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Abstract—Signal detection and modulation classification are
two crucial tasks in various wireless communication systems.
Different from prior works that investigate them independently,
this paper studies the joint signal detection and automatic
modulation classification (AMC) by considering a realistic and
complex scenario, in which multiple signals with different mod-
ulation schemes coexist at different carrier frequencies. We first
generate a coexisting RADIOML dataset (CRML23) to facilitate
the joint design. Different from the publicly available AMC
dataset ignoring the signal detection step and containing only one
signal, our synthetic dataset covers the more realistic multiple-
signal coexisting scenario. Then, we present a joint framework
for detection and classification (JDM) for such a multiple-signal
coexisting environment, which consists of two modules for signal
detection and AMC, respectively. In particular, these two modules
are interconnected using a designated data structure called
“proposal”. Finally, we conduct extensive simulations over the
newly developed dataset, which demonstrate the effectiveness of
our designs. Our code and dataset are now available as open-
source resources1.

Index Terms—Automatic modulation classification, dataset de-
sign, hierarchical classification head.

I. INTRODUCTION

The recent advancements in cognitive radio allow more effi-
cient utilization of scarce spectrum resources and enable more
flexible wireless communications. However, cognitive radio
also introduces new technical challenges on signal detection
and modulation classification, which are becoming vital topics
in both academia and industry [1]. Effective signal detection
and modulation classification can help provide flexible spec-
trum management [2], identify co-channel interference [3], and
ensure physical-layer security against various threats, such as
pilot jamming and deceptive jamming [4].
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Signal detection, which is also known as spectrum sensing,
is an important technique to detect whether a certain user (e.g.,
a primary user in cognitive radio systems [5]) is transmitting
signals. Conventionally, signal detection is implemented based
on energy detection and feature detection methods [5]. In
particular, energy detection is performed by comparing the
received signal power level with an appropriate decision
threshold. This method is simple in implementation and can
be accomplished within a short sensing time. However, its
performance varies sharply as the noise power may change
over time. In contrast, the feature detection method utilizes
specific signal signatures, such as pilot, field sync, segment
sync, or cyclostationarity, to detect signals [6], which improves
the efficiency and robustness to the noise, while costs of higher
implementation complexity to extract features from raw signal
data, with a possibility of requirement on prior knowledge.

On the other hand, automatic modulation classification
(AMC) has become a critical technology in modern com-
munication systems [7]. In general, AMC methods can be
classified into two categories, namely the likelihood-based
(LB) methods and the feature extraction and representation-
based (FB) methods, respectively. The LB methods construct
multiple hypothesis testing problems to classify modulations,
which may induce significant computational overhead and are
generally challenging to be implemented in practice [8]. In
contrast, the FB methods classify modulations by extracting
essential signal features [9], which can thus significantly
reduce the computational complexity without sacrificing the
classification accuracy.

In recent years, deep learning (DL) has achieved astonishing
success in object detection and classification [10]. In view
of its great potential, the exploitation of deep learning for
signal detection and AMC has received increasing attention
from both academia and industry. Specifically, the DL-based
approaches can learn the underlying features within the signal
data, thus enabling full exploration of the intrinsic data connec-
tions. In general, the implementation of DL usually requires a
large amount of data to train a neural network model, which
can be collected in practical communication systems [11].
Different from conventional feature extraction methods that
require proper feature selection and thus cannot adapt to time-
varying channel environments, the DL-based methods do not
need the feature extraction procedure and thus are suitable for
different environments [4].

The deployment of DL in AMC highly depends on the
quality of the training dataset. To this end, a variety of
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datasets have been developed, including RADIOML.2016.10A
(RML16) [12], RADIOML.2018.01A (RML18) [13], and
RML22 [14]. However, these datasets have the following two
limitations. First, the existing datasets are only applicable for
specific scenarios with limited generalization. For instance, the
RML22 can only be utilized to recognize a single signal within
a particular frequency. Therefore, developing a general dataset
with multiple signals at different frequencies is of paramount
importance for the development of DL-based methods for
modulation classification. Next, current AMC datasets often
omit the detection process, by ignoring the fact that the signal
detection task needs to be performed prior to AMC in practice.
This thus leads to an overly idealized representation, which
fails to capture the complexities and challenges of real-world
modulation recognition tasks. As a result, it is necessary to
design datasets capturing the effect of signal detection prior
to AMC. These issues thus motivate our investigation in this
work.

A. Contributions

To overcome the above limitations, this paper proposes a
new DL-based method for joint signal detection and AMC.
We first generate a simulated dataset, namely the coexisting
RADIOML dataset (CRML23), to achieve better data per-
formance with lower overhead. In particular, synthetic data
generation exploits the mature signal and channel models in
wireless communications to achieve a high degree of fit with
real data. As compared with the existing datasets, our proposed
dataset CRML23 incorporates multiple signals coexisting in a
specific interval. These signals are randomly distributed within
the specified range and exhibit distinct features, thus simulat-
ing the signal distribution in real-world scenarios. Based on
CRML23, we propose a novel DL-based joint framework for
detection and classification (JDM), and assess its performance
via extensive experiments. The main contributions of this
paper are summarized as follows.

1) We propose a new framework, JDM, that can simulta-
neously achieve signal detection and modulation clas-
sification. JDM consists of two interconnected modules
for signal detection and modulation classification, re-
spectively. These two modules sequentially process the
source data and establish internal connections by using a
designated data structure called “proposal”. In particular,
the training results and ground-truth data simultaneously
influence both modules, fostering an optimized learning
process from diverse feature perspectives.

2) In the proposed JDM, the detection module is realized
by a multiple-layer convolutional neural network (CNN)
for extracting signal features and predicting the center
frequency and bandwidth of the signal. Furthermore, a
band prediction model named proposal is incorporated
at the end of the detection module to generate pre-
dictions regarding the frequency location of the signal,
which also connects the following classification stage.
In addition, we adopt a data representation to output
predictions, thereby exploiting the intrinsic relationships
within the original data.

3) We conduct extensive experiments to evaluate the per-
formance of JDM and show the impact of different
parameters, such as signal-to-noise ratio (SNR), channel
characteristics, Doppler effect, and clock offset, on the
performance. Simulation results show that our proposed
framework achieves higher accuracy in detection and
classification than conventional approaches.

B. Organizations

The remainder of this paper is organized as follows. Section
II introduces the related works on signal detection and AMC.
Section III describes the signal model and the design objec-
tive. Section IV presents the generation of dataset CRML23.
Section V proposes the JDM. Section VI presents experiment
results to show the performance of the proposed framework.
Finally, Section VII concludes this paper.

II. RELATED WORKS

A. Signal Detection

There have been various prior works on conventional signal
detection designs [5] based on energy detection [15], [16] and
feature detection [17], [18], respectively. In [15], the authors
studied energy detection by using discrete-time samples of
signals. In [16], the average performance of energy detection
was derived by numerically integrating the detection thresh-
old over the fading channels. Besides, the authors of [17]
employed the peak detection in the high SNR regimes, and
utilized the contour figure based pattern detection in the low
SNR regimes. In [18], the authors investigated cyclostationary
feature of digital video broadcasting (DVB) signals, based on
which a robust single-cycle detector was proposed to handle
the uncertain noise issue. Despite the advancements, these
methods suffer from three drawbacks, including the need
for prior knowledge, high computational complexity, and low
robustness against noise.

To address the above issues, another line of existing works
[19]–[21] employed DL for enhancing the signal detection
performance. The authors in [19] implemented signal detection
based on the time-frequency spectrum, in which CNNs are
utilized for bounding box regression. In [20], the authors
investigated interference cancellation based on DL in faster-
than-Nyquist communication systems. To reduce the continu-
ous interference between adjacent signals, a long short-term
memory (LSTM) algorithm-based recurrent neural network
(RNN) was applied. Moreover, in [21], the authors proposed
a deep learning framework, which extracts features along the
time axis at each frequency bin to predict the center frequency
and the shape attributes of the signal.

Despite the benefits in DL-based signal detection methods,
these existing designs are not applicable for detecting the
frequency and bandwidth of multiple coexisting signals. In
contrast, our proposed detection method is able to not only
detect the frequency and bandwidth of multiple signals, but
also predict the modulation schemes.
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B. Automatic Modulation Classification

Conventionally, the AMC is implemented via LB methods
[22]–[25] and FB methods [26]–[29]. As for LB methods,
a single-term approximation to the average log-likelihood-
ratio was proposed in [22] to classify quadrature-modulated
digital communication signals. In [23], hybrid likelihood ratio
test (HLRT) based and quasi HLRT based algorithms were
investigated. A blind modulation classifier for multiple-input
multiple-output (MIMO) systems was proposed in [24], in
which the channel matrix and noise variance were unavailable.
In [25], the authors investigated the LB-AMC for orthogonal
frequency division multiplexing (OFDM) systems, in which
two classifiers based on average likelihood ratio test and HLRT
were proposed. In general, the LB methods are theoretically
optimal in the Bayesian sense. However, they suffer from high
computational complexity and require prior knowledge of both
the signal and the channel.

On the other hand, the FB-based methods focus on feature
extraction and classifier design. The authors in [26] intro-
duced wavelet transform (WT) to extract the transient char-
acteristics in a digital signal. Homogeneous feature-vectors
based on cyclic cumulants were proposed in [27], and the
discrimination capability of the examined feature-vectors were
verified. Cyclostationarity-based features were utilized in [28]
to identify quadrature amplitude modulation (QAM) signals.
Order-statistics-based and reduced order-statistics-based AMC
methods were proposed in [29], in which the approximate
maximum likelihood and the back propagation neural networks
classifier were introduced to the reduced order-statistics. Al-
though FB methods have low computational complexity, they
struggle to perform well under noise or multi-path channel
fading.

In addition to LB and FB methods, DL-based methods have
been recently adopted owing to huge amount of data available
in modern communication networks. Specifically, the authors
in [30] introduced a spatial transformer model for AMC,
which learns a localization network to blindly synchronize
and normalize a radio signal without a prior knowing the
signal structure. Other neural networks, such as CNN, residual
network, densely connected network, and convolutional long
short-term deep neural network (DNN), were considered in
[31]. Deep belief network and spiking neural network were
introduced in [32] to increase the classification accuracy for
AMC in low SNR regimes. In [33], a CNN and LSTM-based
dual-stream structure was proposed, in which the features
learned from two DL networks interact in pairs to increase the
diversity of features. Furthermore, a multitask learning-based
DNN was proposed in [4], where three blocks, including CNN
blocks, bidirectional gated recurrent unit (BiGRU) blocks,
and a step attention fusion network (SAFN) block were
interconnected to extract discriminative features. In addition,
a hierarchical classification head based convolutional gated
DNN is proposed in [7] by utilizing different layers’ output,
which only utilizes the in-phase/quadrature cue and has a low
computational cost.

C. Real Signal Datasets
Real signal datasets also do not target this complex signal

environment. WiSig [34] treats detection as a data preprocess-
ing step, which is already preprocessed for the purpose of
WiFi source identification. The synchronization of the signal
and location of signal existence have been preprocessed. This
step is omitted and manually processed, without a separate
algorithm to handle detection. There are also some related
open-source research articles [35], [36], but the corresponding
datasets have not been publicly released. Currently, the signal
processing industry is still mainly focused on baseband pro-
cessing and modulation recognition, without considering the
combination of signal detection and modulation recognition as
a joint task.

In summary, existing methods and datasets mostly focused
on the classification of one single clean signal, by ignoring
the signal detection process before classification, in which the
impact of potential detection bias is overlooked. By contrast,
this paper investigates the joint signal detection and AMC
by explicitly considering the detection phase to avoid such
limitations.

III. SYSTEM MODEL

As shown in Fig. 1, we consider a typical complex commu-
nication environment with multiple signals, in which multiple
transmitters may send radio signals over different frequency
bands. Each transmitter first generates a digital transmit se-
quence, and then radiates it over the air after proper shaping.
Next, a single-antenna receiver monitors the transmitted sig-
nals and employs blind modulation classification to analyze
the modulation information without any prior knowledge. The
transmitted signal by the transmitter at a particular time t is
expressed as

si(t) = gi(t) exp (−2πfit) , (1)

where gi(·) represents the baseband modulation signal, which
is shifted to the carrier frequency to meet specific transmission
requirements, and fi represents the carrier frequency of the
signal.

Fig. 1. A typical example of complex signal environment.

On the other hand, the received signal is sampled by the
receiver, which can be expressed as

x[l] =
∑n

i=1 hie
j(2πfil+θi)si[l] + w[l],

l = 1, 2, · · · , L, (2)
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where hi represents the multipath channel coefficient that is
a constant throughout the observation interval. Let θi denote
the phase offset, and n denote the number of active trans-
mitters. The subscript i represents each independent signal
participating in the transmission process, and is eventually
obtained at the receiver by superposition (

∑n
i=1) to form the

final spectrum. The maximum number of samples is denoted
as L, and l represents the index of a specific sample. Moreover,
w(l) denotes the additive white Gaussian noise (AWGN).

The signal transmission is carried on an orthogonal basis
with in-phase and quadrature (I/Q) components, respectively.
Thus, the baseband and passband I/Q signal is given by
s[n] = sI[n] + jsQ[n], and sp[n] = ℜ

(
s[n]ej2πfcnTs

)
,

respectively, where sI and sQ represent the in-phase and
quadrature components, fc is the center frequency, and Ts is
the sampling interval.

Once the information is captured, the raw complex signal
is transformed into an I/Q sequence, which is given by

xI/Q =

(
Re[x(1), . . . , x(L)]
Im[x(1), . . . , x(L)]

)
, (3)

where Re[·] and Im[·] denote the real parts and the imaginary
parts of the raw complex signal, respectively.

In the process of modulation, each transmitter encodes the
information bits into the carrier signal by modifying its three
primary characteristics including the amplitude, frequency, and
phase. This alteration allows to represent analog signals in
digital form.

In this paper, we aim to analyze a segment of a specific
range of bands, detect a variable number of signals, and
output independent modulation predictions by combining the
characteristics of each signal. Specifically, the task is divided
into three phases: data collection, data preprocessing, and
task execution. The task is a two-stage sequential process,
with the first detection sub-task, followed by the subsequent
classification sub-task.

The goal of the first sub-task detection is to identify the
center frequencies and bandwidths of existing signals for a
supervised spectrum range. The detection is given by

{(ci, wi)}Ni = d(x[l], g), (4)

where x[l] stands for the input signal frame, and d(·, ·)
denotes the neural network structure for signal detection with
g standing for the weight vector of the neural network.
Furthermore, let N denote the number of detected outputs to
be produced, consisting of different center frequency ci and
different bandwidth wi pairs.

When the detection sub-task is finished, the modulation
classification of any detected signal (ci, wi) can be made by

Hk
i : argmax

1≤k≤K
= P

(
pki | si, ci, wi

)
, (5)

where k is the index of a certain modulation type and K
represents the total number of possible modulation schemes,
pki denotes the probability of i-th singal being the k-th
modulation type, and si = {si[1], si[2], · · · , si[L]} denotes
the vector of baseband signal.

IV. PROPOSED SYNTHETIC DATASET

In this work, we generate a novel dataset, CRML23, for
multiple-signal scenarios. In the following, we present the
toolchain for generating compliant data entries. To improve
the applicability of the dataset, we incorporate five widely
utilized modulation schemes, including BPSK, QPSK, 8PSK,
16QAM, and 64QAM. In particular, we define each individual
item in the dataset as an “entry”, and each entry may contain
multiple “signals” to avoid confusion. This differs from the
traditional datasets where each entry only includes one signal.
In the subsequent sections, our proposed JDM will handle each
entry as a single unit and separate different signals contained
within each entry.

We utilize a recursive function to generate a complete entry
with randomness. Within the main program and each recursive
sub-program, we first determine whether the randomly selected
bandwidth W exceeds the specified upper limit fH or lower
limit fL. If W > (fH − fL), which means that the signal
to be generated falls outside the allowable bounds, it will
not undergo further generation. Conversely, if the selected
bandwidth falls within the permitted range, then we will
verify whether the specific bandwidth remains unoccupied.
Subsequently, we generate a baseband signal with a random
modulation type within the range (sH , sL) and accordingly
generate the carrier frequency signal. Furthermore, a low-
pass filter is utilized to prevent high-frequency leakage of
the simulated baseband signal, thus avoiding interference with
unoccupied bandwidth. Following this, the function recursively
handles the remaining unoccupied portions on both sides of
the signal, namely (fL, sL) and (sH , fH). Via this iterative
process, the program gradually fills the bandwidth within the
specified range. The detailed dataset generation procedure is
summarized in Algorithm 1.

Algorithm 1 Dataset Generation Algorithm
Input: lf : last lower bound; hf : last upper bound; y: last entry
Output: y′: new entry

1: Randomly generate modulation, channel, noise, central fre-
quency, and bandwidth W .

2: if W >(fH - fL) then
3: EXIT
4: else
5: Generate a new signal u with above parameters.
6: Calculate a effective range (RH , RL) for signal generation

in (fL, fH).
7: Add signal u in (RH , RL).
8: Lowpass operation, set carrier frequency and channel, update

entry y.
9: Set sL, sH with u’s lower and upper bound.

10: ALGORITHM 1(y, fL, sL)
11: ALGORITHM 1(y, sH , fH )
12: end if

Our dataset generation algorithm is capable of generating
a diverse range of signal compositions. By introducing ran-
domness in the generation of bandwidths within a predefined
range and utilizing recursion, the algorithm can automatically
generate signals. These signals are generated without any
predetermined constraints. The upper bound and low bound
on the number of signals are solely determined by the bound-
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aries of the bandwidth range, allowing for unrestricted signal
compositions within this range. Therefore, it is likely that
some entries may not contain any signals, thus reflecting the
diversity encountered in real-life scenarios. This variability is
crucial for the development of analysis algorithms reliant on
datasets, as the trained models must not only learn to handle
multiple signals but also discern the cases where no signals
are present.
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Fig. 2. Subfigures (a) and (b) illustrate the total signal count per entry and
the distribution of different modulation types within CRML23, respectively.
Subfigures (c) and (d) depict the distribution of signal bandwidth and
frequency, respectively.

As we can observe, CRML23 can offer rich features with
randomness due to the randomly generated entries based on
randomly selected channel models. In particular, each signal
within the entry is independently generated with unique infor-
mation, and the modulation type is also randomly selected. The
distribution of bandwidth and center frequencies is illustrated
in Fig. 2(a) and Fig. 2(b), respectively. The distribution of
bandwidth exhibits three distinct clusters, resulting from the
symbol rate specified in the signal generation algorithm.
In the experiments, we will propose appropriate evaluation
metrics that leverage this characteristic. Moreover, the fre-
quency points exhibit a uniform distribution. In particular, the
authors in [37] have overcome the multiple-signal processing
challenge by uniformly dividing the spectrum into multiple
channels and generating a simulated dataset under the assump-
tion that each transmitter occupies only one channel. However,
this assumption introduces a restriction that the transmitter
can only occupy pre-defined band. Moreover, the frequency
points are limited within a few independent units, resulting in
a clustered non-realistic distribution.

As shown in Fig. 2(c), the number of signals per entry
exhibits substantial randomness. This unpredictability arises
due to the inherent uncertainty introduced by the recursive
algorithm with random bandwidth allocation. The instances
with an entry containing three or six signals, are relatively
uncommon, while the entries with four to five signals are
more frequently observed due to the imposed bandwidth
ranges. Such generation patterns pose significant challenges
for subsequent analysis. Additionally, as shown in Fig. 2(d),
the occurrence frequencies of different modulation types in the

generated signals are approximately equal, which is aligned
with the manifestation of randomness within large-scale gen-
eration.

TABLE I
SIMULATION PARAMETERS

Abbreviations Distribution
Sample rate 1.5× 105 Hz
SNR [12:30:2] dB
Path delays [0, 1.8, 3.4]× 10−7

Average path gains 0, -2, -10
Kfactor [1:10:1]
Maximum doppler shift 4
Maximum clock offset 5
Center frequency [0:36:6] Hz
Channel model Rician / Rayleigh

In the simulation, the channel fading is modeled as a
stochastic factor. CRML23 comprises two fading channel
models: Rayleigh fading and Rician fading. These models are
differentiated by the presence or absence of line-of-sight (LoS)
paths between the transmitter and the receiver. We employ
these two models due to their widespread usage, while other
channel models can be generated using the same methodology.
The simulation parameters for the generation of CRML23 are
summarized in Table I.

V. PROPOSED DEEP LEARNING-BASED ALGORITHM

In this section, we elucidate the comprehensive architecture
of the proposed JDM. In the following, we first present the
overall structure of JDM, and then discuss the signal detection
and the AMC modules, respectively.

A. Overall Pipeline of JDM

Similar to the conventional synthetic signal data, our
CRML23 datatset necessitates the assignment of correspond-
ing labels to distinguish different modulation patterns. How-
ever, this distinction is a crucial prerequisite since misiden-
tifying multiple signals as a single signal may lead to un-
predictable consequences. To address this issue, we propose
a joint framework, as known as JDM, to address the tasks
of complex signal detection and AMC at the same time.
Note that our proposed JDM is decomposed into two distinct
components, namely the signal detection module and the
modulation classification module. Specifically, we adopt the
concept of target detection to establish pathway between these
modules. In this way, we can exploit the relationships within
the data to improve the accuracy in signal detection.

Upon inputting the original data stream as an I/Q sequence
into the signal detection module, a fast fourier transform
(FFT) is implemented to convert the time-domain signal into
its frequency-domain representation. Then, a band prediction
model is incorporated at the end of the signal detection module
to generate predictions regarding the frequency location of
the signal, referred to as “proposal”. Following this, an AMC
module is utilized to predict the modulation pattern of each
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Fig. 3. Joint framework for signal detection and automatic modulation classification (JDM).

filtered sequence of pure signals. These predictions are derived
by considering the frequency and bandwidth characteristics
of the different signals, culminating in the final output. The
overall pipeline of JDM is depicted in Fig. 3.

B. Signal Detection Module

As an integral component of the signal processing flow,
the signal detection module serves as the initial stage, which
takes raw I/Q sequence data of the signal as input. Its primary
function is to detect individual entries within the dataset, while
simultaneously generating predictions for the center frequen-
cies and bandwidths of multiple signals. These predictions aid
the modulation classification module in making informed deci-
sions. To enhance the accuracy of band prediction by operating
in the frequency domain, an FFT operation is performed on
the baseband signal in advance. The output vector dimensions
post-FFT align with the input I/Q sequences, maintaining a
2×L structure, where 2 signifies the I and Q components and
L is the sequence length.

To accomplish the task of signal detection, we propose a
novel spectral model inspired by the YOLO model for image
detection [38]. Bounding boxes are generated based on the I/Q
sequence, representing a direct transformation of the predicted
signal frequency and bandwidth. To simultaneously predict
multiple bounding boxes with confidence scores, a CNN
network is employed. The proposed spectral model is trained
using comprehensive multiple-signal data, and its regression
pattern mitigates performance degradation stemming from the
complexity of the model’s pipeline design. Furthermore, the
utilization of global inference during training enables the
model to capture the entire spectrum, thereby leveraging the
complete context to unveil potential connections within the
data. The utilization of candidate boxes offers the advantage
of swift and comprehensive detection, which aligns with the
dataset generation process. Based on such end-to-end training,
our proposed model can achieve high accuracy and efficiency.

To handle an original I/Q signal sequence with batch size
N , the network reconstructs several detection units. Among

them, the detection unit closest to the center of the target
signal is deemed to represent the signal. Within each detection
unit, there are bounding boxes of varying sizes, corresponding
to different possible bandwidths. The primary task of these
bounding boxes is to predict the likelihood of a signal’s
presence within them. The confidence level is quantified using
the Intersection over Union (IoU) metric, defined as

IoUpred =
Bgt ∩Bpred

Bgt ∪Bpred
, (6)

where Bgt denotes the ground-truth box, representing the
range occupied by the bandwidth of the ground-truth signal,
and Bpred denotes the predicted box, indicating the range
occupied by the predicted signal. For each bounding box, the
model performs regression to determine a clustering center
that corresponds to the range of the predicted bandwidth. If
no object exists within the monitored range, the confidence
level is 0.

In the training phase, each bounding box is designated
to detect an individual signal, and objects are assigned to
predictors based on the highest IoU scores. This specialized
approach enables the model to learn the modulation pattern
and size of the target signal, thereby improving the overall
recall value. Moreover, the presence of signals within the
detection module is assessed through the signal detection
module and the modulation classification module, providing
a signal detection mechanism that further enhances the recall
value. The details of the mechanism will be discussed in
Section V-C.

To achieve signal detection, we employ a CNN archi-
tecture, as depicted in Fig. 4, which is composed of five
CNN blocks connected in a sequential manner. Each block
encompasses three convolutional layers, one rectified linear
unit (ReLU) layer, and one batch normalization layer. The
input data consists of preprocessed I/Q sequences denoted
as x

I/Q
i , where for any index i, xI/Q

i ∈ RN×2×1200×1. The
dimensions include batch size, height, width, and channel.
Multiple convolutional layers are employed to extract high-
level semantic information from the signals, with the output
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Fig. 4. The structure details of the signal detection module.

of the last block utilized for prediction. ReLU introduces
non-linearity, enabling the capture of complex features and
mitigating overfitting issues associated with relatively simple
data forms. Batch normalization plays a vital role in nor-
malizing and linearly transforming data between layers, and
decoupling the inter-layer dependencies. This normalization
process ensures stable data ranges at the output of each layer,
thereby enhancing model convergence and reducing sensitivity
to network parameters. While some key parameters vary across
layers, padding is uniformly set to (0, 0). The final output
xCNN
i ∈ RN×1×144×256 represents the feature maps consisting

of 256 channels.
The output of the network is denoted by pi ∈ RN×C×L,

which is referred to as proposal, represented as a matrix
[[f1

c , B
1], · · · , [fN

c , BN ]]. This output contains predictions re-
garding the location and bandwidth of each signal in the
spectrum. Here, the dimension L is similar to the feature
map size in computer vision applications. However, unlike the
multidimensional scenarios in computer vision, our signal data
is one-dimensional. Consequently, L denotes the number of
detection units within our framework, with each unit acting as
the smallest divisible scale that accommodates an anchor. C
denotes the number of available anchor, which is set to be 3
in our case. This implies that each bounding box corresponds
to three predictions: B (predicted bandwidth), fc (central
frequency location), and confidence level. N represents the
number of the data input, which could be seen as the batch
size in deep learning, recording the number of entries. The
predicted bandwidth and central frequency jointly determine
the upper bound and lower bound of the spectrum occupied by
the signal, defined as (fc− 1

2B, fc+
1
2B). The confidence level

indicates the IoU between the predicted box and the ground-
truth box. When the confidence level surpasses a specified
threshold, the bounding box is considered a positive sample;
otherwise, it is regarded as a negative sample.

C. Modulation Classification Module

The input of the modulation classification module includes
two parts: the raw signal data in the form of I/Q sequences
and the proposals generated by the signal detection module.
Leveraging the information provided by the proposals, the
original data is processed to obtain a pure spectrum that solely
contains a single signal with its individual modulation type.
The carrier frequency is eliminated from the original signal
by utilizing the carrier information predicted in the proposal.

Furthermore, prior to modulation analysis, a low-pass filter
is applied to mitigate the noise from the signal. The primary
purpose of employing a low-pass filter is to filter out high-
frequency noise that may be present in the signal, thereby
enhancing signal quality and clarity. The passband frequency
is carefully chosen to ensure that essential components of the
signal are preserved, while effectively reducing components
beyond this threshold that are likely to be noise artifacts. In
particular, a finite impulse response (FIR) filter is utilized to
realize this function. The resulting filtered signal, denoted by
x
I/Q
i , serves as the final output of the preprocessing stage and

is fed into the backbone network.

Fig. 5. The structure of neural network in modulation classification module.

As illustrated in Fig. 5, the CNN block consists of three sets
of CNN layers. Each set comprises three parts: a convolutional
layer, a ReLU layer, and a dropout layer. The input data
is a preprocessed I/Q sequence denoted as x

I/Q
i . For any

index i in the sequence, we have x
I/Q
i ∈ RN×2×1200×1,

where each dimension represents the shape of the filter
bank in the first convolutional layer. Specifically, WCNN

1 ∈
R1×256×1×3 denotes the filter bank’s height, width, channel,
and the number of filters, respectively. The primary function
of this layer is to map the low-dimensional data to a high-
dimensional space. Subsequently, two additional convolutional
layers, WCNN

2 ∈ R256×256×1×3 and WCNN
3 ∈ R256×80×2×3,

are applied. The final output data xCNN
i ∈ RN×1×80×1194

represents a feature map with 80 channels. The inclusion of
ReLU introduces nonlinearity, capturing complex features and
mitigating overfitting issues caused by the relatively simple
data form. Dropout is similarly employed within our skeleton
network to alleviate the overfitting problem arising from the
network depth. For parameters that remain consistent across
layers, padding is set to (0, 0), the stride is set to (2, 2), and
the dropout rate is set to 0.5.

The output of the CNN, denoted by xCNN
i , undergoes two

reshape layers to match the input requirements of the Sum
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layer. A squeeze layer is utilized to eliminate dimensions of
size 1 from the input, reducing the data dimension without
compromising information content. The output is denoted by
xsq
i ∈ RN×80×1194. Subsequently, to ensure that the Sum

layer operates on channel content rather than data width, we
transpose the data by swapping two sizes. This reshapes the
data to xtrans

i ∈ RN×1194×80. The transposed data is then
fed into the Sum layer, which performs summation along the
second axis, resulting in xoutput

i ∈ RN×80.

VI. EXPERIMENT RESULTS

In this section, we first introduce the evaluation metrics to
assess the prediction performance of our proposed JDM. Then
we conduct a series of experiments to show the impact of
several key factors on system performance, including Rayleigh
and Rician channels, Doppler frequency shift, K-factor, SNR,
clock offset, and the influence of different modulation schemes
on the model’s prediction accuracy. Our model, trained on
a varied dataset, is designed for robust performance across
different signal conditions without segregating by channel
types like Rayleigh or Rician during the training phase. This
ensures versatility in handling various environment variables.
The model’s adaptability is further enhanced by exclusively
testing on specific channel conditions, offering a focused
assessment of its real-world applicability.

To provide further information, we also evaluate a blend of
traditional methods tailored for signal processing challenges.
Specifically, we employ Matched Filter (MF) and Threshold
Judgment (TH) as signal detection techniques, alongside De-
cision Tree (DT) and Support Vector Machine (SVM) for
modulation classification. This combination allows us to assess
the efficacy between these methodologies with our framework.

For the implementation, we utilize the PyTorch [39], a DL
platform running on a Linux server, equipped with Nvidia
RTX3090TI GPU, 120GB RAM, and an Intel Xeon Silver
4214 CPU. During the training phase, we employ the Adam
optimizer for detection module, and AdamW optimizer for
classification module, due to the advantage of Adam(W)’s sta-
bility and effectiveness compared to SGD. The batch size is set
to be 12 and 32 for detection and classification, respectively,
and the learning rate is set to 0.001, with a weight decay
of 0.00005 for AdamW. We train the model over a total of
90 epochs, including 30 epochs for detection, and 60 epochs
for classification, which are chosen to achieve the maximum
classification accuracy.

A. Evaluation Methods

In machine learning, the relationship between prediction
results and ground-truth labels can be classified into four
cases: true positive (TP), false positive (FP), false negative
(FN), and true negative (TN). Among them, two metrics
can further evaluate the training performance of the overall
sample, namely Precision, and Recall, which are expressed by
Precision = TP

TP+FP , Recall = TP
TP+FN , respectively.

Based on the above two metrics, we create a precision-recall
curve (PR curve) to demonstrate the internal link between the
two and to measure the performance of the signal detection

model. In order to combine the two metrics and assess the
performance of the model with a single key metric, we
introduce key performance evaluation metrics in the field of
target detection, namely mean Average Precision (mAP).

We take the decrease of the maximum precision value
as a trigger condition for sampling, and record each recall
sample point that needs to be involved in the calculation.
Geometrically, the calculation process can be defined as the
area of the smoothed PR curve with an X-axis envelope, i.e.,
area under curve (AUC). To this end, the mAP is expressed
as

mAP =

∑K
i=1 APi

K
AP,

=

n−1∑
i=1

(ri+1 − ri) pinterp (ri+1) ,

(7)

where K is the total number of categories to be classified,
which is expressed as the number of modulation patterns in
this paper.

Inspired by the COCO dataset, we extend our evaluation
system by adding more AP calculation methods. The eval-
uation metrics can be further divided into two categories,
IoU and pixel area. Different IoU thresholds are utilized as
a filtering condition, and AP.50 and AP.75 present the AP
measurements for IoU thresholds of 0.5 and 0.75, respectively.
In addition, by taking into account the size of the target box,
let APsmall, APmedium and APlarge correspond to the AP
values for different sizes of bounding boxes with pixel areas
of (02, 322), (322, 962), and (962,∞2). As a transformation,
we manually establish two thresholds based on the distribution
of bandwidth in Fig. 2(a), which correspond to three types of
bounding boxes: (0, 110), (110, 130), and (130, 150). In this
context, we choose the number of samples as the unit for ease
of practical computation, rather than the signal bandwidth.
These thresholds serve as the evaluation criteria for APsmall,
APmedium, and APlarge, respectively.

We also incorporate another metric, namely average recall
(AR), to assess the predictive performance of the model.
Drawing from the definition employed in the COCO dataset,
AR is computed by averaging the recall values across various
IoU thresholds spanning from 0.5 to 1.0. These thresholds are
derived by considering twice the area under the curve obtained
from plotting recall against IoU. In this paper, however, we
categorize signals based on their quantity rather than class.
By analyzing the distribution of the actual number of signals
contained in each entry of CRML23, we find that the top
three signal quantities are 4, 5, and 6, accounting for 33.3%,
59.0%, and 6.0%, respectively. Hence, we select these three
parameters as the benchmark for AR calculation and conduct
subsequent analysis in the experimental phase.

Similarly, we also examine the impact of signal size on
the AR evaluation metric, taking into account different scales.
The definition of these sizes aligns with the content discussed
earlier regarding mAP.

B. Evaluation on Detection Module
Through experimental simulations of different velocities of

relative motion, we observe the impact of Doppler frequency
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Fig. 6. Effect of object velocity on detection module’s mAP under Rayleigh
and Rician channel. Solid curves represent the Rayleigh channel, while hollow
curves represent the Rician channel.

shift on signal transmission under Rayleigh and Rician channel
conditions, while the K-factor was fixed at 4. Results are
shown in Fig.6. For both Rayleigh and Rician channels, as
the Doppler effect strengthens (i.e., an increase in the velocity
of the transmitting end), the mAP shows a gradual decline.
This indicates a reduced ability of the model to accurately
detect targets due to the blurring and deformation of target
features caused by Doppler frequency shift. Comparing the
performance between the two channel types, it is observed
that Rayleigh channels outperform Rician channels in terms
of accuracy. This may be attributed to the presence of a
LoS component in Rayleigh channels, which enhances the
reliability and robustness of the signals. Further analysis of
the relationships among mAPs with different IoU reveals that
for stricter IoU thresholds, the accuracy of the model further
decreases.

Subsequently, we analyze the accuracy performance in an
AWGN environment in Fig.7. In this environment, the velocity
of the transmitting end is set to zero to eliminate the impact
of velocity variations on the results. The progressive increase
in SNR leads to a significant improvement in accuracy, as the
reduced interference of noise on the signal makes the target
features clearer and more distinguishable. We find that there
exists an upper limit of accuracy convergence, where further
increasing the SNR has little effect on improving detection
accuracy.

We also introduce random generation of parameters to
simulate the diversity and uncertainty present in real-world
scenarios. These factors include channel effects, data charac-
teristics, object velocities, and K-factor. The setting composed
of these factors is referred to as the “simulated setting,”
which is also illustrated in Fig. 7. We observe a general
decrease of approximately 10 percent in accuracy compared
to the ideal AWGN environment. This can be attributed to
the introduction of additional random factors, which further
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Fig. 7. Effect of SNR on detection module’s results under AGWN and
simulated settings. Solid shapes represent the AGWN setting, while hollow
shapes represent the simulated setting.

increase the difficulty for the model to learn the underlying
patterns in the data. In more realistic simulations, the task of
target detection at higher confidence thresholds becomes more
challenging.
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Fig. 8. The evaluation metric. (a) presents the performance of the detection
module, while (b) shows the performance of conventional methods.

In Fig.8, we introduce the SNR as an additional random
factor to test the accuracy of the detection model. We compare
the performance in two signal environments: the pure signal
environment without any random factors involved, referred
to as the “ideal setting,” and the realistic signal environment
with various interference taken into account, referred to as the
“simulated setting.” Furthermore, we test two typical methods
in traditional signal detection, namely matched filter detection
and energy detection, using our CRML23 under the same
signal conditions. The experimental results demonstrate the
superiority of our proposed DL approach based on object
detection principles. Particularly, concerning the mAP, which
is sensitive to accuracy, our method exhibit compelling per-
formance, firmly establishing its efficacy.



10

We observe small difference in detection accuracy between
ideal conditions and simulated environments. This indicates
that our model exhibits good robustness when facing real
communication environments. Further analysis revealed that
the detection accuracy for smaller-sized (narrow bandwidth)
signals is higher, while the detection accuracy for larger-sized
(wide bandwidth) signals is relatively lower. This suggests
that narrower bandwidth signals have more concise features in
the frequency domain, allowing the model to more accurately
identify and locate targets.

Although the mAP metric noticeably decreases in practical
scenarios, the decrease in the AR metric is relatively smaller.
This presents that AR is less sensitive to data fluctuations
compared to mAP. We also notice a significant decrease in
accuracy for the AR@4 metric. The reason is that AR@4
does not cover a substantial number of entries with five
signals present in CRML23, resulting in lower accuracy. The
difference between AR@5 and AR@6 is relatively small
because such instances are relatively rare, leading to a lower
probability for the model to learn this feature and providing a
smaller gain in accuracy.

C. Evaluation on Classification Module
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Fig. 9. Effect of K-factor on classification module’s precision under Rayleigh
channel.

The K-factor is a parameter utilized to measure the power
difference between the LoS path and the reflected paths in
a signal’s multipath propagation environment. We conduct
experiments to measure and analyze the impact of different K-
factor values on signal transmission performance. In Fig. 9, we
observe that different K-factor values had inconsistent effects
on model accuracy, and no clear trend could be observed.
This suggests that the properties of the Rician channel are
not significantly influenced by the K-factor, or the model is
not sensitive to performance variations with different K-factor
values. The order of the modulation scheme still remains the
primary factor affecting model accuracy, with higher com-
plexity in modulation schemes resulting in lower recognition

accuracy. However, we notice that for certain specific K-factor
values, each modulation scheme exhibits similar tendencies.
This may indicate that under specific channel conditions,
the impact of modulation schemes on model performance is
influenced by the K-factor.
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Fig. 10. Effect of SNR on classification module’s results under AGWN and
simulated settings. Solid shapes represent the AGWN setting, while hollow
shapes represent the simulated setting.

Fig.10 demonstrates a significant improvement in prediction
accuracy for the AMC model across all modulation schemes
as the SNR increases. At higher SNR levels, the BPSK
modulation scheme reaches a prediction accuracy close to 1.0
earlier, while the prediction accuracy of the other modulation
schemes becomes similar. At this point, the influence of the
modulation scheme’s complexity on prediction accuracy is
diminished. The accuracy of the model, which serves as an im-
portant metric for evaluating overall performance, also shows a
corresponding improvement trend. However, it is important to
note that there is a convergence upper limit in the experimental
results. This may be attributed to the inherent characteristics
of the modulation schemes and limitations imposed by the
channel conditions. In the realistic environment, the degra-
dation is more severe compared to the AWGN environment,
especially under low SNR conditions. Additionally, higher-
order modulation schemes experience greater degradation in
the realistic environment. The increased complexity of the
environment introduces more interference and channel fading
to the transmission of higher-order modulation schemes, mak-
ing it difficult for the model to learn patterns and effectively
predict accuracy.

D. Evaluation on JDM

Clock offset refers to the difference in clock values between
different devices in a communication system. In Fig.11, we
consider the clock offset under different modulation modes and
evaluate its impact on the system performance by measuring
the comprehensive detection accuracy. The results indicate that
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Fig. 11. Effect of clock offset on the proposed JDM’s precision.

as the complexity of the modulation mode increases, the pre-
diction accuracy generally decreases. This could be attributed
to the mismatch between signal sampling time and synchro-
nization caused by the clock offset, which subsequently affects
the accuracy of target detection and localization.
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Fig. 12. Effect of SNR on the proposed JDM’s precision under AGWN and
simulated settings. Solid shapes represent the AGWN setting, while hollow
shapes represent the simulated setting.

In Fig.12, we investigate the impact of SNR on the detection
accuracy of the proposed JDM. As the SNR increases, the
received signals become clearer, enabling the target detection
module and the modulation classification module to collab-
orate more effectively in accurately identifying and locat-
ing targets. Compared to the accuracy in the modulation
classification module, we observe a general decrease in the
framework accuracy by 20-30 percent. This can be attributed
to the fact that the detection module focuses on enhancing
target detection and localization performance, while the AMC

accuracy tends to prioritize classification accuracy and is
less sensitive to the target’s position and scale information.
Therefore, we speculate that the classification process could
be a bottleneck factor that lowers the framework accuracy,
rather than solely the influence of modulation mode selection.

Meanwhile, a comparison of the JDM accuracy in a sim-
ulated environment is presented. Compared to AWGN, the
framework accuracy generally decreases by 10 to 15 per-
cent. In contrast to the individual output of the modulation
classification module, the JDM accuracy exhibits a smaller
variance in modulation mode accuracy at low SNRs. This
indicates that the classification module struggles to accurately
predict complex modulation modes in low SNR environ-
ments, resulting in smaller performance differences among the
modulation modes. The comprehensive framework addresses
this limitation and improves the fairness of performance by
mitigating this drawback. However, as the SNR increases, the
improvement in framework accuracy becomes relatively small.
This is limited by the combined effects of the two modules,
which aligns with the convergence limit.
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Fig. 13. The evaluation metric. (a) shows the performance of the proposed
JDM, while (b) shows the performance of conventional methods. Coordinates
in (b) are enlarged for detailed observation.

Finally, when incorporating SNR as a random factor in the
experiments, Fig. 13(a) illustrates the remarkable performance
of the model under an ideal and simulated environment. In
terms of AR, the model demonstrates high robustness across
all detection scales. However, in the simulated environment,
the model’s object detection capability faces significant chal-
lenges due to presence of random interference and noise. Ad-
ditionally, based on the data in the table, we also observe that
in terms of size, small-sized objects exhibit higher prediction
accuracy.

In comparison, experiments on the combination of tra-
ditional methods in Fig. 13(b). By incorporating Decision
Tree and Support Vector Machine modulation classification
approach, combined with Matched Filter and Threshold judg-
ment methods in detection, the traditional methods exhibited
lower accuracy, due to the following reasons. Firstly, the
proposed dataset presents higher complexity due to the co-
existence of multiple signals and high randomness. Secondly,
without considering the impact of the detection task on the
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classification task, errors would accumulate and ultimately
manifest in the results. Lastly, the limitations of traditional
methods became apparent, as similar methods were unable to
detect bandwidth. Their detection algorithms fundamentally
rely on classification, avoiding some crucial issues present in
real-world scenarios.

VII. CONCLUDING REMARKS

In this paper, we introduced a simulated dataset, CRML23,
generated from real signal environments for joint signal detec-
tion and modulation classification. The proposed dataset spec-
ifies a specific frequency band and includes a large number of
signals, in which the parameters were randomly generated to
achieve the highest level of realism. The generated dataset has
various characteristics of the signals in each entry. Moreover,
we proposed a novel joint framework, JDM, which performs
the tasks of detection and classification. Two modules inside
Coordinate with each other and pass information through the
proposal. We demonstrated the effectiveness of CRML23 and
discussed the impact on performance with a wide variety
of parameters. Furthermore, we evaluated the performance
gains achieved by different parameters and subnetworks within
the framework. The experimental results demonstrated that
CRML23 and JDM achieved significant performances in terms
of signal detection and modulation classification on raw data.

There are various interesting topics worth further pursuing
in the future, which are discussed in the following. A notable
limitation pertains to the performance of our algorithm in
low signal-to-noise ratio (SNR) environments. This deficiency
is primarily attributed to the classification module not being
tailored explicitly for such conditions and the potential ampli-
fication of bias during the proposal transmission between the
two modules.

Future efforts will concentrate on enhancing the classifi-
cation module and the pathway between the two modules.
In recognition of the current limitations of our modulation
classification module, a key area for future development is to
enhance its adaptability, particularly when the input shifts from
baseband signals to processed, noisy, and complex signals. Our
module currently lacks a design that adapts to this transition
effectively. Future efforts will thus focus on optimizing the
module algorithms to better handle such complex inputs.

Additionally, we will address the bottleneck issues that
arise from the independent operation of the signal detection
and modulation classification modules within our framework,
which becomes evident in low signal-to-noise ratio envi-
ronments. Developing joint algorithms and improving the
communication and coordination between these modules will
be pivotal in creating a more cohesive and efficient unified
system.
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