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COLAX ADJUNCTIONS AND LAX-IDEMPOTENT PSEUDOMONADS

MILOSLAV STEPAN

ABSTRACT. We prove a generalization of a theorem of Bunge and Gray about forming
colax adjunctions out of relative Kan extensions and apply it to the study of the Kleisli
2-category for a lax-idempotent pseudomonad. For instance, we establish the weak com-
pleteness of the Kleisli 2-category and describe colax change-of-base adjunctions between
Kleisli 2-categories. Our approach covers such examples as the bicategory of small profunc-
tors and the 2-category of lax triangles in a 2-category. The duals of our results provide lax
analogues of classical results in two-dimensional monad theory: for instance, establishing
the weak cocompleteness of the 2-category of strict algebras and lax morphisms and the
existence of colax change-of-base adjunctions.

CONTENTS

2.2, Colax adiunctions

[2.3.  TLax-idempotent and left Kan pseudomonads
2.4, _Left Kan 2-monadd
[2.5. Exampled
l4.  On the Kleisli 2-category for a left Kan pseudomonad. . . . ... .....

[4.2.  Colax adiunctions out of the Kleisli 2-category
L3 Coref imitd
|5, __Applications to two-dimensional monad theory. .. ..............
[5.1.  Lax flexibilityl
[5.2.  Colax adiunctions and lali-cocompleteness of lax morphisms

Supported by the Grant agency of the Czech republic under the grant 22-02964S.
Date: May 2, 2024.
1

1
1
18
19
23
28
32
32
33
35
40

NO OO wWwWwWwN


http://arxiv.org/abs/2405.00488v1

2 MILOSLAV STEPAN

1. INTRODUCTION

The primary motivation for this paper is to develop lax analogues of classical results in
two-dimensional algebra, in particular two-dimensional monad theory as studied in [2]. The
examples commonly studied in this area include 2-categories of categories with structure and
pseudo morphisms between them — functors that preserve the structure up to coherent iso-
morphism. For instance categories equipped with a class of colimits and colimit-preserving
functors, or monoidal categories and monoidal functors. Such 2-categories can be described
as the 2-category T-Alg of T-algebras and pseudo-T-morphisms for a 2-monad 7. Various
results have been proven in [2] about T-algebras and pseudo-T-morphisms, for instance their
bicocompleteness or the existence of change-of-base biadjunctions between 2-categories of
algebras and pseudo-morphisms for two different 2-monads S, 7.

On the other hand, there are fewer known results about 2-categories of categories with
structure and lax morphisms between them. These still include interesting examples, for
instance categories equipped with a class of colimits and all functors between them, or
monoidal categories and lax monoidal functors. They can also be described using 2-monads,
this time as the 2-category T-Alg, of T-algebras and lax T-algebra morphisms. While
limits in T-Alg; have been well-understood ([I5], [18]), not much has been proven about
colimits. This was for a good reason: 2-colimits or even bicolimits often do not exist in those
2-categories. Our task in this paper is to suitably weaken the notion of a bicolimit and show
that 2-categories of lax morphisms are in fact cocomplete in this weak sense. Another task
we have is to establish change-of-base theorems for algebras and lax morphisms. Again,
the notion that works for pseudo-morphisms — biadjunctions — will have to be replaced by
a weaker one — colax adjunctions.

The 2-category T-Alg of algebras and pseudo-morphisms can often be described as the
Kleisli 2-category for a certain pseudo-idempotent 2-comonad. A key observation to be
made is that many statements and proofs about T-Alg in papers [2], [3] are very formal
and are in fact true for any pseudo-idempotent 2-comonad on a 2-category. They also
easily dualize to pseudo-idempotent 2-monads. Since we are interested in the lax world,
we are naturally led to the study of Kleisli 2-categories for lax-idempotent pseudomonads,
using the formalism of left Kan pseudomonads [19]. The usage of pseudomonads instead
of 2-monads will allow us to consider a wider array of examples such as the small presheaf
pseudomonad, and lets us prove that the bicategory PROF of locally small categories and
small profunctors is weakly complete in the sense of the previous paragraph.

As mentioned, colax adjunctions are inevitable when working with lax morphisms. The
definition of a (co)lax adjunction is hard to work with because it contains a large amount of
data. Our first main result, Theorem [B.3], shows that a left colax adjoint F' to a pseudofunc-
tor U can be more conveniently given by a collection of 1-cells y4 : A — UF A satisfying
certain “relative U-left Kan extension” conditions. This is an extension of the work of
Bunge and Gray ([4], [8]) where this has been proven for the case when U is a 2-functor.
A result of this kind is similar to how left Kan pseudomonads provide a more convenient
description of lax-idempotent pseudomonads. We will use this theorem to obtain results on
colax adjunctions involving the Kleisli 2-category for a lax-idempotent pseudomonad (The-
orem [4.15]), and the dual of this result will be used to obtain results on colax adjunctions
involving T-algebras and lax T-morphisms for a 2-monad (Theorem [5.§]).
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The paper is organized as follows. In Section [2] we recall the necessary concepts that we
will need in this paper. With the small exception of left Kan 2-monads, everything here is
well-known.

In Section [3] we prove the generalization of Bunge’s and Gray’s results on colax adjunc-
tions to the setting of pseudofunctors: we show that there is a correspondence between left
colax adjoint pseudofunctors to a pseudofunctor U and collections of 1-cells y4 : A > UFA
satisfying the aforementioned relative U-left Kan extension conditions (Theorem [B.5]).

In Section [] we first give (an essentially folklore) characterization of algebras for a lax-
idempotent pseudomonad in terms of the existence of certain adjoints (Proposition [£.0)).
We then use this characterization and the generalized Bunge’s and Gray’s result to prove
that when given a lax-idempotent pseudomonad D on K, any left biadjoint  — L that
factorizes through the Kleisli 2-category Kp gives rise to a colax left adjoint Kp — L
(Theorem ATH]). We list various applications, for instance the weak completeness of Kp
(Theorem [£32)) provided that K is bicomplete, or that there is a canonical colax adjunction
between Kp and the 2-category of pseudo-D-algebras (Corollary [A.17)).

In Section Bl we spell out what these results in particular say about the 2-category T-Alg;
of strict algebras and lax morphisms for a 2-monad 7. This includes the aforementioned
colax base-of-change theorem (Corollary [5.10) as well as the weak cocompleteness result
for T-Alg; (Theorem [G.1T]).

Prerequisities: We assume the reader is familiar with 2-monads and pseudomonads and
their pseudo and strict algebras. We also assume the familiarity with lax-idempotent pseu-
domonads.

Acknowledgements: I want to thank my Ph.D. supervisor John Bourke for his careful
guidance and all the feedback I have received. I also want to thank Nathanael Arkor for
sharing his knowledge with me.

2. BACKGROUND

2.1. Colax functors and transformations. In this text we will primarily use the colax
versions of concepts such as lax functors, lax transformations. The motivation for this is
that we are building on the work of [4] which uses colax structures, as opposed to lax onedl.

Definition 2.1. Let A, B be 2-categories. A colaz functor F : A — B consists of:

e A function Fy: ob A — ob B,

o for every pair A.B of objects of A a functor Fu g : A(A, B) — B(FA, FB),

e for every composable pair (f, g) of morphisms in A a 2-cell (associator)

Vg Flgof)=FgoFf,

e for every object A € A a 2-cell (unitor) 1a: Flg = 1pa,
subject to associativity and unit axioms, see for instance [9, Definition 4.1.2]. If v and ¢ go
in the other direction, we obtain the notion of a lax functor. In case -y, ¢ are invertible, this
is called a pseudofunctor.

1y [4], colax natural transformations are referred to as laxz. In this paper we are following the modern
terminology.
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For simplicity, we will always use the letters ~, ¢ for the associator and the unitor of a colax
functor, and always omit the index for any of its components.

Definition 2.2. Given 2-categories A, B and two pseudofunctors F,G : A — B, a colax
natural transformation « : F' = G consists of the following data:

e For every Ae Aa l-cell ayg: FA — GA,
e For every f: A— Be A a 2-cell:

FA —% 4 GA

o o

FB ———— GB

These must satisfy certain unit, composition, local naturality conditions, see [, Definition
4.3.1]. If the 2-cells ay go in the other direction, this is referred to as a lax natural transfor-
mation. If o is invertible for all morphisms f, « is called a pseudo-natural transformation.
If the a’s are the identities, we use the term 2-natural transformation.

Definition 2.3. Given two pseudonatural transformations «, 3 between pseudofunctors
F,G: K — L, a modification I" : o — [ consists of a 2-cell I'4 : ag = [4 for every object
A € K, subject to the modification axiom for each 1-cell in I, see [9, Definition 4.4.1].

Example 2.4. Given an endofunctor 7" : A — A, any colax natural transformation
¢: T = 1y induces a modification (cc) : ¢ oTec — co T, whose component at A € A
is given by:

(cc)a i=cc, :caoTeq = caocra.
Remark 2.5. Pseudofunctors preserve colax natural transformations. If H : C — D is a
pseudofunctor and a : F' = G : B — C is colax natural, there is an induced colax natural

transformation Ha whose 1-cell component at A is Hay and whose 2-cell component at a
morphism f : A — B is the following composite 2-cell that we denote by (Ha):

Ha

= GA

FA

HFf

2.2. Colax adjunctions. Lax adjunctions, also called quasi-adjunctions in [8| 1,7.1] are a
categorification of adjunctions between functors where the unit and the counit are replaced
by lax natural transformations, and the triangle identities are replaced by modifications.
As in the previous section, we will use the dual notion — colax adjunctions.

Definition 2.6. A colar adjunction consists of two pseudofunctors U : D — C and
F : C — D, two colax natural transformations n : 1 = UF and € : FU = 1 and two
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modifications:
F—" _ pUF v—" L uUru
v
/ r \
F

Before stating the axioms required, let us fix a convention: we will use the symbol UW
to denote the modification obtained from ¥ by not just applying U, but also by pre- and
post-composing it with the associator and the unitor for U so that its domain and codomain
are UeFoUFn, 1yr. Let us use the same convention for F'®. The axioms are the swallowtail
identities, which assert that the two composite modifications below are the identities on 7
and e:

lo —— S UF

nn/ UF \\
/ " \ VA

UF ——— UFUF Ue

\ FUFU — Y FU
JSor

E

FU —— 1p

Notation 2.7. We will denote a colax adjunction as follows and say that F' is a left colax
adjoint to U:

(U, D) : (e,7m) : C D

F

4

U
There are several important variations or special cases:

e if €, 1 are lax natural, ¥, ® go in the other directions and an appropriate dual of
the swallowtail identities holds, we will call it a laz adjunction,

e in case that €,n are pseudonatural transformations and ¥, ® are isomorphisms, we
will use the term biadjunction.

o if U, I' are 2-functors, €,7n are 2-natural and ¥, ® are the identities, we will call this
a 2-adjunction.

Since the last two cases are the more usual notion, we will use the usual symbol - instead
of o for them.

Remark 2.8. Contrary to the case of biadjunctions, left colax adjoints are not unique up
to an equivalence, not even when U is a 2-functor, n is 2-natural and ¥, ® are the identities.
An example will be given in Remark 311
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2.3. Lax-idempotent and left Kan pseudomonads. The notion of a lax-idempotent
pseudomonad (see [19, Section 2]) contains a large amount of data and axioms. A major
simplification can be achieved if one works with left Kan pseudomonads instead. In this
section we recall all the basic definitions and mention the equivalence of left Kan pseu-
domonads and lax-idempotent pseudomonads. We also define a special class of left Kan
pseudomonads that we call left Kan 2-monads — this is the obvious strict version of the
notion.

Definition 2.9. A left Kan pseudomonad ([19]) (D,y) on a 2-category K consists of:

e A function D : ob K — ob K,

e For every Ae KC a 1-cell ya: A — DA called its unit,

e For every l-cell f : A — DB a left Kan extension of f along yp such that the
accompanying 2-cell is invertible:

A—Y% s DA
Dy
(1) ; 7 I

DB

These are subject to the axioms:
e For every A € K, the identity 2-cell 1, on yp exhibits 1p4 as a left Kan extension

of ya4 along ya:
e for every g: B — DC, f: A— DB, g” preserves the left Kan extension (IJ).

Definition 2.10. A pseudo-D-algebra consists of an object C' € K together with a mapping
that sends every 1-cell f : B — C to the left Kan extension of f along yp such that the
accompanying 2-cell is invertible:

B—Y DB

® 7

fC

C

and such that for every f: A — DB, g® preserves the left Kan extension ().

A D-pseudomorphism h : B — A between pseudo-D-algebras C, X isa l-cell h: C — X
that preserves the Left Kan extension (2)). A pseudo-D-algebra 2-cell o : h = h' : B — A
is just a 2-cell in K. All this data assembles into a 2-category that we denote by Ps-D-Alg.

Definition 2.11. By the Kleisli 2-category Kp associated to the left Kan pseudomonad
(D,y) we mean the full sub-2-category of Ps-D-Alg spanned by free D-algebras, that is,
algebras whose underlying object is of form DA for some object A € K and the extension
operation is given by (—).

Remark 2.12. We may also define the Kleisli bicategory associated to a left Kan pseu-
domonad (D, y), where objects are the objects in K and a morphism A v~ B in Kp corre-
sponds to a morphism A — DB in K. The unit is given by the unit of the pseudomonad,
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while the composition is defined using the extension operation:

ID)O
AwaCN»BwvgwaC — AwwvngfmwB

Denote this bicategory by KI(D). It is routine to verify that there is a pseudofunctor
N : KI(D) — Kp sending the Kleisli morphism f : A v B to f®: DA — DB and that it
is a biequivalence of bicategories. In this paper we will for the most part use the 2-category
presentation since it is easier to work with.

Proposition 2.13. There is a “free-forgetful” biadjunction given as follows:
(¥, 9): (p,q) : K T Kp

e The right biadjoint Up is the forgetful 2-functor sending an algebra to its underlying
object,
e the left biadjoint is a normal pseudofunctor sending;:

(f: A= B)— ((ysf)” : DA— DB),

e the counit p : JpUp = 1 evaluated at the object DA is the following algebra
homomorphism:

DDA 1= (1DA)D :D?A — DA,

With its pseudonaturality square at an algebra morphism h being the canonical
isomorphism between 1% pDh and hl% 4» as both are the left Kan extensions of h

along ypa.

e the unit is given by the unit of the left Kan pseudomonad y : 1 = UpJp, with the
pseudonaturality square at a morphism h : A — B being given by the canonical
isomorphism:

A—Y s DA

L oo Jon

B ——— DB
e the components of the modifications are given by the canonical isomorphisms:
V:pJpoJpy=1y,,
®: 1y, =UppoyUp.
This biadjunction is moreover laz-idempotent, meaning the following:

Proposition 2.14. There exist (non-invertible) modifications I', © that serve as the unit
and the counit of the following adjunctions:

((I)_17F) : UDp — yUDa
(@7\II_1) : JDy — pJD-
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Proof. The 2-cell I'pa : 1p24 = ypaoppa is the unique solution to the following equation:

A D%A

PDA YDA PDA
Ppa

3!

D2
DA —— DA = DA DA
D2

AA YDA AA

A D%A

This also proves the first triangle identity. The proof of the second triangle identity is
done by pre-composing by y4 and using the appropriate universal properties. By doctri-
nal adjunction, the collection of adjunctions (<I>B}4,I‘DA) : ppa — ypa lifts to give the
claimed adjunction of pseudonatural transformations. The other adjunction is proven in
an analogous way. O

Theorem 2.15. There is a correspondence between:

e left Kan pseudomonads (D,y) on I,
e lax-idempotent pseudomonads (D, m,y) on K.

Moreover, the left Kan pseudomonad and lax-idempotent pseudomonad corresponding to
one another have biequivalent 2-categories of algebras, and this biequivalence commutes
with the forgetful 2-functors to K.

Proof. For the full proof see [19, 4.1, 4.2], here we sketch only the bits relevant for this
paper. Given a left Kan pseudomonad (D,y), the lax-idempotent pseudomonad is given
by a normal pseudofunctor D : I — K with action on 1-cells and 2-cells given by Up o Jp
from Proposition 213l The components of the unit y become pseudonatural with the
pseudonaturality square given by the Kan extension 2-cell:

A—Y% . DA

fi ”ID) l(ny)DZ:Df

B— DB
YyB

The multiplication at A € K is given by the morphism ppa again as in Proposition 213
On the other hand, given a lax-idempotent pseudomonad (D, m, y), the left Kan extension
of f:A— DB along y4 : A — DA is given by the composite of the pseudonaturality 2-cell
yy and the pseudomonad unitor 2-cell:

A— Y% . DA

b

f
DB —yps—> D?B

5
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In the rest of the paper we will use the terms “left Kan pseudomonads” and “lax-idempotent
pseudomonads” interchangeably.

Remark 2.16 (Duals). A lax-idempotent pseudomonad 7" on a 2-category K is equiva-
lently:

e a colax-idempotent pseudomonad T on K,
e a colax-idempotent pseudo-comonad TP on K,
e a lax-idempotent pseudo-comonad T°°P on kP,

2.4. Left Kan 2-monads. There is a class of lax-idempotent pseudomonads that will play
a role: the ones for which the pseudomonad is actually a 2-monad. We will show that these
correspond to what we call left Kan 2-monads.

Definition 2.17. A left Kan pseudomonad (D, y) is a left Kan 2-monad if:
e D, is the identity 2-cell for every 1-cell f: B — DA, meaning that fPoyp = f,
e 77 =(9"1)",
. yE =1pa.
Notice that in case of left Kan 2-monads, the biadjunction from Proposition [2.13] becomes

a 2-adjunction. Let us also note the following:

Proposition 2.18. The correspondence from Theorem 215 restricts to the correspondence
between left Kan 2-monads (D, y) and lax-idempotent 2-monads (D, m, ).

Proof. “=": Let (D,y) be a left Kan 2-monad. As we outlined in the proof of Theorem
215 the pseudofunctor D is defined as this left Kan extension:

A—Y% . DA
fl l(ny)D:Df
B———— DB

If (f: A— B,g: B — () is a composable pair of morphisms, we have:
D(gf) = (weg£)® = (wee)®ysf)® = (ye9)®(ysf)® = DgDf

Also, D1y = y% = 1pa so D is a 2-functor. This also makes y a 2-natural transformation
since the pseudo-naturality square is the identity. Next, the pseudo-naturality square for the
multiplication m : D? = D is also the identity since both of the triangles below commute:

D
D2A — 4 Dy
oo o o
(Df) f

D?*B ———— DB
DB

43 b

<" If (D,m,i) is a lax-idempotent 2-monad, the corresponding left Kan extension
in the proof of Theorem has the 2-cell component equal to the identity. The other
identities in Definition 2.17 are shown by a straightforward manipulation using the 2-monad
identities. O
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2.5. Examples.

Example 2.19. Given a locally small category A, denote by PA the full subcategory
of [ A%, Set] spanned by small presheaves, that is, presheaves that are small colimits of
representables. The assignment A — P.A defines a left Kan pseudomonad on the (large)
2-category CAT of locally small categories, with the unit 4 : A — P.A being given by the
Yoneda embedding and the extension operation being given by ordinary left Kan extension
along y 4. These are guaranteed to exist because of the cocompleteness of PB; and since
y4 is fully faithful, the accompanying 2-cell is invertible):

A—Y% . pyg

P — LanyA F

PB

A pseudo-P-algebra is precisely a cocomplete category, and pseudo-P-morphisms are
cocontinuous functors. The Kleisli 2-category CAT p thus has presheaf categories as objects
and cocontinuous functors as morphisms. In fact, it can be seen to be biequivalent to the
bicategory PROF whose objects are locally small categories and whose morphisms A v~ B
are small profunctors H : B’ x A — Set. Here we call a profunctor H : B? x A — Set
small if for every a € A, the presheaf H(—,a) : B°? — Set is small (belongs to PB).

Under this identification, the left biadjoint from the Kleisli biadjunction in Proposition
213 P : CAT — PROF sends functor f: A — B to the profunctor:

B(—,f—):B% x A — Set.

We remark that alternatively there is also a 2-monad presentation for this pseudomonad
that uses inaccessible cardinals, see [13, Chapter 7].

Example 2.20. Let K be a 2-category with comma objects and fix an object C € K. There
is a 2-monad P on IC/C that sends a morphism f : A — B to the morphism 7 : Pg — C
which is a projection of the following comma object in K:

Pf L N
(3) ”fl ﬂx lf
C ——=C

This 2-monad is known to be colax-idempotent with its algebras being fibrations in IC
(22, Proposition 9]). Its Kleisli 2-category can be presented as having the objects functors
with codomain B, while a morphism F' v~ G is a 1-cell § : A — Pg making the triangle
below left commute:

A b , pg Ps B A—" B
I T ok
From the definition of the comma object, this corresponds to pairs (u,«) of a 1-cell
u:A— Banda2-cell a:gu= f as portrayed above right.
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In other words, the Kleisli 2-category for this 2-monad is isomorphic to the colaz slice
2-category K// Cf. Under this identification, we have a 2-adjunction:

U

RN
x/c T K/)C

~_ 7

J

The left 2-adjoint is the canonical inclusion, the right 2-adjoint sends an object f : A — C
to the comma object projection m¢ : Pf — C. The counit p: JU = 1x//c evaluated at an
object f: A — C' is the colax commutative triangle (pf,x) : 7 — f from (3]).

In the remainder of this section we recall a class of lax-idempotent 2-comonads that come
from two-dimensional monad theory. Recall the 2-categories T-Alg,, T-Alg, T-Alg, of strict
algebras and strict, pseudo and lax morphisms for a 2-monad 7T from [2, 1.2]. Also recall
the notions of a codescent object and a lax codescent object from [14], Page 228].

Definition 2.21. Let 7" be a 2-monad on a 2-category K and let (4, a) be a strict T-algebra.
By its resolution, denoted Res(A, a), we mean the following diagram in T-Alg,:

— M2, —ma—
T3A — Tmgpa — T2A +—Tiy TA
— 72— Ta—>

Theorem 2.22. Let T be a 2-monad on a 2-category K and assume the 2-category T-Alg,
admits lax codescent objects of resolutions of strict algebras. Then the inclusion 2-functor
T-Alg, — T-Alg; admits a left 2-adjoint. Similarly, assume the 2-category T-Alg, ad-
mits codescent objects of resolutions of strict algebras. Then the inclusion 2-functor
T-Alg, — T-Alg admits a left 2-adjoint:

g AN K AN
T-Alg, 1 T-Alg, T-Alg, 1 T-Alg
J Jp

In the first case, the value of a left 2-adjoint at a T-algebra (A,a) is given by the lax
codescent object of the diagram Res(A4,a) in T-Alg,. In the second case, codescent object
is used.

Proof. See Lemma 3.2 and Theorem 2.6 in [14]. O

Remark 2.23. The assumptions of Theorem [2.22]are satisfied whenever the base 2-category
K is cocomplete and T is finitary (preserves filtered colimits). This is because the codescent
objects of a resolution of a strict algebra is reflexive, and so is a filtered colimit by [14],
Proposition 4.3].

2This 2-category can also be presented as the 2-category of strict coalgebras and lax morphisms for the
2-comonad (—) x C, see [6, Chapter 5].
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Definition 2.24. We denote by (); and ), the 2-comonads generated by the 2-adjunctions
in the above theorem and call them the lax morphism classifier 2-comonad and the pseudo
morphism classifier 2-comonad.

It is easy to see that T-Alg; is isomorphic to (T-Alg,)q,, the Kleisli 2-category for the
2-comonad ;. Similarly, T-Alg = (T-Alg,)q, .

Proposition 2.25. Let T be a 2-monad on a 2-category K such that the left 2-adjoints to
the inclusions T-Alg, <— T-Alg, T-Alg, — T-Alg; exist. Then:

e If K admits oplax limits of arrows, @ is lax-idempotent.
o If K admits pseudo limits of arrows, @, is pseudo-idempotent.

Proof. See [18, Lemma 2.5]. O
Proposition 2.26. There is a morphism of 2-comonads @; — Q).

Proof. Denote the units of the adjunctions in Theorem 2221 by p4 : A v~ A’ and
pL : A v AT respectively. Since pL is a pseudo-morphism, it is in particular a lax
morphism and thus there exists a unique strict T-algebra morphism 64 : A’ — AT making

the diagram commute:

A/

|

Pl
Using the universal property of A’, it is readily seen that the maps 64’s assemble into a
morphism of 2-comonads. U

3. RELATIVE KAN EXTENSIONS AND COLAX ADJUNCTIONS

In [4], Bunge introduced the notion of a relative Kan extensions with respect to a 2-
functor U and showed that for a collection y4 : A — UFA of 1-cells that admit these
extensions (and satisfy certain coherence conditions), there is an induced left colax adjoint
F to U, where F is a colax functor ([4, Theorem 4.1]). She also proves a partial converse
to this result ([4, Theorem 4.3]). Note that at the same time these results also appeared in
Gray’s work ([8, 1,7.8.]).

In this section, we generalize these results to the case where U is a pseudofunctor and,
on the other hand, refine it by identifying conditions under which the colax left adjoint
F is actually a pseudofunctor. This enables us to describe, in Theorem B3 a symmetric
relationship between U-extensions and colax adjunctions. We will see an application of
these results to the settings of lax-idempotent pseudomonads in Section Ml

Definition 3.1. Let U : C — D be a pseudofunctor, yq4 : A > UFA, f: A — UB 1-cells
of D. The left U-extension of f along ya is a pair (f’,1) with the property that for any
pair (g, ) pictured below, there is a unique 2-cell 6 : f* = g such that the following 2-cells
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are equal:
A—2 S UFA A—2 S UFA
%f [g Ug = / Ug
f Uf/ f
1
UB UB

Definition 3.2. Let U : C — D be a pseudofunctor. We say that a collection of 1-cells
ya : A — UFA for each object A € C are coherently closed for U-extensions if:

e for every f: A — UB we have a choice of an U-extension (f?, Dy),
e the following composite 2-cell exhibits 1@ o(yy f)P as the left U-extension of f along

yx:
X yx UFX
f nDyny U(yUYf)
(4) woy UFUY:> U(1Dyolyoy )P)
DlUY
U@Y

Theorem 3.3. Let U : C — D be a pseudofunctor and y4 : A — UF A a collection of
1-cells coherently closed for U-extensions. Then:

e the mapping A — F'A can be extended to a colax functor F': D — C,

e y can be extended to a colax natural transformation 1p = UF,

e there exists a colax-natural transformation € : FU = 1¢ and a modification
d:1y - UeoyU.

Assume moreover the composition and unit axioms for U-extensions: the diagram
below left is a U-extension of y4 along ya, and the diagram below right is the
U-extension of yogf along ya:

A—Y L UFA A—Y L UFA
i| ]D)W Vs P
_ —1
(5) 8\ Uipa B —ys—3 UFB X )Ullyca)®ysf)P)
YA
!Jl D U(ycg)Dl
UFA ¢ ——— UFC

Then:
e [ is a pseudofunctor,
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e there is an invertible modification ¥ : eF' o F'y — 1 and all this data give a colax
adjunction:

(¥, ®) : (e,y) : FHU : C - D.

Proof. Denote by (fP,D) the choice of a U-extension of f : A — UB. Define the colax
functor F': D — C on a morphism f : A — B as the following U-extension:

A— Y% L UFA
f HD UFf
B———— UFB

Define the action of F' on a 2-cell « as the unique 2-cell making the following equal:

A— Y L UFA A—Y L UFA
(6) f D UFf &Q UFg = fl 219 D UFg
B———— UFB B ———— UFB

The above equation makes y locally natural. The associator 7' : F(gf) = Fgo Ff and
the unitor ¢/ : F14 = 1p4 for F are given as the unique 2-cells satisfying these equations:

A— Y S UFA A— Y L UFA
U(FgoF ) fl D UFfl
-1
(7) af D|| UF(gf) Ug!) = B —ys— UFB= |U(FgoFf)
gl ]D)” UFgl
A—Y% S UFA A—Y% L UFA
(8) ol vE, VSV Ulpa = S\ ipa

The colax functor axioms for F' follow from those of U and can be readily proven using the
universal property of U-extensions. The above equations also make y into a colax-natural
transformation y : 1 = UF. Next, define ep : FUB — B and ®p as the U-extension of the
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identity on UB along yyp:

UB — %% ., UFUB
I+
Uep

UB

The colax naturality square for € at a 1-cell h : B — (' is the unique 2-cell ¢, making
the 2-cells below equal (it is guaranteed to uniquely exist because of the coherence for
U-extensions):

UB s UFUB UB —Y5 L UFUB

l / d l\/ ‘
Uh ,/UFUh Uh UjB
(9) ve e yrue =2 Y \vge)  UC UB 25 |Uthoen)

e FUh)
| Y \

ucC ucC
This also makes ¢ into a modification 1y — Ue o yU. Let us now consider the additional
assumptions. It is clear that F’ will be a pseudofunctor. Define W4 : epg 0 Fys = 1pg as
the unique 2-cell making the two 2-cells below equal:

A va UFA A— Y L UFA

yAh D U Fy/ 'UA‘
s

(10) vrA —2ra L ypurA =2 "Plvi,.  UFA4 '3 \Utpa
N
Pra
jﬁ UQ{\N z/
UFA UFA

By the assumption, ¥ 4 is invertible. This equality also proves the first swallowtail identity.
What remains to prove is the following:

e ¢ is colax-natural,
e & is a modification,
e the second swallowtail identity.

These are all straightforward computations and we will prove them in the Appendix as
Lemma [AT] O
Theorem 3.4. Let (U, ®) : (e,y) : F HU : C — D be a colax adjunction between
pseudofunctors in which ¥ is invertible. Then:

e the components of the unit y4 : A — UF A are coherently closed for U-extensions,
e the unit and composition axioms (Bl for U-extensions hold.



16 MILOSLAV STEPAN

Proof. Notice first that we have the following adjunction:

(na)*oU:

/\

C(FA,B) T D(A,UB)

~N_ -

(eB)xoF

The counit and unit 2-cells evaluated at h : FA — B and g : A — UB are given as
follows:

A— L UFA

b, A >

FUma)( L FUFA cras FA UB fyUBH UFUB

lFUh Weh J/h UﬁB

FUB ——F—— B

The triangle identities essentially follow from the swallowtail identities of the colax adjunc-
tion and we omit the proof for them. Denote by D, the unit of this adjunction evaluated at
g: A — UB and denote g° := egFg. By definition, the pair (¢°, Dy ) is the left U-extension
of g along y4. Next, notice that for f : A — B, the invertible 2-cell:

Jj:=VpFfoerpy;,, erpF(ysf) = Ff: FA— FB,

satisfies the following equality (this again follows from a swallowtail identity):

A— Y L UFA A— Y% L UFA
U:|f _
f Dy = |UFf = f vy UFf
U(ys f)P
B————— UFB B ——— UFB

This proves that (UF'f,yy) is also a U-extension of ypf along y4. Next, notice that for an
object B, the following invertible 2-cell:

[1]

B = €150 EBFL_l egFlyp = €5,

satisfies this equality:

UB — %2 ., UFUB UB — %2 . UFUB
D1y, 5 U= Ueg Pp
e :§ = ——— |Uep
U1? .
UB UB

This proves that (Uep, ®p) is also a U-extension of 1yp along yyp. Using these two
isomorphisms of U-extensions, it is clear that the composite 2-cell ({]) in Definition is a
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U-extension if and only if the pair (fP,D ) is a U-extension - which it is, as we have proven.
We thus have that the collection y4 : A — UF A is coherently closed for U-extensions.

Let us now prove the composition and unit axioms (Bl). The proof that the pair
(1pa,t 1 y4) is a U-extension follows immediately from the fact that it is isomorphic to the
U-extension (y3,D,,) via the modification ¥4 (this is the first swallowtail identity):

A—Y% S UFA A—Y S UFA
1 Ulpg
YA = |Ulra - YA 4
UyA
UFA UFA

Again by using the isomorphism above, the question whether the 2-cell below right is a
U-extension is equivalent to asking whether the 2-cell below left is a U-extension:

ya YA

A—— S UFA A—— S UFA

fl Wyf lUFf fl Dfﬂ U(ny)Dl

B —ys—— UFB == UF(sf) B —yp—— UFB =% |U((yc9)"(ys/)")
gl Wyg lUFg gl Dg” U (ycg)%

¢ ———— UFC C —voc—s UFC

But this 2-cell equals y,7 and is thus a U-extension by what we have proven above.
O

Theorem 3.5. Fix a pseudofunctor U : D — C between 2-categories. The following are
equivalent for a collection of 1-cells {y4 : A > UF A} with AeC:

e the collection y 4 is coherently closed for U-extensions and satisfies composition and
unit axioms (&),

e there is a colax adjunction (U, ®) : (¢,n) : F—HU for which ¥ is invertible, F is a
pseudofunctor and the 1-cell component of the unit at each A € C equals y4.

Remark 3.6. In the above theorem, we do not have a one-to-one correspondence; instead,
there is a suitable “equivalence” between these two concepts. Starting with coherent U-
extensions (f2,D 7) of f along ya, producing a colax adjunction and then going back to
U-extensions gives the U-extension (egF'f,y 'y 0Ue BYfo®pf), which in general will not
be equal to (f2,Dy) (but will be canonically isomorphic to it). Similarly, starting with left
colax adjoint F', going to U-extensions and back only gives a pseudofunctor isomorphic to
F.

In our applications to two-dimensional monad theory, we will encounter this very special
case of U-extensions:

Definition 3.7. Let U : C — D be a 2-functor. We will say that a collection of 1-cells
ya: A — UFA s strictly closed for U-extensions if:
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e for every f : A — UB there is a U-extension (f7, 17) along y4 with the 2-cell
component being the identity,

i yE = 1FA7

efor f: X >Y,g:Y — Z we have Ff o Fg = F(fg), where we denote F'f :=
= (yY o f)D7

o for f: A — UB we have ¢y o F'f = f?, where we denote ey := (1y)P.

Remark 3.8. It is clear from the proof of Theorem B3] that a collection strictly closed for
U-extension gives rise to a colax adjunction (e, y) : F'—U for which:

e y is a 2-natural transformation,
e F'is a 2-functor,
e the modifications ®, ¥ are the identities.

(This will in general not be a 2-adjunction because € will only be colax natural.)

4. ON THE KLEISLI 2-CATEGORY FOR A LEFT KAN PSEUDOMONAD

This section is devoted to studying the Kleisli 2-category for a general left Kan pseu-
domonad (D, y) on a 2-category K.

In A1) we prove a result characterizing the pseudo-D-algebra structure on an object in
terms of the existence of certain adjoints (Theorem [1.9)).

In we use this result and Theorem [B.3] to prove that any left biadjoint XC — £ that
factorizes through the Kleisli 2-category gives rise to a lax left adjoint p — L£. We list
several applications, one of which is the assertion that there is a canonical colax adjunction
between EM and Kleisli 2-categories for left Kan pseudomonads.

Another application is given in 3]l where we define coreflector-limits, the aforementioned
lax analogue of bilimits, and list elementary examples. The main result here is Theorem
which asserts that whenever the base 2-category K admits J-indexed bilimits, the
Kleisli 2-category for a left Kan pseudomonad on X will admit them as coreflector-limits.

First, let us recall the following terminology:

Definition 4.1. Let the following be an adjunction in a 2-category K:

(€,m) : A T B

e If the counit € is invertible, call f a reflector and u a reflection-inclusion. In this
case f. In case the counit is the identity, f is called a lali (left adjoint-left inverse)
and u a rari (right adjoint-right inverse).

e if the unit 7 is invertible, call f a coreflection-inclusion and u a coreflector. In case
the unit is the identity, f is called a lari and u a rali.

Remark 4.2 (Duals). A morphism f is a reflector (a lali) in K if and only if:

e it is a reflection-inclusion (a rari) in K,
e it is a coreflector (a rali) in K,
e it is a coreflection-inclusion (a lari) in K.
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4.1. A characterization of algebras.

Definition 4.3. Let F': K — L be a pseudofunctor. We will call a morphism f: A — B
in IC an F'-coreflector if Ff is a coreflector in the 2-category L. Similarly for the other
variants from Definition £.11

Example 4.4. Let P : CAT — PROF be the canonical inclusion pseudofunctor. In
Example below we will show that a functor f : A — B between locally small categories
is a P-coreflection-inclusion if and only if it is fully faithful and satisfies a certain smallness
condition.

Example 4.5. Consider the lax morphism classifier 2-comonad @; associated to a 2-monad
T on a 2-category K. Denote by J : T-Alg, — T-Alg; the canonical inclusion to the Kleisli
2-category and by U : T-Alg, — K the forgetful 2-functor. Notice that by virtue of doctrinal
adjunction [11], a strict algebra morphism is a J-reflector if and only if it is a U-reflector,
that is, the underlying morphism in X is a reflector.

Remark 4.6. Given a lax-idempotent pseudomonad P on a 2-category K, 1-cells in K
that are P-left adjoints have been studied in the literature ([5], [1]) under the name of
P-admissible 1-cells.

The following lemma is the left Kan pseudomonad version of [20, Theorem 3.4]:

Lemma 4.7. Let (D,y) be a left Kan pseudomonad on K. Denote by D : £ — K
the corresponding endo-pseudofunctor and by Jp : K — Kp the inclusion to the Kleisli
2-category. The following are equivalent for a 1-cell f: B — C:

e f is a D-coreflection-inclusion,
e fis a Jp-coreflection-inclusion.

Proof. “(1) = (2)” follows from [5, Proposition 1.3]: namely, the right adjoint to D f in K is
actually a D-algebra homomorphism and thus is an adjoint in Kp. “(2) = (1)” is obvious
because we have the forgetful 2-functor Up : Kp — K that satisfies D = UpJp. O

Lemma 4.8. The following holds in a 2-category K:

e Let f 4u: B — A be an adjunction with unit 7 and let (D, g") be the left Kan
extension of g : A” — C along y : A — A. Then the diagram below left exhibits
gPu as the left Kan extension of ¢ along fy:

C

fi Q A i h:
Tk N Ty

7 > C B’ — D
e In the diagram above right, suppose that the top and outer diagrams are left Kan

extensions. If all left Kan extensions along k exist and have invertible unit, then «
is a left Kan extension of f along j.
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Proof. The first point follows by composing the following bijections. For a 1-cell h : B — C,

the first one is given by the adjunction f — u, the second one is given by the definition of
D

g
K(B,C)(¢"u,h) = K(A,C)(¢°, hf) = K(A',C) (g, hy).

In the second point, assume we have a 2-cell 5 as pictured below, and we want to find a

unique 2-cell solving this equation:

B B
() \? _ l
VAN v
B’—>D B —— D

f

First note that we have a unique 2-cell § making the following diagram equal (here [* is
the left Kan extension of [ along k that exists by assumption):

C C
kT p & kT Aﬂ g
B AN = B

B ﬂa hk\D B Bﬂ l\\

Clearly, § := A= 00’k solves the equation ([[I]), giving us the existence part of the proof.
To show the uniqueness, let ¢ be a different 2-cell solving (I1I]). Note that there exists a
unique 2-cell ¢’ solving the following:

C C
k A k \ 1A
Af h %qb’
B — ! = B \
°7
D D

Pre-pasting this with o and using the diagram above this one, we see that ¢’ = #’. From
this we obtain:
Al olk=Atogk=A"roAo¢p=0¢.
O

Proposition 4.9. Let (D,y) be a left Kan pseudomonad on a 2-category K. Denote by
Jp the inclusion to the Kleisli 2-category and by D the endo-pseudofunctor associated to
the left Kan pseudomonad. The following are equivalent for an object A € K:

(1) A admits the structure of a pseudo-D-algebra,
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(2) for every object B € K, the left Kan extension of a 1-cell B — A along yp : B — DB
exists and has invertible unit. In other words, K(—, A) : K? — Cat sends each yp
to a coreflector,

(3) ya admits a reflector (left adjoint with invertible counit),

(4) K(—,A) sends Jp-coreflection-inclusions in K to coreflectors in Cat,

(5) K(—, A) sends D-coreflection-inclusions in K to coreflectors in Cat.

Proof. The equivalence “(1) < (3)” is well known, for lax-idempotent 2-monads this has
been done for example in [I0, Proposition 1.1.13], but the same argument works for lax-
idempotent pseudomonads as well. “(1) = (2)” is obvious.

For “(2) = (3)”, denote by (a : DA — A, A) the left Kan extension of 14 along y4.
Because the identity 2-cell on DA exibits 1p4 as the left Kan extension of y4 along 4,
there exists a unique 2-cell 7 making these 2-cells equal:

DA A

2 LA

We will now show that (A™',7) : @ - ya is an adjunction. The triangle identity
yaA~tonys = 1,, is guaranteed by the above formula — let us prove the other one:

A laoan = 1,.
Because a is the left Kan extension along y4, it suffices to prove that both sides of this
equation become equal after pre-composing them with y4. It then becomes:
A_layA ocanys = A_layA oaysh = A_layA oAays = lay,-

“(4) < (5)” follows from Lemma A7 and “(5) = (2)” is obvious since yp is a D-
coreflection-inclusion.

We will now prove “(2) = (5)”. Let f: B — C such that there is an adjunction in Kp
where the unit 7 is invertible:

r

VRN

(e,m): DB T DC
Df

We wish to show that the functor f* : (C, A) — K(B, A) has a left adjoint with invertible
unit. We will define this left adjoint by the following formula:

L:(g:B— A)— (" oroyc:C — A)
Define the component of the unit 7 at g : B — A as the following composite 2-cell:

C ve s, DC
1l p-1f % nﬂ N
YB gt
B—Y" . DB DB A
Al

g
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We wish to show that this has the universal property of the unit, in other words, g* oroyc
is the left Kan extension of g : B — A along f: B — C.

By Lemma 8 point 1, ¢ or is the left Kan extension of g along D f oyp. Equivalently
it is a left Kan extension of g along yo f with the 2-cell component given by the composite
2-cell above. Since g7 is a D-morphism, g7 (with the identity 2-cell component) is the
left Kan extension of g®ryc along yo. By Lemma B8 point 2, for h := ¢*r, k := yc,
i:=f, f:= g and «a the 2-cell above, the result follows.

O

Remark 4.10. Using the terminology of [7, Definition 1.2], in Theorem 4.9} the equivalence
“(1) < (4)” says that an object A is a pseudo-D-algebra if and only if it is left Kan injective
with respect to the class of 1-cells given by Jp-coreflection-inclusions.

Let us also note that a version of “(1) = (5)” for D-left adjoints in Theorem has
already been proven in [5, Proposition 1.5].

Remark 4.11. Given a left Kan 2-monad (D, y), a pseudo-D-algebra C will be said to be
normal if the left Kan extension 2-cell C; in Definition 210l is the identity for all 1-cells
f. Notice that a variation of Proposition [£.9 may be proven for normal pseudo-D-algebras,

where we replace all invertible 2-cells by identities, for instance replace a “reflector” by a
“lali”.

In the remainder of this section we will demonstrate Proposition on the case of small
presheaf pseudomonad from Example 219 An application to the lax morphism classifier
2-comonads will be described in Section [5l

Example 4.12. Consider the small presheaf pseudomonad P on CAT. Note that if we
pass to a bigger universe and use the bicategory PROF of locally small categories and all
profunctors, for any functor f : A — B, the small profunctor Pf = B(—, f—) : B%? x
x A — Set has a right adjoint:

B(—,f-)
We will call a functor f : A — B small if the right adjoint is also a small profunctor
(belongs to Prof). Clearly, this happens if and only if Pf has a right adjoint in PROF.
Next, note that the unit of the adjunction is a collection of functions for every pair
(a',a") € AP x A like this:

beB
A(d',a") — B(fa',b) x B(b, fa"),

(0:ad —a")— [1sa, f(0)].

As is readily seen, the unit is invertible if and only if f is fully faithful. So a functor
f A — Bis a P-coreflection-inclusion if and only if it is fully faithful and small. The
precomposition functor f* : CAT(B,C) — CAT(A,C) is a coreflector if and only if left Kan
extensions along f exist in C. Theorem for the small presheaf pseudomonad now gives
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a folklore result: a category C is cocomplete if and only if left Kan extensions along small
fully faithful functors exist in C.

4.2. Colax adjunctions out of the Kleisli 2-category.

Proposition 4.13. Let (D,y) be a left Kan pseudomonad on a 2-category K and assume
there are pseudofunctors G, H and a biadjunction as pictured below:

/%\

K T Kp e L

Then for every object L € L, the object HL admits the structure of a pseudo-D-algebra.

Proof. By Proposition [0, it suffices to show that K£(—, HL) : K°? — Cat sends Jp-
coreflection-inclusions to coreflectors. Notice that we have the following pseudo-natural
equivalence:

K(—, HL) ~ £(GJp—,L) = L(G—,L) o Jp.

Now, by definition, Jp sends Jp-coreflection-inclusions to coreflection-inclusions. Since
L(G—, L) is a (contravariant) pseudofunctor, it sends coreflection-inclusions to coreflectors.
We thus obtain the result. ([

Remark 4.14. Going through the proof of Proposition for the case of HL, we see
that the algebra multiplication map hy : DHL — HL (the reflector of the morphism
yur : HL — DHL) is given by the following composite:

Hsyp,

DHL —PHL \ gGD2H] —HCPPHL o paDHT HL

Also, the counit of the adjunction hy - ymr, an invertible 2-cell €r, : hrygr = lgz, is
given by the following:

_epHL  pap?HI —H9PPHL L HaDHI

CyHLH W \
HL —— HGDHL

Theorem 4.15 (The main colax adjunction theorem). Let (D, y) be a left Kan pseu-
domonad on a 2-category K. Any biadjunction whose left adjoint factorizes through the
Kleisli 2-category Kp induces a colax adjunction pictured below:

H JpH
T T~ N
K< —— Ko c - Kp T L
D G

G
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Proof. Denote the unit, counit and the modifications of the biadjunction as follows:

S:GJDH:>1£, a:sGJDoGJDczlng,
c:1lxg= HGJp, T7:1lg=~HsocH.

We will show that the components of the counit sy, : GDHL — L are coherently closed
for G-lifts. By (the dual of) Theorem B.3] there is a right colax adjoint to G. We will prove
that it is isomorphic to Jp H.

Let us first prove the following: given a 1-cell [ : GDA — L in L, any pair (DI’ \) where
! 1A — HL is a 1-cell and ) is an invertible 2-cell as pictured below exhibits DI’ as the
right G-lift of [ along sy

L+  GDHL

%

GDA

GDU

By Theorem T3] HL has the structure of a D-algebra. Denoting its multiplication
map by hy, as in Remark [£.14] we have the following composite adjunction with invertible
counit:

Up(—)ya

TN e 2 N

(12) K(AHL) — s K(A,DHL) —— s Kp(DA, DHL)

Jp
Notice that there is an isomorphism:

2:5,GJp(—=)" ~5,G(—): Kp(DA,DHL) — L(GDA, L),
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with the component at f: DA — DHL being given by the 2-cell¥:

GDhy,

apraL —¢Prii . appap?HL CPHOPry appapHL —CSPML  GpHI

HUDHL ‘ ‘
GDf SGD2HL MSGPDHL SGDHL “SSL sL
(13) | |

GD?A GDQHL GppHL GDHL ————— L
GDya (GY) ﬂ GDA

_—

We have the following chain of bijections:

GDA

/ (4) # 7/
Kp(DA,DHL)(f,Dl') = K(A, HL)(f#,1')

(B) # ,
~ L(GDA,L)(s o GDf7, s o GDI)

C
(;) L(GDA, L) (s, o Gf,sr, o GDI')

D
2 L(GDA,L)(sp, o Gf, 1)

—

The bijection (A) follows from the adjunction (I2]) above. (B) is given by the action on
morphisms of the following functor:

(14) s, o GJp(—) : K(A, HL) — L(GDA, L).

This functor is (by assumption) an equivalence — in particular it is fully faithful. (C) is
given by the pre-composition with :l]?l and (D) is given by the post-composition with A.
To conclude that (DI, A) is a G-lift, it has to be shown that the composite bijection is given
by the assignment o — A o s;Ga. Equivalently, the composite of the first three bijections
is the assignment o — s;,Ga. We prove this fact in the appendix as Lemma

The pair (DI', \) is thus a G-lift. Because the functor (I4]) is essentially surjective, such
a G-lift is guaranteed to always exist. Make now a choice of a lift for every [ : GDA — L
and denote it by (DI™ ). To prove that our choice is coherently closed for G-lifts, the

3We have not shown it in this diagram, but the 2-cell has to be pre-composed with the associators for
the pseudofunctor GD so that its source really equals s, GDf%.
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following 2-cell needs to be shown to be a G-lift of [ : GDA — L along sy:

L+  GDHL
l ]LH GD(ZSGDA)

GDA +-26¢PA GDHGDA =L |G(Dlsapa)toDly)

GDIJL

GDA

But this follows from the what we have shown at the beginning since this composite 2-cell
is invertible and the 1-cell component of the proposed G-lift is (isomorphic to) Dh for a
1-cell h in K. For the same reasons, the unit and composition axioms in the assumptions
of Theorem [3:3] are satisfied.

We thus have a right colax adjoint to G : Kp — L, let us denote it by R : L — Kp.
Since the pseudonaturality square of the counit s is a G-lift (this again follows from what
we have proven at the beginning of the proof), for any 1-cell [ : L — K there exists a unique
invertible 2-cell ¢; : Rl = JpHI making the following diagrams equal:

L«  GDHL L«  GDHL
G,

l s; GDHI| <<= |GRI = l L GRI

K +——— GDHK K +——— GDHK

It is now routine to verify that this data gives an invertible icon § : R = JpH (which is an
isomorphism in Psd[L, Kp]), proving that the pseudofunctor JpH is right colax adjoint to
G:Kp — L as well. O

Our first application will be the following:

Corollary 4.16. Given a left Kan pseudomonad (D, y) on a 2-category K, the biadjunction
between the base 2-category and the Kleisli 2-category induces a colax adjunction on the
Kleisli 2-category:

Fp JpFp
/_\ /_\
K T Kp VSN Kp T Kp
\J/‘ \_//
D

The following is a categorification of the fact that for an idempotent monad, the Kleisli and
EM-categories are equivalent:
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Corollary 4.17. Given a left Kan pseudomonad (D, y), the associated free-forgetful biad-
junction induces a colax adjunction between the Kleisli 2-category and the 2-category of
algebras:

UD JD OUD
/\
K T  Ps-D-Alg > Kp T Ps-D-Alg
\F_D/ \/{

The following is a change-of-base-style theorem:
Corollary 4.18. Let D be a lax-idempotent pseudomonad on a 2-category K and T be a
pseudomonad on a 2-category L. Assume that:

e there is a biadjunction between the base 2-categories:

Then there is an induced colax adjunction between the Kleisli 2-categories:

1/_\
Kp T L

~_

L#
Proof. Composing the Kleisli biadjunction with the L -4 R biadjunction we obtain the
following the following biadjunction on which we can apply the theorem:

R Fr

N N

K T L T ﬁT

N TN

L T

JD L#
Kp

O

Example 4.19. Consider a 2-category K with comma objects and pullbacks and take for
D the fibration 2-monad on I/C and T the fibration 2-monad on K/D. For any 1-cell
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k:C — D gives a 2-functor ks : K/C — K/D with a right 2-adjoint £* given by pulling
back. The 2-functor k. clearly extends to the colax slice 2-categories, hence giving rise to
a lax adjunction between the colax slices:

DoFpok*

/\
K//c ¥  K//D

~_

ki

Example 4.20. In the next section (Corollary (.10 we will see how, when given a mor-
phism of 2-monads 6 : S — T, this gives rise to a colax adjunction between T-Alg, and
S-Algl.

Remark 4.21 (Left Kan 2-monads). Assume that (D,y) is a left Kan 2-monad and that
we have the same starting biadjunction as in Theorem HI5l except now the modifica-
tions o, 7 are the identities and the counit s is 2-natural. Going through the proof, note
that s;, o GJp(—) : K(A,HL) — L(GDA,L) is an isomorphism of categories: for each
| : GDA — L there is a unique I~ : A — HL such that s; o GDI* = [. Because
Jp : K — Kp is now a 2-functor and because of the uniqueness of each I, the collection
sp, : GDHL — L is strictly closed for G-lifts (dual of Definition B.7)). By Remark B.8 we
obtain a colax adjunction for which the modifications are the identities and the counit s is
2-natural.

4.3. Coreflector-limits.

Definition 4.22. Let K be a 2-category and F : J — K, W : J — Cat 2-functors.
A coreflector-limit of F' weighted by W is given by an object L € K and a 2-natural
transformation A : W = K(L, F—) with the property that for every A € K, the canonical
comparison functor

kAt K(A L) — [J,Cat](W,K(A, F?)),
ka:(0:A—L)— (K(0,F?)0o\),

is a coreflector in Cat. Coreflector-colimits in K are defined as coreflector-limits in ACP.
Analogously, we say that A is an X-limit if k4 is in class X of functors for every A.

Remark 4.23. Because the maps k4 : K(A, L) — [J, Cat](W,K(A, F?)) together form a 2-
natural transformation x : K(—, L) = [J, Cat](W, K(—, F'?)), by [21, Theorem 1] the above
definition is equivalent to requiring that x is a coreflector in the 2-category Colax[/C, Cat]
(of 2-functors K — Cat, colax natural transformations and modifications).

Remark 4.24 (Enriched weakness). The notion of a coreflector-colimit is a special case of
an enriched weak colimit in the sense of [I7, Section 4]. The enriching category V is equal
to Cat with the class £ being functors that are coreflectors. In [I7], the authors studied
coreflector-colimits for which « is actually a retract equivalence — meaning that the unit of
the adjunction is the identity and the counit is invertible.
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Remark 4.25. Conical (left-adjoint)-limits of 2-functors have first been introduced [8,
1,7.9.1] under the name quasi—limz'tﬂ.

Remark 4.26 (Ordinary weakness). Notice that every rali- and lali-limit cone A is a weak
limit of F weighted by W. What this means is that given a different cone p: W = (A, F—
—), the left adjoint L4 to k4 gives a comparison map Lau : A — L such that:

w=K(Lyu, F—=)oA\.

This is like the definition of a 2-limit except that there is no uniqueness requirement. It
is not the case that every weak limit is a rali-limit. This is because if the 2-category K
is locally discrete, the notion of rali-limit coincides with an ordinary limit and not a weak
limit.

Example 4.27. An object I in a 2-category K is lali-initial if the unique functor into the
terminal category admits a left adjoint for every object A € K:

K(I,A) 1L *

~__

Clearly, this happens if and only if the hom-category K (I, A) has an initial object for every
A e K. For a particular example, consider the 2-category MonCat; of monoidal categories
and lax monoidal functors. The terminal monoidal category = is lali-initial because for every
monoidal category A we have an isomorphism between MonCat;(*,A) and the category
Mon(A) of monoids in A, and this category has an initial object given by the monoidal unit
of A.

Example 4.28. Consider a 2-category K with a zero object 0 € K and with a further
property that the zero morphism 04 5 : A — B is the initial object in IC(A, B) for every
pair of objects A, B. Then 0 is a conical lali-colimit of any 2-functor F': J — K. This is
because in the definition of a lali-colimit:

/\

K(0,A) T  Cocone(A4, F)

~_

we have K(0, A) =~ *, and so the question becomes whether the category of cocones of F' with
apex A has an initial object. But it does and it is given by the cocone whose components
are the zero morphisms. This for instance applies to the poset-enriched categories Rel of
sets and relations and Par of sets and partial functions.

Example 4.29. Let K be a 2-category with pullbacks and comma objects and consider the
slice 2-category K/C and the colax slice 2-category K//C' from Example It is known

An fact, the definition in [8] is stronger than ours because it requires the existence of a 2-functor picking
the limits that is right lax adjoint to the constant embedding 2-functor K — K.
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that the product of two objects f1, f2 in IC/C' is the diagonal in the pullback square of fi, fs

/\
\/

One guess would be that this becomes a weak product in K//C after applying the in-
clusion 2-functor K/C — K//C, but that would be a wrong guess. To calculate the weak
product of fi, fo in K//C, we first calculate the product of the comma object projections
for f1, fo (using the notation from Example 2.20)) in K/C' as pictured below left:

L5 Py b Ay

/ N \

! Wf Xi fi

C  em—— C
Denote [ := 7y, o 7;. The claim now is that the object | € //C together with the colax
triangles (p;7;, xi7i) : | — f; (here y; is the comma object square pictured above right) is

the lali-product of fi, fo in K//C. We will establish why this is the case after we prove the
main theorem in this section.

Example 4.30. Bilimits are a special case of coreflector-limits where k4 is an equivalence
for every A € K. In case k4 is an isomorphism for every A € K, this is the notion of an
ordinary 2-limit.

Remark 4.31 (Uniqueness of rali-limits). Rali-limits are not unique up to an equivalence.
It is not even the case that given two rali-limit objects L, Lo, there exists a left (or right)
adjoint 1-cell L1 — Ls. For a particular example, consider again the poset-enriched category
Par of sets and partial functions. The empty set ¢J is the terminal object in Par, in
particular it is rali-terminal. The singleton set = is rali-terminal: the ordered set Par(A, )
has a maximal element given by the unique total function ! : A — . They are also
“normalized” in the sense that 15 and 1, are terminal objects in the hom ordered sets they
belong to.

Since this 2-category is poset-enriched, equivalent objects would be isomorphic, and an
isomorphism in Par has to be a total function. Thus * and (J can not be equivalent in Par.
Moreover, it can be seen that there is no left adjoint 1-cell * — 7.

We may now also give an example of two non-equivalent left colax adjoints that we have
promised in Remark 2.8 It can be seen that given a 2-category K, the 2-functor = — K
picking an object L is a colax left adjoint to the unique 2-functor K — = if and only if L
is rali-initial. In this colax adjunction, the modification ¥ is invertible if and only if the
1-cell 17, is the initial object of (L, L). Based on above paragraphs, the unique 2-functor
Par? — x has two left colax adjoints that are not equivalent.
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Theorem 4.32. Assume K is a 2-category that admits weighted J-indexed bilimits and
assume D is a lax-idempotent pseudomonad on K. Then, the Kleisli 2-category KX p admits
weighted J-indexed coreflector-limits.

Proof. Let G : P — Kp be a 2-functor, write G for the 2-functor DA — Kp(DA,G?).
Denoting again by Up the canonical pseudofunctor Kp — IC, there is a biadjunction where
the right biadjoint sends a weight W to the bilimit of UpG : P — K weighted by W:

{77UDG}
/—\
K ‘T) ICD —é’> PSd[P, Cat]Op

This is because of the following equivalences that are pseudo-natural with respect to
W e [P,Cat] and A € K:

K(A, {W,UpG}) ~ Psd[P, Cat](W, K(A, UpG—))
~ Psd[P, Cat]|(W,Kp(DA,G-))
= Psd[P, Cat]?(Kp(DA,G—),W).

Transferring the identity across those equivalences, we see that the counit of the biad-
junction is the composite pseudonatural transformation:

W —2 s (W, UpGY, UpG—) ~2E00 ke (DIW, UpGY, G—),
where Ay is the W-weighted bilimit cone for UpG : P — K. By Theorem this
induces a colax adjunction with the same counit:

Jp{—,UpG}

/;\

’CD —é> PSd[P, Cat]Op

Notice that from the beginning of the proof of Theorem B4 it can be seen that there is
an adjunction on hom categories described below whose unit is invertible:

//\

]CD(B,JD{I/V, UDG}) T PSd[’P, Cat](W,ICD(B,G—))

\—//7

0—Kp(0,G—)o(pG—)xoJpoiw

This exhibits the pseudonatural transformation (pg—)« o Jp o Ay as the coreflector-limit of
G weighted by W. O

Example 4.33. The bicategory PROF of locally small categories and small profunctors is
coreflector-complete. This is because by Example 2.19] it is a Kleisli bicategory for a left
Kan pseudomonad on a complete 2-category CAT.

Example 4.34. The proof of Theorem gives a concrete way to compute limits. Con-
sider the colax-idempotent pseudomonad from Example We can see that the process
of computing lali-product of two objects (f1 : A1 — C, fa : Ay — () in the colax-slice
2-category K//C agrees with the process described in Example
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Remark 4.35. Given a left Kan 2-monad (D, y), going through the proof of Theorem (.32]
(and considering Remark [£.21]) we may now replace Psd[P, Cat] by [P, Cat] and the result
can be changed to the claim that Kp admits J-indexed lali-limit whenever K admits them
as 2-limits.

We end the section with introducing the concept of preservation of weak limits:

Definition 4.36. We say that a pseudofunctor H : L — L preserves X-limits (where X
is any of the classes of morphisms in Definition for the case of L = Cat) if, whenever
A: W = K(L, F—) exhibits L as a X-limit of F': J — K weighted by W : 7 — Cat, the
composite pictured below is an X-limit of HF' weighted by W:

W —2— K(L,F-) —2— [(HL,HF-)

Example 4.37. In case K, L admit comma objects, their preservation as rari-limits has
been studied in [24] Definition 7.1] where it has been called preservation of lax pullbacks
up to a right adjoint section. For instance, given a finitely complete 2-category K, the
2-functor (—) x Z has this property for any Z € K (see [24, Example 7.3]). In Weber’s
later work [23, 6.1 THEOREM], the class of familial functors have been shown to preserve
comma objects as lari-limits.

5. APPLICATIONS TO TWO-DIMENSIONAL MONAD THEORY

Definition 5.1. Let T be a 2-monad on a 2-category K. We will say that it satisfies
Property L if the inclusion T-Alg, — T-Alg; admits a left 2-adjoint and the corresponding
lax-morphism classifier 2-comonad @; on T-Alg, is lax-idempotent.

By Theorem 2.22] Proposition 2.25] a 2-monad T on K will have this property when K
admits oplax limits of an arrow and T-Alg, is sufficiently cocomplete (admits lax codescent
objects).

To apply the (appropriate dual of the) results developed in Section to the lax-
idempotent 2-comonad @, notice that (with the hint of the lists in Remark and
[4.2)) this amounts to “going” from K to K. For instance “coreflection-inclusion” gets
replaced by “reflector”.

5.1. Lax flexibility. For this section, recall the notions of semifiexible and flexible algebras
for a 2-monad T from [2l Remark 4.5, page 23]. By [3| Proposition 1], a T-algebra (A, a)
is semi-flexible if and only if it admits the structure of a pseudo-Q,-coalgebra. A pie
T-algebra was then defined to be a T-algebra that admits a strict (),-coalgebra structure.
This motivates us to define:

Definition 5.2. Let T be a 2-monad on a 2-category K that satisfies Property L. A
T-algebra (A, a) is said to be:

o lax-semiflexible if it admits a pseudo-Q;-coalgebra structure.
o lax-flexible if it admits a normal pseudo-Q);-coalgebra structure.
e lax-pie if it admits a strict Q;-coalgebra structure.
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Remark 5.3. Every lax-Y T-algebra is Y, where Y € {flexible, semiflexible, pie}. This
is because of the fact that by Proposition there is an induced 2-functor from pseudo-
Q-coalgebras to pseudo-(),-coalgebras that commutes with the 2-functors that forget the
coalgebra structure (and thus keeps the T-algebra structure intact).

Example 5.4. In Corollary we will see that every free T-algebra is lax-flexible; this is
a strengthening of the fact that every free T-algebra is flexible ([2, Corollary 5.6]).

Example 5.5. Fix a category J and consider the 2-monad 7" on [ob 7, Cat] whose algebras
are weights (2-functors) J — Cat. Weights that index laz limits are precisely the wights
that are cofree-Q;-coalgebras, i.e. those of the form Q;W (see [12, Chapter 5]). Since a lax
limit is in general not a pseudo-limit [2, Remark 5.5], not every pie algebra is lax-pie.

Following Example [£.5 and Remark LTT], the application of (the dual of) Proposition 9]
to the lax-idempotent 2-comonad @; provides a lax version of [3| Theorem 20 a)]. It reads
as:

Theorem 5.6. Let T be a 2-monad on a 2-category K satisfying Property L and denote
by U : T-Alg, — K the forgetful 2-functor. A T-algebra is lax-semiflexible, semiflexible, if
and only if, respectively:

o T-Alg,((A,a),—) : T-Alg, — Cat sends U-reflectors to reflectors in Cat.

o T-Alg,((A,a),—) : T-Alg, — Cat sends U-lalis to lalis in Cat.

Remark 5.7. In a future work we will study lax-pie T-algebras for a 2-monad 7. Using
a comonadicity theorem, it can be shown that when 7' is a 2-monad of form Cat(T”) for
a cartesian monad T” on a category £ with pullbacks, lax-pie T-algebras are equivalent to
T’-multicategories.

5.2. Colax adjunctions and lali-cocompleteness of lax morphisms. Considering
Remark .21l the application of Theorem [£.13] and Theorem [4.15] for the 2-comonad @
reads as:

Theorem 5.8. Let T be a 2-monad satisfying Property L. Any 2-adjunction below left
induces a colax adjunction below right:

L2l G
1 m

Moreover, for every L € L, the T-algebra H L is lax-flexible.

Corollary 5.9. The free-forgetful adjunction for a 2-monad T on a 2-category K satisfying
Property L induces a colax adjunction between T-Alg; and K. In particular, every free
T-algebra is lax-flexible.

FT

JFT
€ /_\
T-Alg, ———— T-Algy ———— K o T-Alg, 4+ K

U
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Corollary 5.10. Let 7,5 be two 2-monads on a 2-category K satisfying Property L
and let 8 : S — T be a strict monad morphism. Assume that the induced 2-functor
0* . T-Alg, — S-Alg, admits a left 2-adjoint 6, (this is the case when K is complete
and cocomplete and T is finitary, see [2 Theorem 3.9]). Then there is an induced colax
adjunction between T-Alg; and S-Alg;:

[ =)

N TN N
T-Alg, T S-Alg, T S-Alg, o T-Alg; T S-Alg,
0 0
J 0*
T-Algl

The following shows lali-cocompleteness of T-Alg;:

Theorem 5.11. Let T be a 2-monad on a 2-category K that admits oplax limits of an
arrow. Assume that T-Alg, is cocomplete (in particular T satisfies Property L). Then
T-Alg; is lali-cocomplete.

Proof. This follows from (the dual of) Remark O
Remark 5.12. By Remark[4.20] this in particular shows that T-Alg; is weakly cocomplete.

Corollary 5.13. The following 2-categories are lali-cocomplete:

(1) for a category J, the 2-category Lax[J,Cat] of 2-functors J — Cat, lax-natural
transformations and modifications,

(2) the 2-category of monoidal categories and lax-monoidal functors and its symmet-
ric/braided variants,

(3) the 2-category of small 2-categories, lax functors, and icons,

(4) for a set ® of small categories, the 2-category ®-Colim; of small categories that
admit a choice of J-indexed colimits for J € ® and all functors between them.

Proof. Each of these is a 2-category of form T-Alg;, where K is a complete and cocomplete
2-category and T is one of the following 2-monads:

(1) the 2-monad T on [ob J,Cat] given by the left Kan extension along ob J — J
followed by restriction, see |2} 6.6],

(2) the 2-monad on Cat for monoidal categories, see [16], 5.5],

(3) the 2-category 2-monad 7" on the 2-category Cat-Gph of Cat-enriched graphs, see
[3, 3.3],

(4) the 2-monad T described in [13], Theorem 6.1] whose strict 7-morphisms are functors
that preserve the choices of ®-colimits. Lax T-morphisms are all functors because
this 2-monad is lax-idempotent by [I3, Theorem 6.3].

O

Remark 5.14. There is also a dual version for the 2-category T-Alg, of T-algebras and
colax T-morphisms. If T-Alg, is sufficiently cocomplete, there exists an induced 2-comonad
Q. (the colax morphism classifier 2-comonad) and if K admits lax limits of arrows, Q. is
colax-idempotent. If T-Alg, is cocomplete, T-Alg,. can be seen to be rali-cocomplete.
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APPENDIX A. AUXILIARY LEMMAS

Lemma A.1. In the proof of Theorem [3.3}

e ¢ is colax-natural,
e & is a modification,
e the second swallowtail identity.

Proof. In this proof, we will reference the defining equations for v/,//, Fa, e, ¥ above the
equals sign. In the unlabeled equations we use the middle-four interchange rule combined
with the pseudofunctor laws.

€ is colax-natural: The composition axiom amounts to proving the equality of the
following 2-cells:

FUB —— FUB —— FUB — % B FUB —% B
lFUh ”fh lh ‘ lh

FU(gh) i = FUC o —s C FU(gh) n O
FWgelh lFUg ”eg lg l lg

It is enough to prove these after applying U(—) o yyyp o UepD o @ pU(gh) on both sides.
We then have:

U(LHS) oy Yyypo UepDy,cugh) © PpU(gh) =

= Ul(gep 0 €,FUL o epY)yup oy 'y o UepUFyyup o UepDy, v (gh) © PpU(gh)

@ Ul(gen o egFUR o epY)yup oy tyup o UepDy,cvgun © ®pUgUh oy

= Ul(gen 0 €,FUR)yup oy *yup o UepUryup o UepDy, cvgun © ®pUgUh o

@ Ul(gen o egFUR)yup oy tyup o Uepy tyup o Ue,UFU gDy, ouno
oUepDy, ,ugUho®pUgUh o~y

= Ul(gen)yup oy ‘yup o Ue,UFUhyyp oy "UFUhyyp o UepUFU gD, .uno
oUepDy, ,ugUho®pUgUh o

D U (gen)yn 07 yus 0 UFUhyys o UgUenDyyoun 0 UgdpUh o 5

=y YyusoUgUenyup o Ugy 'yup o UgUepDy, oun o Ug®pUh oy

® s o Ugy  yup o UgUhdp o

=~ Yyup oy Wepyyp o UgUhDp oy

QU(RHS) o v yup 0 UepDy, cv(gn) © ®U (gh).



36 MILOSLAV STEPAN

The unit axiom for ¢ amounts to showing that:

FUB —% B
/ﬁ\u\ .
FUlp €1p = FUB —Flygp— FUB ———— B
\ﬁzy
FUlg
FUB ————— B

It suffices to prove that these 2-cells are equal after applying the 2-cell
U(=)ovy tyupo UepDy, zu15 © pUlp on both sides. This is done as follows:

-1 U(esF
UEBUFU].B:L/UB’% U(GBFU].B)yUB (G_B; L)y[i/—> U(GBF]-UB)ZJUB
~ Y "YuB
UegUFwus lU (e )yuB
i UepUlyyn vy lyum
UepDy, puip UegUFlpyyp —— UegUlrypyyp ——— Uepyus

U —1
UepyypUlp —————Uepyunt / Uepyun

/'YilyUB

opUlp UlpUepyun @n Ueigyus
Ulp®p

Ulp T UepyypUlp UEBUFUlByUBWB U(eBoFUlg)yUB

PpU
UEBDyUBUlB

The local naturality for e amounts to showing that the 2-cells below are equal:

FUB —— FUB —% B FUB—% B——RB
FUhl — lFUk ek” lk FUhJ’ ”ﬁh hl s lk
FUC == FUC ——(— C FUC ——(— C ——=C

An analogous approach will be done here as well, this time pre-composing with the 2-cell
U(=) oy Yyup o UepDy,,un o pUh:

UecDy, cun

—1
Uh PoUh UecyucUh UecUFUhyys —28 U(ec FUR)yu 5
\ Ua \ UGC?JUCUQJ/ @) J{UEcUFUayUB J{U(ecFUa)yUB
DUk
@pUh Uk ——— UecyucUk UecUFUkyyp —— U(ec FUk)yuB
Uhdp — UepDy un Y 'yus
Uk®p vue @
UecyvcUh @  UhUepyun TaUiouon UkUepyus Ueryun
~ ~
UepDy, cun ’Y_lyUB\ Y lyus

UecUFUhyyp —— UlecFUR) ;— Ul(hep)yun Ulkes)yus
Y "YuB €ELYUB

U(aep)yuB
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¥ is a modification: This amounts to showing that these 2-cells are equal:

//ﬂh\

FA Y FUFA - cra—— FA FAZrf— FB FA
,Y/
/ FUFf ers Ff ’ Fyp Fy
Py %3
Flysf) FUFB ———— FB Flsf) FUFB ————— FB

This time we precompose both sides with U(—) oy lyypo UerpDyyppysr © Preysf to
obtain:

U(LHS)ya oy 'yup o UerpDyyppysf © ®raysf =
=U(FfYao0ersFya)yaoy 'yaoUerpUy'ys o UepgUFD,, ;yao
o UGFBDyUFBny o QFBny

@ U(FfUa0epiFya)yacy 'yaoUerpUyya o UeppDupysy,o

oUerpyurpDyzr o Preynf

o U(FfUaoepsFya)yaoy 'yaoUerpy 'yao UepgUFUF Dy, 4y.0
oUeppUFUF Dy, .sursya o UerpyureDy, s o Prpys f

= U(FfVa)yao 'yaoUerfUFyays o U(eppFUF [)Dyy 0,0
oy yuraya o UerpDyyppuriya o ®rpUF fya oDy,

QU (Ffwa)ya oy ya 0y U Fyaya o UF fUepaDyyp 4yn0
CUFf®ayacDyys

=y YA o UFfUV aya o UF fy 'ya o UF fUepaDy, ;. 4y,0
CUFf®ayacDyyy

O tys o UF i ya oDy

O ~1yy 0 UV RUF fya o Uerpy ya o UeppUFysD,, o
oUerBDy,ppysf o Preysf

= U(VpFf)yaoy 'yaoUerpy 'ya o UepgUFygDy, o
oUerBDy,ppysf o Proynf

@ UWFf)ysoy yaoUerpUyyaoUerpDyyppusnt © Preysf

=U(RHS)ya oy ‘yus o UersDyyppyss © Proysf-

The second swallowtail identity: This amounts to showing the following equality,
which we will again do by an appropriate pre-composition:
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m
(F<I> B

FUB

FUFU — Y5 s FUB = €pl
F(Uepyun)
\f'UeB €ep €EB

FUB B

U(LHS)yup oy ‘yup o UesDy,, o &5 =

=U(egVypoe, Fyup)yup oy tyup o UepU~yup o UegUF® pyy po

oUepD odp

YyuB

© UlegVupoen Fyun)yus oy tyup o UesU~Yyun o UesDyy yUepyns©
e} q)BUEByUB e} q)B

@ UlepWyp o ey Fyup)yup oy ‘yup o Uepy 'yupo
oUegpUFUepDy; vy pyyp © UeBDy, suepyup 0 PUcpyup 0 OB

= U(epPuB)yus oy ‘yus o Ue,UFyupyus oy 'UFyupyupo
oUepUFUepDyy pypyys © UeBDyypepyun © Uepyup®Pp o Pp

@ UlesVup)yus oy ‘yus oy 'UFyupyup o UepUepy pDo
oUep®pyup o B

=~y Yyup o UegUVpyyp o UegUerusDyy poypurs © Ue®pyun o ®p

@ _ _
=~ lyypoUept  yyp o p

= Y lyup o UepUlyyp o UepDy,, o ®p
= U(RHS)yup oy 'yup o UepDy,, o ®p.

Lemma A.2. The composite bijection (A)+(B)+(C) in the proof of Theorem
Kp(DA,DHL)(f,Dl') ~ L(GDA, L)(sf, o Gf,s1, o GDI'),

is given by the assignment:

a— sGao.

Proof. Because of the swallowtail identity for the biadjunction in Proposition 213} it can
be seen that the counit of the adjunction (I2)) evaluated at f : A — HL is equal to the
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following (using notation from Remark [4.14]):

bf . pHL — M L HL

— / €
Yy YHL L
\ ﬂ f /

The composite bijection (A)+(B)+(C) is thus the assignment:

a— s oGD(epf o hLyBll, ohraya) o:ljjl.

Unwrapping the definitions of variables hy,, eL,:lel, what we need to show that the com-
posite 2-cell below equals s;, G (note that we use the same convention for the modifications
on which a pseudofunctor is applied as in Definition [2.0)):

GDA
Gf
,\ Gppa GD?HL — Gppur— GDHL —*— [,
A . T T
(Gp)f S -1 -1
GD2HL SGppyy SODHL sop sL
| |
2 2 2
GDAGE:AGD A &Daj C;D HLGmLGDHGD HL — GDHGDH%ﬁsgDHL
GD?'  GDyp1 / (GDHG®) g

D GDHGDygL
(G y)l/ﬂ /jC)yHl /
GDU

GDHL — GDHGDHL

The diagram below proves this equality:

sLGF(GU) 7! s1(Gp);'GDya
sLGf 2 sLGfGppaGDya s.GppuLGD fGDya
sLGCxl (%) lsLGaGpDAGDyA (@) lsLGpDHLGDaGDyA
, s, GDU'(G) ;! , . o
s GDI stGDI'GppaGDys ——— s1(Gp)p;GDya — spGppuarGDI'GDy4
;
1l sL(GU) 5}, GDU \) lSLGpDHLGDy;/l
SLGDl, s (G¥) g, GDU SLGpDHLGDyHLGDl/
(*) sLGppuLGDypLoyy GDU lSLGPDHLUB}{LGDyHLGDl/
—
1 s.GpprLGDyrLsepaLGDegGDU ©  s1GppuLsep2rrGDepnLGDyn L GDU
—
spop s GDU sLGPDHLSGDyy GDcar,GDI lSLGPDHLSGDQHLGDC,,HLGDI’
s, GDU sL(GV)ursepurGDenGDY  s;Gppursaep2n GDHGDyy,GDcy,GDU
- ’ 4 o1 . !
sL(GDr)LlGDlT SLJHLg)Dl - w LSL"GpDHLGDHGDyHLGD°HLGDl
s1GDHs,GDcyr,GDI' «———— spsqgpur.GDceyr,GDU s156pHLGDHGppy GDHGDy1,GDey, GDU

s GDcy,GDU
Sep SECHL sLsaprL(GDHGY) g1 GDex,GDU
In this diagram:

(a) is the local naturality of (Gp)~*,

[ ]
e (b) is the modification axiom for (GW)~!
e (c) is the swallowtail identity for (s, c),
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(d) is the equation derived from the local naturality of s,

[ ]
e (e) is the modification axiom for o1,
[ ]

(%)’s are the middle-four-interchange laws.
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