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COLAX ADJUNCTIONS AND LAX-IDEMPOTENT PSEUDOMONADS

MILOSLAV ŠTĚPÁN

Abstract. We prove a generalization of a theorem of Bunge and Gray about forming
colax adjunctions out of relative Kan extensions and apply it to the study of the Kleisli
2-category for a lax-idempotent pseudomonad. For instance, we establish the weak com-
pleteness of the Kleisli 2-category and describe colax change-of-base adjunctions between
Kleisli 2-categories. Our approach covers such examples as the bicategory of small profunc-
tors and the 2-category of lax triangles in a 2-category. The duals of our results provide lax
analogues of classical results in two-dimensional monad theory: for instance, establishing
the weak cocompleteness of the 2-category of strict algebras and lax morphisms and the
existence of colax change-of-base adjunctions.
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1. Introduction

The primary motivation for this paper is to develop lax analogues of classical results in
two-dimensional algebra, in particular two-dimensional monad theory as studied in [2]. The
examples commonly studied in this area include 2-categories of categories with structure and
pseudo morphisms between them – functors that preserve the structure up to coherent iso-
morphism. For instance categories equipped with a class of colimits and colimit-preserving
functors, or monoidal categories and monoidal functors. Such 2-categories can be described
as the 2-category T-Alg of T -algebras and pseudo-T -morphisms for a 2-monad T . Various
results have been proven in [2] about T -algebras and pseudo-T -morphisms, for instance their
bicocompleteness or the existence of change-of-base biadjunctions between 2-categories of
algebras and pseudo-morphisms for two different 2-monads S, T .

On the other hand, there are fewer known results about 2-categories of categories with
structure and lax morphisms between them. These still include interesting examples, for
instance categories equipped with a class of colimits and all functors between them, or
monoidal categories and lax monoidal functors. They can also be described using 2-monads,
this time as the 2-category T-Algl of T -algebras and lax T -algebra morphisms. While
limits in T-Algl have been well-understood ([15], [18]), not much has been proven about
colimits. This was for a good reason: 2-colimits or even bicolimits often do not exist in those
2-categories. Our task in this paper is to suitably weaken the notion of a bicolimit and show
that 2-categories of lax morphisms are in fact cocomplete in this weak sense. Another task
we have is to establish change-of-base theorems for algebras and lax morphisms. Again,
the notion that works for pseudo-morphisms – biadjunctions – will have to be replaced by
a weaker one – colax adjunctions.

The 2-category T-Alg of algebras and pseudo-morphisms can often be described as the
Kleisli 2-category for a certain pseudo-idempotent 2-comonad. A key observation to be
made is that many statements and proofs about T-Alg in papers [2], [3] are very formal
and are in fact true for any pseudo-idempotent 2-comonad on a 2-category. They also
easily dualize to pseudo-idempotent 2-monads. Since we are interested in the lax world,
we are naturally led to the study of Kleisli 2-categories for lax-idempotent pseudomonads,
using the formalism of left Kan pseudomonads [19]. The usage of pseudomonads instead
of 2-monads will allow us to consider a wider array of examples such as the small presheaf
pseudomonad, and lets us prove that the bicategory PROF of locally small categories and
small profunctors is weakly complete in the sense of the previous paragraph.

As mentioned, colax adjunctions are inevitable when working with lax morphisms. The
definition of a (co)lax adjunction is hard to work with because it contains a large amount of
data. Our first main result, Theorem 3.3, shows that a left colax adjoint F to a pseudofunc-
tor U can be more conveniently given by a collection of 1-cells yA : A Ñ UFA satisfying
certain “relative U -left Kan extension” conditions. This is an extension of the work of
Bunge and Gray ([4], [8]) where this has been proven for the case when U is a 2-functor.
A result of this kind is similar to how left Kan pseudomonads provide a more convenient
description of lax-idempotent pseudomonads. We will use this theorem to obtain results on
colax adjunctions involving the Kleisli 2-category for a lax-idempotent pseudomonad (The-
orem 4.15), and the dual of this result will be used to obtain results on colax adjunctions
involving T -algebras and lax T -morphisms for a 2-monad (Theorem 5.8).
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The paper is organized as follows. In Section 2 we recall the necessary concepts that we
will need in this paper. With the small exception of left Kan 2-monads, everything here is
well-known.

In Section 3 we prove the generalization of Bunge’s and Gray’s results on colax adjunc-
tions to the setting of pseudofunctors: we show that there is a correspondence between left
colax adjoint pseudofunctors to a pseudofunctor U and collections of 1-cells yA : A Ñ UFA

satisfying the aforementioned relative U -left Kan extension conditions (Theorem 3.5).
In Section 4 we first give (an essentially folklore) characterization of algebras for a lax-

idempotent pseudomonad in terms of the existence of certain adjoints (Proposition 4.9).
We then use this characterization and the generalized Bunge’s and Gray’s result to prove
that when given a lax-idempotent pseudomonad D on K, any left biadjoint K Ñ L that
factorizes through the Kleisli 2-category KD gives rise to a colax left adjoint KD Ñ L

(Theorem 4.15). We list various applications, for instance the weak completeness of KD

(Theorem 4.32) provided that K is bicomplete, or that there is a canonical colax adjunction
between KD and the 2-category of pseudo-D-algebras (Corollary 4.17).

In Section 5 we spell out what these results in particular say about the 2-category T-Algl
of strict algebras and lax morphisms for a 2-monad T . This includes the aforementioned
colax base-of-change theorem (Corollary 5.10) as well as the weak cocompleteness result
for T-Algl (Theorem 5.11).

Prerequisities: We assume the reader is familiar with 2-monads and pseudomonads and
their pseudo and strict algebras. We also assume the familiarity with lax-idempotent pseu-
domonads.

Acknowledgements: I want to thank my Ph.D. supervisor John Bourke for his careful
guidance and all the feedback I have received. I also want to thank Nathanael Arkor for
sharing his knowledge with me.

2. Background

2.1. Colax functors and transformations. In this text we will primarily use the colax
versions of concepts such as lax functors, lax transformations. The motivation for this is
that we are building on the work of [4] which uses colax structures, as opposed to lax ones1.

Definition 2.1. Let A,B be 2-categories. A colax functor F : A Ñ B consists of:

‚ A function F0 : ob A Ñ ob B,
‚ for every pair A.B of objects of A a functor FA,B : ApA,Bq Ñ BpFA,FBq,
‚ for every composable pair pf, gq of morphisms in A a 2-cell (associator)
γf,g : F pg ˝ fq ñ Fg ˝ Ff ,

‚ for every object A P A a 2-cell (unitor) ιA : F1A ñ 1FA,

subject to associativity and unit axioms, see for instance [9, Definition 4.1.2]. If γ and ι go
in the other direction, we obtain the notion of a lax functor. In case γ, ι are invertible, this
is called a pseudofunctor.

1In [4], colax natural transformations are referred to as lax. In this paper we are following the modern
terminology.
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For simplicity, we will always use the letters γ, ι for the associator and the unitor of a colax
functor, and always omit the index for any of its components.

Definition 2.2. Given 2-categories A,B and two pseudofunctors F,G : A Ñ B, a colax

natural transformation α : F ñ G consists of the following data:

‚ For every A P A a 1-cell αA : FA Ñ GA,
‚ For every f : A Ñ B P A a 2-cell:

FA GA

FB GBαB

αA

Ff Gfαf

These must satisfy certain unit, composition, local naturality conditions, see [9, Definition
4.3.1]. If the 2-cells αf go in the other direction, this is referred to as a lax natural transfor-

mation. If αf is invertible for all morphisms f , α is called a pseudo-natural transformation.
If the αf ’s are the identities, we use the term 2-natural transformation.

Definition 2.3. Given two pseudonatural transformations α, β between pseudofunctors
F,G : K Ñ L, a modification Γ : α Ñ β consists of a 2-cell ΓA : αA ñ βA for every object
A P K, subject to the modification axiom for each 1-cell in K, see [9, Definition 4.4.1].

Example 2.4. Given an endofunctor T : A Ñ A, any colax natural transformation
c : T ñ 1A induces a modification pccq : c ˝ Tc Ñ c ˝ cT , whose component at A P A

is given by:

pccqA :“ ccA : cA ˝ TcA ñ cA ˝ cTA.

Remark 2.5. Pseudofunctors preserve colax natural transformations. If H : C Ñ D is a
pseudofunctor and α : F ñ G : B Ñ C is colax natural, there is an induced colax natural
transformation Hα whose 1-cell component at A is HαA and whose 2-cell component at a
morphism f : A Ñ B is the following composite 2-cell that we denote by pHαqf :

FA GA

FB GB
HαB

HFf

HαA

HGf
Hαf

γ´1

γ

2.2. Colax adjunctions. Lax adjunctions, also called quasi-adjunctions in [8, I,7.1] are a
categorification of adjunctions between functors where the unit and the counit are replaced
by lax natural transformations, and the triangle identities are replaced by modifications.
As in the previous section, we will use the dual notion – colax adjunctions.

Definition 2.6. A colax adjunction consists of two pseudofunctors U : D Ñ C and
F : C Ñ D, two colax natural transformations η : 1 ñ UF and ǫ : FU ñ 1 and two
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modifications:

F FUF U UFU

F U

Fη

ǫF

ηU

Uǫ

Ψ Φ

Before stating the axioms required, let us fix a convention: we will use the symbol UΨ
to denote the modification obtained from Ψ by not just applying U , but also by pre- and
post-composing it with the associator and the unitor for U so that its domain and codomain
are UǫF ˝UFη, 1UF . Let us use the same convention for FΦ. The axioms are the swallowtail
identities, which assert that the two composite modifications below are the identities on η
and ǫ:

1C UF FU

UF UFUF FUFU FU

UF FU 1D

η

η

UFη

ηUF

ηη

UǫF

FηU

FUǫ

ǫFU

ǫ

ǫ
ǫǫ

UΨ

ΦF

FΦ

ΨU

Notation 2.7. We will denote a colax adjunction as follows and say that F is a left colax

adjoint to U :

pΨ,Φq : pǫ, ηq : C D

F

U

%%

There are several important variations or special cases:

‚ if ǫ, η are lax natural, Ψ,Φ go in the other directions and an appropriate dual of
the swallowtail identities holds, we will call it a lax adjunction,

‚ in case that ǫ, η are pseudonatural transformations and Ψ,Φ are isomorphisms, we
will use the term biadjunction.

‚ if U,F are 2-functors, ǫ, η are 2-natural and Ψ,Φ are the identities, we will call this
a 2-adjunction.

Since the last two cases are the more usual notion, we will use the usual symbol % instead
of %% for them.

Remark 2.8. Contrary to the case of biadjunctions, left colax adjoints are not unique up
to an equivalence, not even when U is a 2-functor, η is 2-natural and Ψ, Φ are the identities.
An example will be given in Remark 4.31.
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2.3. Lax-idempotent and left Kan pseudomonads. The notion of a lax-idempotent
pseudomonad (see [19, Section 2]) contains a large amount of data and axioms. A major
simplification can be achieved if one works with left Kan pseudomonads instead. In this
section we recall all the basic definitions and mention the equivalence of left Kan pseu-
domonads and lax-idempotent pseudomonads. We also define a special class of left Kan
pseudomonads that we call left Kan 2-monads – this is the obvious strict version of the
notion.

Definition 2.9. A left Kan pseudomonad ([19]) pD, yq on a 2-category K consists of:

‚ A function D : ob K Ñ ob K,
‚ For every A P K a 1-cell yA : A Ñ DA called its unit,
‚ For every 1-cell f : A Ñ DB a left Kan extension of f along yB such that the
accompanying 2-cell is invertible:

(1)

A DA

DB

fD

yA

f

Df

These are subject to the axioms:

‚ For every A P K, the identity 2-cell 1yB on yB exhibits 1DA as a left Kan extension
of yA along yA:

‚ for every g : B Ñ DC, f : A Ñ DB, gD preserves the left Kan extension (1).

Definition 2.10. A pseudo-D-algebra consists of an object C P K together with a mapping
that sends every 1-cell f : B Ñ C to the left Kan extension of f along yB such that the
accompanying 2-cell is invertible:

(2)

B DB

C

fC

yB

f

Cf

and such that for every f : A Ñ DB, gB preserves the left Kan extension (1).
A D-pseudomorphism h : B Ñ A between pseudo-D-algebras C,X is a 1-cell h : C Ñ X

that preserves the Left Kan extension (2). A pseudo-D-algebra 2-cell α : h ñ h1 : B Ñ A

is just a 2-cell in K. All this data assembles into a 2-category that we denote by Ps-D-Alg.

Definition 2.11. By the Kleisli 2-category KD associated to the left Kan pseudomonad
pD, yq we mean the full sub-2-category of Ps-D-Alg spanned by free D-algebras, that is,
algebras whose underlying object is of form DA for some object A P K and the extension
operation is given by p´qD.

Remark 2.12. We may also define the Kleisli bicategory associated to a left Kan pseu-
domonad pD, yq, where objects are the objects in K and a morphism A ù B in KD corre-
sponds to a morphism A Ñ DB in K. The unit is given by the unit of the pseudomonad,
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while the composition is defined using the extension operation:

A B C ÞÑ A B
f g gD˝f

Denote this bicategory by KlpDq. It is routine to verify that there is a pseudofunctor
N : KlpDq Ñ KD sending the Kleisli morphism f : A ù B to fD : DA Ñ DB and that it
is a biequivalence of bicategories. In this paper we will for the most part use the 2-category
presentation since it is easier to work with.

Proposition 2.13. There is a “free-forgetful” biadjunction given as follows:

pΨ,Φq : pp, qq : K KD

JD

UD

%

‚ The right biadjoint UD is the forgetful 2-functor sending an algebra to its underlying
object,

‚ the left biadjoint is a normal pseudofunctor sending:

pf : A Ñ Bq ÞÑ ppyBfqD : DA Ñ DBq,

‚ the counit p : JDUD ñ 1 evaluated at the object DA is the following algebra
homomorphism:

pDA :“ p1DAqD : D2A Ñ DA,

With its pseudonaturality square at an algebra morphism h being the canonical
isomorphism between 1DDBDh and h1DDA, as both are the left Kan extensions of h
along yDA.

‚ the unit is given by the unit of the left Kan pseudomonad y : 1 ñ UDJD, with the
pseudonaturality square at a morphism h : A Ñ B being given by the canonical
isomorphism:

A DA

B DB

Dh

yA

yB

h DyBh

‚ the components of the modifications are given by the canonical isomorphisms:

Ψ : pJD ˝ JDy – 1JD ,

Φ : 1UD
– UDp ˝ yUD.

This biadjunction is moreover lax-idempotent, meaning the following:

Proposition 2.14. There exist (non-invertible) modifications Γ,Θ that serve as the unit
and the counit of the following adjunctions:

pΦ´1,Γq : UDp % yUD,

pΘ,Ψ´1q : JDy % pJD.
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Proof. The 2-cell ΓDA : 1D2A ñ yDA ˝pDA is the unique solution to the following equation:

D2A D2A

DA DA “ DA DA

D2A D2A

yDA

yDA

pDA

yDA

yDA pDA

yDAyDA

ΦDA

D!

This also proves the first triangle identity. The proof of the second triangle identity is
done by pre-composing by yA and using the appropriate universal properties. By doctri-
nal adjunction, the collection of adjunctions pΦ´1

DA,ΓDAq : pDA % yDA lifts to give the
claimed adjunction of pseudonatural transformations. The other adjunction is proven in
an analogous way. �

Theorem 2.15. There is a correspondence between:

‚ left Kan pseudomonads pD, yq on K,
‚ lax-idempotent pseudomonads pD,m, yq on K.

Moreover, the left Kan pseudomonad and lax-idempotent pseudomonad corresponding to
one another have biequivalent 2-categories of algebras, and this biequivalence commutes
with the forgetful 2-functors to K.

Proof. For the full proof see [19, 4.1, 4.2], here we sketch only the bits relevant for this
paper. Given a left Kan pseudomonad pD, yq, the lax-idempotent pseudomonad is given
by a normal pseudofunctor D : K Ñ K with action on 1-cells and 2-cells given by UD ˝ JD
from Proposition 2.13. The components of the unit y become pseudonatural with the
pseudonaturality square given by the Kan extension 2-cell:

A DA

B DB

yA

pyBfqD“:Dff

yB

D

The multiplication at A P K is given by the morphism pDA again as in Proposition 2.13.
On the other hand, given a lax-idempotent pseudomonad pD,m, yq, the left Kan extension
of f : A Ñ DB along yA : A Ñ DA is given by the composite of the pseudonaturality 2-cell
yf and the pseudomonad unitor 2-cell:

A DA

DB D2B

DB

yA

f

yDB

Df

mB

yf

–

�
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In the rest of the paper we will use the terms “left Kan pseudomonads” and “lax-idempotent
pseudomonads” interchangeably.

Remark 2.16 (Duals). A lax-idempotent pseudomonad T on a 2-category K is equiva-
lently:

‚ a colax-idempotent pseudomonad T co on Kco,
‚ a colax-idempotent pseudo-comonad T op on Kop,
‚ a lax-idempotent pseudo-comonad T coop on Kcoop.

2.4. Left Kan 2-monads. There is a class of lax-idempotent pseudomonads that will play
a role: the ones for which the pseudomonad is actually a 2-monad. We will show that these
correspond to what we call left Kan 2-monads.

Definition 2.17. A left Kan pseudomonad pD, yq is a left Kan 2-monad if:

‚ Df is the identity 2-cell for every 1-cell f : B Ñ DA, meaning that fD ˝ yB “ f ,

‚ gDfD “ pgDfqD,
‚ yDA “ 1DA.

Notice that in case of left Kan 2-monads, the biadjunction from Proposition 2.13 becomes
a 2-adjunction. Let us also note the following:

Proposition 2.18. The correspondence from Theorem 2.15 restricts to the correspondence
between left Kan 2-monads pD, yq and lax-idempotent 2-monads pD,m, iq.

Proof. “ñ”: Let pD, yq be a left Kan 2-monad. As we outlined in the proof of Theorem
2.15, the pseudofunctor D is defined as this left Kan extension:

A DA

B DB

yA

pyBfqD“:Dff

yB

If pf : A Ñ B, g : B Ñ Cq is a composable pair of morphisms, we have:

Dpgfq “ pyCgfqD “ ppyCgqDyBfqD “ pyCgqDpyBfqD “ DgDf

Also, D1A “ yDA “ 1DA so D is a 2-functor. This also makes y a 2-natural transformation
since the pseudo-naturality square is the identity. Next, the pseudo-naturality square for the
multiplication m : D2 ñ D is also the identity since both of the triangles below commute:

D2A DA

D2B DB

D2f

1DDB

1DDA

DfpDfqD

“ð”: If pD,m, iq is a lax-idempotent 2-monad, the corresponding left Kan extension
in the proof of Theorem 2.15 has the 2-cell component equal to the identity. The other
identities in Definition 2.17 are shown by a straightforward manipulation using the 2-monad
identities. �
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2.5. Examples.

Example 2.19. Given a locally small category A, denote by PA the full subcategory
of rAop,Sets spanned by small presheaves, that is, presheaves that are small colimits of
representables. The assignment A ÞÑ PA defines a left Kan pseudomonad on the (large)
2-category CAT of locally small categories, with the unit yA : A Ñ PA being given by the
Yoneda embedding and the extension operation being given by ordinary left Kan extension
along yA. These are guaranteed to exist because of the cocompleteness of PB; and since
yA is fully faithful, the accompanying 2-cell is invertible):

A PA

PB

yA

LanyAF
F

A pseudo-P -algebra is precisely a cocomplete category, and pseudo-P -morphisms are
cocontinuous functors. The Kleisli 2-category CATP thus has presheaf categories as objects
and cocontinuous functors as morphisms. In fact, it can be seen to be biequivalent to the
bicategory PROF whose objects are locally small categories and whose morphisms A ù B

are small profunctors H : Bop ˆ A Ñ Set. Here we call a profunctor H : Bop ˆ A Ñ Set
small if for every a P A, the presheaf Hp´, aq : Bop Ñ Set is small (belongs to PB).

Under this identification, the left biadjoint from the Kleisli biadjunction in Proposition
2.13 P : CAT Ñ PROF sends functor f : A Ñ B to the profunctor:

Bp´, f´q : Bop ˆ A Ñ Set.

We remark that alternatively there is also a 2-monad presentation for this pseudomonad
that uses inaccessible cardinals, see [13, Chapter 7].

Example 2.20. Let K be a 2-category with comma objects and fix an object C P K. There
is a 2-monad P on K{C that sends a morphism f : A Ñ B to the morphism πf : Pg Ñ C

which is a projection of the following comma object in K:

(3)

Pf A

C C

ρf

πf fχ

This 2-monad is known to be colax-idempotent with its algebras being fibrations in K

([22, Proposition 9]). Its Kleisli 2-category can be presented as having the objects functors
with codomain B, while a morphism F ù G is a 1-cell θ : A Ñ Pg making the triangle
below left commute:

A Pg B A B

C C C C

θ

f

ρg

πg g

u

f gχ α

From the definition of the comma object, this corresponds to pairs pu, αq of a 1-cell
u : A Ñ B and a 2-cell α : gu ñ f as portrayed above right.
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In other words, the Kleisli 2-category for this 2-monad is isomorphic to the colax slice

2-category K{{C2. Under this identification, we have a 2-adjunction:

K{C K{{C

J

U

%

The left 2-adjoint is the canonical inclusion, the right 2-adjoint sends an object f : A Ñ C

to the comma object projection πf : Pf Ñ C. The counit p : JU ñ 1K{{C evaluated at an
object f : A Ñ C is the colax commutative triangle pρf , χq : πf Ñ f from (3).

In the remainder of this section we recall a class of lax-idempotent 2-comonads that come
from two-dimensional monad theory. Recall the 2-categories T-Algs, T-Alg, T-Algl of strict
algebras and strict, pseudo and lax morphisms for a 2-monad T from [2, 1.2]. Also recall
the notions of a codescent object and a lax codescent object from [14, Page 228].

Definition 2.21. Let T be a 2-monad on a 2-category K and let pA, aq be a strict T -algebra.
By its resolution, denoted RespA, aq, we mean the following diagram in T-Algs:

T 3A T 2A TAT iA

Ta

mAm
T2A

TmTA

T 2a

Theorem 2.22. Let T be a 2-monad on a 2-category K and assume the 2-category T-Algs
admits lax codescent objects of resolutions of strict algebras. Then the inclusion 2-functor
T-Algs Ñ T-Algl admits a left 2-adjoint. Similarly, assume the 2-category T-Algs ad-
mits codescent objects of resolutions of strict algebras. Then the inclusion 2-functor
T-Algs Ñ T-Alg admits a left 2-adjoint:

T-Algs T-Algl T-Algs T-Alg

J

p´q1

Jp

p´q:

% %

In the first case, the value of a left 2-adjoint at a T -algebra pA, aq is given by the lax
codescent object of the diagram RespA, aq in T-Algs. In the second case, codescent object
is used.

Proof. See Lemma 3.2 and Theorem 2.6 in [14]. �

Remark 2.23. The assumptions of Theorem 2.22 are satisfied whenever the base 2-category
K is cocomplete and T is finitary (preserves filtered colimits). This is because the codescent
objects of a resolution of a strict algebra is reflexive, and so is a filtered colimit by [14,
Proposition 4.3].

2This 2-category can also be presented as the 2-category of strict coalgebras and lax morphisms for the
2-comonad p´q ˆ C, see [6, Chapter 5].
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Definition 2.24. We denote by Ql and Qp the 2-comonads generated by the 2-adjunctions
in the above theorem and call them the lax morphism classifier 2-comonad and the pseudo
morphism classifier 2-comonad.

It is easy to see that T-Algl is isomorphic to pT-AlgsqQl
, the Kleisli 2-category for the

2-comonad Ql. Similarly, T-Alg – pT-AlgsqQp .

Proposition 2.25. Let T be a 2-monad on a 2-category K such that the left 2-adjoints to
the inclusions T-Algs ãÝÑ T-Alg, T-Algs ãÝÑ T-Algl exist. Then:

‚ If K admits oplax limits of arrows, Ql is lax-idempotent.
‚ If K admits pseudo limits of arrows, Qp is pseudo-idempotent.

Proof. See [18, Lemma 2.5]. �

Proposition 2.26. There is a morphism of 2-comonads Ql Ñ Qp.

Proof. Denote the units of the adjunctions in Theorem 2.22 by pA : A ù A1 and

p
:
A : A ù A: respectively. Since p:

A is a pseudo-morphism, it is in particular a lax

morphism and thus there exists a unique strict T -algebra morphism θA : A1 Ñ A: making
the diagram commute:

A1

A A:

D!θA
pA

p
:
A

Using the universal property of A1, it is readily seen that the maps θA’s assemble into a
morphism of 2-comonads. �

3. Relative Kan extensions and colax adjunctions

In [4], Bunge introduced the notion of a relative Kan extensions with respect to a 2-
functor U and showed that for a collection yA : A Ñ UFA of 1-cells that admit these
extensions (and satisfy certain coherence conditions), there is an induced left colax adjoint
F to U , where F is a colax functor ([4, Theorem 4.1]). She also proves a partial converse
to this result ([4, Theorem 4.3]). Note that at the same time these results also appeared in
Gray’s work ([8, I,7.8.]).

In this section, we generalize these results to the case where U is a pseudofunctor and,
on the other hand, refine it by identifying conditions under which the colax left adjoint
F is actually a pseudofunctor. This enables us to describe, in Theorem 3.5, a symmetric
relationship between U -extensions and colax adjunctions. We will see an application of
these results to the settings of lax-idempotent pseudomonads in Section 4.

Definition 3.1. Let U : C Ñ D be a pseudofunctor, yA : A Ñ UFA, f : A Ñ UB 1-cells
of D. The left U -extension of f along yA is a pair pf 1, ψf q with the property that for any
pair pg, αq pictured below, there is a unique 2-cell θ : f 1 ñ g such that the following 2-cells
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are equal:

A UFA A UFA

“

UB UB

yA

f
Uf 1

Ug

yA

f
Ug

ψf

α

Uθ

Definition 3.2. Let U : C Ñ D be a pseudofunctor. We say that a collection of 1-cells
yA : A Ñ UFA for each object A P C are coherently closed for U -extensions if:

‚ for every f : A Ñ UB we have a choice of an U -extension pfD,Df q,

‚ the following composite 2-cell exhibits 1DY ˝pyY fqD as the left U -extension of f along
yX :

(4)

X UFX

UY UFUY

UY

yX

f

yUY

UpyUY fqD

U1DUY

Up1DUY ˝pyUY fqDq

DyUY f

D1UY

γ´1

Theorem 3.3. Let U : C Ñ D be a pseudofunctor and yA : A Ñ UFA a collection of
1-cells coherently closed for U -extensions. Then:

‚ the mapping A ÞÑ FA can be extended to a colax functor F : D Ñ C,
‚ y can be extended to a colax natural transformation 1D ñ UF ,
‚ there exists a colax-natural transformation ǫ : FU ñ 1C and a modification
Φ : 1U Ñ Uǫ ˝ yU .

Assume moreover the composition and unit axioms for U -extensions: the diagram
below left is a U -extension of yA along yA, and the diagram below right is the
U -extension of yCgf along yA:

(5)

A UFA A UFA

B UFB

UFA C UFC

yA

UpyBfqDf

g

yC

UpyCgqD

yA

yA

U1FA
UppyCgqDpyBfqDqyB

ι´1

D

D

γ´1

Then:
‚ F is a pseudofunctor,
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‚ there is an invertible modification Ψ : ǫF ˝ Fy Ñ 1F and all this data give a colax
adjunction:

pΨ,Φq : pǫ, yq : F %% U : C Ñ D.

Proof. Denote by pfD,Dq the choice of a U -extension of f : A Ñ UB. Define the colax
functor F : D Ñ C on a morphism f : A Ñ B as the following U -extension:

A UFA

B UFB

yA

UFf

yB

f D

Define the action of F on a 2-cell α as the unique 2-cell making the following equal:

(6)

A UFA A UFA

“

B UFB B UFB

yA

UFf

yB

f UFg f g

yA

yB

UFgD
UpD!q α

D

The above equation makes y locally natural. The associator γ1 : F pgfq ñ Fg ˝ Ff and
the unitor ι1 : F1A ñ 1FA for F are given as the unique 2-cells satisfying these equations:

(7)

A UFA A UFA

“ B UFB

C UFC C UFC

yA

UFf

yB

f

g

yC

UFg

UpFg˝Ffqgf

yC

yA

UF pgfq

UpFg˝Ffq D

D
UpD!q

D

γ´1

(8)

A UFA A UFA

“

A UFA A UFA

yA

yA

U1FAUF1A U1FA

yA

yA

UpD!q
D

ι´1

The colax functor axioms for F follow from those of U and can be readily proven using the
universal property of U -extensions. The above equations also make y into a colax-natural
transformation y : 1 ñ UF . Next, define ǫB : FUB Ñ B and ΦB as the U -extension of the
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identity on UB along yUB:

UB UFUB

UB

yUB

UǫB

ΦB

The colax naturality square for ǫ at a 1-cell h : B Ñ C is the unique 2-cell ǫh making
the 2-cells below equal (it is guaranteed to uniquely exist because of the coherence for
U -extensions):

(9)

UB UFUB UB UFUB

UC UFUC UC UB

UC UC

yUC

UǫC

Uh

yUB

UFUh

yUB

UǫBUh

Uh

Uph˝ǫBq

UpǫC˝FUhq

Uph˝ǫBq

D
ΦB

ΦC

Uǫhγ´1 γ´1

This also makes Φ into a modification 1U Ñ Uǫ ˝ yU . Let us now consider the additional
assumptions. It is clear that F will be a pseudofunctor. Define ΨA : ǫFA ˝ FyA ñ 1FA as
the unique 2-cell making the two 2-cells below equal:

(10)

A UFA A UFA

UFA UFUFA UFA

UFA UFA

yUFA

UǫFA

yA

yA

UFyA

U1FA U1FA

yA

UpǫFA˝FyAq

yA

D

ι´1UpD!qγ´1

ΦFA

By the assumption, ΨA is invertible. This equality also proves the first swallowtail identity.
What remains to prove is the following:

‚ ǫ is colax-natural,
‚ Φ is a modification,
‚ the second swallowtail identity.

These are all straightforward computations and we will prove them in the Appendix as
Lemma A.1. �

Theorem 3.4. Let pΨ,Φq : pǫ, yq : F %% U : C Ñ D be a colax adjunction between
pseudofunctors in which Ψ is invertible. Then:

‚ the components of the unit yA : A Ñ UFA are coherently closed for U -extensions,
‚ the unit and composition axioms (5) for U -extensions hold.
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Proof. Notice first that we have the following adjunction:

CpFA,Bq DpA,UBq

pηAq˚˝U :

pǫBq˚˝F

%

The counit and unit 2-cells evaluated at h : FA Ñ B and g : A Ñ UB are given as
follows:

FA A UFA

FUFA FA UB UFUB

FUB B UB

UpǫBFgqF pUhyAq

FyA

FUh

ǫB

ǫFA

h

g

yA

UFg

UǫB

yUB

ΨA

ǫh

yg

ΦB

γ´1γ

The triangle identities essentially follow from the swallowtail identities of the colax adjunc-
tion and we omit the proof for them. Denote by Dg the unit of this adjunction evaluated at
g : A Ñ UB and denote gD :“ ǫBFg. By definition, the pair pgD,Dgq is the left U -extension
of g along yA. Next, notice that for f : A Ñ B, the invertible 2-cell:

if :“ ΨBFf ˝ ǫFBγ
´1
f,yB

: ǫFBF pyBfq ñ Ff : FA Ñ FB,

satisfies the following equality (this again follows from a swallowtail identity):

A UFA A UFA

“

B UFB B UFB

UpyBfqD
f

yA

f

yA

UFf

yB

UFf

yB

Uif
Df yf

This proves that pUFf, yf q is also a U -extension of yBf along yA. Next, notice that for an
object B, the following invertible 2-cell:

ΞB :“ ǫ1B ˝ ǫBFι
´1 : ǫBF1UB ñ ǫB,

satisfies this equality:

UB UFUB UB UFUB

“

UB UB

yUB

U1D
UB

UǫB

yUB

UǫB
D1UB UΞB ΦB

This proves that pUǫB ,ΦBq is also a U -extension of 1UB along yUB. Using these two
isomorphisms of U -extensions, it is clear that the composite 2-cell (4) in Definition 3.2 is a
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U -extension if and only if the pair pfD,Df q is a U -extension - which it is, as we have proven.
We thus have that the collection yA : A Ñ UFA is coherently closed for U -extensions.

Let us now prove the composition and unit axioms (5). The proof that the pair
p1FA, ι

´1yAq is a U -extension follows immediately from the fact that it is isomorphic to the
U -extension pyDA,DyAq via the modification ΨA (this is the first swallowtail identity):

A UFA A UFA

“

UFA UFA

yA

yA
U1FA

yA

UyDA

yA

U1FAι´1 DyA UΨA

Again by using the isomorphism above, the question whether the 2-cell below right is a
U -extension is equivalent to asking whether the 2-cell below left is a U -extension:

A UFA A UFA

B UFB B UFB

C UFC C UFC

yB

f UFf

g UFg

yC

UF pgfq

yA yA

UpyBfqD

UpyCgqDg

yC

f

yB UppyCgqDpyBfqDq

yg

γ

yf Df

Dg

γ

But this 2-cell equals ygf and is thus a U -extension by what we have proven above.
�

Theorem 3.5. Fix a pseudofunctor U : D Ñ C between 2-categories. The following are
equivalent for a collection of 1-cells tyA : A Ñ UFAu with A P C:

‚ the collection yA is coherently closed for U -extensions and satisfies composition and
unit axioms (5),

‚ there is a colax adjunction pΨ,Φq : pǫ, ηq : F %% U for which Ψ is invertible, F is a
pseudofunctor and the 1-cell component of the unit at each A P C equals yA.

Remark 3.6. In the above theorem, we do not have a one-to-one correspondence; instead,
there is a suitable “equivalence” between these two concepts. Starting with coherent U -
extensions pfD,Df q of f along yA, producing a colax adjunction and then going back to
U -extensions gives the U -extension pǫBFf, γ

´1yA ˝UǫByf ˝ΦBfq, which in general will not

be equal to pfD,Df q (but will be canonically isomorphic to it). Similarly, starting with left
colax adjoint F , going to U -extensions and back only gives a pseudofunctor isomorphic to
F .

In our applications to two-dimensional monad theory, we will encounter this very special
case of U -extensions:

Definition 3.7. Let U : C Ñ D be a 2-functor. We will say that a collection of 1-cells
yA : A Ñ UFA is strictly closed for U -extensions if:
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‚ for every f : A Ñ UB there is a U -extension pfD, 1f q along yA with the 2-cell
component being the identity,

‚ yDA “ 1FA,
‚ for f : X Ñ Y , g : Y Ñ Z we have Ff ˝ Fg “ F pfgq, where we denote Ff :“

“ pyY ˝ fqD,
‚ for f : A Ñ UB we have ǫY ˝ Ff “ fD, where we denote ǫY :“ p1Y qD.

Remark 3.8. It is clear from the proof of Theorem 3.3 that a collection strictly closed for
U -extension gives rise to a colax adjunction pǫ, yq : F %% U for which:

‚ y is a 2-natural transformation,
‚ F is a 2-functor,
‚ the modifications Φ,Ψ are the identities.

(This will in general not be a 2-adjunction because ǫ will only be colax natural.)

4. On the Kleisli 2-category for a left Kan pseudomonad

This section is devoted to studying the Kleisli 2-category for a general left Kan pseu-
domonad pD, yq on a 2-category K.

In 4.1 we prove a result characterizing the pseudo-D-algebra structure on an object in
terms of the existence of certain adjoints (Theorem 4.9).

In 4.2 we use this result and Theorem 3.3 to prove that any left biadjoint K Ñ L that
factorizes through the Kleisli 2-category gives rise to a lax left adjoint KD Ñ L. We list
several applications, one of which is the assertion that there is a canonical colax adjunction
between EM and Kleisli 2-categories for left Kan pseudomonads.

Another application is given in 4.3 where we define coreflector-limits, the aforementioned
lax analogue of bilimits, and list elementary examples. The main result here is Theorem
4.32 which asserts that whenever the base 2-category K admits J-indexed bilimits, the
Kleisli 2-category for a left Kan pseudomonad on K will admit them as coreflector-limits.

First, let us recall the following terminology:

Definition 4.1. Let the following be an adjunction in a 2-category K:

pǫ, ηq : A B

f

u

%

‚ If the counit ǫ is invertible, call f a reflector and u a reflection-inclusion. In this
case f . In case the counit is the identity, f is called a lali (left adjoint-left inverse)
and u a rari (right adjoint-right inverse).

‚ if the unit η is invertible, call f a coreflection-inclusion and u a coreflector. In case
the unit is the identity, f is called a lari and u a rali.

Remark 4.2 (Duals). A morphism f is a reflector (a lali) in K if and only if:

‚ it is a reflection-inclusion (a rari) in Kop,
‚ it is a coreflector (a rali) in Kco,
‚ it is a coreflection-inclusion (a lari) in Kcoop.
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4.1. A characterization of algebras.

Definition 4.3. Let F : K Ñ L be a pseudofunctor. We will call a morphism f : A Ñ B

in K an F -coreflector if Ff is a coreflector in the 2-category L. Similarly for the other
variants from Definition 4.1.

Example 4.4. Let P : CAT Ñ PROF be the canonical inclusion pseudofunctor. In
Example 4.12 below we will show that a functor f : A Ñ B between locally small categories
is a P -coreflection-inclusion if and only if it is fully faithful and satisfies a certain smallness
condition.

Example 4.5. Consider the lax morphism classifier 2-comonad Ql associated to a 2-monad
T on a 2-category K. Denote by J : T-Algs Ñ T-Algl the canonical inclusion to the Kleisli
2-category and by U : T-Algs Ñ K the forgetful 2-functor. Notice that by virtue of doctrinal
adjunction [11], a strict algebra morphism is a J-reflector if and only if it is a U -reflector,
that is, the underlying morphism in K is a reflector.

Remark 4.6. Given a lax-idempotent pseudomonad P on a 2-category K, 1-cells in K

that are P -left adjoints have been studied in the literature ([5], [1]) under the name of
P -admissible 1-cells.

The following lemma is the left Kan pseudomonad version of [20, Theorem 3.4]:

Lemma 4.7. Let pD, yq be a left Kan pseudomonad on K. Denote by D : K Ñ K

the corresponding endo-pseudofunctor and by JD : K Ñ KD the inclusion to the Kleisli
2-category. The following are equivalent for a 1-cell f : B Ñ C:

‚ f is a D-coreflection-inclusion,
‚ f is a JD-coreflection-inclusion.

Proof. “p1q ñ p2q” follows from [5, Proposition 1.3]: namely, the right adjoint to Df in K is
actually a D-algebra homomorphism and thus is an adjoint in KD. “p2q ñ p1q” is obvious
because we have the forgetful 2-functor UD : KD Ñ K that satisfies D “ UDJD. �

Lemma 4.8. The following holds in a 2-category K:

‚ Let f % u : B Ñ A be an adjunction with unit η and let pD, gDq be the left Kan
extension of g : A1 Ñ C along y : A1 Ñ A. Then the diagram below left exhibits
gDu as the left Kan extension of g along fy:

B C

A A B

A1 C B1 D

y

g

f

gD

u

f

i

k h

hk

η

D α

‚ In the diagram above right, suppose that the top and outer diagrams are left Kan
extensions. If all left Kan extensions along k exist and have invertible unit, then α
is a left Kan extension of f along j.
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Proof. The first point follows by composing the following bijections. For a 1-cell h : B Ñ C,
the first one is given by the adjunction f % u, the second one is given by the definition of
gD:

KpB,CqpgDu, hq – KpA,CqpgD, hfq – KpA1, Cqpg, hfyq.

In the second point, assume we have a 2-cell β as pictured below, and we want to find a
unique 2-cell solving this equation:

(11)

B B

“

B1 D B1 D
f

ι hk ι

f

l
l

α

?

β

First note that we have a unique 2-cell θ making the following diagram equal (here lA is
the left Kan extension of l along k that exists by assumption):

C C

B “ B

B1 D B1 D
f

ι hk

k

h

lA

f

k

ι

lA

l
β

α

A

θ1

Clearly, θ :“ A´1 ˝ θ1k solves the equation (11), giving us the existence part of the proof.
To show the uniqueness, let φ be a different 2-cell solving (11). Note that there exists a
unique 2-cell φ1 solving the following:

C C

B “ B

D D

k

hk hk

k lA

h

lA

l
φ1

A

φ

Pre-pasting this with α and using the diagram above this one, we see that φ1 “ θ1. From
this we obtain:

A
´1 ˝ θ1k “ A

´1 ˝ φ1k “ A
´1 ˝ A ˝ φ “ φ.

�

Proposition 4.9. Let pD, yq be a left Kan pseudomonad on a 2-category K. Denote by
JD the inclusion to the Kleisli 2-category and by D the endo-pseudofunctor associated to
the left Kan pseudomonad. The following are equivalent for an object A P K:

(1) A admits the structure of a pseudo-D-algebra,
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(2) for every object B P K, the left Kan extension of a 1-cell B Ñ A along yB : B Ñ DB

exists and has invertible unit. In other words, Kp´, Aq : Kop Ñ Cat sends each yB
to a coreflector,

(3) yA admits a reflector (left adjoint with invertible counit),
(4) Kp´, Aq sends JD-coreflection-inclusions in K to coreflectors in Cat,
(5) Kp´, Aq sends D-coreflection-inclusions in K to coreflectors in Cat.

Proof. The equivalence “p1q ô p3q” is well known, for lax-idempotent 2-monads this has
been done for example in [10, Proposition 1.1.13], but the same argument works for lax-
idempotent pseudomonads as well. “p1q ñ p2q” is obvious.

For “p2q ñ p3q”, denote by pa : DA Ñ A,Aq the left Kan extension of 1A along yA.
Because the identity 2-cell on DA exibits 1DA as the left Kan extension of yA along yA,
there exists a unique 2-cell η making these 2-cells equal:

DA A

A A DA A DA DAyA

yA a

yA

a yA
ηA

We will now show that pA´1, ηq : a % yA is an adjunction. The triangle identity
yAA

´1 ˝ ηyA “ 1yA is guaranteed by the above formula – let us prove the other one:

A
´1a ˝ aη “ 1a.

Because a is the left Kan extension along yA, it suffices to prove that both sides of this
equation become equal after pre-composing them with yA. It then becomes:

A
´1ayA ˝ aηyA “ A

´1ayA ˝ ayAA “ A
´1ayA ˝ AayA “ 1ayA .

“p4q ô p5q” follows from Lemma 4.7 and “p5q ñ p2q” is obvious since yB is a D-
coreflection-inclusion.

We will now prove “p2q ñ p5q”. Let f : B Ñ C such that there is an adjunction in KD

where the unit η is invertible:

pǫ, ηq : DB DC

Df

r

%

We wish to show that the functor f˚ : KpC,Aq Ñ KpB,Aq has a left adjoint with invertible
unit. We will define this left adjoint by the following formula:

L : pg : B Ñ Aq ÞÑ pgA ˝ r ˝ yC : C Ñ Aq

Define the component of the unit rη at g : B Ñ A as the following composite 2-cell:

C DC

B DB DB A
yB

f

yC

r

gA

Df

g

ηD´1

A
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We wish to show that this has the universal property of the unit, in other words, gA˝r˝yC
is the left Kan extension of g : B Ñ A along f : B Ñ C.

By Lemma 4.8 point 1, gA ˝ r is the left Kan extension of g along Df ˝yB . Equivalently
it is a left Kan extension of g along yCf with the 2-cell component given by the composite
2-cell above. Since gAr is a D-morphism, gAr (with the identity 2-cell component) is the
left Kan extension of gAryC along yC . By Lemma 4.8 point 2, for h :“ gAr, k :“ yC ,
i :“ f , f :“ g and α the 2-cell above, the result follows.

�

Remark 4.10. Using the terminology of [7, Definition 1.2], in Theorem 4.9, the equivalence
“p1q ô p4q” says that an object A is a pseudo-D-algebra if and only if it is left Kan injective

with respect to the class of 1-cells given by JD-coreflection-inclusions.
Let us also note that a version of “p1q ñ p5q” for D-left adjoints in Theorem 4.9 has

already been proven in [5, Proposition 1.5].

Remark 4.11. Given a left Kan 2-monad pD, yq, a pseudo-D-algebra C will be said to be
normal if the left Kan extension 2-cell Cf in Definition 2.10 is the identity for all 1-cells
f . Notice that a variation of Proposition 4.9 may be proven for normal pseudo-D-algebras,
where we replace all invertible 2-cells by identities, for instance replace a “reflector” by a
“lali”.

In the remainder of this section we will demonstrate Proposition 4.9 on the case of small
presheaf pseudomonad from Example 2.19. An application to the lax morphism classifier
2-comonads will be described in Section 5.

Example 4.12. Consider the small presheaf pseudomonad P on CAT. Note that if we
pass to a bigger universe and use the bicategory PROF of locally small categories and all
profunctors, for any functor f : A Ñ B, the small profunctor Pf “ Bp´, f´q : Bop ˆ
ˆ A Ñ Set has a right adjoint:

A B

Bp´,f´q

Bpf´,´q

%

We will call a functor f : A Ñ B small if the right adjoint is also a small profunctor
(belongs to Prof). Clearly, this happens if and only if Pf has a right adjoint in PROF.

Next, note that the unit of the adjunction is a collection of functions for every pair
pa1, a2q P Aop ˆ A like this:

Apa1, a2q Ñ

ż bPB

Bpfa1, bq ˆ Bpb, fa2q,

pθ : a1 Ñ a2q ÞÑ r1fa1 , fpθqs.

As is readily seen, the unit is invertible if and only if f is fully faithful. So a functor
f : A Ñ B is a P -coreflection-inclusion if and only if it is fully faithful and small. The
precomposition functor f˚ : CATpB, Cq Ñ CATpA, Cq is a coreflector if and only if left Kan
extensions along f exist in C. Theorem 4.9 for the small presheaf pseudomonad now gives
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a folklore result: a category C is cocomplete if and only if left Kan extensions along small
fully faithful functors exist in C.

4.2. Colax adjunctions out of the Kleisli 2-category.

Proposition 4.13. Let pD, yq be a left Kan pseudomonad on a 2-category K and assume
there are pseudofunctors G,H and a biadjunction as pictured below:

K KD L
JD G

H

%

Then for every object L P L, the object HL admits the structure of a pseudo-D-algebra.

Proof. By Proposition 4.9, it suffices to show that Kp´,HLq : Kop Ñ Cat sends JD-
coreflection-inclusions to coreflectors. Notice that we have the following pseudo-natural
equivalence:

Kp´,HLq » LpGJD´, Lq “ LpG´, Lq ˝ JD.

Now, by definition, JD sends JD-coreflection-inclusions to coreflection-inclusions. Since
LpG´, Lq is a (contravariant) pseudofunctor, it sends coreflection-inclusions to coreflectors.
We thus obtain the result. �

Remark 4.14. Going through the proof of Proposition 4.9 for the case of HL, we see
that the algebra multiplication map hL : DHL Ñ HL (the reflector of the morphism
yHL : HL Ñ DHL) is given by the following composite:

DHL HGD2HL HGDHL HL
cDHL HGpDHL HsL

Also, the counit of the adjunction hL % yHL, an invertible 2-cell ǫL : hLyHL ñ 1HL, is
given by the following:

DHL HGD2HL HGDHL

HL HGDHL HL

yHL

cDHL HGpDHL

HsL

cHL

HGDyHL
cyHL pHGΨqHL

τ´1
L

Theorem 4.15 (The main colax adjunction theorem). Let pD, yq be a left Kan pseu-
domonad on a 2-category K. Any biadjunction whose left adjoint factorizes through the
Kleisli 2-category KD induces a colax adjunction pictured below:

K KD L ù KD L
JD G

H

G

JDH

%

%%
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Proof. Denote the unit, counit and the modifications of the biadjunction as follows:

s : GJDH ñ 1L, σ : sGJD ˝ GJDc – 1GJD ,

c : 1K ñ HGJD, τ : 1H – Hs ˝ cH.

We will show that the components of the counit sL : GDHL Ñ L are coherently closed
for G-lifts. By (the dual of) Theorem 3.3, there is a right colax adjoint to G. We will prove
that it is isomorphic to JDH.

Let us first prove the following: given a 1-cell l : GDA Ñ L in L, any pair pDl1, λq where
l1 : A Ñ HL is a 1-cell and λ is an invertible 2-cell as pictured below exhibits Dl1 as the
right G-lift of l along sL:

L GDHL

GDA

GDl1

sL

l

λ

By Theorem 4.13, HL has the structure of a D-algebra. Denoting its multiplication
map by hL as in Remark 4.14, we have the following composite adjunction with invertible
counit:

(12) KpA,HLq KpA,DHLq KDpDA,DHLq
pyHLq˚

JD

phLq˚

pDHLJDp´q

UDp´qyA

p´q#

% »

:“

–

Notice that there is an isomorphism:

i : sLGJDp´q# – sLGp´q : KDpDA,DHLq Ñ LpGDA,Lq,



COLAX ADJUNCTIONS AND LAX-IDEMPOTENT PSEUDOMONADS 25

with the component at f : DA Ñ DHL being given by the 2-cell3:

(13)

GD2HL GDHGD2HL GDHGDHL GDHL

GD2A GD2HL GDHL L

GDA

GDA

GDcDHL

s
GD2HL

GpDHL sL

GDHGpDHL

sGDHL

GDHsL

sL

Gf

GpDA

GDf

GDyA

pGpqf

GDhL

sGpDHL
ssL

σDHL

pGΨqA

We have the following chain of bijections:

KDpDA,DHLqpf,Dl1q
pAq
– KpA,HLqpf#, l1q

pBq
– LpGDA,LqpsL ˝ GDf#, sL ˝GDl1q

pCq
– LpGDA,LqpsL ˝Gf, sL ˝GDl1q

pDq
– LpGDA,LqpsL ˝Gf, lq

The bijection (A) follows from the adjunction (12) above. (B) is given by the action on
morphisms of the following functor:

(14) sL ˝ GJDp´q : KpA,HLq Ñ LpGDA,Lq.

This functor is (by assumption) an equivalence – in particular it is fully faithful. (C) is
given by the pre-composition with i

´1
f and (D) is given by the post-composition with λ.

To conclude that pDl1, λq is a G-lift, it has to be shown that the composite bijection is given
by the assignment α ÞÑ λ ˝ sLGα. Equivalently, the composite of the first three bijections
is the assignment α ÞÑ sLGα. We prove this fact in the appendix as Lemma A.2.

The pair pDl1, λq is thus a G-lift. Because the functor (14) is essentially surjective, such
a G-lift is guaranteed to always exist. Make now a choice of a lift for every l : GDA Ñ L

and denote it by pDlL,Lq. To prove that our choice is coherently closed for G-lifts, the

3We have not shown it in this diagram, but the 2-cell has to be pre-composed with the associators for
the pseudofunctor GD so that its source really equals sLGDf#.
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following 2-cell needs to be shown to be a G-lift of l : GDA Ñ L along sL:

L GDHL

GDA GDHGDA

GDA

GDplsGDAqL

sL

l

sGDA

GD1L
A

GpDplsGDAqL˝D1L
A

q

L

L

γ

But this follows from the what we have shown at the beginning since this composite 2-cell
is invertible and the 1-cell component of the proposed G-lift is (isomorphic to) Dh for a
1-cell h in K. For the same reasons, the unit and composition axioms in the assumptions
of Theorem 3.3 are satisfied.

We thus have a right colax adjoint to G : KD Ñ L, let us denote it by R : L Ñ KD.
Since the pseudonaturality square of the counit s is a G-lift (this again follows from what
we have proven at the beginning of the proof), for any 1-cell l : L Ñ K there exists a unique
invertible 2-cell δl : Rl ñ JDHl making the following diagrams equal:

L GDHL L GDHL

“

K GDHK K GDHK

GDHl

sL

l

sL

GRl l

sK

sL

GRlsl
Gδl

L

It is now routine to verify that this data gives an invertible icon δ : R ñ JDH (which is an
isomorphism in PsdrL,KDs), proving that the pseudofunctor JDH is right colax adjoint to
G : KD Ñ L as well. �

Our first application will be the following:

Corollary 4.16. Given a left Kan pseudomonad pD, yq on a 2-category K, the biadjunction
between the base 2-category and the Kleisli 2-category induces a colax adjunction on the
Kleisli 2-category:

K KD ù KD KD

JD

FD JDFD

% %%

The following is a categorification of the fact that for an idempotent monad, the Kleisli and
EM-categories are equivalent:



COLAX ADJUNCTIONS AND LAX-IDEMPOTENT PSEUDOMONADS 27

Corollary 4.17. Given a left Kan pseudomonad pD, yq, the associated free-forgetful biad-
junction induces a colax adjunction between the Kleisli 2-category and the 2-category of
algebras:

K Ps-D-Alg ù KD Ps-D-Alg

FD

UD JD˝UD

% %%

The following is a change-of-base-style theorem:

Corollary 4.18. Let D be a lax-idempotent pseudomonad on a 2-category K and T be a
pseudomonad on a 2-category L. Assume that:

‚ there is a biadjunction between the base 2-categories:

K L

L

R
%

‚ the left biadjoint admits an extension to the Kleisli 2-categories:

K K

KD LT
L#

L

JD JT

Then there is an induced colax adjunction between the Kleisli 2-categories:

KD LT

L#

%%

Proof. Composing the Kleisli biadjunction with the L % R biadjunction we obtain the
following the following biadjunction on which we can apply the theorem:

K L LT

KD

L

R

T

FT

JD L#

%%

�

Example 4.19. Consider a 2-category K with comma objects and pullbacks and take for
D the fibration 2-monad on K{C and T the fibration 2-monad on K{D. For any 1-cell
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k : C Ñ D gives a 2-functor k˚ : K{C Ñ K{D with a right 2-adjoint k˚ given by pulling
back. The 2-functor k˚ clearly extends to the colax slice 2-categories, hence giving rise to
a lax adjunction between the colax slices:

K{{C K{{D

k˚

D˝FD˝k˚

%%

Example 4.20. In the next section (Corollary 5.10) we will see how, when given a mor-
phism of 2-monads θ : S Ñ T , this gives rise to a colax adjunction between T-Algl and
S-Algl.

Remark 4.21 (Left Kan 2-monads). Assume that pD, yq is a left Kan 2-monad and that
we have the same starting biadjunction as in Theorem 4.15, except now the modifica-
tions σ, τ are the identities and the counit s is 2-natural. Going through the proof, note
that sL ˝ GJDp´q : KpA,HLq Ñ LpGDA,Lq is an isomorphism of categories: for each
l : GDA Ñ L there is a unique lL : A Ñ HL such that sL ˝ GDlL “ l. Because
JD : K Ñ KD is now a 2-functor and because of the uniqueness of each lL, the collection
sL : GDHL Ñ L is strictly closed for G-lifts (dual of Definition 3.7). By Remark 3.8 we
obtain a colax adjunction for which the modifications are the identities and the counit s is
2-natural.

4.3. Coreflector-limits.

Definition 4.22. Let K be a 2-category and F : J Ñ K, W : J Ñ Cat 2-functors.
A coreflector-limit of F weighted by W is given by an object L P K and a 2-natural
transformation λ : W ñ KpL,F´q with the property that for every A P K, the canonical

comparison functor

κA : KpA,Lq Ñ rJ ,CatspW,KpA,F?qq,

κA : pθ : A Ñ Lq ÞÑ pKpθ, F?q ˝ λq,

is a coreflector in Cat. Coreflector-colimits in K are defined as coreflector-limits in Kop.
Analogously, we say that λ is an X-limit if κA is in class X of functors for every A.

Remark 4.23. Because the maps κA : KpA,Lq Ñ rJ ,CatspW,KpA,F?qq together form a 2-
natural transformation κ : Kp´, Lq ñ rJ ,CatspW,Kp´, F?qq, by [21, Theorem 1] the above
definition is equivalent to requiring that κ is a coreflector in the 2-category ColaxrK,Cats
(of 2-functors K Ñ Cat, colax natural transformations and modifications).

Remark 4.24 (Enriched weakness). The notion of a coreflector-colimit is a special case of
an enriched weak colimit in the sense of [17, Section 4]. The enriching category V is equal
to Cat with the class E being functors that are coreflectors. In [17], the authors studied
coreflector-colimits for which κ is actually a retract equivalence – meaning that the unit of
the adjunction is the identity and the counit is invertible.
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Remark 4.25. Conical (left-adjoint)-limits of 2-functors have first been introduced [8,
I,7.9.1] under the name quasi-limits4.

Remark 4.26 (Ordinary weakness). Notice that every rali- and lali-limit cone λ is a weak

limit of F weighted byW . What this means is that given a different cone µ :W ñ KpA,F´
´q, the left adjoint LA to κA gives a comparison map LAµ : A Ñ L such that:

µ “ KpLµ,F´q ˝ λ.

This is like the definition of a 2-limit except that there is no uniqueness requirement. It
is not the case that every weak limit is a rali-limit. This is because if the 2-category K

is locally discrete, the notion of rali-limit coincides with an ordinary limit and not a weak
limit.

Example 4.27. An object I in a 2-category K is lali-initial if the unique functor into the
terminal category admits a left adjoint for every object A P K:

KpI,Aq ˚

!

%

Clearly, this happens if and only if the hom-category KpI,Aq has an initial object for every
A P K. For a particular example, consider the 2-category MonCatl of monoidal categories
and lax monoidal functors. The terminal monoidal category ˚ is lali-initial because for every
monoidal category A we have an isomorphism between MonCatlp˚,Aq and the category
MonpAq of monoids in A, and this category has an initial object given by the monoidal unit
of A.

Example 4.28. Consider a 2-category K with a zero object 0 P K and with a further
property that the zero morphism 0A,B : A Ñ B is the initial object in KpA,Bq for every
pair of objects A,B. Then 0 is a conical lali-colimit of any 2-functor F : J Ñ K. This is
because in the definition of a lali-colimit:

Kp0, Aq CoconepA,F q%

we have Kp0, Aq – ˚, and so the question becomes whether the category of cocones of F with
apex A has an initial object. But it does and it is given by the cocone whose components
are the zero morphisms. This for instance applies to the poset-enriched categories Rel of
sets and relations and Par of sets and partial functions.

Example 4.29. Let K be a 2-category with pullbacks and comma objects and consider the
slice 2-category K{C and the colax slice 2-category K{{C from Example 2.20. It is known

4In fact, the definition in [8] is stronger than ours because it requires the existence of a 2-functor picking
the limits that is right lax adjoint to the constant embedding 2-functor K Ñ K

J .
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that the product of two objects f1, f2 in K{C is the diagonal in the pullback square of f1, f2
in K:

L

A1 A2

C
f1 f2

{

One guess would be that this becomes a weak product in K{{C after applying the in-
clusion 2-functor K{C ãÝÑ K{{C, but that would be a wrong guess. To calculate the weak
product of f1, f2 in K{{C, we first calculate the product of the comma object projections
for f1, f2 (using the notation from Example 2.20) in K{C as pictured below left:

L L Pfi A1

Pf1 Pf2

C C C

τ1 τ2{

τi

l

ρi

πfi fi

πf1 πf2

χi

Denote l :“ πf1 ˝ τ1. The claim now is that the object l P K{{C together with the colax
triangles pρiτi, χiτiq : l Ñ fi (here χi is the comma object square pictured above right) is
the lali-product of f1, f2 in K{{C. We will establish why this is the case after we prove the
main theorem in this section.

Example 4.30. Bilimits are a special case of coreflector-limits where κA is an equivalence
for every A P K. In case κA is an isomorphism for every A P K, this is the notion of an
ordinary 2-limit.

Remark 4.31 (Uniqueness of rali-limits). Rali-limits are not unique up to an equivalence.
It is not even the case that given two rali-limit objects L1, L2, there exists a left (or right)
adjoint 1-cell L1 Ñ L2. For a particular example, consider again the poset-enriched category
Par of sets and partial functions. The empty set H is the terminal object in Par, in
particular it is rali-terminal. The singleton set ˚ is rali-terminal: the ordered set ParpA, ˚q
has a maximal element given by the unique total function ! : A Ñ ˚. They are also
“normalized” in the sense that 1H and 1˚ are terminal objects in the hom ordered sets they
belong to.

Since this 2-category is poset-enriched, equivalent objects would be isomorphic, and an
isomorphism in Par has to be a total function. Thus ˚ and H can not be equivalent in Par.
Moreover, it can be seen that there is no left adjoint 1-cell ˚ Ñ H.

We may now also give an example of two non-equivalent left colax adjoints that we have
promised in Remark 2.8. It can be seen that given a 2-category K, the 2-functor ˚ Ñ K

picking an object L is a colax left adjoint to the unique 2-functor K Ñ ˚ if and only if L
is rali-initial. In this colax adjunction, the modification Ψ is invertible if and only if the
1-cell 1L is the initial object of KpL,Lq. Based on above paragraphs, the unique 2-functor
Parop Ñ ˚ has two left colax adjoints that are not equivalent.
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Theorem 4.32. Assume K is a 2-category that admits weighted J-indexed bilimits and
assume D is a lax-idempotent pseudomonad on K. Then, the Kleisli 2-category KD admits
weighted J-indexed coreflector-limits.

Proof. Let G : P Ñ KD be a 2-functor, write rG for the 2-functor DA ÞÑ KDpDA,G?q.
Denoting again by UD the canonical pseudofunctor KD Ñ K, there is a biadjunction where
the right biadjoint sends a weight W to the bilimit of UDG : P Ñ K weighted by W :

K KD PsdrP,Catsop
JD rG

t´,UDGu

J

This is because of the following equivalences that are pseudo-natural with respect to
W P rP,Cats and A P K:

KpA, tW,UDGuq » PsdrP,CatspW,KpA,UDG´qq

» PsdrP,CatspW,KDpDA,G´qq

“ PsdrP,CatsoppKDpDA,G´q,W q.

Transferring the identity across those equivalences, we see that the counit of the biad-
junction is the composite pseudonatural transformation:

W KptW,UDGu, UDG´q KDpDtW,UDGu, G´q,
λW ppG´q˚˝JD

where λW is the W -weighted bilimit cone for UDG : P Ñ K. By Theorem 4.15 this
induces a colax adjunction with the same counit:

KD PsdrP,CatsoprG

JDt´,UDGu

%%

Notice that from the beginning of the proof of Theorem 3.4 it can be seen that there is
an adjunction on hom categories described below whose unit is invertible:

KDpB, JDtW,UDGuq PsdrP,CatspW,KDpB,G´qq

θ ÞÑKDpθ,G´q˝ppG´q˚˝JD˝λW

%

This exhibits the pseudonatural transformation ppG´q˚ ˝JD ˝λW as the coreflector-limit of
G weighted by W . �

Example 4.33. The bicategory PROF of locally small categories and small profunctors is
coreflector-complete. This is because by Example 2.19, it is a Kleisli bicategory for a left
Kan pseudomonad on a complete 2-category CAT.

Example 4.34. The proof of Theorem 4.32 gives a concrete way to compute limits. Con-
sider the colax-idempotent pseudomonad from Example 2.20. We can see that the process
of computing lali-product of two objects pf1 : A1 Ñ C, f2 : A2 Ñ Cq in the colax-slice
2-category K{{C agrees with the process described in Example 4.29.



32 MILOSLAV ŠTĚPÁN

Remark 4.35. Given a left Kan 2-monad pD, yq, going through the proof of Theorem 4.32
(and considering Remark 4.21) we may now replace PsdrP,Cats by rP,Cats and the result
can be changed to the claim that KD admits J-indexed lali-limit whenever K admits them
as 2-limits.

We end the section with introducing the concept of preservation of weak limits:

Definition 4.36. We say that a pseudofunctor H : K Ñ L preserves X-limits (where X
is any of the classes of morphisms in Definition 4.2 for the case of K “ Cat) if, whenever
λ : W ñ KpL,F´q exhibits L as a X-limit of F : J Ñ K weighted by W : J Ñ Cat, the
composite pictured below is an X-limit of HF weighted by W :

W KpL,F´q LpHL,HF´qλ H

Example 4.37. In case K,L admit comma objects, their preservation as rari-limits has
been studied in [24, Definition 7.1] where it has been called preservation of lax pullbacks

up to a right adjoint section. For instance, given a finitely complete 2-category K, the
2-functor p´q ˆ Z has this property for any Z P K (see [24, Example 7.3]). In Weber’s
later work [23, 6.1 THEOREM], the class of familial functors have been shown to preserve
comma objects as lari-limits.

5. Applications to two-dimensional monad theory

Definition 5.1. Let T be a 2-monad on a 2-category K. We will say that it satisfies
Property L if the inclusion T-Algs ãÝÑ T-Algl admits a left 2-adjoint and the corresponding
lax-morphism classifier 2-comonad Ql on T-Algs is lax-idempotent.

By Theorem 2.22, Proposition 2.25, a 2-monad T on K will have this property when K

admits oplax limits of an arrow and T-Algs is sufficiently cocomplete (admits lax codescent
objects).

To apply the (appropriate dual of the) results developed in Section 4.2 to the lax-
idempotent 2-comonad Ql, notice that (with the hint of the lists in Remark 2.16 and
4.2) this amounts to “going” from K to Kcoop. For instance “coreflection-inclusion” gets
replaced by “reflector”.

5.1. Lax flexibility. For this section, recall the notions of semiflexible and flexible algebras
for a 2-monad T from [2, Remark 4.5, page 23]. By [3, Proposition 1], a T -algebra pA, aq
is semi-flexible if and only if it admits the structure of a pseudo-Qp-coalgebra. A pie

T -algebra was then defined to be a T -algebra that admits a strict Qp-coalgebra structure.
This motivates us to define:

Definition 5.2. Let T be a 2-monad on a 2-category K that satisfies Property L. A
T -algebra pA, aq is said to be:

‚ lax-semiflexible if it admits a pseudo-Ql-coalgebra structure.
‚ lax-flexible if it admits a normal pseudo-Ql-coalgebra structure.
‚ lax-pie if it admits a strict Ql-coalgebra structure.



COLAX ADJUNCTIONS AND LAX-IDEMPOTENT PSEUDOMONADS 33

Remark 5.3. Every lax-Y T -algebra is Y, where Y P tflexible, semiflexible, pieu. This
is because of the fact that by Proposition 2.26 there is an induced 2-functor from pseudo-
Ql-coalgebras to pseudo-Qp-coalgebras that commutes with the 2-functors that forget the
coalgebra structure (and thus keeps the T -algebra structure intact).

Example 5.4. In Corollary 5.9 we will see that every free T -algebra is lax-flexible; this is
a strengthening of the fact that every free T -algebra is flexible ([2, Corollary 5.6]).

Example 5.5. Fix a category J and consider the 2-monad T on rob J ,Cats whose algebras
are weights (2-functors) J Ñ Cat. Weights that index lax limits are precisely the wights
that are cofree-Ql-coalgebras, i.e. those of the form QlW (see [12, Chapter 5]). Since a lax
limit is in general not a pseudo-limit [2, Remark 5.5], not every pie algebra is lax-pie.

Following Example 4.5 and Remark 4.11, the application of (the dual of) Proposition 4.9
to the lax-idempotent 2-comonad Ql provides a lax version of [3, Theorem 20 a)]. It reads
as:

Theorem 5.6. Let T be a 2-monad on a 2-category K satisfying Property L and denote
by U : T-Algs Ñ K the forgetful 2-functor. A T -algebra is lax-semiflexible, semiflexible, if
and only if, respectively:

‚ T-AlgsppA, aq,´q : T-Algs Ñ Cat sends U -reflectors to reflectors in Cat.
‚ T-AlgsppA, aq,´q : T-Algs Ñ Cat sends U -lalis to lalis in Cat.

Remark 5.7. In a future work we will study lax-pie T -algebras for a 2-monad T . Using
a comonadicity theorem, it can be shown that when T is a 2-monad of form CatpT 1q for
a cartesian monad T 1 on a category E with pullbacks, lax-pie T -algebras are equivalent to
T 1-multicategories.

5.2. Colax adjunctions and lali-cocompleteness of lax morphisms. Considering
Remark 4.21, the application of Theorem 4.13 and Theorem 4.15 for the 2-comonad Ql
reads as:

Theorem 5.8. Let T be a 2-monad satisfying Property L. Any 2-adjunction below left
induces a colax adjunction below right:

T-Algs T-Algl L ù T-Algl L
J G

H

JH

G%

%%

Moreover, for every L P L, the T -algebra HL is lax-flexible.

Corollary 5.9. The free-forgetful adjunction for a 2-monad T on a 2-category K satisfying
Property L induces a colax adjunction between T-Algl and K. In particular, every free
T -algebra is lax-flexible.

T-Algs T-Algl K ù T-Algl K

FT

U

JFT

J U

%%

%
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Corollary 5.10. Let T, S be two 2-monads on a 2-category K satisfying Property L
and let θ : S Ñ T be a strict monad morphism. Assume that the induced 2-functor
θ˚ : T-Algs Ñ S-Algs admits a left 2-adjoint θ˚ (this is the case when K is complete
and cocomplete and T is finitary, see [2, Theorem 3.9]). Then there is an induced colax
adjunction between T-Algl and S-Algl:

T-Algs S-Algs S-Algl ù T-Algl S-Algl

T-Algl

θ˚

θ˚

J

p´q1

J θ˚

θ˚

%% %%

The following shows lali-cocompleteness of T-Algl:

Theorem 5.11. Let T be a 2-monad on a 2-category K that admits oplax limits of an
arrow. Assume that T-Algs is cocomplete (in particular T satisfies Property L). Then
T-Algl is lali-cocomplete.

Proof. This follows from (the dual of) Remark 4.35. �

Remark 5.12. By Remark 4.26, this in particular shows that T-Algl is weakly cocomplete.

Corollary 5.13. The following 2-categories are lali-cocomplete:

(1) for a category J , the 2-category LaxrJ ,Cats of 2-functors J Ñ Cat, lax-natural
transformations and modifications,

(2) the 2-category of monoidal categories and lax-monoidal functors and its symmet-
ric/braided variants,

(3) the 2-category of small 2-categories, lax functors, and icons,
(4) for a set Φ of small categories, the 2-category Φ-Coliml of small categories that

admit a choice of J-indexed colimits for J P Φ and all functors between them.

Proof. Each of these is a 2-category of form T-Algl, where K is a complete and cocomplete
2-category and T is one of the following 2-monads:

(1) the 2-monad T on rob J ,Cats given by the left Kan extension along ob J Ñ J

followed by restriction, see [2, 6.6],
(2) the 2-monad on Cat for monoidal categories, see [16, 5.5],
(3) the 2-category 2-monad T on the 2-category Cat-Gph of Cat-enriched graphs, see

[3, 3.3],
(4) the 2-monad T described in [13, Theorem 6.1] whose strict T -morphisms are functors

that preserve the choices of Φ-colimits. Lax T -morphisms are all functors because
this 2-monad is lax-idempotent by [13, Theorem 6.3].

�

Remark 5.14. There is also a dual version for the 2-category T-Algc of T -algebras and
colax T -morphisms. If T-Algs is sufficiently cocomplete, there exists an induced 2-comonad
Qc (the colax morphism classifier 2-comonad) and if K admits lax limits of arrows, Qc is
colax-idempotent. If T-Algs is cocomplete, T-Algc can be seen to be rali-cocomplete.
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Appendix A. Auxiliary lemmas

Lemma A.1. In the proof of Theorem 3.3:

‚ ǫ is colax-natural,
‚ Φ is a modification,
‚ the second swallowtail identity.

Proof. In this proof, we will reference the defining equations for γ1, ι1, Fα, ǫ,Ψ above the
equals sign. In the unlabeled equations we use the middle-four interchange rule combined
with the pseudofunctor laws.
ǫ is colax-natural: The composition axiom amounts to proving the equality of the

following 2-cells:

FUB FUB FUB B FUB B

FUC C C

FUD FUD FUD D FUD D

ǫB

h

g

FUh

FUg

ǫD

ǫC

F pUg˝Uhq

FUpghq FUpghq

ǫB

h

g

ǫD

ǫh

ǫg

ǫgh
γ1Fγ

It is enough to prove these after applying Up´q ˝ γyUB ˝ UǫDD ˝ ΦDUpghq on both sides.
We then have:

UpLHSq ˝ γ´1yUB ˝ UǫDDyUCUpghq ˝ ΦDUpghq “

“ Upgǫh ˝ ǫgFUh ˝ ǫDγ
1qyUB ˝ γ´1yUB ˝ UǫDUFγyUB ˝ UǫDDyUCUpghq ˝ ΦDUpghq

(6)
“ Upgǫh ˝ ǫgFUh ˝ ǫDγ

1qyUB ˝ γ´1yUB ˝ UǫDDyUCUgUh ˝ ΦDUgUh ˝ γ

“ Upgǫh ˝ ǫgFUhqyUB ˝ γ´1yUB ˝ UǫDUγ
1yUB ˝ UǫDDyUCUgUh ˝ ΦDUgUh ˝ γ

(7)
“ Upgǫh ˝ ǫgFUhqyUB ˝ γ´1yUB ˝ UǫDγ

´1yUB ˝ UǫgUFUgDyUCUh˝

˝ UǫDDyUDUgUh ˝ ΦDUgUh ˝ γ

“ UpgǫhqyUB ˝ γ´1yUB ˝ UǫgUFUhyUB ˝ γ´1UFUhyUB ˝ UǫDUFUgDyUCUh˝

˝ UǫDDyUDUgUh ˝ ΦDUgUh ˝ γ

(9)
“ UpgǫhqyUB ˝ γ´1yUB ˝ γ´1UFUhyUB ˝ UgUǫBDyUCUh ˝ UgΦBUh ˝ γ

“ γ´1yUB ˝ UgUǫhyUB ˝ Ugγ´1yUB ˝ UgUǫBDyUCUh ˝ UgΦBUh ˝ γ

(9)
“ γ´1yUB ˝ Ugγ´1yUB ˝ UgUhΦB ˝ γ

“ γ´1yUB ˝ γ´1UǫByUB ˝ UgUhΦB ˝ γ

(9)
“ UpRHSq ˝ γ´1yUB ˝ UǫDDyUCUpghq ˝ ΦDUpghq.
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The unit axiom for ǫ amounts to showing that:

FUB B

“ FUB FUB B

FUB B
FU1B

F1UB

ǫB

ǫB

FU1B

ǫB

ǫ1B
Fι

ι1

It suffices to prove that these 2-cells are equal after applying the 2-cell
Up´q ˝ γ´1yUB ˝ UǫDDyUBU1B ˝ ΦDU1B on both sides. This is done as follows:

UǫBUFU1ByUB UpǫBFU1BqyUB UpǫBF1UBqyUB

UǫBUF1ByUB UǫBU1FUByUB UǫByUB

UǫByUBU1B UǫByUB

U1BUǫByUB (9)

U1B UǫByUBU1B UǫBUFU1ByUB UpǫB ˝ FU1BqyUB

γ´1yUB

UǫBUFιyUB

UpǫBFιqyUB

UpǫBι
1qyUB

γ´1yUB

UǫBUι
1yUB

(6)

γ´1yUBUǫBDyUBU1B

UǫByUBι

UǫBDyUB

UǫBι
´1yUB

1

γ´1yUB

ΦBU1B

U1BΦB

ΦBU1B
UǫBDyUBU1B

γ´1yUB

Uǫ1ByUB

(8)

The local naturality for ǫ amounts to showing that the 2-cells below are equal:

FUB FUB B FUB B B

FUC FUC C FUC C C

FUk

ǫB

ǫC

kFUh

ǫB

hFUh

ǫC

k
FUα

ǫh
α

ǫk

An analogous approach will be done here as well, this time pre-composing with the 2-cell
Up´q ˝ γ´1yUB ˝ UǫDDyUCUh ˝ ΦDUh:

Uh UǫCyUCUh UǫCUFUhyUB UpǫCFUhqyUB

Uk UǫCyUCUk UǫCUFUkyUB UpǫCFUkqyUB

UǫCyUCUh UhUǫByUB UkUǫByUB

UǫCUFUhyUB UpǫCFUhq UphǫBqyUB UpkǫBqyUB

ΦCUh

Uα

ΦDUh
UhΦB

UǫCDyUCUh

UǫCyUCUα

γ´1yUB

UǫCUFUαyUB UpǫCFUαqyUB

ΦCUk

UkΦB

UǫDDyUCUk
γ´1yUB

(9)

UǫkyUB

UǫDDyUCUh

(9)
UαUǫByUB

γ´1yUB γ´1yUB

γ´1yUB UǫhyUB UpαǫBqyUB

(6)
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Ψ is a modification: This amounts to showing that these 2-cells are equal:

FA FUFA FA FA FB FA

FUFB FB FUFB FB

FyA

FUFf

F pyBfq

ǫFA

ǫFB

Ff

F pyBfq

Ff

FyB

ǫFB

Ff

ΨBFyf

γ1

ǫFf

γ1

ΨA

This time we precompose both sides with Up´q ˝ γ´1yUB ˝UǫFBDyUFByBf ˝ ΦFByBf to
obtain:

UpLHSqyA ˝ γ´1yUB ˝ UǫFBDyUFByBf ˝ ΦFByBf “

“ UpFfΨA ˝ ǫFfFyAqyA ˝ γ´1yA ˝ UǫFBUγ
1yA ˝ UǫFBUFDyBfyA˝

˝ UǫFBDyUFByBf ˝ ΦFByBf

(6)
“ UpFfΨA ˝ ǫFfFyAqyA ˝ γ´1yA ˝ UǫFBUγ

1yA ˝ UǫFBDUFfyA˝

˝ UǫFByUFBDyBf ˝ ΦFByBf

(7)
“ UpFfΨA ˝ ǫFfFyAqyA ˝ γ´1yA ˝ UǫFBγ

´1yA ˝ UǫFBUFUFfDyUFAyA˝

˝ UǫFBUFUFfDyUFBUFfyA ˝ UǫFByUFBDyBf ˝ ΦFByBf

“ UpFfΨAqyA ˝ γ´1yA ˝ UǫFfUFyAyA ˝ UpǫFBFUFfqDyUFAyA˝

˝ γ´1yUFAyA ˝ UǫFBDyUFBUFfyA ˝ ΦFBUFfyA ˝ DyBf

(9)
“ UpFfΨAqyA ˝ γ´1yA ˝ γ´1UFyAyA ˝ UFfUǫFADyUFAyA˝

˝ UFfΦAyA ˝ DyBf

“ γ´1yA ˝ UFfUΨAyA ˝ UFfγ´1yA ˝ UFfUǫFADyUFAyA˝

˝ UFfΦAyA ˝ DyBf

(10)
“ γ´1yA ˝ UFfι´1yA ˝ DyBf

(10)
“ γ´1yA ˝ UΨBUFfyA ˝ UǫFBγ

´1yA ˝ UǫFBUFyBDyBf˝

˝ UǫFBDyUFByBf ˝ ΦFByBf

“ UpΨBFfqyA ˝ γ´1yA ˝ UǫFBγ
´1yA ˝ UǫFBUFyBDyBf˝

˝ UǫFBDyUFByBf ˝ ΦFByBf

(7)
“ UpΨBFfqyA ˝ γ´1yA ˝ UǫFBUγ

1yA ˝ UǫFBDyUFByBf ˝ ΦFByBf

“ UpRHSqyA ˝ γ´1yUB ˝ UǫFBDyUFByBf ˝ ΦFByBf.

The second swallowtail identity: This amounts to showing the following equality,
which we will again do by an appropriate pre-composition:
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FUB

FUFU FUB “ ǫBι

FUB B

FyUB

F1UB
F pUǫByUBq

pFΦqB

γ1 ǫFUB

FUǫB ǫBǫǫB

ǫB

ΨUB

UpLHSqyUB ˝ γ´1yUB ˝ UǫBDyUB
˝ ΦB “

“ UpǫBΨUB ˝ ǫǫBFyUBqyUB ˝ γ´1yUB ˝ UǫBUγ
1yUB ˝ UǫBUFΦByUB˝

˝ UǫBDyUB
˝ ΦB

(6)
“ UpǫBΨUB ˝ ǫǫBFyUBqyUB ˝ γ´1yUB ˝ UǫBUγ

1yUB ˝ UǫBDyUBUǫByUB
˝

˝ ΦBUǫByUB ˝ ΦB

(7)
“ UpǫBΨUB ˝ ǫǫBFyUBqyUB ˝ γ´1yUB ˝ UǫBγ

´1yUB˝

˝ UǫBUFUǫBDyUFUByUB
˝ UǫBDyUBUǫByUB ˝ ΦBUǫByUB ˝ ΦB

“ UpǫBΨUBqyUB ˝ γ´1yUB ˝ UǫǫBUFyUByUB ˝ γ´1UFyUByUB˝

˝ UǫBUFUǫBDyUFUByUB
˝ UǫBDyUBǫByUB ˝ UǫByUBΦB ˝ ΦB

(9)
“ UpǫBΨUBqyUB ˝ γ´1yUB ˝ γ´1UFyUByUB ˝ UǫBUǫFUBD˝

˝ UǫBΦByUB ˝ ΦB

“ γ´1yUB ˝ UǫBUΨByUB ˝ UǫBUǫFUBDyUFUByUB
˝ UǫBΦByUB ˝ ΦB

(10)
“ γ´1yUB ˝ UǫBι

´1yUB ˝ ΦB

(8)
“ γ´1yUB ˝ UǫBUι

1yUB ˝ UǫBDyUB
˝ ΦB

“ UpRHSqyUB ˝ γ´1yUB ˝ UǫBDyUB
˝ ΦB.

�

Lemma A.2. The composite bijection (A)+(B)+(C) in the proof of Theorem 4.15:

KDpDA,DHLqpf,Dl1q – LpGDA,LqpsL ˝ Gf, sL ˝ GDl1q,

is given by the assignment:

α ÞÑ sLGα.

Proof. Because of the swallowtail identity for the biadjunction in Proposition 2.13, it can
be seen that the counit of the adjunction (12) evaluated at f : A Ñ HL is equal to the
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following (using notation from Remark 4.14):

A DA DHL HL

HL

yA Df hL

f
yHLy´1

f
ǫL

The composite bijection (A)+(B)+(C) is thus the assignment:

α ÞÑ sL ˝GDpǫLf ˝ hLy
´1
Dl1

˝ hLαyAq ˝ i
´1
f .

Unwrapping the definitions of variables hL, ǫL,i
´1
f , what we need to show that the com-

posite 2-cell below equals sLGα (note that we use the same convention for the modifications
on which a pseudofunctor is applied as in Definition 2.6):

GDA

GD2HL GDHL L

GDA GD2A GD2HL GDHGD2HL GDHGDHL GDHL

GDHL GDHGDHL

GDcDHL

s
GD2HL

GpDHL

sL

sGDHL

GDHsL

sL

Gf

GpDA

GDf

GDyA

GD2l1

GDl1

GDyHL
GDHGDyHL

s´1
GpDHL

s´1
sL

GDα

pGDyql1 pGDcqyHL

pGDHGΨqHL

pGDτq´1
L

pGΨq´1
A

σ´1
DHL

pGpq´1
f

The diagram below proves this equality:

sLGf sLGfGpDAGDyA sLGpDHLGDfGDyA

sLGDl
1 sLGDl

1GpDAGDyA sLGpDHLGD
2l1GDyA

sLGDl
1 sLGpDHLGDyHLGDl

1

sLGpDHLGDyHLsGDHLGDcHLGDl
1 sLGpDHLsGD2HLGDcDHLGDyHLGDl

1

sLGDl
1 sLGpDHLsGD2HLGDHGDyHLGDcHLGDl

1

sLGDHsLGDcHLGDl
1 sLsGDHLGDcHLGDl

1 sLsGDHLGDHGpDHLGDHGDyHLGDcHLGDl
1

sLGfpGΨq´1
A

sLpGpq´1
f
GDyA

sLGpDHLGDαGDyA

sLGpDHLGDy
´1

l1

sLGpDHLσ
´1
DHL

GDyHLGDl
1

sLpGDτq´1
L
GDl1

sLGαGpDAGDyA

sLpGpq´1
Dl
GDyA

sLGα

sLGDl
1pGΨq´1

A

sLpGΨq´1
HL

GDl1

1

1

sLGpDHLsGD2HL
GDcyHL

GDl1

sLs
´1
GpDHL

GDHGDyHLGDcHLGDl
1

sLsGDHLpGDHGΨqHLGDcHLGDl
1

s´1
sL
GDcHLGDl

1

sLσHLGDl
1

sLGpDHLsGDyHL
GDcHLGDl

1

sLpGΨqHLsGDHLGDcHLGDl
1

sLGpDHLGDyHLσ
´1
HL

GDl1

sLpGΨqHLGDl
1

sLσ
´1
HL

GDl1

paq

pbq

pcq
pdq

p˚q

p˚q

peq

In this diagram:

‚ paq is the local naturality of pGpq´1,
‚ pbq is the modification axiom for pGΨq´1

‚ pcq is the swallowtail identity for ps, cq,
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‚ pdq is the equation derived from the local naturality of s,
‚ peq is the modification axiom for σ´1,
‚ p˚q’s are the middle-four-interchange laws.

�
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