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Abstract 

Intermodal coupling has been demonstrated to be a promising mechanism for the development of 

advanced micro/nanoelectromechanical devices. However, strong mode coupling remains a key 

challenge limiting the practical application of intermodal coupling. Furthermore, the insight into 

physical mechanisms underlying mode coupling and the capability to quantitatively tune the mode 

coupling is also limited. Here, we experimentally and theoretically demonstrate the significant 

tunability of mode coupling by using the thermal tuning effect, yet in an asymmetric doubly-clamped 

MEMS beam resonator, enabling various coupling strength to be implemented for practical 

applications. In this system, two out-of-plane vibrational modes are mechanically coupled through 

displacement-induced tension, and their mode coupling strength arises from both hardening and 

softening nonlinearities of the two modes, thus allowing for the tuning of mode coupling strength by 

thermally enhancing the softening nonlinearity of the MEMS beam. Our results demonstrate a 
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feasible approach to tune the mode coupling and offer insights into fundamental mechanism of mode 

coupling in MEMS beam resonators, paving the way for the development of MEMS resonators with 

enhanced performance and application-specific tunability. 
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Introduction 

Interactions among two or more vibrational modes in micro/nanoelectromechanical systems 

(M/NEMS) resonators have been a growing interest in the past decade or so, and have been 

engineered into special gain mechanisms used for frequency locking1–3, synchronized oscillation4–6, 

signal amplification7,8, energy dissipation9–11, and highly-sensitive sensing12–15. Among the above 

mode interactions, one remarkable category belongs to intermodal coupling, where two or more 

mechanical resonators are coupled via phonon cavity16–19, or two or more vibrational modes in a 

single resonator are nonlinearly coupled20–22. Different from internal resonance that occurs at the 

specific frequency condition23,24: the frequencies of two engaged modes fulfill or nearly fulfill with 

an integer ratio of N, intermodal coupling can couple any two modes without elaborate geometric 

design for realizing the prerequisite relationship of their frequencies. This gives an advantage of 

bridging distinct mechanical modes easier and achieving more reliable information transfer. However, 

when two internally coupled modes are not commensurate with an integer frequency ratio, the energy 

exchange is rather modest in comparison to the case of internal resonance, which makes it difficult 

to achieve strong intermodal coupling. Control on mode coupling in M/NEMS resonators remains a 

key challenge limiting practical applications of intermodal coupling as well.  

Here, we demonstrate the significant tunability of mode coupling in an asymmetric doubly-

clamped MEMS resonator using the thermal tuning effect. In this system, two out-of-plane vibrational 

modes are mechanically coupled through the displacement-induced tension, and the tuning of mode 

coupling strength (i.e., mode coupling coefficient) is achieved by thermally inducing the softening 

nonlinearity of the MEMS beam. Although mode coupling mechanisms based on the geometric 

nonlinearity or the displacement-induced tension in M/NEMS resonators have been reported in the 

past studies21,22,25–27, these studies so far have mostly concentrated on experimental observations, 

applications and characterization. Investigations regarding the quantitative tuning of mode coupling 
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strength and the physical origins of tunability are less touched, and the interaction mechanism 

between coupling and nonlinearity is also unclear. Furthermore, manufacturing defects and small 

asymmetries (e.g., initial bending) can have a huge impact in such systems, thus, the ability to 

determine coupling strength by geometric design remains limited and is often elusive. We here present 

a general theoretical model integrated with strain tuning and asymmetries to quantitatively describe 

the mode coupling coefficient. It is shown that mode coupling coefficient arises from both the 

hardening and softening nonlinearities of the two vibrational modes. This mechanism is akin to the 

case of a single vibration mode that the hardening and softening nonlinearities jointly determine the 

total nonlinearity. From a more essential perspective, both nonlinearity and mode coupling coefficient 

originate from the change in stiffness caused by the extension of the beam in vibration, suggesting 

that there is a direct link between nonlinearity and mode coupling coefficient. Moreover, this model 

provides valuable insight for achieving various coupling strengths in beams, allowing strong and 

weak coupling to be implemented in applicable applications. 

 

Results 

Characterization of mode coupling coefficient 

For a doubly clamped MEMS beam, mechanical mode coupling between out-of-plane modes 

usually appears as: when a mode is excited, the resonance frequency of a second mode gets tuned21,22. 

This is because oscillation of the excited mode provides additional tension along the beam axis, 

thereby changing the effective stiffness of the beam, which in turn modulates the resonance frequency 

of all vibrational modes. This frequency modulation depends for each mode on its coupling 

coefficient to the excited mode and the oscillation amplitude of the excited mode. We call the 1st 

excited mode as pump mode, or mode-j, and the 2nd mode which shows the frequency shift as the 



 

 

 

5 

probe mode, or mode-k in this work. Then, such coupling behavior can be formulated by (see Eq. (23) 

in the Section of Materials and methods) 

∆𝑓𝑓 = 𝑓𝑓𝑘𝑘′ − 𝑓𝑓𝑘𝑘 = 𝑓𝑓𝑘𝑘𝜆𝜆𝑘𝑘𝑘𝑘𝑎𝑎𝑗𝑗2, (1) 

where aj indicates the oscillation amplitude of mode-j, fk′ and fk are the resonance frequencies of 

mode-k with and without the excitation of mode-j, respectively. λkj is the mode coupling coefficient 

between mode-k and mode-j, enabling the oscillation of mode-j to convert into frequency shift of 

mode-k. We have derived an analytic expression of λkj as (see more details in the subsection of 

Theoretical model) 

𝜆𝜆𝑘𝑘𝑘𝑘 =
𝐸𝐸𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗

8𝜌𝜌𝜌𝜌4𝜔𝜔𝑘𝑘
2 −

3𝑥𝑥𝑇𝑇2𝐸𝐸2𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊0𝑘𝑘
2

8𝜌𝜌2𝐿𝐿8𝜔𝜔𝑘𝑘
4 =

𝐴𝐴
𝜔𝜔𝑘𝑘
2 −

𝑥𝑥𝑇𝑇2

𝜔𝜔𝑘𝑘
4 𝐵𝐵, (2) 

where A and B represent the constant parts during the calculation of λkj, and ωk=2πfk. Eq. (2) indicates 

that λkj highly depends on the center deflection of the MEMS beam, xT and fk. In our previous 

research28, we have reported that both xT and fk can be efficiently modulated by applying a thermal 

strain to the MEMS beam, which can reduce the mechanical nonlinearity of the MEMS beam. Here, 

we show that the thermal effect also enables the significant tuning of the internal mode coupling 

strength in the MEMS beam resonator. The measured mode coupling strength λkj following Eq. (1) 

agrees well with the theoretical value calculated by Eq. (2), demonstrating our method a feasible 

approach to tune the mode coupling, as well as offering insights into fundamental mechanism of mode 

coupling in MEMS beam resonators. 

 

Thermal tuning of mode coupling coefficient in GaAs doubly clamped beam 

resonators 

Our mode coupling tuning measurement was performed on GaAs doubly clamped MEMS beam 
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resonators29–31. A microscope image of the doubly-clamped MEMS beam resonator is shown in Fig. 

1(a), which is fabricated by using a modulation-doped (Al, Ga)As/GaAs heterojunction grown by 

molecular-beam epitaxy32 (see more fabrication details in “ Materials and methods” section).The 

measurement system consists of a laser Doppler vibrometer (LDV) and a lock-in amplifier with a 

built-in phase locked loop (PLL). We drive the beam into oscillation by applying an ac voltage (VD) 

to one of the piezoelectric capacitors (C1 or C2) and then measured the beam oscillation by the LDV 

and a lock-in amplifier with a built-in PLL. All the measurements were performed in a vacuum (~10−4 

Torr) at room temperature. 

 

Figure 1(b) plots the measured oscillation spectrum from 0.1–0.8 MHz using open-loop sweep, 

with a driving voltage of VD = 100 mV. As seen, the first three vibrational modes are obtained, they 

are 1st bending mode (235.5 kHz), 2nd bending mode (644.5 kHz) and 1st torsional mode (752 kHz), 

respectively, whose mode shapes are shown by the inset of Fig. 1(b). Here, we utilize the two bending 

modes (i.e., out-of-plane modes) to study their mode coupling, and furthermore apply thermal strain 

to tuning the mode coupling strength. The out-of-plane modes are selected rather than the in-plane 

modes (i.e., torsional modes) because they are more sensitive to the tension along the beam axis21,27, 

thus can be efficiently tuned by the thermal strain.  

 

We applied a DC voltage (VNiCr) to the NiCr heater (see Fig. 1(a)) to induce thermal strain in the 

beam. The electrothermal heating induces a temperature rise in the MEMS beam and causes the beam 

to expand along the beam axis thermally. Since the two ends of the beam are fixed, a compressive 

strain is generated in the beam. With the input heat, the resonance frequency, ωk, of the MEMS beam 

is modulated. Figure 1(c) shows the measured resonance frequencies of the 1st bending mode (blue) 

and the 2nd bending mode (red) as a function of heating power, P. As seen, for the case of the 1st 
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bending mode, the resonance frequency first decreases with heating power until P =1.33 mW, and 

then starts to increase with the further increased heating power, suggesting the 1st bending mode 

enters its buckling domain. For an ideally straight beam, the bending moment and the flexural rigidity 

cancel each other out at the buckling point, giving a zero resonance frequency for the bending mode. 

In experiments, however, since there is always a small initial center deflection, x0, in the MEMS beam 

from the mesa structure of the MEMS beam, the resonance frequency normally does not drop to zero, 

as we have clarified in previous publications28,29. Nevertheless, the center deflection of the MEMS 

beam sharply increases as P exceeds the buckling point (P =1.33 mW), inducing an increase in the 

resonance frequency of the 1st bending mode. The initial center deflection, x0, can be determined by 

the resonance frequency shift with applied heating power, as we have demonstrated in our previous 

study28. In this work, we have calibrated that x0 =~100 nm (see Appendix B for more details), which 

plays an important role in building an accurate mode coupling model for the initially curved MEMS 

beam. For the 2nd bending mode, the frequency keeps decreasing with the heating power, and the 

buckling is not yet achieved with the currently applied heating power. 

 

To study the effect of thermal tuning on the mode coupling between two vibrational modes, we 

drive the 1st bending mode in the self-sustained oscillation mode with the PLL33, which we employed 

as the probe mode in this work. The PLL compensates the energy loss of the probe mode through 

feedback control, thus maintains the oscillation amplitude as well as track the resonance frequency 

of the probe mode (fk)21. The 2nd bending mode is employed as the pump mode, and when it is driven 

into oscillation with an oscillation amplitude aj, the probe mode shows a shift in its resonance 

frequency (fk). The measured aj and fk are used to estimate the mode coupling coefficient, λkj, with 

Eq. (1).  
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Figure 2(a-c) shows the oscillation spectra of the pump mode (red) and the corresponding 

resonance frequency of the probe mode (blue) when the pump mode is excited, at various heating 

powers, P, where the x-axis plots the driving frequency of the pump mode (fj), the left y-axis plots 

the resonance frequency (fk) of the probe mode tracked by PLL, and the right y-axis plots the squared 

amplitude of the pump mode (aj²). As seen from Fig. 2(a), the fk changes with the aj², and always 

shifts to the higher frequency side. The change in fk is obviously proportion to the aj², which is 

consistent with Eq. (1), indicating the existence of the mechanical mode coupling. Furthermore, the 

blue shift in fk indicates that the coupling coefficient is a positive value under this condition (P = 0 

mW). However, when the heating power increases to 1.35 mW as shown in Fig. 2(b), the fk exhibits 

a small back-and-forth oscillation near the resonance frequency of the probe mode, i.e., the oscillation 

of the pump mode barely affects the fk, indicating the coupling coefficient is rather tiny (~0). 

Furthermore, when the heating power reaches 1.58 mW as shown in Fig. 2(c), the fk starts to shift to 

the lower frequency side during the excitation of the pump mode and the frequency changes in fk are 

negatively in proportion to the aj², suggesting that the coupling coefficient becomes negative under 

this condition. The above results of the mode coupling measurement demonstrate that the mode 

coupling coefficient between the pump and probe modes can been largely tuned by the input heat to 

the MEMS beam. 

To further quantitatively characterize and intuitively visualize the tunability of the mode 

coupling coefficient, we estimate the mode coupling coefficient, λkj, by performing linear fitting with 

Eq. (1); the data is from the resonance spectra of the pump mode and the resonance frequency of the 

pump mode, at various heating powers, as exemplified by Figs. 2(a-c). To take an example, Figure 3 

(a) plots the fk as a function of aj² for the case of P = 0 mW. As seen, fk and aj² have a good linear 

relationship, enabling the calculation of λkj by dividing the slope of the plot by the y-intercept 

(corresponding to the resonance frequency when aj = 0). Figures 3(b) shows both the experiment (dots) 
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and calculation (line) results of the λkj as a function of heating power. As seen, the calculated λkj using 

Eq. (2) shows nice agreement with the experimental λkj, and both have well shown a significant tuning 

with heating power P.  

As seen from Fig. 3(b), the λkj first experiences a slight rise as the heating power increases from 

zero. This can be understood from the fact that the resonance frequency is quickly reduced as the P 

increases, whereas the increase in the center deflection, xT, is rather slow before the buckling point. 

With further increased P approaching the buckling point, λkj drops rapidly to negative values, which 

is because xT increases rapidly at the buckling point and governs the sharp reduction of λkj. It is worth 

noting that there exists a point that λkj = 0, indicating that the two modes decoupled from each other 

under this condition, showing the potential in the applications that require two modes vibrating 

independently. In the post-buckling regime, λkj shows a gentle change (P> 1.8mW). This is because 

although xT still increases with P, the resonance frequency of the probe mode also increases rapidly, 

giving an almost stable λkj in the post-buckling regime. 

 

Furthermore, we observed an interesting sudden drop in the experimental λkj when the resonance 

frequencies of the pump mode and probe mode fulfill an integer ratio fj : fk=3:1, as indicated by the 

dotted black rectangle in Fig. 3(b), The blow-up of the corresponding part is shown in the inset of the 

figure. This is a typical internal resonance condition with an integer frequency ratio between two 

vibration modes31,34–36. At this point, the coherent energy transfer between two modes through the 3rd 

order nonlinearity of the lower frequency mode is formed, causing the complex dynamics in the 

oscillation amplitude change and resonance frequency shift. Once the 3:1 mode coupling is excited, 

the pump mode draws vibrational energy from the probe mode2, resulting in a sudden increase in the 

oscillation amplitude of the pump mode (see Appendix C for more details). Since the experimental 

λkj is obtained by linear fitting using Eq. (1), the suddenly increased oscillation amplitude of the pump 
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mode gives a drop in the λkj at the 3:1 mode coupling point. 

 

Theoretical analysis 

To figure out the physical origin of mode coupling coefficient, we developed a theoretical model 

for the present doubly-clamped MEMS beam resonator as schematically shown in Fig. 4(a). We start 

from the Euler-Bernoulli equation to derive the motion equation of the doubly-clamped MEMS beam, 

by assuming that two modes, i.e., 1st and 2nd bending modes (mode-k and mode-j) are excited 

simultaneously. Then the resonance frequency of the probe mode (fk) is calculated as a function of 

the oscillation amplitude of the pump mode (aj), from which we obtain the mode coupling coefficient, 

λkj, (See Eq. (22) in the Section of Materials and methods). The derived λkj exhibits tunability since 

the center deflection and internal strain in the beam were considered in the model, which is different 

from the ones provided in Refs.21,27, Furthermore, we have noticed that the measured λkj shows a very 

similar trend with the mechanical nonlinearity change which we have reported in a previous work28, 

indicating that mode coupling and nonlinearity may be highly correlated. Therefore, we also derived 

the nonlinearities of the probe and pump modes (α2j,k and α3j,k), which can be found in the subsection 

of theoretical model.  

From the results shown above, we have found that the mode coupling coefficient can be directly 

linked to the mechanical nonlinearities of the pump and probe modes, as 

𝜆𝜆𝑘𝑘𝑘𝑘 =
�𝛼𝛼3𝑘𝑘 × 𝛼𝛼3𝑗𝑗

4𝜔𝜔𝑘𝑘
2 −

𝛼𝛼2𝑘𝑘2 𝑊𝑊𝑗𝑗𝑗𝑗

6𝜔𝜔𝑘𝑘
4𝑊𝑊𝑘𝑘𝑘𝑘

, (3) 

where 𝛼𝛼3𝑗𝑗, 𝛼𝛼3𝑘𝑘 are the 3rd order (cubic) nonlinearity coefficients for the pump and probe modes, 

𝛼𝛼2𝑘𝑘 is the 2nd order (quadratic) nonlinearity coefficient, ωk is the resonance frequency of the probe 

mode, 𝑊𝑊𝑗𝑗𝑗𝑗 and 𝑊𝑊𝑘𝑘𝑘𝑘 are the mode overlapping parameters determined by the mode shapes (mode-j 

and mode-k), respectively. Thus, we have concluded that the mode coupling coefficient discussed in 
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this work is fully determined by the mechanical nonlinearities of the two coupled vibrational modes, 

and its tunability is from the tunable mechanical nonlinearities of two coupled modes. This can be 

understood that both the mechanical nonlinearity and the mode coupling coefficient discussed here 

originate from the change in stiffness caused by the extension of the beam in vibration, thus are highly 

correlated with each other.  

 

To quantitatively calculate λkj, the simplified 1-dimensional mode shapes for the 1st and 2nd 

bending modes (𝜙𝜙𝑘𝑘 and 𝜙𝜙𝑗𝑗) reported in previous literature are utilized, as37，    

𝜙𝜙𝑘𝑘 = 1.01781 cos[4.73004𝑢𝑢] − 1.01781 cosh[4.73004𝑢𝑢]
− sin[4.73004𝑢𝑢] + sinh[4.73004𝑢𝑢] (4) 

𝜙𝜙𝑗𝑗 = 0.999223 cos[7.8532𝑢𝑢] − 0.999223 cosh[7.8532𝑢𝑢]
− sin[7.8532𝑢𝑢] + sinh[7.8532𝑢𝑢] ,

(5) 

where u is the coordinate along the length of the beam. The mode shapes calculated with Eq. (4) and 

Eq. (5) can be found in the upper insets of Fig. 4(a). The numerical analysis starts with the MEMS 

beam resonators with dimensions of 133 μm(L)×27 μm(b)×1 μm(h) and with E=85.9 GPa, ρ=5307 

kg/m3 employed as the Young’s modulus and density of GaAs material, which is consistent to the 

actual values in the sample. Figure 4 (b) plots the calculated λkj as a function of normalized strain, 

ε/εcr, at various normalized initial center deflections, x0/h (h is thickness of the beam), in which ε 

represents the compressive strain induced by the applied heating power, and εcr is Euler’s buckling 

critical strain of the MEMS beam. As seen, for various cases of x0, the λkj can be significantly tuned 

from positive to negative as the applied strain increases, indicating the feasibility of using thermal 

effect for controlling the mode coupling strength in MEMS beam. Furthermore, the results show that 

the change of mode coupling strength highly relies on the initial center deflection. It is of great interest 

that, the λkj can be tuned more significantly with a smaller x0. This is generally owing to the fact that 

the center deflection and the resonance frequency of the probe mode tend to change more dramatically 
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at small x0, giving more significant tuning in λkj. Figure 4(c) shows the absolute maximum in the 

mode coupling coefficient (|𝜆𝜆𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚| )that can be achieved using thermal tuning as a function of x0/h. 

As seen, |𝜆𝜆𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚| increases greatly with the decreasing x0, enabling the potential in application that 

needs ultra-strong coupling of vibrational modes.   

 

Discussion and Conclusion 

In this study, we experimentally and theoretically demonstrated the thermal tuning of the mode 

coupling coefficient in doubly clamped MEMS beam resonators. The tunability of the mode coupling 

coefficient is promising for applications that require either ultra-strong or weak coupling between 

vibrational modes in MEMS resonators. One example is to increase the detectable capability of 

vibration modes in MEMS resonators by intermodal coupling22,27. With internal mode coupling, the 

vibration of higher-order modes can be probed with the resonance frequency shift of lower-frequency 

mode, in which the detection capability relies on the mode coupling coefficient between the two 

modes. Tuning the mode coupling coefficient is, therefore, an effective approach to improve the 

readout strength of high-frequency modes. This is in particularly important with the scaled NEMS 

resonators, of which the high-frequency modes commonly have very high resonance frequencies that 

are difficult to be detected with conventional methods. Another potential application is to achieve 

multimode sensing using two vibrational modes without cross-talk. Multimode sensors employing 

two or more vibrational modes enable simultaneous detection of different physical stimulus38,39. 

When frequency shift is used as the detection scheme, the resonance frequencies of each vibration 

mode should be kept independent of each other (i.e., they should not interfere with each other), which 

can be achieved by modulating the coupling coefficient to 0. Furthermore, other than thermal strain, 

the introduction of the lattice mismatch strain may also an alternative method for tuning the mode 
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coupling coefficient40, where the compressive strain is preloaded in the beam, thus eliminating the 

need for an additional heating system.  

 

The theoretical model we established reveals the physical origin of the mode coupling coefficient 

in MEMS beam resonators. Different from the N:1 mode coupling41–43 that occurs only when the 

resonance frequencies of two vibrational modes fulfill or nearly fulfill with an integer ratio of N, 

mode coupling in this study is more generally present in an oscillating MEMS beam resonator, and 

originates from the interaction between the nonlinearities of two vibrational modes while two 

vibrational modes coupled to each other through the transfer of coherent energy in the case of the N:1 

mode coupling. As shown in Fig. 3(b), the measured λkj is slightly perturbed when 3:1 mode coupling 

occurs, but it does not affect its overall trend as predicted by the theoretical model. This suggests the 

physical origin of the N:1 mode coupling may not be exact the same to that of the presented mode 

coupling in this study, which calls for further investigation. Nevertheless, the theoretical analysis 

provides valuable insight into the control of mode coupling coefficient. In terms of design strategies 

for a doubly-clamped beam structure: a smaller initial center deflection is preferable for achieving a 

large mode coupling coefficient using strain tuning. For a smaller mode coupling coefficient, the 

MEMS beam should be operated near its buckling point. 

 

In conclusion, we have studied the mechanical mode coupling between two out-of-plane 

vibrational modes of an asymmetric doubly-clamped MEMS beam resonator. Mode coupling 

between out-of-plane modes originates from the oscillation-induced stiffness change in the beam, 

which provides the possibility of tuning the coupling coefficients through thermal strain. We 

estimated the coupling coefficients at various heating powers by measuring the resonance frequency 

of one mode as a function of the oscillation amplitude of the other mode. The experiment result 
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demonstrates that the coupling coefficients can be significantly tuned by thermal effect, which is 

promising for controlling the mode coupling strength in MEMS resonators to realize advanced 

sensing devices. A theoretical model is developed to quantitatively describe the coupling between 

two out-of-plane modes through the tension, and shows nice agreement with the measurements. The 

proposed model offers insights into fundamental principles of mode coupling in MEMS beam 

resonators, contributing to understanding mode coupling and the utilization of mode coupling in 

practical applications. 

 

Materials and methods 

Fabrication 

As shown in Fig. 5 (a), the fabrication of the device starts from growing a 200-nm-thick GaAs 

buffer layer and a 3-μm-thick Al0.7Ga0.3As sacrificial layer on a (100)-oriented GaAs substrate. The 

beam layer was formed by depositing a GaAs/Al0.3Ga0.7As superlattice buffer layer and a 1-μm-thick 

GaAs layer. We subsequently we formed a 2-dimensional electron gas (2DEG) layer by growing a 

70-nm-thick n+Al0.3Ga0.7As layer and a 10-nm-thick undoped GaAs capping layer. Figure 5 (b) shows 

the schematic structure of the fabricated doubly clamped MEMS beam. The suspended beam with 

dimensions of 133 μm(L)×27 μm(b)×1 μm(h) is formed by selectively etching the sacrificial layer 

with diluted hydrofluoric acid (HF). The top gates (NiCr /Au:15/100 nm) on both ends of the beam 

together with the 2DEG layer form two piezoelectric capacitors C1 and C2
30,31,33, and a 15-nm-thick 

NiCr layer was deposited on the beam as a heater for generating thermal strain in the MEMS beam.   

Experimental process 

To detect the frequency shifts in the probe mode due to the excitation of the pump mode, i.e., 
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mode coupling measurement between the pump and probe modes, we follow the detection scheme 

described in Ref27. Specifically, we keep the probe mode at resonance and perform frequency sweep 

for the pump mode only, which can be realized by tracking the resonance frequency of the probe 

mode using a PLL while driving the pump mode into its oscillation simultaneously. The effective 

stiffness in the MEMS beam changes when the pump mode is excited, thus the change in the 

resonance frequency of the probe mode is observed. The above measurement process has been 

conducted again at various heating powers to investigate the mode coupling coefficient change by 

thermal tuning effect. 

 

Theoretical model  

As shown in Fig. 4 (a), the model consists of a doubly-clamped beam with an initial transverse 

displacement, 𝑋𝑋0(𝑢𝑢), governed by44 

𝑋𝑋0(𝑢𝑢) = 𝑥𝑥0𝜙𝜙0(𝑢𝑢) = −
𝑥𝑥0
2
�1 − cos

2𝜋𝜋
𝐿𝐿
𝑢𝑢� , (6) 

where x0 is the initial center deflection of the beam; 𝜙𝜙0(𝑢𝑢) is the profile function of initial shape; u is 

the coordinate along the length of the beam. Given by this initial condition, the motion equation of 

the MEMS beam describing its transverse vibrations is governed by the adapted Euler-Bernoulli 

equation45, as  

𝜌𝜌𝜌𝜌 𝜕𝜕2𝑋𝑋
𝜕𝜕𝑡𝑡2

= −𝐸𝐸𝐸𝐸 �𝜕𝜕
4𝑋𝑋
𝜕𝜕𝑢𝑢4

+ 𝑑𝑑4𝑋𝑋0
𝑑𝑑𝑢𝑢2

� + 𝑇𝑇 �𝜕𝜕
2𝑋𝑋
𝜕𝜕𝑢𝑢2

+ 𝑑𝑑2𝑋𝑋0
𝑑𝑑𝑢𝑢2

� , (7) 

with the following boundary conditions:  

𝑋𝑋|𝑢𝑢=0,𝐿𝐿 = 0 and
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑢𝑢=0,𝐿𝐿

= 0, (8) 

where X(u,t) is the dynamical displacement from the equilibrium during the oscillation; t is the time 

scale; ρ is the density; E is the Young’s modulus; L is the beam length; S and I denote the cross-section 
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area and the moment of inertia (S=bh and I=bh3/12 for beams of rectangular cross-sections, with b 

and h being the width and thickness of the MEMS beam, respectively); T is the tension in the MEMS 

beam (T= T0+ΔT), consisting of its inherent tension T0 and the additional tension ΔT coming from 

the extension of the beam length (ΔL) in vibrations, written as 

∆𝑇𝑇 = 𝐸𝐸𝐸𝐸
∆𝐿𝐿
𝐿𝐿

=
𝐸𝐸𝐸𝐸
2𝐿𝐿

� ��
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
2

+ 2
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑋𝑋0
𝑑𝑑𝑑𝑑

�
𝐿𝐿

0
𝑑𝑑𝑑𝑑. (9) 

Generally, the dynamical displacement of the beam is composed of different modes, for each 

mode, the displacement field can be expressed as the product of the mode shape function, 𝜙𝜙(𝑢𝑢), and 

the central displacement of the beam, x(t), as  

𝑋𝑋(𝑢𝑢, 𝑡𝑡) = �𝑥𝑥 𝑛𝑛(𝑡𝑡)𝜙𝜙𝑛𝑛(𝑢𝑢)
𝑛𝑛

. (10) 

The mode shape functions employed in this study are quoted from Ref. 37. Then, substituting Eqs. (9) 

and (10) into Eq. (7), we can obtain: 

� 𝜌𝜌𝜌𝜌𝜙𝜙𝑛𝑛
𝜕𝜕2𝑥𝑥𝑛𝑛
𝜕𝜕𝑡𝑡2

𝑛𝑛=𝑗𝑗,𝑘𝑘

= � −𝐸𝐸𝐸𝐸𝑥𝑥𝑛𝑛
𝜕𝜕4𝜙𝜙𝑛𝑛
𝜕𝜕𝑢𝑢4

− 𝐸𝐸𝐸𝐸𝑥𝑥0
𝜕𝜕4𝜙𝜙0
𝜕𝜕𝑢𝑢4

+
𝑛𝑛=𝑗𝑗,𝑘𝑘

� � 𝑥𝑥𝑛𝑛
𝑛𝑛=𝑗𝑗,𝑘𝑘

𝜕𝜕2𝜙𝜙𝑛𝑛
𝜕𝜕𝑢𝑢2

+ 𝑥𝑥0
𝑑𝑑2𝜙𝜙0
𝑑𝑑𝑢𝑢2

��𝑇𝑇0 +
𝐸𝐸𝐸𝐸
2𝐿𝐿

� � ��𝑥𝑥𝑚𝑚
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

�
2

+ 2𝑥𝑥0𝑥𝑥𝑚𝑚
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

𝜕𝜕𝜙𝜙0
𝜕𝜕𝜕𝜕

�
𝐿𝐿

0
𝑑𝑑𝑑𝑑

𝑚𝑚=𝑗𝑗,𝑘𝑘

� , (11)
 

 

where, we assume that there are at most two modes (m, n =j, k) excited on the beam, where mode-j is 

the pump mode and mode-k is the probe mode. We multiply 𝜙𝜙k(𝑢𝑢) to both sides of Eq. (11) and then 

integrate it over beam length. Reorganizing the equation in the form of a duffing equation, we can 

obtain a motion equation for the MEMS beam (The processing is detailed in Appendix A), as 

𝑥̈𝑥𝑘𝑘 + �
𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝐿𝐿4

𝛽𝛽𝑘𝑘4 +
𝑇𝑇𝑜𝑜𝑊𝑊𝑘𝑘𝑘𝑘

𝜌𝜌𝜌𝜌𝐿𝐿2
+
𝑥𝑥02𝐸𝐸
𝜌𝜌𝐿𝐿4

𝑊𝑊0𝑘𝑘
2 +

𝐸𝐸𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗

2𝜌𝜌𝐿𝐿4
𝑥𝑥𝑗𝑗2� 𝑥𝑥𝑘𝑘 + �

3𝑥𝑥0𝐸𝐸
2𝜌𝜌𝐿𝐿4

𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊0𝑘𝑘� 𝑥𝑥𝑘𝑘2 +

�
𝐸𝐸

2𝜌𝜌𝐿𝐿4
𝑊𝑊𝑘𝑘𝑘𝑘

2 � 𝑥𝑥𝑘𝑘3 + �
𝑥𝑥0𝐸𝐸
2𝜌𝜌𝐿𝐿4

𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊0𝑘𝑘� 𝑥𝑥𝑗𝑗2 +
𝑇𝑇0𝑊𝑊0𝑘𝑘

𝜌𝜌𝜌𝜌𝐿𝐿2
𝑥𝑥0 +

𝐸𝐸𝐸𝐸𝛽𝛽04

𝜌𝜌𝜌𝜌𝜌𝜌4
𝑥𝑥0 �𝜙𝜙0𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑

1

0

= 0. (12)
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This equation describes how the motion of mode-k affected by the excitation of mode-j (the terms 

containing xj
2), as well as its own nonlinearity (the terms containing xk

2 and xk
3). Wmn a numerical 

value that computes the overlap between derivatives of the mode shapes. The effect of nonlinearity 

of a single vibrational mode has been reported in our previous work28, and we here focus on the 

interaction between two vibrational modes. Since the steady-state equation holds for any new 

equilibrium position caused by the applied strain, the last two terms in Eq. (12) can be eliminated by 

replacing x0 appearing in the other terms with a strain-induced center deflection, xT, which can be 

expressed as 

𝑥𝑥𝑇𝑇 =
𝐸𝐸𝐸𝐸𝛽𝛽04

𝐿𝐿4 ∫ (𝜙𝜙0)2𝑑𝑑𝑑𝑑𝐿𝐿
0

𝐸𝐸𝐸𝐸𝛽𝛽04

𝐿𝐿4 ∫ (𝜙𝜙0)2𝑑𝑑𝑑𝑑𝐿𝐿
0 + 𝑇𝑇0𝑊𝑊00

𝐿𝐿

𝑥𝑥0. (13) 

Then Eq. (12) becomes 

𝑥̈𝑥𝑘𝑘 + (𝜔𝜔𝑘𝑘
2 + 𝐷𝐷1)𝑥𝑥𝑘𝑘 + 𝛼𝛼2𝑘𝑘𝑥𝑥𝑘𝑘2 + 𝛼𝛼3𝑘𝑘𝑥𝑥𝑘𝑘3 + 𝐷𝐷2 = 0 (14) 

where 𝜔𝜔𝑘𝑘 = � 𝐸𝐸𝐸𝐸
𝜌𝜌𝜌𝜌𝐿𝐿4

𝛽𝛽𝑘𝑘4 + 𝑇𝑇𝑜𝑜𝑊𝑊𝑘𝑘𝑘𝑘
𝜌𝜌𝜌𝜌𝐿𝐿2

+ 𝑥𝑥𝑇𝑇2𝐸𝐸
𝜌𝜌𝐿𝐿4

𝑊𝑊0𝑘𝑘
2   is the resonance frequency of mode-k, 𝛼𝛼2𝑘𝑘 =

3𝑥𝑥𝑇𝑇𝐸𝐸
2𝜌𝜌𝐿𝐿4

𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊0𝑘𝑘  is the quadratic nonlinearity coefficient, 𝛼𝛼3𝑘𝑘 = 𝐸𝐸
2𝜌𝜌𝐿𝐿4

𝑊𝑊𝑘𝑘𝑘𝑘
2   is the cubic nonlinearity 

coefficient, in the same spirit, 𝛼𝛼3𝑗𝑗 = 𝐸𝐸
2𝜌𝜌𝐿𝐿4

𝑊𝑊𝑗𝑗𝑗𝑗
2 for the cubic nonlinearity coefficient of mode-j. 𝐷𝐷1 =

𝐸𝐸𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗

2𝜌𝜌𝐿𝐿4
𝑎𝑎𝑗𝑗
2

2
  and 𝐷𝐷2 = 𝑥𝑥𝑇𝑇𝐸𝐸

2𝜌𝜌𝐿𝐿4
𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊0𝑘𝑘

𝑎𝑎𝑗𝑗
2

2
  are the terms with respect to the oscillation amplitude of 

mode-j that affect the dynamical behavior of mode-k. Here, we use a harmonic approximation for xj
2, 

as 𝑥𝑥𝑗𝑗 = 𝑎𝑎𝑗𝑗cos�𝜔𝜔𝑗𝑗𝑡𝑡�, and then take time-averaged values over the oscillation cycles, yielding 𝑥𝑥𝑗𝑗2 =

𝑎𝑎𝑗𝑗
2

2
. 

Next, we take a solution of the form for Eq. (14), as 

𝑥𝑥𝑘𝑘 =
1
2
�𝑎𝑎𝑘𝑘𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘

′ 𝑡𝑡 + 𝑎𝑎𝑘𝑘���𝑒𝑒−𝑖𝑖𝜔𝜔𝑘𝑘
′ 𝑡𝑡� + 𝛿𝛿, (15) 

where ak indicates the oscillation amplitude of mode-k and the overbar indicates the complex 
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conjugate, ωk′ indicates the driving frequency (resonance frequency with excitation) of mode-k, and 

δ is a perturbed parameter given by D1 and D2. By substituting Eq. (15) into Eq. (14), dropping terms 

in higher order of 𝛿𝛿, and then matching the terms in 𝑒𝑒𝑖𝑖𝜔𝜔𝑘𝑘
′ 𝑡𝑡 and constant terms, respectively, this 

yields the following two equations, 

−𝜔𝜔𝑘𝑘
′ 2 + 𝜔𝜔𝑘𝑘

2 + 𝐷𝐷1 +
3
4
𝛼𝛼3𝑘𝑘𝑎𝑎𝑘𝑘2 + 2𝛽𝛽𝛽𝛽 = 0, (16) 

𝛿𝛿𝛿𝛿𝑘𝑘
2 + 𝛿𝛿𝛿𝛿1 +

3
2
𝛿𝛿𝛿𝛿3𝑘𝑘𝑎𝑎𝑘𝑘2 +

1
2
𝛼𝛼2𝑘𝑘𝑎𝑎𝑘𝑘2 + 𝐷𝐷2 = 0. (17) 

From Eq. (17) we can obtain: 

𝛿𝛿 =
−1

2
𝛼𝛼2𝑘𝑘𝑎𝑎𝑘𝑘2 − 𝐷𝐷2

𝜔𝜔𝑘𝑘
2 + 𝐷𝐷1 + 3

2
𝛼𝛼3𝑘𝑘𝑎𝑎𝑘𝑘2

, (18) 

in which 𝐷𝐷1 + 3
2
𝛼𝛼3𝑘𝑘𝑎𝑎𝑘𝑘2 can be can be ignored since it is a much smaller value compared to 𝜔𝜔𝑘𝑘

2, the 

Eq. (18) thus can be written as  

𝛿𝛿 =
−1

2
𝛼𝛼2𝑘𝑘𝑎𝑎𝑘𝑘2 − 𝐷𝐷2
𝜔𝜔𝑘𝑘
2 . (19) 

Then by substituting Eq. (19) into Eq. (16), yields 

𝜔𝜔𝑘𝑘
′ 2 = 𝜔𝜔𝑘𝑘

2 + 𝐷𝐷1 +
3
4
𝛼𝛼3𝑘𝑘𝑎𝑎𝑘𝑘2 −

𝛼𝛼2𝑘𝑘2 𝑎𝑎𝑘𝑘2 + 2𝛼𝛼2𝑘𝑘𝐷𝐷2
𝜔𝜔𝑘𝑘
2 , (20) 

Dividing both sides of Eq. (20) by 𝜔𝜔𝑘𝑘
2, and then taking the square root, yields 

𝜔𝜔𝑘𝑘
′

𝜔𝜔𝑘𝑘
= �1 +

𝐷𝐷1
𝜔𝜔𝑘𝑘
2 +

3𝛼𝛼3𝑘𝑘
4𝜔𝜔𝑘𝑘

2 𝑎𝑎𝑘𝑘
2 −

𝛼𝛼2𝑘𝑘2 𝑎𝑎𝑘𝑘2

𝜔𝜔𝑘𝑘
4 −

2𝛼𝛼2𝑘𝑘𝐷𝐷2
𝜔𝜔𝑘𝑘
4 (21) 

We apply Taylor expansion to Eq. (21) and drop the higher order terms, we can obtain: 

𝜔𝜔𝑘𝑘
′ = 𝜔𝜔𝑘𝑘 �1 + �

3𝛼𝛼3𝑘𝑘
8𝜔𝜔𝑘𝑘

2 −
𝛼𝛼2𝑘𝑘2

2𝜔𝜔𝑘𝑘
4� 𝑎𝑎𝑘𝑘

2 + �
𝐸𝐸𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗

8𝜌𝜌𝜌𝜌4𝜔𝜔𝑘𝑘
2 −

𝛼𝛼2𝑘𝑘𝑥𝑥𝑇𝑇𝐸𝐸𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊0𝑘𝑘

4𝜌𝜌𝜌𝜌4𝜔𝜔𝑘𝑘
4 � 𝑎𝑎𝑗𝑗2� . (22) 

This equation shows the frequency shift of mode-k (∆𝜔𝜔 = 𝜔𝜔𝑘𝑘
′ − 𝜔𝜔𝑘𝑘) as a function of the oscillation 
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amplitudes of the two modes (aj and ak), in which 𝑌𝑌(𝛼𝛼2𝑘𝑘,𝛼𝛼3𝑘𝑘) = 3𝛼𝛼3𝑘𝑘
8𝜔𝜔𝑘𝑘

2 −
𝛼𝛼2𝑘𝑘
2

2𝜔𝜔𝑘𝑘
4  and 𝜆𝜆𝑘𝑘𝑘𝑘 = 𝐸𝐸𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗

8𝜌𝜌𝜌𝜌4𝜔𝜔𝑘𝑘
2 −

𝛼𝛼2𝑘𝑘𝑥𝑥𝑇𝑇𝐸𝐸𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊0𝑘𝑘

4𝜌𝜌𝜌𝜌4𝜔𝜔𝑘𝑘
4   represent the nonlinearity coefficient of mode-k and the mode coupling coefficient 

between mode-k and mode-j, respectively. When the probe mode is operated under a low excitation, 

the frequency shift contributed by the ak is negligible, thus Eq. (22) can be further simplified as  

𝜔𝜔𝑘𝑘
′ − 𝜔𝜔𝑘𝑘 = 𝜔𝜔𝑘𝑘𝜆𝜆𝑘𝑘𝑘𝑘𝑎𝑎𝑗𝑗2. (23) 

 

 

 

Appendix A. Derivation details for Eq. (12) 

We start from Eq. (11) with considering it multiplied by 𝜙𝜙k(𝑢𝑢) and integrated over beam length, 

and then process it one by one. The term on the left side of the equal sign is written as 

� � 𝜌𝜌𝜌𝜌𝜙𝜙𝑛𝑛
𝜕𝜕2𝑥𝑥𝑛𝑛
𝜕𝜕𝑡𝑡2

𝐿𝐿

0
𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑 = � 𝜌𝜌𝜌𝜌𝜙𝜙𝑗𝑗

𝜕𝜕2𝑥𝑥𝑗𝑗
𝜕𝜕𝑡𝑡2

𝐿𝐿

0
𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑 + � 𝜌𝜌𝜌𝜌𝜙𝜙𝑘𝑘

𝜕𝜕2𝑥𝑥𝑘𝑘
𝜕𝜕𝑡𝑡2

𝐿𝐿

0
𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑

𝑛𝑛=𝑗𝑗,𝑘𝑘

. (A1) 

Following the orthonormality for flexural modes of a beam37:  ∫ 𝜙𝜙𝑗𝑗𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑 = 0 (𝑗𝑗 ≠ 𝑘𝑘)
𝐿𝐿

0
  and 

∫ 𝜙𝜙𝑗𝑗𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑 = 𝐿𝐿 (𝑗𝑗 = 𝑘𝑘)𝐿𝐿
0 , Eq. (A1) yields:  

� � 𝜌𝜌𝜌𝜌𝜙𝜙𝑛𝑛
𝜕𝜕2𝑥𝑥𝑛𝑛
𝜕𝜕𝑡𝑡2

𝐿𝐿

0
𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑 =

𝑛𝑛=𝑗𝑗,𝑘𝑘

𝜌𝜌𝜌𝜌𝜌𝜌𝑥̈𝑥𝑘𝑘. (A2) 

By using the orthonormality condition and 𝜕𝜕
4𝜙𝜙𝑛𝑛
𝜕𝜕𝑢𝑢4

= 𝛽𝛽𝑛𝑛4

𝐿𝐿4
𝜙𝜙𝑛𝑛,the first two terms on the right side of the 

equal sign can be expressed as  

� � −𝐸𝐸𝐸𝐸𝑥𝑥𝑛𝑛
𝜕𝜕4𝜙𝜙𝑛𝑛
𝜕𝜕𝑢𝑢4

𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑 − � 𝐸𝐸𝐸𝐸𝑥𝑥0
𝜕𝜕4𝜙𝜙0
𝜕𝜕𝑢𝑢4

𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑
𝐿𝐿

0
= −

𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘4

𝐿𝐿3
𝑥𝑥𝑘𝑘 −

𝐸𝐸𝐸𝐸𝛽𝛽04

𝐿𝐿3
𝑥𝑥0 �𝜙𝜙0𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑

1

0

𝐿𝐿

0𝑛𝑛=𝑗𝑗,𝑘𝑘

, (A3) 
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where 𝛽𝛽𝑛𝑛 = {4.73,  7.8532,  10.996,  14.1372,  … } for n=1,2,3,4… and 𝛽𝛽0 = 4.73. 

To be cautious, here, we decompose the remaining parenthesized multiplication term into 4 terms, 

and process them one by one. The two terms containing T0 using integration by parts can be simplified 

as,  

� 𝑇𝑇0 � 𝑥𝑥𝑛𝑛
𝑛𝑛=𝑗𝑗,𝑘𝑘

𝜕𝜕2𝜙𝜙𝑛𝑛
𝜕𝜕𝑢𝑢2

𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑
𝐿𝐿

0
= � 𝑇𝑇0𝑥𝑥𝑛𝑛 �−�

𝜕𝜕𝜙𝜙𝑛𝑛
𝜕𝜕𝜕𝜕

𝜕𝜕𝜙𝜙𝑘𝑘
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝐿𝐿

0
+ 𝜙𝜙𝑘𝑘

𝜕𝜕𝜙𝜙𝑛𝑛
𝜕𝜕𝜕𝜕

�
(0,𝐿𝐿)

�
𝑛𝑛=𝑗𝑗,𝑘𝑘

= −
𝑇𝑇0
𝐿𝐿
𝑥𝑥𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗 −

𝑇𝑇0
𝐿𝐿
𝑥𝑥𝑘𝑘𝑊𝑊𝑘𝑘𝑘𝑘 (A4)

 

� 𝑇𝑇0 � 𝑥𝑥0
𝑛𝑛=𝑗𝑗,𝑘𝑘

𝑑𝑑2𝜙𝜙0
𝑑𝑑𝑢𝑢2

𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑
𝐿𝐿

0
= −

𝑇𝑇0𝑥𝑥0
𝐿𝐿

𝑊𝑊0𝑘𝑘, (A5) 

where 𝜙𝜙𝑘𝑘
𝜕𝜕𝜙𝜙𝑛𝑛
𝜕𝜕𝜕𝜕
�

(0,𝐿𝐿]
= 0  due to the boundary conditions as shown in Eq. (3) and 𝑊𝑊𝑛𝑛𝑛𝑛 =

∫  10
𝜕𝜕𝜙𝜙𝑛𝑛
𝜕𝜕𝜕𝜕

𝜕𝜕𝜙𝜙𝑘𝑘
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 (𝑛𝑛 = 0, 𝑗𝑗,𝑘𝑘⋯ ). Surely, similar processing is performed in Eq. (A5). Next, we turn 

attention to the last two terms as shown in Eqs. (A6) and (A7). 

� � 𝑥𝑥𝑛𝑛
𝜕𝜕2𝜙𝜙𝑛𝑛
𝜕𝜕𝑢𝑢2

𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑
𝐿𝐿

0𝑛𝑛=𝑗𝑗,𝑘𝑘

×
𝐸𝐸𝐸𝐸
2𝐿𝐿

� �� ��𝑥𝑥𝑚𝑚
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

�
2

+ 2𝑥𝑥0𝑥𝑥𝑚𝑚
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

𝜕𝜕𝜙𝜙0
𝜕𝜕𝜕𝜕

�
𝐿𝐿

0
𝑑𝑑𝑑𝑑�

𝑚𝑚=𝑗𝑗,𝑘𝑘

(A6) 

� 𝑥𝑥0
𝑑𝑑2𝜙𝜙0
𝑑𝑑𝑢𝑢2

𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑
𝐸𝐸𝐸𝐸
2𝐿𝐿

� �� ��𝑥𝑥𝑚𝑚(𝑡𝑡)
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

)�
2

+ 2𝑥𝑥0𝑥𝑥𝑚𝑚(𝑡𝑡)
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

𝜕𝜕𝜙𝜙0
𝜕𝜕𝜕𝜕

�
𝐿𝐿

0
𝑑𝑑𝑑𝑑�

𝑚𝑚=𝑗𝑗,𝑘𝑘

𝐿𝐿

0
. (A7) 

In Eq. (A6), The integral to the left of the multiplication sign can be simplified using integrals by 

parts, referring to Eq. (A4), as  

� � 𝑥𝑥𝑛𝑛
𝜕𝜕2𝜙𝜙𝑛𝑛
𝜕𝜕𝑢𝑢2

𝜙𝜙𝑘𝑘𝑑𝑑𝑑𝑑
𝐿𝐿

0𝑛𝑛=𝑗𝑗,𝑘𝑘

= −
1
𝐿𝐿
�𝑥𝑥𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑘𝑘𝑊𝑊𝑘𝑘𝑘𝑘�. (A8) 

The part to the right of the multiplication sign in Eq. (A6) can be expressed as  

𝐸𝐸𝐸𝐸
2𝐿𝐿

� �� ��𝑥𝑥𝑚𝑚
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

�
2

+ 2𝑥𝑥0𝑥𝑥𝑚𝑚
𝜕𝜕𝜙𝜙𝑚𝑚
𝜕𝜕𝜕𝜕

𝜕𝜕𝜙𝜙0
𝜕𝜕𝜕𝜕

�
𝐿𝐿

0
𝑑𝑑𝑑𝑑�

𝑚𝑚=𝑗𝑗,𝑘𝑘

=
𝐸𝐸𝐸𝐸
2𝐿𝐿

× �
2𝑥𝑥0
𝐿𝐿
�𝑥𝑥𝑗𝑗𝑊𝑊0𝑗𝑗 + 𝑥𝑥𝑘𝑘𝑊𝑊0𝑘𝑘� +

�𝑥𝑥𝑗𝑗2𝑊𝑊𝑗𝑗𝑗𝑗 + 2𝑥𝑥𝑗𝑗𝑥𝑥𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗 + 𝑥𝑥𝑘𝑘2𝑊𝑊𝑘𝑘𝑘𝑘�
𝐿𝐿

� (A9)
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Combining Eq. (A8) and Eq. (A9) in Eq. (A6), and then reorganizing the terms with decreasing order 

in xk yields 

−
𝐸𝐸𝐸𝐸
2𝐿𝐿3

�
𝑥𝑥𝑘𝑘3𝑊𝑊𝑘𝑘𝑘𝑘

2 + 𝑥𝑥𝑘𝑘2�2𝑥𝑥0𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊0𝑘𝑘 + 3𝑥𝑥𝑗𝑗𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗�
+𝑥𝑥𝑘𝑘�2𝑥𝑥0𝑥𝑥𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊0𝑘𝑘 + 2𝑥𝑥𝑗𝑗2𝑊𝑊𝑗𝑗𝑗𝑗

2 + 𝑥𝑥𝑗𝑗2𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗 + 2𝑥𝑥0𝑥𝑥𝑗𝑗𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊0𝑗𝑗�
+𝑥𝑥𝑗𝑗3𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗 + 2𝑥𝑥0𝑥𝑥𝑗𝑗2𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊0𝑗𝑗

� . (A10) 

With the similar processing performed to Eq (A7), it eventually can be expressed as 

−
𝐸𝐸𝐸𝐸
2𝐿𝐿3

�𝑥𝑥𝑘𝑘2𝑥𝑥0𝑊𝑊𝑘𝑘𝑘𝑘𝑊𝑊0𝑘𝑘 + 𝑥𝑥𝑘𝑘�2𝑥𝑥02𝑊𝑊0𝑘𝑘
2 + 2𝑥𝑥0𝑥𝑥𝑗𝑗𝑊𝑊0𝑘𝑘𝑊𝑊𝑗𝑗𝑗𝑗� + 𝑥𝑥𝑗𝑗2𝑥𝑥0𝑊𝑊𝑗𝑗𝑗𝑗𝑊𝑊0𝑘𝑘 + 2𝑥𝑥𝑗𝑗𝑥𝑥02𝑊𝑊0𝑗𝑗𝑊𝑊0𝑘𝑘�. (A11) 

Finally, we combine Eqs. (A2-A5) and (A10-A11) to form the equation of motion for the beam. It is 

worth noting that, 𝑊𝑊𝑛𝑛𝑛𝑛 = ∫  10
𝜕𝜕𝜙𝜙𝑛𝑛
𝜕𝜕𝜕𝜕

𝜕𝜕𝜙𝜙𝑘𝑘
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 = 0 when 𝜙𝜙n and 𝜙𝜙k have different parity. Here, we assume 

that mode-k (𝜙𝜙k) is an even mode and   mode-j (𝜙𝜙j) is an odd mode. Since we know that the initial 

shape (𝜙𝜙0) is an even mode, this results in 𝑊𝑊𝑗𝑗𝑗𝑗 = 0 and 𝑊𝑊0𝑗𝑗 = 0. Substituting this result into the 

equation of motion for the beam, we can finally facilitate the expression as Eq. (12). 

 

 

 

Appendix B. Calibration of the initial center deflection 

The initial center deflection (x0) of the MEMS beam resonator is attributed to factors such as the 

beam structure and the plastic deformation during the fabrication. In this work, the mesa structures at 

the two ends of the beam as illustrated in Fig. 5(b), predominantly contribute to the x0. Due to the 

existence of the mesa structure, the axis of the whole beam is no longer a horizontal straight line, 

resulting in an initial deflection. However, the x0 does not exactly equal to the thickness of the mesa 

structure. such an exact equivalent x0 can be calibrated by using buckling effect, as demonstrated in 

Ref.28. Fig. A1 shows the resonance frequency of the 1st bending mode and the 2nd bending mode 
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(lines: theoretical calculation, circles: experimental data) as a function of heating power, P. As seen, 

considering both the buckling point and the frequency trend, the experimental data agrees with that 

of theoretical calculation at x0/h =0.1, indicating the equivalent x0 is ~100 nm for the present MEMS 

beam resonators. Note that, the thermally induced strain used for the theoretical calculation can be 

expressed approximately as47,48 

𝜀𝜀𝑡𝑡ℎ =
𝛼𝛼𝑇𝑇𝐿𝐿𝐿𝐿

8𝐺𝐺𝑇𝑇ℎ𝑏𝑏
(A12) 

where 𝛼𝛼𝑇𝑇 and 𝐺𝐺𝑇𝑇 are the thermal expansion coefficient and the thermal conductivity of the MEMS 

beam, respectively. We can utilize the εth to calculate the inherent tension,T0 (refer to Ref.28), and  

further calculate the resonance frequency.  

 

Appendix C. Excitation of 3:1 mode coupling  

Strong internal (N:1) mode-coupling effect enables coherent energy transfer between two 

vibrational modes through the parametric driving effect49,50, resulting in a sudden change in the 

resonance amplitude, as we have observed in our previous study31. For the present sample, the 3:1 

mode coupling effect occurs at a nature frequency of 190 kHz in the probe mode and 569 kHz in the 

pump mode. Figure A2(a) shows the resonance spectrum (black) and phase (red) of the probe mode 

when it enters the nonlinear region, obtained by sweeping around 190 kHz. As seen, two clear drops 

are observed in the spectrum appear at 190 kHz, especially significant in the phase plot, suggesting 

the vibrational energy of the probe mode is reduced by the mode-coupling effect. One the other hand, 

Fig. A2(b) plots the oscillation amplitude of the pump mode as a function of its nature frequency 

modulated by heating power. As seen, the amplitude of the pump mode gradually decreases with the 

heating power due to the softening effect of the beam, but there is a sudden jump when its nature 

frequency is modulated to 569 kHz. This sudden jump corresponds to the drop appearing at 190 kHz 
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in the spectrum of the probe mode, indicating the probe mode coherently transfers its vibrational 

energy to the pump mode when the 3:1 mode coupling effect occurs and the amplitude of the pump 

mode is thereby enhanced. 
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Figures and captions 

 

Figure 1 (a) A microscope image of fabricated MEMS beam resonator. An ac voltage (VD) is applied 

to one of the piezoelectric capacitors to drive the resonator and the induced mechanical oscillation is 

measured by a laser Doppler vibrometer and a lock-in amplifier with a built-in PLL. A dc voltage (Vth) 

is applied to the NiCr film to generate heat in the beam. (b) Measured spectrum for the first three 

modes (i.e., the first bending mode, the second bending mode, and the first torsional mode). The 

upper insets show the mode shapes of the first three modes. (c) The measured resonance frequencies 

of the 1st bending mode (blue) and the 2nd bending mode (red) as a function of heating power, P. the 

1st bending mode achieves its buckling at P=1.33 mW (160 kHz). 
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Figure 2 (a-c) PLL mode coupling measurements between the pump and probe modes, at various 

heating powers. The x-axis plots the driving frequency of the pump mode (fj); the left y-axis plots the 

resonance frequency (fk) of the probe mode traced by PLL, and the right y-axis plots the squared 

amplitude of the pump mode (aj²). (a-c) show the cases of λkj >0, λkj≈0 and λkj <0, respectively. 
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Figure 3 (a) The resonance frequency of probe mode (fk) as a function of the squared amplitude of 

the pump mode (aj²) for the case of P=0 mW, with the data of Fig. 2 (a) that larger than √3
3

 of the 

maximum aj. (b) the measured mode coupling coefficient, λkj, (dots) and calculated λkj (red line) as a 

function of heating power. The measured λkj is obtained by performing linear fitting based on Eq. (1). 

The inset is a magnification of the measured λkj (marked by the dotted black rectangle) near the 3:1 

mode coupling point (P=0.6-0.9 mW).  
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Figure 4 (a) Schematic diagram of a doubly-clamped MEMS beam with an initial center deflection. 

When the center deflection increases from x0 to xT, the MEMS beam has a new equilibrium position 

for the oscillation. The inset shows the 1-dimensional mode shapes of the 1st bending and 2nd bending 

modes. (b) The calculated mode coupling coefficient, λkj, as a function of the compressive strain 

(ε/εcr) at various initial center deflections (x0/h=0, 0.05, 0.10, 0.15, 0.20, 0.25). ε is normalized by 

the Euler’s buckling critical strain, εcr, of the MEMS beam. (c) The achievable maximum in the mode 

coupling coefficient (|𝜆𝜆𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚| ) as a function of x0/h. 
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Figure 5 (a) The wafer structure used for fabricating the GaAs MEMS beam resonators. (b) 

Schematic structure of the fabricated doubly-clamped MEMS beam. The top gates (NiCr /Au:15/100 

nm) on both ends of the beam together with the 2DEG layer form two piezoelectric capacitors, C1 

and C2. A 15-nm-thick NiCr layer was deposited as a heater. 
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Figure A1 (a) The resonance frequency of the 1st bending mode as a function of heating power (lines: 

theoretical calculation, circles: experimental data), at various initial center deflection (x0/h=0, 0.05, 

0.1, 0.15, 0.2). (b) The resonance frequency of the 2nd bending mode as a function of heating power 

(lines: theoretical calculation, square: experimental data), at various initial center deflection (x0/h=0, 

0.05, 0.1, 0.15, 0.2).  
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Figure A2 (a) The resonance spectrum and phase of the probe mode near 190 kHz, with a driving 

voltage of VD=800 mV and a heating power of P=0.79 mW. Two clear drops in both spectrum and 

phase plots indicate the presence of 3:1 mode coupling. (b) The oscillation amplitude of the pump 

mode as a function of its nature frequency modulated by heating power. The sudden jump marked by 

the red dashed rectangle indicates the amplitude enhancement due to 3:1 mode coupling effect, 

corresponding to the drops in (a). 
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