
Let 𝑛, 𝑘 ∈ ℕ. Then there exists an algorithm which, for any given
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔗𝑛

𝑘 , computes a nice 𝑘-verdant tree-decom-
position with at most 𝒪(|𝑉 | + |𝐸|) bags for 𝐺 in time 𝒪(|𝑉 | + |𝐸|).

Proof. Let 𝑛, 𝑘 ∈ ℕ, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔗𝑘
𝑛. Compute a 𝑘-ver-

dant tree-decomposition for 𝐺 in linear time with linearly many bags by
theorem 9.3.15.
Root this tree-decomposition at a bag containing all terminal vertices and
turn it into a nice tree-decomposition in linear time and with (again) linearly
many bags by theorem 4.6.5. Since theorem 4.6.5 preserves the root bag,
this nice tree-decomposition is again 𝑘-verdant.

�

We can now analyse the runtime of algorithm 6.

Theorem 9.3.17
Let 𝑛, 𝑘 ∈ ℕ, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔗𝑘

𝑛. Then algorithm 6 termi-
nates in time 𝒪(|𝑉 | + |𝐸|) and returns an expression with 𝒪(|𝑉 | + |𝐸|)
vertices.

Proof. Let 𝑛, 𝑘 ∈ ℕ, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔗𝑘
𝑛. Algorithm 6

begins by computing a nice 𝑘-verdant tree-decomposition for 𝐺, which
by theorem 9.3.16 happens in linear time, and can be done such that the
tree-decomposition has at most linearly many bags.
All further steps except the call to the Build subroutine take constant
time.
The Build subroutine calls itself recursively, but only once for each bag.
It remains to analyse how much time one call to Build takes.
If the node considered is not an introduce node, then Build runs in constant
time. If it is an introduce node, it loops over all edges incident to the vertex
it introduces. Because 𝐺 is 𝑘-verdant, no edge can be incident to more
than 𝑘 vertices, hence no edge can be visited by more than 𝑘 such Build
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calls (because, of course, no two introduce nodes can introduce the same
vertex). Hence, adding up all Build calls comes to a runtime of 𝒪(𝑘⋅|𝐸|+𝑎),
where 𝑎 denotes the number of bags of the nice tree-decomposition, and
because there are linearly many bags, we have 𝒪(𝑘 ⋅ |𝐸|+𝑎) ⊆ 𝒪(|𝑉 |+|𝐸|).
This already proves the claim.

�

We can hence prove the main result of Courcelle’s Theorem applied to
graphs of constantly bounded tree-width.

Theorem 9.3.18
Let 𝜑 be a sentence of the monadic second-order language of graphs, and
let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists an algorithm which, given
a 𝑘-verdant type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡), decides in time 𝒪(|𝑉 |+|𝐸|)
whether or not we have ⊧𝛺(𝐺) 𝜑.

Proof. Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘, 𝑛 ∈ ℕ. By corollary 9.3.11, there exists a deterministic bottom-up
finite tree automaton which takes as input graph expressions from (ℕ, 𝔒𝑘)
and accepts an expression ℯ if ⊧𝛺(val𝔗𝑘ℯ) 𝜑.

Given a graph 𝐺 ∈ 𝔗𝑛
𝑘 , we use algorithm 6 to compute an expression ℯ

with val𝔗𝑘ℯ = 𝐺. By theorem 9.3.17, we do this in linear time and obtain
an expression with linearly many vertices.
We can hence implement algorithm 2 to run in linear time by lemma 8.4.1.

�

For “ordinary” (read: untyped) graphs, the statement simplifies even further
by observation 9.3.4.

Corollary 9.3.19
Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘 ∈ ℕ. Then there exists an algorithm which, when given a
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊) with tw(𝐺) ≤ 𝑘, decides in time 𝒪(|𝑉 | + |𝐸|)
whether or not we have ⊧𝛺(𝐺) 𝜑.
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9.4: Looking for Graphs

Or, in a more citeable version:

Corollary 9.3.20
Let 𝑘 ∈ ℕ. Then for any graph property that can be expressed in the
monadic second-order logic of graphs, there exists an algorithm which,
given a graph 𝐺 of tree-width at most 𝑘, decides in linear time whether
or not 𝐺 fulfils said property.

4. Looking for Graphs
Moving away from the main statement of Courcelle’s Theorem, we present
an interesting application of some of the intermediary results we have seen.
Suppose we are given a class of graphs, described by a logical property.
Rather than check an individual graph, we now want to know whether there
is some structure that we know can never occur in graphs of the given class,
like how no graph of tree-width 𝑘 ∈ ℕ can have a 𝑘 + 2-clique.7

Courcelle’s Theorem, as we know it by now, is not capable of such a global
statement – it provides “only” an algorithm that checks whether a given
graph fulfils a given formula, so to check for a “forbidden” substructure, we
would have to check every graph of our (probably infinitely large) class.
We show now how, despite Courcelle’s Theorem not directly providing such
a result, we can still easily implement some global checks in finite time. This
has found mention in [CM93, pp. 73–74], where several other extensions
beyond the scope of this thesis may also be found.

4.1. Automata to the Rescue
The centerpiece of our construction is the following fundamental result.

7 The reader might feel reminded at this point of the theory of graph minors ([Die05,
pp. 18–21]). Since minors are encodable by monadic second-order logic, the adventurous
reader may work out how to apply some of these results to minors. We have omitted
this generalisation since we have not introduced graph minors in this thesis.
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Theorem 9.4.1
Let �� = ,��) 𝛱, 𝛶 , (��,�� be a deterministic bottom-up finite tree automa-
ton. Then it can be decided in time linear in the size of �� whether there
exists a string 𝑇 ∈ 𝛶 which is accepted by .��

Proof. A proof is found at [Com+08, p. 40].
�

The “size” cited above includes the number of states as well as the size of
our transition table, which may be substantial. Consequently, the procedure
outlined in the following will not be linear (or even polynomial) in the size
of some input. We therefore omit runtime considerations.

4.2. Peering Into the Emptiness
The application to our case is straightforward.

Theorem 9.4.2
Let 𝜑 be a sentence of the monadic second-order language of graphs, and
let 𝒜 = (𝒞, 𝒪) be a finitely expressible algebra of weakly locally finite
signature inherited from 𝔊. Then there exists an algorithm which deter-
mines in finite time whether there exists a graph 𝐺 ∈ 𝒞0 with ⊧𝛺(𝐺) 𝜑.

Proof. Let 𝜑 ∈ ‖𝔏‖ and let 𝒜 = (𝒞, 𝒪) be a finitely expressible algebra of
weakly locally finite signature inherited from 𝔊. By theorem 9.1.1, we find
a deterministic bottom-up finite tree automaton which handles some set 𝒦
of graph expressions capable of expressing every graph in 𝒞0 and accepts
an expression if and only if its value fulfils 𝜑. Hence a graph 𝐺 ∈ 𝒞0
fulfilling 𝜑 exists if and only if there is an expression evaluating to 𝐺 that
gets accepted by our automaton. But whether this is the case can be
checked by theorem 9.4.1.

�
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9.5: Graphs of Bounded Path-Width

Note how this result, contrary to our algorithms on graphs of bounded
tree- or path-width, does not require us to be actually able to compute
an expression for any graph in the algebra. It applies therefore even
to algebras of graphs of unbounded tree-width, provided they meet the
remaining requirements.
Of course, graphs of bounded tree-width are still interesting.

Corollary 9.4.3
Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘 ∈ ℕ. Then there exists an algorithm which determines in
finite time whether or not there exists a graph 𝐺 of tree-width at most 𝑘
with ⊧𝛺(𝐺) 𝜑.

5. Graphs of Bounded Path-Width
We now show how Courcelle’s Theorem can be adapted to apply to graphs
of constantly bounded path-width. Of course, a graph of path-width at
most 𝑘 ∈ ℕ has in particular tree-width at most 𝑘, so this adaptation
might at first sight appear to serve no purpose. However, suppose we want
to apply theorem 9.4.2 to the class of graphs of path-width at most 𝑘 for
some 𝑘 ∈ ℕ, that is, we want to know whether there exists a graph of
path-width at most 𝑘 which fulfils a given monadic second-order sentence 𝜑.
Corollary 9.4.3 provides a way to check whether there exists a graph of
tree-width at most 𝑘 fulfilling 𝜑, but the path-width of that graph might
be larger than its tree-width.8 It is possible to encode the path-width as
another monadic second-order sentence 𝜓, whence we can use corollary 9.4.3
to check for a graph fulfilling 𝜑 ∧ 𝜓, but the construction of 𝜓 makes use of
the forbidden minors for path-width 𝑘, which at the time of this writing
are only known up to a value of 𝑘 = 2.
It is hence of interest to consider the class of graphs of path-width at most 𝑘
(or, indeed, many other subclasses of the class of graphs of tree-width at

8 For example, the graph … has tree-width 1 (and a maximum node degree
of 4), but as one continues the pattern, the path-width tends to infinity.
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most 𝑘) on its own merit.

Definition 9.5.1
Let 𝑘, 𝑛 ∈ ℕ. We denote

𝔭𝑘
𝑛 ≔ { 𝐺 ∈ 𝔊𝑛 : pw(𝐺) ≤ 𝑘 }.

We introduce almost the same construction as in section 9.3.

Definition 9.5.2
Let 𝑘, 𝑛 ∈ ℕ. We call a graph 𝐺 ∈ 𝔊𝑛 𝑘-verdurous if it admits a
path-decomposition (𝑇 , 𝑋, 𝑏) of width at most 𝑘 such that there is a
node 𝑣 ∈ 𝑇 with deg 𝑣 = 1 such that 𝑏(𝑣) contains all terminal vertices
of 𝐺.
The set of all 𝑘-verdurous graphs of type 𝑛 is denoted by 𝔓𝑘

𝑛.

In particular, we have again

∀𝑘 ∈ ℕ ∶ 𝔓𝑘
0 = 𝔭𝑘

0.

Note that this time around, we require that the bag containing the terminal
vertices is at one end of the path decomposition, not just at any old position.
This makes sense when the reader thinks back to the proof of theorem 9.3.6:
there we chose as the root of the tree decomposition the bag containing the
terminals. For an undirected tree, this makes no difference, but for a path,
there are two canonical roots – its end points.
In order to build only graphs of path-width at most 𝑘 ∈ ℕ, entwining is
too strong – we need to restrict our building techniques further.
Instead of attaching an arbitrary graph at some terminal vertices 1, … , 𝑚,
we show that it suffices to be able to attach just one additional edge. For
a 2-uniform graph, this looks as follows.
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3

21

3

1 2

1 2

For arbitrary hypergraphs, we can attach edges of higher type.

3
1 2

3
1 2

1 2 3

Add in a way to create a new connected component by adding a singular
vertex, and we claim that this already suffices to express all verdurous
hypergraphs.
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Definition 9.5.3
Let 𝑛, 𝑘 ∈ ℕ and let 𝐺 ∈ 𝔓𝑘

𝑛.
We call

↑𝐺 ≔ 𝐺 ⊕ 𝔳

the sprouting of 𝐺.
Let further 𝑚 ∈ ℕ, 𝑚 ≤ 𝑘 + 1, 𝑚 ≤ 𝑛.
We set

𝜎∶ { 1, … , 𝑛 } → { 1, … , 𝑛 + 𝑚 }, 𝑖 ↦ 𝑖

and call ↜

𝔢𝑚
𝐺 ≔ ⇆𝜎媲

𝑛+𝑚
𝑚 …媲𝑛+1

1 (𝐺 ⊕ 𝔢𝑚)

the 𝑚-bloom of 𝐺.

Proving that these constructions do not leave the realm of verdurous graphs
is much easier than for tree-decompositions.

Lemma 9.5.4
Let 𝑛, 𝑘 ∈ ℕ and let 𝐺 ∈ 𝔓𝑘

𝑛. Then if 𝑛 ≤ 𝑘, we have ↑𝐺 ∈ 𝔓𝑘
𝑛+1.

Proof. Let 𝑛, 𝑘 ∈ ℕ and let 𝐺 ∈ 𝔓𝑘
𝑛. We need only show that for 𝑛 ≤ 𝑘,

the graph ↑𝐺 is again 𝑘-verdurous.
Denote the new vertex of 𝐺 ⊕ 𝔳 as 𝑣+.
Let (𝑇 , 𝑥, 𝑏) be a 𝑘-verdurous path-decomposition for 𝐺 with all ter-
minal vertices of 𝐺 contained in 𝑏(𝑣). We introduce a new node 𝑤
with 𝑏(𝑤) ≔ { 𝑣′ ∈ 𝐺 : 𝑣′ is terminal }. Attaching this node to 𝑣 makes
the new path into another path-decomposition for 𝐺, with the difference
that the root bag now contains exactly 𝑛 vertices.
We introduce another node 𝑥 with 𝑏(𝑥) ≔ 𝑏(𝑤) ∪ {𝑣+}. Attaching 𝑥 to 𝑤
then yields a path-decomposition for 𝐺 ⊕ 𝔳, and since 𝑛 ≤ 𝑘, it is of width
at most 𝑘 and 𝑘-verdurous.

�
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Lemma 9.5.5
Let 𝑛, 𝑘 ∈ ℕ, let 𝐺 ∈ 𝔓𝑘

𝑛, and let 𝑚 ∈ ℕ with 𝑚 ≤ 𝑘 + 1, 𝑚 ≤ 𝑛.
Then

↜

𝔢𝑚
𝐺 ∈ 𝔓𝑘

𝑛.

Proof. Blooming simply attaches an additional edge to the vertices in the
root bag of a 𝑘-verdurous path-decomposition, meaning that if (𝑇 , 𝑥, 𝑏)
is a 𝑘-verdurous path-decomposition for 𝐺, then it is also a 𝑘-verdurous
path-decomposition for

↜

𝔢𝑚
𝐺.

�

We define a new signature. The reader may want to consult definition 6.2.1
for the symbols used.

Definition 9.5.6
Let 𝑘 ∈ ℕ. We set

𝔔𝑘 ≔ ⋃
𝑖∈ℕ

⋃
𝑗∈ℕ

𝔉𝑗
𝑖 ⇆

∪ {𝔳}
∪ { 𝔢1, … , 𝔢𝑘+1 }
∪ { ↑𝑛 : 𝑛 ∈ ℕ, 𝑛 ≤ 𝑘 }
∪ {

↜

𝑛 𝔢𝑚
: 𝑚 ∈ ℕ, 𝑚 ≤ 𝑘 + 1, 𝑚 ≤ 𝑛 }

and

⟨𝔣⟩ ≔
⎧{
⎨{⎩

⟨𝔣⟩ if 𝔣 ∈ 𝔉
(𝑛, 𝑛 + 1) 𝔣 = ↑𝑛

(𝑛, 𝑛) 𝔣 =

↜

𝑛 𝔢𝑚
.

As is our custom, we shall mostly omit the left index of the new function
symbols.
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Definition 9.5.7
Let 𝑘 ∈ ℕ. We define

𝔓𝑘 ≔ ({ 𝔓𝑘
𝑛 }𝑛∈ℕ, {𝒪𝔣}𝔣∈𝔔𝑘)

and let 𝒪 assign to every function symbol the corresponding graph
construction.

Lemma 9.5.8
Let 𝑘 ∈ ℕ. Then 𝔓𝑘 is an inherited algebra of 𝔊.

Proof. This is covered by lemmas 9.5.4 and 9.5.5.
�

That the signature (ℕ, 𝔔𝑘) is weakly locally finite is clear from the defini-
tion. It remains to show that these function symbols suffice to construct
every 𝑘-verdurous graph.

Theorem 9.5.9
Let 𝑘 ∈ ℕ. Then 𝔓𝑘 is finitely expressible.

Proof. Let 𝑛, 𝑘 ∈ ℕ. Pick further a graph 𝐺 ∈ 𝔓𝑘
𝑛. We construct

a { 1, … ,max{ 𝑘 + 1, 𝑛 } }-local expression that yields 𝐺.
Note first that without loss of generality, we have 𝑛 ≤ 𝑘 + 1, as any 𝑘-ver-
durous graph can have at most 𝑘 + 1 distinct terminal vertices, and hence
graphs of larger type can be constructed from a graph of type at most 𝑘 + 1
via 𝑛-local terminal redefinition. By the same argument, we can assume
that the terminal vertices of 𝐺 are pairwise distinct.
Finally, we assume without loss of generality that, even if 𝐺 is a proper
hypergraph, it contains no edges of type 1 – each edge of type 1 can
be attached to its end point when it is introduced by a 1-bloom (which
is (𝑘 + 1)-local).
Let now (𝑇 , 𝑋, 𝑏) be a nice 𝑘-verdurous path-decomposition for 𝐺. We
build 𝐺 by induction over the nodes of 𝑇. Denote the nodes of 𝑇 as 𝑣1, … , 𝑣𝑟,
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where 𝑣𝑟 is the root (containing the terminal vertices of 𝐺) and 𝑣1 is the
singular leaf.
For 𝑖 ∈ { 1, … , 𝑟 }, we write

𝑉𝑖 ≔
𝑖

⋃
𝑗=1

𝑏(𝑣𝑗)

and denote by 𝐺𝑖 the graph 𝐺[𝑉𝑖] with terminals equal to the vertices
in 𝑏(𝑣𝑖).
We show by induction that for all 𝑖 ∈ { 1, … , 𝑟 }, the graph 𝐺𝑖 can be
constructed, whence 𝐺 = 𝐺𝑟 can.
For 𝑖 = 1, the graph 𝐺1 has one vertex and (without loss of generality, as
discussed above) no edges and is hence equal to 𝔳.
For 𝑖 > 1, assume that the graph 𝐺𝑖−1 has been thus constructed. Since a
nice verdurous path-decomposition can have no join nodes, there are only
two cases to consider.9

Case 1: 𝑣𝑖 is a forget node. Then 𝐺𝑖 = 𝐺𝑖−1 save for the terminal ver-
tices, and we can erase the superfluous terminal vertex by one terminal
redefinition.

Case 2: 𝑣𝑖 is an introduce node. Say 𝑏(𝑣𝑖) = 𝑏(𝑣𝑖−1) ∪ {𝑣′}. Then, in
particular, 𝑣′ ∉ 𝐺𝑖−1, since 𝑣′ ∈ 𝐺𝑖−1 would imply that there is a
node 𝑣 ∈ { 𝑣1, … , 𝑣𝑖−2 } with 𝑣′ ∈ 𝑏(𝑣), in which case 𝑣′ would also be
contained in every bag between 𝑣 and 𝑣𝑖, in particular in 𝑏(𝑣𝑖−1).
Now, which edges does 𝐺𝑖 contain that 𝐺𝑖−1 does not? Only edges incident
to 𝑣′, and of those only the ones incident to only vertices in 𝐺𝑖. If an edge 𝑒
is incident to both 𝑣′ and some 𝑣′′ ∈ 𝐺𝑖−1, then the path-decomposition
of 𝐺 must contain a bag with both 𝑣′ and 𝑣′′ in it. Since 𝑣′ ∉ 𝐺𝑖−1, this
immediately implies that 𝑣′′ ∈ 𝑏(𝑣𝑗) for some 𝑗 ≥ 𝑖 and hence 𝑣′′ ∈ 𝑏(𝑣𝑖−1)
since 𝑣′′ ∈ 𝐺𝑖−1.
Thus, only vertices in 𝑏(𝑣𝑖−1) can be adjacent to 𝑣′ in 𝐺𝑖.
We take the sprout of 𝐺𝑖−1, which has at most 𝑘 + 1 terminal vertices

9 Note that a nice path-decomposition can have up to one join node – we need verdurousness
to ensure that there are none.
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since |𝑏(𝑣𝑖−1)| ≤ |𝑏(𝑣𝑖)| − 1 ≤ 𝑘. In this graph, all vertices which can be
adjacent to 𝑣′ in 𝐺𝑖 are terminal, and we can hence add the desired edges
by an appropriate number of blooming operations, which do not increase
the number of terminals.
We have thus constructed 𝐺𝑖.

By induction, 𝐺 = 𝐺𝑟 can be constructed from a { 1, … , 𝑘 + 1 }-local
expression, as desired.

�

We collect all these facts.
Corollary 9.5.10

Let 𝑘 ∈ ℕ. Then 𝔓𝑘 is a finitely expressible algebra of weakly locally
finite signature inherited from 𝔊.

Hence Courcelle’s Theorem becomes for this special case the following.

Corollary 9.5.11
Let 𝜑 be a sentence of the monadic second-order language of graphs, and
let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists a deterministic bottom-up
finite tree automaton that takes as input a set 𝒦 of (ℕ, 𝔔𝑘)-expres-
sions with 𝔓𝑘-values in 𝔓𝑘

𝑛 and accepts an expression ℯ if and only
if ⊧𝛺(val𝔓𝑘ℯ) 𝜑, and every element of 𝔓𝑘

𝑛 is the value of some expression
in 𝒦.

We turn the procedure from the proof of theorem 9.5.9 into an algorithm.
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Algorithm 7: The Path to Success
Input: a 𝑘-verdurous graph
Output: an expression resulting in that graph
Step (𝑣):

if 𝑣 is a leaf then
return 𝔳

else if 𝑣 is a forget node then
write 𝑣′ for the successor of 𝑣
write 𝑏(𝑣) = { 𝑥1, … , 𝑥𝑙 } and 𝑏(𝑣′) = 𝑏(𝑣) ∪ {𝑥𝑙+1}
set 𝜎∶ { 1, … , 𝑙 } → { 1, … , 𝑙 + 1 }, 𝑖 ↦ 𝑖

set 𝑡′ ∶ { 1, … , 𝑙 + 1 } → 𝑏(𝑣′), 𝑖 ↦ {
𝑥𝑡(𝑖) if 𝑖 ≤ 𝑙
𝑥𝑙+1 if 𝑖 = 𝑙 + 1

return ⇆𝜎Step(𝑣′)
else if 𝑣 is an introduce node then

for 𝑣′ the successor of 𝑣,
write 𝑏(𝑣′) = { 𝑥1, … , 𝑥𝑙 }, 𝑏(𝑣) = 𝑏(𝑣′) ∪ {𝑥𝑙+1}

ℯ ≔ ↑Step(𝑣′)
for every edge 𝑒 incident to 𝑥𝑙+1 in 𝐺𝑣 do

if 𝐺 is directed then
set 𝜎 to correct the terminal vertices for blooming
ℯ ≔

↜

|𝑒|⇆𝜎ℯ
else

ℯ ≔

↜

|𝑒|ℯ
return ℯ

compute a nice 𝑘-verdurous path-decomposition 𝑍 of 𝐺
ℯ ≔ Step(

√
𝑍)

set 𝜎∶ { 1, … , 𝑛 } → { 1, … , |𝑏(
√

𝑍)| } such that it corrects the
terminals

return ⇆𝜎ℯ

The correctness of this algorithm follows directly from the proof of theo-
rem 9.5.9.
Corollary 9.5.12

Let 𝑘 ∈ ℕ, and let 𝐺 be a 𝑘-verdurous graph. Then algorithm 7 termi-
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nates and returns an (ℕ, 𝔔𝑘)-expression ℯ with val𝔓𝑘ℯ = 𝐺.

The runtime, of course, hinges on our ability to efficiently compute a
nice 𝑘-verdurous path-decomposition. We utilise the following result by
Bodlaender and Kloks.

Theorem 9.5.13
Let 𝑘 ∈ ℕ. Then there exists an algorithm which, given a graph 𝐺
of path-width at most 𝑘 and a tree-decomposition for 𝐺 of width 𝑘,
computes a path-decomposition of for 𝐺 of width 𝑘 in time polynomial
in the size of 𝐺.

Proof. This is theorem 6.1 of [BK96] with 𝑙 = 𝑘.
�

Since the path-width of a graph is an upper bound for its tree-width, the
above combines with theorem 9.3.13 into the following.

Corollary 9.5.14
Let 𝑘 ∈ ℕ. Then there exists an algorithm which, when given a
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊) of path-width at most 𝑘, computes a path-
decomposition for 𝐺 in time 𝒪(|𝑉 | + |𝐸|). This path-decomposition has
at most 𝒪(|𝑉 | + |𝐸|) bags.

We get the results we desire.

Theorem 9.5.15
Let 𝑛, 𝑘 ∈ ℕ. Then there exists an algorithm which, for any given
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔓𝑛

𝑘 , computes a 𝑘-verdurous path-decom-
position with at most 𝒪(|𝑉 | + |𝐸|) bags for 𝐺 in time 𝒪(|𝑉 | + |𝐸|).

Proof. This is entirely analogous to theorem 9.3.15.
�
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Theorem 9.5.16
Let 𝑛, 𝑘 ∈ ℕ. Then there exists an algorithm which, for any given
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔓𝑛

𝑘 , computes a nice 𝑘-verdurous path-
decomposition with at most 𝒪(|𝑉 |+|𝐸|) bags for 𝐺 in time 𝒪(|𝑉 |+|𝐸|).

Proof. This is again entirely analogous to theorem 9.3.16.
�

We can hence bound the runtime of algorithm 7.

Theorem 9.5.17
Let 𝑛, 𝑘 ∈ ℕ, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔓𝑘

𝑛. Then algorithm 7 termi-
nates in time 𝒪(|𝑉 | + |𝐸|) and returns an expression with 𝒪(|𝑉 | + |𝐸|)
vertices.

Proof. Let 𝑛, 𝑘 ∈ ℕ, and let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔓𝑘
𝑛. Algorithm 7

begins by computing a nice 𝑘-verdurous path-decomposition for 𝐺, which
by theorem 9.5.16 happens in linear time, and can be done such that the
path-decomposition has at most linearly many bags.
The only nontrivial part left to analyse is the Step subroutine, which gets
called exactly once for each node. Its runtime is exactly the same as that of
the Build subroutine in the tree-decomposition version of the algorithm.

�

We can hence prove the main result of Courcelle’s Theorem applied to
graphs of constantly bounded path-width.

Theorem 9.5.18
Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists an algorithm
which, given a 𝑘-verdurous type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡), decides
in time 𝒪(|𝑉 | + |𝐸|) whether or not we have ⊧𝛺(𝐺) 𝜑.
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Proof. Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘, 𝑛 ∈ ℕ. By corollary 9.5.11, there exists a deterministic bottom-up
finite tree automaton which takes as input graph expressions from (ℕ, 𝔔𝑘)
and accepts an expression ℯ if ⊧𝛺(val𝔓𝑘ℯ) 𝜑.

Given a graph 𝐺 ∈ 𝔓𝑛
𝑘 , we use algorithm 7 to compute an expression ℯ

with val𝔓𝑘ℯ = 𝐺. By theorem 9.5.17, we do this in linear time and obtain
an expression with linearly many vertices.
We can hence implement algorithm 2 to run in linear time by lemma 8.4.1.

�

For “ordinary” (read: untyped) graphs, the statement simplifies as it did in
the section on tree-width.
Corollary 9.5.19

Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘 ∈ ℕ. Then there exists an algorithm which, when given a
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊) with pw(𝐺) ≤ 𝑘, decides in time 𝒪(|𝑉 | + |𝐸|)
whether or not we have ⊧𝛺(𝐺) 𝜑.

Or, in a more citeable version:

Corollary 9.5.20
Let 𝑘 ∈ ℕ. Then for any graph property that can be expressed in the
monadic second-order logic of graphs, there exists an algorithm which,
given a graph 𝐺 of path-width at most 𝑘, decides in linear time whether
or not 𝐺 fulfils said property.

Thinking back to section 9.4, we get the same corollary as we did for graphs
of bounded tree-width, without having to invoke forbidden minors.

Corollary 9.5.21
Let 𝜑 be a sentence of the monadic second-order language of graphs, and
let 𝑘 ∈ ℕ. Then there exists an algorithm which determines in finite
time whether or not there exists a graph 𝐺 of path-width at most 𝑘
with ⊧𝛺(𝐺) 𝜑.
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Chapter 10
Concluding Remarks

Some two hundred pages ago, we set out to introduce the reader to the
fascinating world of Courcelle’s Theorem. It is our sincere hope that those
readers that have stayed with us until this chapter have now an intuitive
understanding of not only what Courcelle’s Theorem can and cannot do,
but also of why it can do the things it can. Using the tools developed over
the previous chapters, the reader should be able, should the need ever arise,
to adapt Courcelle’s Theorem to their own peculiar use case.
There has, as ever, more been left unsaid than said, first and foremost
the extension of Courcelle’s Theorem to cover optimisation problems, that
is, to answer not the question “does this graph admit a vertex cover of
size 5?”, but “what is the smallest 𝑘 ∈ ℕ such that this graph admits a
vertex cover of size 𝑘?” Such an extension is possible and can indeed be
found in [CM93]. It does, however, require quite some additional machinery,
as [CM93] represents the culmination of an entire series of papers on this
topic. The basic building blocks are the same, but there is much additional
notation involved – predicates, for example, are replaced by evaluations,
which map not to the set { ⊤, ⊥ }, but to an arbitrary set. The surrounding
framework needs to be adjusted accordingly. All this could be explored in
a future work.
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Appendix A
Counting Logic

Courcelle’s Theorem, in its original formulation, applies not just to monadic
second-order logic, but to so-called counting monadic second-order logic.
We have opted in this thesis to prove the theorem, first and foremost, for
unextended monadic second-order logic, on the one hand to keep notation
manageable, on the other hand because most natural examples of graph
properties require no counting.
We present in this appendix the missing definitions and extend the proofs
from chapters 5 to 9 to properly cover counting logic.

1. Return to Logic
We first explain what counting logic entails. For this section, only the
concepts from chapter 5 are prerequisite.

1.1. Learn to Count Again
We introduce first intuitively the notion of counting monadic second-order
logic, which extends the monadic second-order logic the reader knows from
chapter 5.
We fix for this section a second-order language 𝛤 endowed with a (non-
monadic) second-order structure 𝛺 such that the following conditions are
fulfilled.
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• The universe |𝛺| is at most countably infinite.
• All 1-place predicates that are true on finitely many constants exist

in (𝛤 , 𝛺), that is, for every finite subset 𝑋 of |𝛺|, there is a predicate
symbol that checks membership in 𝑋.

• All 1-place functions exist in (𝛤 , 𝛺).
• There is a 2-place predicate ≡ that checks equality of constants.

We now present some constructions on this universe that will eventually
lead us to the definition of counting monadic second-order logic.
Suppose we are given finite sets 𝑋, 𝑌 ⊆ |𝛺| and a function 𝑓∶ 𝑋 → 𝑌.
We now ask ourselves, as mathematicians sometimes do, “is this function
surjective?”
To answer this question, we model it in (𝛤 , 𝛺). Modelling 𝑋 and 𝑌 is
easy since we have assumed that all finite sets have a predicate symbol
representing them, say 𝛬1 𝑋, 𝛬1 𝑌 ∈ 𝛬1 with 𝑋 = 𝛺( 𝛬1 𝑋), 𝑌 = 𝛺( 𝛬1 𝑌).
To model the function 𝑓, since our structure gives us access to all possible
functions, we simply pick a function ̊𝑓 ∶ |𝛺| → |𝛺| with ̊𝑓

𝑋
= 𝑓 and a

function symbol 𝛥1 0 ∈ 𝛥1 with 𝛺( 𝛥1 0) = ̊𝑓.
We can then construct the sentence

𝜑 ≔ ∀𝛿0 ∶ 𝛬1 𝑌(𝛿0) → ∃𝛿1 ∶ 𝛬1 𝑋(𝛿1) ∧ ≡( 𝛥1 0(𝛿1), 𝛿0)

(“for every element 𝛿0 of 𝑌, there is a variable that lies in 𝑋 and that is
mapped to 𝛿0 by 𝑓”) such that ⊧𝛺 𝜑 if and only if 𝑓 is surjective.
For the purposes only of this section, we replace this formula by the
“pseudo-predicate” symbol Ep (for “epic”) that takes a function symbol
and two predicates (domain and range) and evaluates to ⊤ if the function
is surjective from domain onto range and ⊥ otherwise. It is “pseudo” in the
sense that it cannot be a true predicate symbol, since our definitions only
allow plugging universe elements into predicates, not function symbols or
even other predicates. The symbol Ep will simply be a shorthand like →
or ∨.
Suppose now we were given a finite set 𝑋 ⊆ |𝛺| and asked, “is the cardinality
of this set even or odd?” Now there is a question! However, armed with
our recent epic discovery, we immediately spot a solution: a set of even
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cardinality can be partitioned into two subsets of equal size, and two finite
sets are of equal size if each surjects onto the other. Using the existence
of all necessary predicates and functions posited at the beginning of this
section, we construct the sentence

𝜑 ≔ ∃ 𝜆1 0 ∶ ∃ 𝜆1 1 ∶
∀𝛿0 ∶ 𝜆1 0(𝛿0) → 𝛬1 𝑋(𝛿0)

∧ ∀𝛿1 ∶ 𝜆1 1(𝛿1) → 𝛬1 𝑋(𝛿1)
∧ ∀𝛿2 ∶ 𝜆1 0(𝛿2) → ¬ 𝜆1 1(𝛿2)
∧ ∀𝛿3 ∶ 𝛬1 𝑋(𝛿3) → 𝜆1 0(𝛿3) ∨ 𝜆1 1(𝛿3)
∧ ∃ 𝛿1 0 ∶ Ep( 𝛿1 0, 𝜆1 0, 𝜆1 1)
∧ ∃ 𝛿1 1 ∶ Ep( 𝛿1 1, 𝜆1 1, 𝜆1 0)

with ⊧𝛺 𝜑 if and only if 𝑋 is indeed of even cardinality. To know whether |𝑋|
is odd, we simply negate 𝜑.
An analogous construction reveals whether a set’s cardinality is divisible
by 3, or indeed by any natural number.
Of course, for the number 2, there are exactly two possibilities: even (that
is, 0 modulo 2), or odd (also known as 1 modulo 2). For higher integers,
there are more than two options. A simple negation of the sentence for
“is a multiple of 3” cannot detect whether the cardinality of 𝑋 is 1 or 2
modulo 3.
Luckily, this is easily fixed. We give the construction to detect 1-mod-
ulo-3-ness; all other cases work analogously.
Denoting the sentence for “|𝑌 | is divisible by 3” as 3(𝑌 ), we use the sentence

𝜑 ≔ ∃𝛿0∃ 𝜆1 0 ∶
𝛬1 𝑋(𝛿0)

∧ ¬ 𝜆1 0(𝛿0)
∧ ∀𝛿1 ∶ 𝜆1 0(𝛿1) → 𝛬1 𝑋(𝛿1)
∧ ∀𝛿2 ∶ 𝛬1 𝑋(𝛿2) → 𝜆1 0(𝛿2) ∨ (𝛿0 = 𝛿2)
∧ 3( 𝜆1 0)

to determine that we can delete one element from 𝑋 to end up with a set
of cardinality divisible by 3. Hence, ⊧𝛺 𝜑 if and only if |𝑋| is 1 modulo 3.
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Let us take a step back, breathe deeply, and consider what we have learned.
In a second-order logical framework that knows at the least about finite sets
and the functions between them, we are for natural number 𝑛, 𝑘 ∈ ℕ> 0 able
to detect whether a finite set (given as a 1-place predicate) has cardinality 𝑘
modulo 𝑛 with a formula whose length only depends on 𝑛 and 𝑘.
Note that this detection is impossible in monadic second-order logical
frameworks, as we used quantification over function symbols to ascertain
whether two sets have the same cardinality.
We define the following important shorthand for use in the remainder of
this chapter.

Notation A.1.1
In the context of a logical framework as assumed in this section, we
denote by Card𝑛

𝑘 (𝛬) the formula that determines whether the finite set
given by the 1-place predicate 𝛬 has cardinality 𝑘 modulo 𝑛.

Courcelle’s Theorem, in its full generality, works in a subset of second-order
logic that is strictly less expressive than full second-order logic, but strictly
more expressive than monadic second-order logic. This “counting monadic
second-order logic” is most easily imagined by taking a monadic second-
order logical framework and adding the “pseudo-predicates” Card𝑛

𝑘 defined
above. Formally defining it, however, is most easily done by taking a larger
second-order logical framework satisfying the prerequisites of this section,
carrying out the above construction, and then restricting the use of all
non-monadic predicate variables and all non-constant function variables
except inside that construction. Rather than going through the motions of
carrying out this cumbersome and not very enlightening task, we shall trust
that the musings above have convinced the reader that such a construction
is in theory possible and carry on with the intuitive notion that a counting
monadic second-order logical framework is a monadic second-order logical
framework with some additional sentences which are always and irretrievably
wrapped inside the shorthand Card.
Whenever we define a counting monadic second-order logical framework,
we define the monadic second-order logical framework just as we have
introduced it in definition 5.3.14 and additionally note the subsets of ℕ
from which the indices 𝑛, 𝑘 in Card𝑛

𝑘 can be chosen.
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𝔛 denotes the direct
logical framework of
graphs.
(def. 5.4.3, p. 73)

𝛬
1 �̊�

is the set of
1-place predicate
symbols of �̊�.

𝜆vert checks
whether its
argument is a set of
vertices.

𝜆edge checks
whether its
argument is a set of
edges.

�̊� is the circuitous
language of graphs.
(def. 5.6.1, p. 77)

𝛥
0 �̊�

is the set of
0-place function
symbols of �̊�.

𝟚{ 1,…,𝑘 }denotes the
power set of
{ 1, … , 𝑘 }.

A.2: You Can Always Count on Graphs

2. You Can Always Count on
Graphs

We extend the monadic second-order framework defined in definition 5.4.3.
Definition A.2.1
We denote by 𝔛+ the monadic second-order logical framework obtained
by enhancing 𝔛 with the pseudo-predicates Card from notation A.1.1.

This definition is, as discussed in the previous section, not entirely formal.
The circuitous logical framework on graphs (as defined in section 5.6) is
actually easier to formally change – since its variables are already sets,
checking cardinality can be achieved by a simple predicate (and not a
pseudo-one).
We reproduce the definitions here, with the new predicate included.

Definition A.2.2

We denote by ̊𝔏+ the second-order language with
• 𝛬1 �̊� ≔ { 𝜆0

conn, 𝜆sgl, 𝜆vert, 𝜆edge, 𝜆𝑛,𝑝
card : 𝑝 ∈ ℕ> 0, 𝑛 ∈ ℕ≤ 𝑝 },

• 𝛬2 �̊� ≔ { 𝜆1
conn, ⊑ },

• ∀𝑛 ∈ ℕ> 2 ∶ 𝛬𝑛 �̊� ≔ { 𝜆𝑛−1
conn },

• 𝛥0 �̊� ≔ {∅ },

• 𝛥1 �̊� ≔ ⋃𝑘∈ℕ> 0
{ 𝛿𝐾

term : 𝐾 ∈ 𝟚{ 1,…,𝑘 } },

• ∀𝑛 ∈ ℕ> 1 ∶ 𝛥𝑛 �̊� ≔ ∅.

Of course, 𝜆𝑛,𝑝
card(𝑥) should be true if and only if |𝑥| = 𝑛 mod 𝑝.

Definition A.2.3
Let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) be a graph of type 𝑘. The induced circuitous
second-order structure with counting of 𝐺, denoted ̊𝛺+(𝐺), is the following
second-order structure on ̊𝔏.
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𝟚𝑉denotes the
power set of 𝑉.

𝜆vert checks
whether its

argument is a set of
vertices.

𝜆edge checks
whether its

argument is a set of
edges.

Appendix A: Counting Logic

• The universe of ̊𝛺+(𝐺) is | ̊𝛺+(𝐺)| ≔ | ̊𝛺+(𝐺)|𝛿
0 ≔ 𝟚𝑉 ∪ 𝟚𝐸.

• For 𝑛 ∈ ℕ> 0, | ̊𝛺+(𝐺)|𝜆
𝑛 ≔ ∅.

• For 𝑛 ∈ ℕ> 0, | ̊𝛺+(𝐺)|𝛿
𝑛 ≔ ∅.

• ̊𝛺+(𝐺)(𝜆sgl) ≔ { 𝑥 : 𝑥 ∈ | ̊𝛺+(𝐺)|, |𝑥| = 1 } ⊆ | ̊𝛺+(𝐺)|.

• ̊𝛺+(𝐺)(𝜆vert) ≔ 𝟚𝑉 ⊆ | ̊𝛺+(𝐺)|.

• ̊𝛺+(𝐺)(𝜆edge) ≔ 𝟚𝐸 ⊆ | ̊𝛺+(𝐺)|.

• ̊𝛺+(𝐺)(⊑) ≔ { (𝑥, 𝑦) ∈ | ̊𝛺+(𝐺)|
2
: 𝑥 ⊆ 𝑦 }.

• For every 𝑝 ∈ ℕ> 0 and every 𝑛 ∈ ℕ≤ 𝑝,

̊𝛺+(𝐺)(𝜆𝑝,𝑛
card) ≔ { 𝑥 : 𝑥 ∈ | ̊𝛺+(𝐺)|, |𝑥| = 𝑝 mod 𝑛 } ⊆ | ̊𝛺+(𝐺)|1.

• For every 𝑛 ∈ ℕ,

̊𝛺+(𝐺)(𝜆𝑛
conn) ≔{ (𝐸′, 𝑉1, … , 𝑉𝑛) : ∃𝑒 ∈ 𝐸′ ∶

∃𝑣1 ∈ 𝑉1, … , ∃𝑣𝑛 ∈ 𝑉𝑛 ∶
𝑒 ∈ 𝐸, ⦉𝑒⦊ = 𝑣1 … 𝑣𝑛 }

⊆ | ̊𝛺+(𝐺)|𝑛+1.

• ̊𝛺+(𝐺)(∅) ∶ { () } → | ̊𝛺+(𝐺)|, () ↦ ∅.
• For 𝑛 ∈ ℕ> 0, for 𝐾 ⊆ { 1, … , 𝑛 },

̊𝛺+(𝐺)(𝛿𝐾
term) ∶ | ̊𝛺+(𝐺)| → | ̊𝛺+(𝐺)|,

𝑥 ↦
⎧{
⎨{⎩

𝑥 ∪ { 𝑡(𝑖) : 𝑖 ∈ 𝐾,
𝑖 ≤ 𝑘 } if 𝑥 ⊆ 𝑉

𝑥 otherwise.
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𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

�̊�+ is the circuitous
language of graphs
with counting.
(def. A.2.2, p. 219)

𝔛+ denotes the
logical framework of
graphs with
counting.
(def. A.2.1, p. 219)

|�̊�+| is the set of all
well-formed
formulas over �̊�+.
(def. 5.3.5, p. 61)

⃖⃖ ⃖⃖ ⃖⃖�̊� denotes the set of
free variables of �̊�.
(def. 5.3.6, p. 62)

𝔊 is the algebra of
graphs.
(def. 6.2.2, p. 93)

𝛺(𝐺) is the induced
structure of 𝐺.
(def. 5.4.2, p. 73)

A.2: You Can Always Count on Graphs

Definition A.2.4
We call

�̊�+ ≔ ⋃
𝑛∈ℕ

{ ̊𝛺+(𝐺) : 𝐺 ∈ 𝔊𝑛 }

the circuitous multiverse of finite graphs with counting and

�̊�+ ≔ ( ̊𝔏+, �̊�+)

the circuitous logical framework of finite graphs with counting.

It is easy to see that, again, the second language is at least as expressive as
the first one.

Theorem A.2.5
Let 𝜑 be a well-formed formula of 𝔛+. Then there exists also a for-
mula �̊� ∈ | ̊𝔏+| with ⃖�̊� = �⃖� such that for every graph 𝐺 ∈ 𝔊 and for
every full variable assignment 𝜏 in 𝛺(𝐺) for 𝜑, we have

𝜑[𝜏] ↔ ⊤ ⇔ �̊�[ ̊𝜏 ] ↔ ⊤.

If 𝜑 did not contain a term of the form Card( … ), then �̊� can be chosen
such that it contains no predicate of the form 𝜆card.

Proof. We state only the parts of the proof that need to be added to the
proof of theorem 5.6.6.

Case 1: 𝜑 is an atomic formula. We add our new case.

Case 1.1: 𝜑 = Card𝑛
𝑘 ( 𝜆1 0) for some 𝑘 ≤ 𝑛 ∈ ℕ and some 1-place predicate

variable 𝜆1 0. We list this case with the atomic formulas because it serves
the same function as a basic building block.
We set �̊� ≔ 𝜆𝑘,𝑛

card( 𝜆1 0), keeping the same set of free variables. Equivalence
is immediate by the definition of 𝜆card.

The remainder of the proof remains unchanged.
�
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𝔛+ denotes the
logical framework of

graphs with
counting.

(def. A.2.1, p. 219)

‖𝔛+‖ denotes the
set of sentences over

𝔛+.
(def. 5.3.6, p. 62)

�̊�+ denotes the
circuitous logical

framework of graphs
with counting.

(def. A.2.4, p. 221)

𝔊 is the algebra of
graphs.

(def. 6.2.2, p. 93)

𝛺(𝐺) is the induced
structure of 𝐺.

(def. 5.4.2, p. 73)

�̊�+(𝐺) is the
circuitous induced

structure with
counting of 𝐺.

(def. A.2.3, p. 219)

�̊�+ is the circuitous
language of graphs

with counting.
(def. A.2.2, p. 219)

Appendix A: Counting Logic

Corollary A.2.6

For every sentence 𝜑 ∈ ‖𝔛+‖, there exists a sentence �̊� ∈ ‖�̊�+‖ such that

∀𝐺 ∈ 𝔊∶ ⊧𝛺(𝐺) 𝜑 ⇔ ⊧�̊�+(𝐺) �̊� .

If 𝜑 did not contain a term of the form Card( … ), then �̊� can be chosen
such that it contains no predicate of the form 𝜆card.

3. Pride and Predicates
Having established an extended language, we need to check that the family
of predicates it induces is again locally finite. If we do not restrict the new
predicates, there is at least the formula that checks whether 𝜆1,𝑝

card holds for
the set of all vertices for each 𝑝 ∈ ℕ> 0, and no two of those formulas are
type 𝑛 equivalent. Consequently, we must add a restriction on the size of 𝑝.
We reproduce definition 6.9.1 with this new restriction.

Definition A.3.1

Let 𝑤 ∈ ℕ. The set of sentences of ̊𝔏+ that have width at most 𝑤 is
denoted by ‖ ̊𝔏+‖𝑤.

Let further 𝑙 ∈ ℕ. The set of sentences of ‖ ̊𝔏+‖𝑤 that use at most the
variable symbols 𝜇0, … , 𝜇𝑙 is denoted ‖ ̊𝔏+‖𝑙

𝑤.

Let further 𝑘 ∈ ℕ. The set of sentences of ‖ ̊𝔏+‖𝑙
𝑤 that use no predicate

symbol 𝜆𝑡
conn for 𝑡 > 𝑘 is denoted ‖ ̊𝔏+‖𝑙,𝑘

𝑤 .

Let finally 𝑚 ∈ ℕ. The set of sentences of ‖ ̊𝔏+‖𝑙,𝑘
𝑤 that use no predicate

symbol 𝜆𝑠,𝑡
card for 𝑡 > 𝑚 is denoted ‖ ̊𝔏+‖𝑙,𝑘,𝑚

𝑤 .

With this definition, the set of pairwise non-equivalent formulas becomes
finite again.
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�̊�+ is the circuitous
language of graphs
with counting.
(def. A.2.2, p. 219)

‖�̊�+‖ denotes the set
of sentences over
�̊�+.
(def. 5.3.6, p. 62)

𝑛∼ denotes
equivalence on
graphs of type 𝑛.
(def. 6.9.3, p. 122)

�̊�+(𝐺) is the
circuitous induced
structure with
counting of 𝐺.
(def. A.2.3, p. 219)

𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

A.3: Pride and Predicates

Theorem A.3.2
Let 𝑛 ∈ ℕ, and let 𝑤, 𝑙, 𝑘, 𝑚 ∈ ℕ. Then the set

‖ ̊𝔏+‖𝑙,𝑘,𝑚
𝑤 �𝑛∼

is finite.

Proof. It suffices to notice that in the proof of corollary 6.9.6, if we restrict
our predicates to use of 𝜆conn only the predicates 𝜆0

conn, … , 𝜆𝑘
conn and of 𝜆𝑎,𝑏

card
only those with 𝑏 ≤ 𝑚 and 𝑎 ≤ 𝑏, we are still left with only finitely many
predicates.

�

Just as before, we turn these formulas into predicates – compare defini-
tion 6.9.7.

Definition A.3.3

Let 𝑤, 𝑙, 𝑘, 𝑚 ∈ ℕ, let 𝑛 ∈ ℕ, and let �̊� ∈ ‖ ̊𝔏+‖𝑙,𝑘,𝑚
𝑤 �𝑛∼. We set

𝓅+𝑛
�̊� ∶ 𝔊𝑛 → { ⊤, ⊥ }, 𝐺 ↦ {

⊤ ⊧�̊�+(𝐺) 𝜑 for some1 𝜑 ∈ �̊�
⊥ otherwise

and
𝒫+𝑛

𝑤,𝑙,𝑘,𝑚 ≔ { 𝓅+𝑛
�̊� : �̊� ∈ ‖ ̊𝔏+‖𝑙,𝑘,𝑚

𝑤 �𝑛∼ }.

We then set

𝒫+𝑙,𝑘,𝑚
𝑤 ≔ ({ 𝒫+𝑛

𝑤,𝑙,𝑘,𝑚 }𝑛∈ℕ, ⟨_⟩ ∶ 𝓅+𝑛
�̊� ↦ 𝑛) .

Lemma A.3.4
Let 𝑤, 𝑙, 𝑘, 𝑚 ∈ ℕ. Then 𝒫+𝑙,𝑘,𝑚

𝑤 is locally finite.

1 Just as in definition 6.9.7, “for some” is equivalent to “for all”, since all formulas in 𝜑
are type 𝑛 equivalent.
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⊕ is the disjoint
sum.

(def. 4.5.3, p. 40)

Appendix A: Counting Logic

Proof. There is nothing new to show. Compare lemma 6.9.9.
�

4. Cooking with Induction
It remains only to show that our new family of predicates is again inductive.
The remainder of the proof of Courcelle’s Theorem makes no further mention
of the particular family of predicates used, so it can be used verbatim
afterwards.
For each of the theorems 6.9.10 to 6.9.12, we amend case 1 of its proof.

Theorem A.4.1
Let 𝑤, 𝑙, 𝑘, 𝑚 ∈ ℕ. Then 𝒫+𝑙,𝑘,𝑚

𝑤 is 𝔉⊕-inductive.

Proof. Case 1: 𝜑 is atomic.

Case 1.4: 𝜑 = 𝜆𝑖,𝑝
card(𝜒) for some 𝑖, 𝑝 ∈ ℕ, 𝑖 ≤ 𝑝 ≤ 𝑙. Recall that while the

width of 𝜑a and 𝜑b cannot exceed that of 𝜑, the height of 𝛷 suffers no such
restriction. We thus set

∀𝑗 ∈ { 0, … , 𝑖 } ∶ 𝜑a
𝑗 ≔ 𝜆𝑗,𝑝

card(𝜒𝑎), 𝜑b
𝑗 ≔ 𝜆𝑖−𝑗,𝑝

card (𝜒𝑏).

The reader should take a second to convince themselves that 𝜒[𝜏] has
cardinality 𝑖 mod 𝑝 if and only if there is a 𝑗 such that 𝜒𝑎[𝜏𝐺] has
cardinality 𝑗 mod 𝑝 and 𝜒𝑏[𝜏𝐺′ ] has cardinality 𝑖 − 𝑗 mod 𝑝. We thus
choose 𝛷 ≔ (𝜑a

0 ∧ 𝜑b
0) ∨ … ∨ (𝜑a

𝑖 ∧ 𝜑b
𝑖 ).

As before, the width, number of variables, and set of free variables for the
formulas 𝜑a

0, … , 𝜑a
𝑖 , 𝜑b

0, … , 𝜑b
𝑖 is the same as for 𝜑. The predicates used

have changed, but all of them still obey the restriction imposed by 𝑚.

The remainder of the proof remains unchanged.
�
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A.4: Cooking with Induction

Theorem A.4.2

Let 𝑤, 𝑙, 𝑘, 𝑚 ∈ ℕ. Then 𝒫+𝑙,𝑘,𝑚
𝑤 is (⋃𝑖∈ℕ ⋃𝑗∈ℕ 𝔉𝑗

𝑖 ⇆)-inductive.

Proof. The proof of theorem 6.9.11 works for this case without modifica-
tion.

�

Theorem A.4.3

Let 𝑤, 𝑙, 𝑘, 𝑚 ∈ ℕ. Then 𝒫+𝑙,𝑘,𝑚
𝑤 is (⋃𝑖∈ℕ 𝔉𝑖 媲)-inductive.

Proof. Case 1: 𝜑 is atomic.

Case 1.4: 𝜑 = 𝜆𝑖,𝑝
card(𝜒) for some 𝑖, 𝑝 ∈ ℕ with 𝑖 < 𝑝 ≤ 𝑙, and some term 𝜒.

We set
𝑖𝑎,𝑏 ≔ 𝑖 + 1 mod 𝑝

(which is then again less than p) and

𝜑0 ≔ (¬ (𝛿{ 𝑎,𝑏 }
term (∅) ⊑ 𝜒𝑎,𝑏) ∧ 𝜆𝑖,𝑝

card(𝜒𝑎,𝑏))

∨ ((𝛿{ 𝑎,𝑏 }
term (∅) ⊑ 𝜒𝑎,𝑏) ∧ 𝜆𝑖𝑎,𝑏,𝑝

card (𝜒𝑎,𝑏))

and 𝛷 ≔ 𝜑0. If 𝑎 ∉ 𝜒[𝜏], then 𝜒𝑎,𝑏[𝜏𝑎,𝑏] = 𝜒[𝜏] and the cardinality does
not change. If 𝑎 ∈ 𝜒[𝜏], then the expansion adds exactly one element
to 𝜒𝑎,𝑏[𝜏𝑎,𝑏], raising the cardinality by one (modulo 𝑝).

The remainder of the proof remains unchanged.
�

We obtain the desired result.

Corollary A.4.4
Let 𝑤, 𝑙, 𝑘, 𝑚 ∈ ℕ. Then 𝒫+𝑙,𝑘,𝑚

𝑤 is 𝔉-inductive.

225



𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

𝔊 is the algebra of
graphs.

(def. 6.2.2, p. 93)

𝛺(𝐺) is the induced
structure of 𝐺.

(def. 5.4.2, p. 73)

val𝒜ℯ denotes the
result of ℯ when
evaluated in 𝒜.

(def. 6.3.3, p. 103)

Appendix A: Counting Logic

5. Courcelle? Je la Connais à
Peine!

With all preliminary results carried over to our counting frameworks, it is
clear that the proofs for Courcelle’s Theorem and its applications apply
without modification. We hence state only the results.

Theorem A.5.1
Let 𝜑 be a sentence of the counting monadic second-order language of
graphs. Then for every 𝑛 ∈ ℕ, the set { 𝐺 ∈ 𝔊𝑛 : ⊧𝛺(𝐺) 𝜑 } is 𝔊-recog-
nisable.

Theorem A.5.2
Let 𝒜 = (𝒞, 𝒪) be an algebra inherited from 𝔊, and let 𝜑 be a sentence
of the counting monadic second-order language of graphs. Then for
every 𝑛 ∈ ℕ, the set { 𝐺 ∈ 𝒞𝑛 : ⊧𝛺(𝐺) 𝜑 } is 𝒜-recognisable.

Theorem A.5.3
Let 𝒮 be a signature, let 𝒜 = (𝒞, 𝒪) be an 𝒮-algebra, and let the
following properties be fulfilled:

• 𝒜 is inherited from 𝔊.
• 𝒜 is finitely expressible.
• 𝒮 is weakly locally finite.

Let further 𝜑 be a sentence of the counting monadic second-order language
of graphs, and let 𝑛 ∈ ℕ.
Then there exists a deterministic bottom-up finite tree automaton that
takes as input a set 𝒦 of 𝒜-expressions with values in 𝒞𝑛 and accepts
an expression ℯ if and only if ⊧𝛺(val𝒜ℯ) 𝜑, and every element of 𝒞𝑛 is the
value of some expression in 𝒦.
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𝔒𝑘 is the set of
function symbols of
𝔗𝑘.
(def. 9.3.5, p. 186)

𝔗𝑘 is the algebra of
𝑘-verdant graphs.
(def. 9.3.3, p. 185)

𝔗𝑘
𝑛 denotes the

𝑘-verdant graphs of
type 𝑛.
(def. 9.3.3, p. 185)

val𝔗𝑘ℯ denotes the
result of ℯ when
evaluated in 𝔗𝑘.
(def. 6.3.3, p. 103)

𝛺(val𝔗𝑘ℯ) is the
induced structure of
val𝔗𝑘ℯ.
(def. 5.4.2, p. 73)

𝔔𝑘 is the set of
function symbols of
𝔓𝑘.
(def. 9.5.6, p. 205)

𝔓𝑘 is the algebra of
𝑘-verdurous graphs.
(def. 9.5.2, p. 202)

𝔓𝑘
𝑛 denotes the

𝑘-verdurous graphs
of type 𝑛.
(def. 9.5.2, p. 202)

A.5: Courcelle? Je la Connais à Peine!

Theorem A.5.4
Let 𝜑 be a sentence of the counting monadic second-order language of
graphs, and let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists a deter-
ministic bottom-up finite tree automaton that takes as input a set 𝒦
of (ℕ, 𝔒𝑘)-expressions with 𝔗𝑘-values in 𝔗𝑘

𝑛 and accepts an expression ℯ
if and only if ⊧𝛺(val𝔗𝑘ℯ) 𝜑, and every element of 𝔗𝑘

𝑛 is the value of some
expression in 𝒦.

Theorem A.5.5
Let 𝜑 be a sentence of the counting monadic second-order language of
graphs, and let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists an algorithm
which, given a 𝑘-verdant type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡), decides in
time 𝒪(|𝑉 | + |𝐸|) whether or not we have ⊧𝛺(𝐺) 𝜑.

Corollary A.5.6
Let 𝜑 be a sentence of the counting monadic second-order language
of graphs, and let 𝑘 ∈ ℕ. Then there exists an algorithm which,
given a graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) of tree-width at most 𝑘, decides in
time 𝒪(|𝑉 | + |𝐸|) whether or not we have ⊧𝛺(𝐺) 𝜑.

Corollary A.5.7
Let 𝑘 ∈ ℕ. Then for any graph property that can be expressed in the
counting monadic second-order logic of graphs, there exists an algorithm
which, given a graph 𝐺 of tree-width at most 𝑘, decides in linear time
whether or not 𝐺 fulfils said property.

Corollary A.5.8
Let 𝜑 be a sentence of the counting monadic second-order language of
graphs, and let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists a deter-
ministic bottom-up finite tree automaton that takes as input a set 𝒦
of (ℕ, 𝔔𝑘)-expressions with 𝔓𝑘-values in 𝔓𝑘

𝑛 and accepts an expression ℯ
if and only if ⊧𝛺(val𝔓𝑘ℯ) 𝜑, and every element of 𝔓𝑘

𝑛 is the value of some
expression in 𝒦.
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𝛺(𝐺) is the induced
structure of 𝐺.

(def. 5.4.2, p. 73)

𝔊 is the algebra of
graphs.

(def. 6.2.2, p. 93)

Appendix A: Counting Logic

Theorem A.5.9
Let 𝜑 be a sentence of the counting monadic second-order language of
graphs, and let 𝑘 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists an algorithm
which, given a 𝑘-verdurous type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡), decides in
time 𝒪(|𝑉 | + |𝐸|) whether or not we have ⊧𝛺(𝐺) 𝜑.

Corollary A.5.10
Let 𝜑 be a sentence of the counting monadic second-order language
of graphs, and let 𝑘 ∈ ℕ. Then there exists an algorithm which,
given a graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) of path-width at most 𝑘, decides
in time 𝒪(|𝑉 | + |𝐸|) whether or not we have ⊧𝛺(𝐺) 𝜑.

Corollary A.5.11
Let 𝑘 ∈ ℕ. Then for any graph property that can be expressed in the
counting monadic second-order logic of graphs, there exists an algorithm
which, given a graph 𝐺 of path-width at most 𝑘, decides in linear time
whether or not 𝐺 fulfils said property.

Theorem A.5.12
Let 𝜑 be a sentence of the counting monadic second-order language
of graphs, and let 𝒜 = (𝒞, 𝒪) be a finitely expressible algebra of
weakly locally finite signature inherited from 𝔊. Then there exists an
algorithm which determines in finite time whether or not there exists a
graph 𝐺 ∈ 𝒞0 with ⊧𝛺(𝐺) 𝜑.

Corollary A.5.13
Let 𝜑 be a sentence of the counting monadic second-order language of
graphs, and let 𝑘 ∈ ℕ. Then there exists an algorithm which determines
in finite time whether or not there exists a graph 𝐺 of tree-width at
most 𝑘 with ⊧𝛺(𝐺) 𝜑.

Corollary A.5.14
Let 𝜑 be a sentence of the counting monadic second-order language of
graphs, and let 𝑘 ∈ ℕ. Then there exists an algorithm which determines
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𝛺(𝐺) is the induced
structure of 𝐺.
(def. 5.4.2, p. 73)

A.5: Courcelle? Je la Connais à Peine!

in finite time whether or not there exists a graph 𝐺 of path-width at
most 𝑘 with ⊧𝛺(𝐺) 𝜑.
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𝔊 is the algebra of
graphs.
(def. 6.2.2, p. 93)

𝔢2 is the type 2
graph with 2
vertices and one
edge.
(def. 4.5.6, p. 43)

Appendix B
Loops

In our practical considerations in chapter 9, we have opted to forgo the
case of loops, focusing only on graphs where all end points of an edge must
be pairwise distinct. This choice has been made primarily to make the
proofs easier to peruse, and the reader who cares not about such strange
edges as can connect to the same vertex multiple times may safely skip this
appendix.
However, all the versions of Courcelle’s Theorem that we have seen still
hold true for (hyper-)graphs with loops, so we present in this appendix a
formal way to extend our algorithms to include those graphs.

1. It’s Never Loopus

Why is it that our tree- and path-decomposition constructions do not admit
loops in the first place? The problem is that we have restricted our all-
powerful graph building tools to only entwining respectively blooming, and
neither of those can create a loop. In the original algebra 𝔊, we would have
simply taken the graph 𝔢2 and fused its two vertices to create a loop of
type 2.
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媲 (tsureai,
Japanese for to

marry) denotes the
source fusion.

(def. 4.5.5, p. 42)

Appendix B: Loops

媲
2
1 1,2

1

2

With entwining, we are not allowed to fuse two vertices from the same
connected component, which makes the creation of loops impossible. The
same holds for blooming.
Of course, there were good reasons for us not to allow this – the example
on page 182 showed that fusing two connected vertices can easily increase
the tree-width of a graph.
The trouble in said example stems from the fact that the terminals 1 and 2
used to be in different bags of the tree-decomposition, but fusion forces them
to be in the same bag (because they are now the same vertex). Conversely,
we should be allowed to fuse two vertices if they are in the same bag
already, since then the tree-decomposition for the original graph is also
a tree-decomposition for the new graph (with the missing vertex stricken
from all bags):

媲
2
1 1,2

2

1

This construction is straightforward to formalise.
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𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

媲 (tsureai,
Japanese for to
marry) denotes the
source fusion.
(def. 4.5.5, p. 42)

𝟚𝑉denotes the
power set of 𝑉.

B.1: It’s Never Loopus

Definition B.1.1
Let 𝑛 ∈ ℕ, let 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔊𝑛, and let 𝑎, 𝑏 ∈ { 1, … , 𝑛 }. We
set

↓𝑎,𝑏 𝐺 ≔ {媲
𝑏
𝑎𝐺 if 𝑡(𝑎), 𝑡(𝑏) are adjacent

𝐺 otherwise

and call this the collapse of 𝐺 over 𝑎 and 𝑏.

And it even preserves verdancy and verdurousness.

Lemma B.1.2
Let 𝑛 ∈ ℕ, let 𝐺 ∈ 𝔊𝑛, and let 𝑎, 𝑏 ∈ { 1, … , 𝑛 }. Then we always
have tw(↓𝑎,𝑏 𝐺) ≤ tw(𝐺) and pw(↓𝑎,𝑏 𝐺) ≤ pw(𝐺). Furthermore,
if 𝐺 is 𝑘-verdant for some 𝑘 ∈ ℕ, then ↓𝑎,𝑏 𝐺 is 𝑘-verdant, and if 𝐺
is 𝑘-verdurous for some 𝑘 ∈ ℕ, then ↓𝑎,𝑏 𝐺 is 𝑘-verdurous.

Proof. Let 𝑛 ∈ ℕ and 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) ∈ 𝔊𝑛. Let 𝑍 = (𝑇 , 𝑋, 𝑏) be a
tree-decomposition for 𝐺, and let 𝑎, 𝑏 ∈ { 1, … , 𝑛 }. We assume without
loss of generality that 𝑡(𝑎) ≠ 𝑡(𝑏), otherwise we have ↓𝑎,𝑏 𝐺 = 𝐺.
If the reader is familiar with graph minors, the following construction will
be familiar to them, and they may safely replace it by their favourite minor
argument.

Case 1: There is no edge connecting 𝑡(𝑎) and 𝑡(𝑏). Then by definition, we
have ↓𝑎,𝑏 𝐺 = 𝐺 and there is nothing to show.

Case 2: There is an edge 𝑒 ∈ 𝐸 such that both 𝑡(𝑎) and 𝑡(𝑏) occur in ⦉𝑒⦊. In
this case, there must by definition of a tree-decomposition exist a node 𝑣 ∈ 𝑇
with 𝑡(𝑎), 𝑡(𝑏) ∈ 𝑏(𝑣). We set

𝑓∶ 𝟚𝑉 → 𝟚𝑉⧵{𝑡(𝑏)}, 𝐴 ↦ {
𝐴 if 𝑡(𝑏) ∉ 𝐴
{𝑡(𝑎)} ∪ 𝐴 ⧵ {𝑡(𝑏)} if 𝑡(𝑏) ∈ 𝐴

and define
𝑌 ≔ { 𝑓(𝑥) : 𝑥 ∈ 𝑋 }

and
𝑐 ∶ 𝑇 → 𝑌 , 𝑣 ↦ 𝑓(𝑏(𝑣))
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↓ denotes the graph
collapse.

(def. B.1.1, p. 233)

媲 (tsureai,
Japanese for to

marry) denotes the
source fusion.

(def. 4.5.5, p. 42)

Appendix B: Loops

and claim that (𝑇 , 𝑌 , 𝑐) is then a tree-decomposition for ↓𝑎,𝑏 𝐺. In-
deed: take a vertex 𝑤 ∈↓𝑎,𝑏 𝐺 which is contained in 𝑐(𝑣) ∩ 𝑐(𝑣′) for
some nodes 𝑣, 𝑣′ ∈ 𝑇. If 𝑤 ≠ 𝑡(𝑎), a path from 𝑣 to 𝑣′ containing 𝑤 in
each bag already existed since 𝑍 was a tree-decomposition. If, on the
other hand, 𝑤 = 𝑡(𝑎), then in the original tree-decomposition 𝑍 we either
have 𝑡(𝑎) ∈ 𝑏(𝑣) ∩ 𝑏(𝑣′), 𝑡(𝑏) ∈ 𝑏(𝑣) ∩ 𝑏(𝑣′), or (without loss of general-
ity) 𝑡(𝑎) ∈ 𝑏(𝑣) and 𝑡(𝑏) ∈ 𝑏(𝑣′). In the first two cases, a path from 𝑣
to 𝑣′ containing 𝑡(𝑎) respectively 𝑡(𝑏) exists. In the third case, because 𝑡(𝑎)
and 𝑡(𝑏) are adjacent, we can find a node 𝑣′′ ∈ 𝑇 with 𝑡(𝑎), 𝑡(𝑏) ∈ 𝑏(𝑣′′).
Hence, there exists a path from 𝑣 to 𝑣′′ containing 𝑡(𝑎) in each bag and
a path from 𝑣′′ to 𝑣′ containing 𝑡(𝑏) in each bag. Since in 媲𝑏

𝑎𝐺 we
have 𝑡(𝑎) = 𝑡(𝑏), we are done.

We have thus shown that in each case, a tree-decomposition of at most the
same width can be found, and since we did not change the bags except for
identifying terminals, we know that if all terminals were in one bag of the
tree-decomposition for 𝐺, the tree-decomposition for ↓𝑎,𝑏 𝐺 we constructed
again has all terminal vertices in one bag.
The proof for path-decompositions is entirely analogous.

�

However, as the reader has perhaps noticed, there is one small, but significant
problem with our construction: it discriminates between graphs based on
whether two vertices are adjacent, which neither fusion nor redefinition
nor disjoint sum can do – and as such, it is not an inherited operation!
Consequently, we cannot use it for Courcelle’s Theorem.

2. Staying in the Loop

We solve our problem by taking a page out of the playbook of 2-uniform
graphs. These admit only one “kind” of loop.
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𝔳 is the type 1
graph with one
vertex.
(def. 4.5.6, p. 43)

𝔢2 is the type 2
graph with 2
vertices and one
edge.
(def. 4.5.6, p. 43)

B.2: Staying in the Loop

If our graph has loops, it suffices to add one trivial graph to our list (which
previously contained only 𝔳 and 𝔢2).

1

Whenever a graph contains loops, we can just fuse this new trivial graph to
the correct vertices as many times as needed. This introduces only one new
function symbol, namely the nullary one evaluating to this trivial graphs,
and everything works out as expected.
More care is needed for proper hypergraphs, which admit many different
“kinds” of loops.

1 2 3
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⊗ denotes the graph
twine.

(def. 9.3.1, p. 184)

𝔒𝑘 is the set of
function symbols of

𝔗𝑘.
(def. 9.3.5, p. 186)

Appendix B: Loops

We use the brute-force method and add a nullary function symbol for each
different kind of loop.

Definition B.2.1
Let 𝑛 ∈ ℕ> 0, and let 𝜔 ∈ { 1, … , 𝑛 }∗ be a word that contains each
number from 1 to 𝑛 at least once. We set 𝔩𝜔 to be the type 𝑛 graph

({ 𝑣1, … , 𝑣𝑛 }, {𝑒}, ⦉_⦊, 𝑡)

with terminal function 𝑡 ∶ 𝑖 ↦ 𝑣𝑖 and ⦉𝑒⦊ = 𝑡∗(𝜔). The set of all these
graphs is denoted 𝔏𝑛. The set of all these graphs where |𝜔| ≤ 𝑘 for
some 𝑘 ∈ ℕ is denoted 𝔏𝑘

𝑛.

For example, the (directed) graph above is the result of the expression

𝔩112 ⊗2 3
3 { 1,2 } 𝔩12231.

Notice that, for any 𝑛 ∈ ℕ> 0, the set 𝔏𝑛 is countably infinite – adding
these nullary function symbols to, for example, (ℕ, 𝔒𝑘) would therefore not
preserve weak local finiteness. The set 𝔏𝑘

𝑛, however, is finite for any 𝑘, 𝑛 ∈ ℕ.
We must therefore restrict ourselves to a certain finite subset of edge types.1

3. Applying Some Loop Makes It
Easy

As promised, we add the new trivial graphs to our signatures.

Definition B.3.1

Let 𝑘, 𝑛 ∈ ℕ, and let 𝑐 ∈ ℕ with 𝑐 ≥ 𝑘 + 1. We write 𝔗𝑘,𝑐
𝑛

∘
for the set of

all 𝑘-verdant type 𝑛 graphs, possibly with loops, where no edge has type
larger than 𝑐.

1 The loop-free version 𝔗𝑘 cleverly avoids this problem since without loops, an edge of
type 𝑘 always induces a bag of width at least 𝑘 − 1, so a graph of tree-width 𝑘 cannot
have an edge of type 𝑘 + 2 there. With loops, an edge of type 𝑘 + 2 might still only
connect to one vertex, thus fitting into the tree-decomposition, but not into our finitely
expressible algebra.
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𝔗𝑘
𝑛 denotes the

𝑘-verdant graphs of
type 𝑛.
(def. 9.3.3, p. 185)

𝔒𝑘 is the set of
function symbols of
𝔗𝑘.
(def. 9.3.5, p. 186)

𝔏𝑐
𝑖 is the collection

of all loops with 𝑖
vertices and edge
type at most 𝑐.
(def. B.2.1, p. 236)

𝔒 denotes the
closure of 𝔒.
(def. 6.10.6, p. 141)

Fl(𝔒) denotes the
flattening of 𝔒.
(def. 6.10.8, p. 143)

𝔊 is the algebra of
graphs.
(def. 6.2.2, p. 93)

𝔊𝑛 denotes the set
of all graphs of type
𝑛. (def. 4.5.1, p. 39)

‖(ℕ, �̊�𝑘,𝑐)‖ denotes
the set of
expressions over
(ℕ, �̊�𝑘,𝑐).
(def. 6.3.3, p. 103)

val𝔗𝑘,𝑐∘ ℯ denotes
the result of ℯ when
evaluated in 𝔗𝑘,𝑐∘

.
(def. 6.3.3, p. 103)

B.3: Applying Some Loop Makes It Easy

We require 𝑐 to be larger than the size of the largest bag in order to
get 𝔗𝑘

𝑛 ⊆ 𝔗𝑘,𝑐
𝑛

∘
.

Definition B.3.2
Let 𝑘 ∈ ℕ, and let 𝑐 ∈ ℕ with 𝑐 ≥ 𝑘 + 1. We set

�̊�𝑘,𝑐 ≔ 𝔒𝑘 ∪
𝑘

⋃
𝑖=1

𝔏𝑐
𝑖 .

We denote

𝔗𝑘,𝑐∘
≔ ({ 𝔗𝑘,𝑐

𝑛
∘

}𝑛∈ℕ, {Fl(𝔒)𝔣 (⋃𝑛∈ℕ𝔗𝑘,𝑐
𝑛

∘
)

∗ }𝔣∈�̊�𝑘,𝑐) .

Since we have added only nullary function symbols, and of those only
finitely many per type, we immediately get the following.

Corollary B.3.3

Let 𝑘 ∈ ℕ, and let 𝑐 ∈ ℕ with 𝑐 ≥ 𝑘 + 1. Then 𝔗𝑘,𝑐∘
is an inher-

ited (ℕ, �̊�𝑘,𝑐)-algebra of 𝔊, and (ℕ, �̊�𝑘,𝑐) is weakly locally finite.

What remains to show is that this algebra is finitely expressible.

Theorem B.3.4
Let 𝑘, 𝑛 ∈ ℕ, and let 𝑐 ∈ ℕ with 𝑐 ≥ 𝑘 + 1. Let now 𝐺 ∈ 𝔊𝑛 be
a 𝑘-verdant graph that contains no edge of type larger than 𝑐. Then
there exists a { 0, … ,max{ 𝑛, 𝑘 + 1 } }-local expression ℯ ∈ ‖(ℕ, �̊�𝑘,𝑐)‖
with val𝔗𝑘,𝑐∘ ℯ = 𝐺.

Proof. The proof of theorem 9.3.9 can easily be adapted by adding, when-
ever a new vertex is introduced, all loops that can be added at this point.

�
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𝛺(𝐺) is the induced
structure of 𝐺.

(def. 5.4.2, p. 73)

Appendix B: Loops

It is straightforward to add the loops to algorithm 6 – whenever a new
vertex is introduced, we first add to it any and all loops that can be added
at this stage.
Hence the results from section 9.3 carry over immediately.

Theorem B.3.5
Let 𝜑 be a sentence of the monadic second-order language of graphs, and
let 𝑘, 𝑐 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists an algorithm which, given
a 𝑘-verdant type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) with no edge of type larger
than 𝑐, decides in time 𝒪(|𝑉 | + |𝐸|) whether or not we have ⊧𝛺(𝐺) 𝜑.

Corollary B.3.6
Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘, 𝑐 ∈ ℕ. Then there exists an algorithm which, given a
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) of tree-width at most 𝑘 with no edge of type
larger than 𝑐, decides in time 𝒪(|𝑉 |+|𝐸|) whether or not we have ⊧𝛺(𝐺) 𝜑.

Corollary B.3.7
Let 𝑘, 𝑐 ∈ ℕ. Then for any graph property that can be expressed in the
monadic second-order logic of graphs, there exists an algorithm which,
given a graph 𝐺 of tree-width at most 𝑘 with no edge of type larger
than 𝑐, decides in linear time whether or not 𝐺 fulfils said property.

Generalising the results about paths of constantly-bounded path-width
should be straightforward using this appendix as a guide. We state only
the end result.
Theorem B.3.8

Let 𝜑 be a sentence of the monadic second-order language of graphs, and
let 𝑘, 𝑐 ∈ ℕ. Then for every 𝑛 ∈ ℕ, there exists an algorithm which,
given a 𝑘-verdurous type 𝑛 graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) with no edge of
type larger than 𝑐, decides in time 𝒪(|𝑉 | + |𝐸|) whether or not we
have ⊧𝛺(𝐺) 𝜑.
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B.3: Applying Some Loop Makes It Easy

Corollary B.3.9
Let 𝜑 be a sentence of the monadic second-order language of graphs,
and let 𝑘, 𝑐 ∈ ℕ. Then there exists an algorithm which, given a
graph 𝐺 = (𝑉 , 𝐸, ⦉_⦊, 𝑡) of path-width at most 𝑘 with no edge of
type larger than 𝑐, decides in time 𝒪(|𝑉 | + |𝐸|) whether or not we
have ⊧𝛺(𝐺) 𝜑.

Corollary B.3.10
Let 𝑘, 𝑐 ∈ ℕ. Then for any graph property that can be expressed in the
monadic second-order logic of graphs, there exists an algorithm which,
given a graph 𝐺 of path-width at most 𝑘 with no edge of type larger
than 𝑐, decides in linear time whether or not 𝐺 fulfils said property.
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adjacency, 30
algebra, 89

closure of an, 142, 142
expressible, 106
finitely expressible, 106, 170,

172, 173, 179, 189, 206,
237

flattening of an, 143, 146
inheritance, 147, 173, 189,

206, 237
locally finite, 91
quotient, 109
recognisable, 117, 170, 172,

173
alphabet, 14

ranked, 156
alphabet, ranked, 156
arity function, 156
atomic formula, 60
atomic symbol, 59

blooming, 204, 202–204

carrier set, 89

chocolate, 51
circuitous language, see graphs,

circuitous MSO language
of

circuitous structure, see graph,
circuitous induced
structure of a

collapse, 233
coloring, see colouring
colouring, 74, 178
congruence, 109

locally finite, 110
saturated, 110, 117

Courcelle’s Theorem, 7, 10, 149,
192, 198, 199, 208, 211,
212, 226–228, 238, 239

cycle, 31

degree, 29
in-, 30
out-, 30

deterministic bottom-up finite
tree automaton, see tree
automaton
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dictionary, 167, 167
consistent, 167, 168

direct language, see graphs, direct
MSO language of

direct structure, see graph, direct
induced structure of a

disjoint sum, 40, 128, 224
don’t panic, 87
dynamic programming, 113

edge, 21
end points, 21, 28
start points, 28
type, 21

equivalence
expressive, 80, 221
tautological, 121
typed, 121, 122, 122, 223

expressible, see algebra,
expressible

expression, 93–97, 103, 162
finitely typed, 105
local, 105, 178
sort of an, 103
value of an, 103

expressive equivalence, see
equivalence, expressive

family of predicates, 111
inductive, see inductiveness
locally finite, 117, 223
restricted, 140

finite-state automaton, 153
forest, 32

directed, 33
framework, 69

monadic, 70

free variable, 56, 62
function, 89
function symbol, 53, 59, 88

type of a, 88
function universe, 63
function variable, 59
fusion, 42, 136, 182, 225, 231

graph, 24, 27
acyclic, 31
circuitous induced structure

of a, 78
circuitous induced structure

with counting of a, 219
complete, 67, 71, 95, 178
connected, 31
connected component of a, 32
direct induced structure of a,

73
directed, 28
empty, 21
pseudo-, 20, 20
strongly acyclic, 31
strongly connected, 31
typed, 38, 39
uniform, 32
verdant, 185, 196, 233, 236
verdurous, 202, 233
weakly connected, 31

graph language, 24
graph minor, 199, 201
graph property, 73, 175, 199, 212,

228
graphs

algebra of, 93
algebra of path-width 𝑘, 206
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algebra of tree-width 𝑘, 187,
237

circuitous CMSO language of,
219

circuitous framework of, 79
circuitous MSO language of,

77
circuitous multiverse of, 79
constructing, 106–108, 176
direct MSO language of, 72
framework with counting of,

221
language of, 27
logical framework of, 73, 219
multiverse of, 73
multiverse with counting of,

221
predicates on, 127–138, 223
second-order language of, 72
signature of, 92
signature of path-width 𝑘,

205
signature of tree-width 𝑘, 237
trivial, 43, 236

in-degree, see degree, in-
in-incidence, see incidence, in-
in-neighbourhood, see

neighbourhood, in-
incidence, 29

in-, 30
out-, 30

indices, 18
inductive decomposition, 116
inductiveness, 116, 110–117,

224–225
flattening and, 146

inheritance and, 147
restriction to subalgebras, 140

infix notation, 54
inorder traversal, 35
interpretation, 164
isomorphism

directed graph, 29
graph, 25
pseudograph, 23
ranked string, 157

𝑘-tree, 182
Kleene extension, 14
Kleene star, 14

language, 59
language of finite graphs, 27
leaf, 33
logic

0th-order, see logic,
propositional

predicate, 52
propositional, 50
second-order, 58

loop, 173, 236

magma, 89
model, 66

first-order, 56
monadic, see framework, monadic
morphism

algebra, 90, 91
directed graph, 29
graph, 25
pseudograph, 22
traversal tree, 36

multiverse, 69
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neighborhood, see neighbourhood
neighbourhood, 30

in-, 30
out-, 30

node, 45
forget, 46
introduce, 46
join, 46

operation, 89
orientation, 28
out-degree, see degree, out-
out-incidence, see incidence, out-
out-neighbourhood, see

neighbourhood, in-

path, 30
directed, 31
length of a, 30
simple, 31

path-decomposition, 46, 210
nice, 47, 211
rooted, 47
verdurous, see graph,

verdurous
path-width, 47, 201
permutation, 15
Phoenician, 16
postorder traversal, 35
power set, 16
pre-expression, 98

height of a, 98
input sort of a, 98
output sort of a, 98
value of a, 101

predecessor, 30
predicate, 52, 111

cardinality checking, 221
set of objects fulfilling a, 111

predicate logic, see logic,
predicate

predicate symbol, 59
predicate universe, 63
predicate variable, 52, 59
predicate, cardinality, 218
predicates

family of, see family of
predicates

preorder traversal, 35
proposition symbol, 50
propositional logic, see logic,

propositional
pseudograph, see graph, pseudo-

quantifier, 53

ranked alphabet, see alphabet,
ranked

ranked string, 156, see string,
ranked

recognisable, 108
recognizable, see recognisable
red symbols, 18
redefinition, 42, 135, 225
reordering, 15

sentence, 56, 62
signature, 88

closure of a, 141
flattening of a, 143
locally finite, 92
weakly, 170, 170, 172, 173,
189, 237

weakly locally finite, see
locally finite, weakly
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sort, 88
sprouting, 204
state, 158

accepting, 158
string

ranked, 157
string, ranked, 156
structure, 53, 63

first-order, 55
induced, see graph, direct or

circuitous induced
structure of a, 73

subalgebra, 140
subgraph, 32

full, 32
induced, 32

subsignature, 139
subtree

induced, 34
successor, 30
symmetric group, 15

tautological equivalence, see
equivalence, tautological

term, 60
elementary, 60

terminal, 39
terminal redefinition, see

redefinition
transition function, 158
traversal tree, see tree, traversal
tree, 32

height of a, 34
root of a, 33
rooted, 33
traversal, 34

tree automaton, 158, 158–161,
168, 170, 172, 173, 200

runtime, 165
tree-decomposition, 44, 195

nice, 46, 197
rooted, 45
verdant, see graph, verdant
width of a, 45

tree-width, 45
trivial graphs, see graphs, trivial
truth, 64
truth assignment, 51, see also

variable assignment
truth value, 51
twine, 185, 182–185
type, 88
typed algebra, see algebra
typed equivalence, see

equivalence, typed
typing, 88

universe, 52, 63
first-order, 55
typed, 67

variable assignment, 64
empty, 64
full, 64
induced, 80

variable symbol, 52
verdancy, see graph, verdant
verdurousness, see graph,

verdurous
vertex, 20
vocabulary, 157

well-formed formula, 50, 61
height of a, 62
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width of a, 62
word, 14

empty, 14

length of a, 14
reordering of a, 15

Zermelo-Fraenkel, 56
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