
ar
X

iv
:2

40
5.

00
44

0v
1

 [
cs

.L
O

]
 1

 M
ay

 2
02

4

Intersection Types via Finite-Set Declarations

Fairouz Kamareddine and Joe Wells

Heriot-Watt University, Edinburgh, UK

Abstract. The λ-cube is a famous pure type system (PTS) cube of
eight powerful explicit type systems that include the simple, polymor-
phic and depen- dent type theories. The λ-cube only types Strongly
Normalising (SN) terms but not all of them. It is well known that even
the most powerful system of the λ-cube can only type the same pure
untyped λ-terms that are typable by the higher-order polymorphic im-
plicitly typed λ-calculus Fω, and that there is an untyped λ-term U̇ that
is SN but is not typable in Fω or the λ-cube. Hence, neither system
can type all the SN terms it expresses. In this paper, we present the f-
cube, an extension of the λ-cube with finite-set declarations (FSDs) like
y∈{C1, · · · , Cn} : B which means that y is of type B and can only be
one of C1, · · · , Cn. The novelty of our FSDs is that they allow to repre-
sent intersection types as Π-types. We show how to translate and type
the term U̇ in the f-cube using an encoding of intersection types based
on FSDs. Notably, our translation works without needing anything like
the usual troublesome intersection-introduction rule that proves a pure
untyped λ-term M has an intersection type Φ1 ∩ · · · ∩ Φk using k in-
dependent subderivations. As such, our approach is useful for language
implementers who want the power of intersection types without the pain
of the intersection-introduction rule.

Keywords: Intersection Types, Typability, Strong Normalisation.

1 The Troublesome Intersection-Introduction Rule

Type theory was first developed by Bertrand Russell to avoid the contradic-
tions in Frege’s work. Since, type theory was adapted and used by Ramsey,
Hilbert/Ackermann and Church and later exploded into powerful exciting for-
malisms that played a substantial role in the development of programming
languages and theorem provers, and in the verification of software. As advo-
cated by Russell, type theory remains to this day a powerful tool at avoiding
loops/contradictions and at characterising strong normalization (SN). There are
2 styles of typing: explicit (à la Church) as in λx : T.x and implicit (à la Curry)
as in λx : x. We call the latter untyped. A type assignment engine needs to work
harder to assign a type to an untyped term than to an explicitly typed one.

Intersection types were independently invented near the end of the 1970s by
Coppo and Dezani [7] and Pottinger [12] with aims such as the analysis of nor-
malization properties, which requires a very precise analysis (see also [4,10,14]).
Aiming to make use of this precision, the members of the Church Project worked

http://arxiv.org/abs/2405.00440v1

2 Fairouz Kamareddine and Joe Wells

on a compiler that used intersection types not only to support the usual kind
of type polymorphism but also to represent a precise polyvariant flow analysis
that was used to enable optimizing representation transformations [20]. Among
the many challenges that were faced, a major difficulty was the intersection-
introduction typing rule, which made it complicated to do local optimizations
(an essential task for a compiler) while at the same time retaining type informa-
tion and the ability to verify it. The intersection-introduction rule usually looks
like this:

E ⊢ M : σ E ⊢ M : τ

E ⊢ M : σ ∩ τ
(∩-Intro)

The proof terms are the same for both premises and the conclusion! No syntax
is introduced. A system with this rule does not fit into the proofs-as-terms (PAT,
a.k.a. propositions-as-types and Curry/Howard) correspondence, because it has
proof terms that do not encode deductions. This trouble is related to the fact
that the ∩ type constructor is not a truth-functional propositional connective,
but rather one that depends on the proofs of the propositions it connects sharing
some specific key structural details but not all details [19].

There is an immediate puzzle in how to make a type-annotated variant of
the system. The usual strategy fails immediately, e.g.:

E ⊢ (λx : σ.x) : σ → σ E ⊢ (λx : τ.x) : τ → τ

E ⊢ (λx : ??? .x) : (σ → σ) ∩ (τ → τ)

Where ??? appears, what should be written? A compiler using intersection
types must have some way of organizing the type information of the separate
typing subderivations for the same program points, because a transformation at a
program point must simultaneously deal with all of the separate subderivations.
It would be nice if this was principled rather than ad hoc.

The various solutions to this problem each have their own strengths and
weaknesses. The most basic strategy is to accept the usual style of (∩-Intro),
and not try to have proof terms that contain type annotations [8,11].This is fine
if the plan is to discard much or most type information early in compilation, but
is unhelpful if checkable type-correctness is to be maintained through program
transformations.

Another strategy is to have proof terms whose structure makes multiple
copies of subprograms typed with the (∩-Intro) rule [20]. This means that proof
terms can not be merely annotated versions of the λ-terms being typed, be-
cause the branching structure of the proof terms can not be the same as that of
the λ-terms. Our experience is that this makes local program transformations
complicated and awkward if checkable type-correctness is to be maintained. An-
other option is to limit the possible typings and the set of typable terms, and
accept not having the full power of intersection types [6]. However, this causes
difficulty when the purpose of using intersection types is to support arbitrarily
precise program analyses, and also when program transformations go outside of
the restricted set of typings that are supported.

Intersection Types via Finite-Set Declarations 3

These issues led us to search for ways to get the power of intersection types
without the usual multiple-premise-style (∩-Intro) rule ([21] gives an overview
of earlier solutions). Some solutions do manage to merge the premises of the (∩-
Intro) rule into just one premise, but do not provide proof terms containing type
information for variable bindings or any other easy-to-manipulate representation
of typing derivations [13,5].

2 Finite-Set Declarations and Encoding ∩-Types

Pure type systems (PTSs) were independently given in [2] and [16] and have been
used to reason simultaneously about families of type systems and logics. The well
known λ-cube of 8 specific PTS’s [1] captured the core essence of polymorphic,
dependent and Calculus of Constructions (CoC) systems. PTSs were extended
with definitions [3,15] in order to better represent mathematics and computation.
In addition to old x : A declarations, these definitions allow declarations of the
form x =d D : A which declare x to be A and to have type B. Of course extra
typing rules are added to type the new terms with definitions.

While analysing the troublesome (∩-Intro) rule, we noted that definitions can
be generalised to represent intersection types. This article is the result of this
observation. We present the new syntax which extends the λ-cube with finite set
declarations that generalise definitions to support intersection types without the
troublesome (∩-Intro) rule. Instead of definitions λx =d D : A.B, the new syntax
adds finite-set declarations (FSDs) λx∈{D1, D2, · · · , Dn} : A.B where n ≥ 1.
This latter term is a function like λx : A.B that also requires its argument x to
exhibit at most the behaviors of D1, · · · , Dn.

We show that FSDs give the power of intersection types by translating an
intersection type Φ1 ∩ · · · ∩ Φk to a Π-term of the form:

Πz∈{P1,k, · · · , Pk,k} : ∗k.zΦ1 · · ·Φk

where ∗k abbreviates ∗ → · · · → ∗ → ∗︸ ︷︷ ︸
k arrows

and Pi,k = (λx1 : ∗. · · · .λxk : ∗.xi) picks

the i-th of k arguments. So, if z = Pi,k, then zΦ1 · · ·Φk = Φi. Notably, our
translation from intersection types works without anything in the translation
result like the usual (∩-Intro) rule that proves a pure untyped λ-term Ṁ has
an intersection type Φ1 ∩ · · · ∩ Φk using k independent subderivations. In PTS
style, these “subderivations” are done simultaneously because in the scope of the
declaration z∈{P1,k, · · · , Pk,k} : ∗k, the type z(A1 → B1) · · · (Ak → Bk) can be
converted to the equal type (zA1 · · ·Ak) → (zB1 · · ·Bk).

Existing methods for getting rid of the (∩-Intro) rule which support some
kind of type equivalence [21] differ from our method in that our type equiva-
lence is a consequence of the FSDs restriction on z, which is added to a system
supporting Π-types, including those usually referred to as “higher-order poly-
morphic types” and “dependent types”. Thus, FSDs might be a good way to
add the power of intersection types to languages like Coq, Agda, and Idris. By
supporting the full power of intersection types, FSDs might also help represent

4 Fairouz Kamareddine and Joe Wells

results of arbitrarily precise program analyses (e.g., a polyvariant flow analysis)
in language implementations that have Π-types in their internal representation.

FSDs can do more than support a translation of intersection types. FSDs can
represent a “definition” by a β-redex where the abstraction has a FSD with only
one term in the restriction. The point of using a definition like (λx∈{D} : C.B)D
instead of a β-redex like (λx : C.B)D is that in the former, x is D can be used to
help justify type-correctness of B, which might otherwise require replacing many
instances of x by D. Although using an FSD instead of a traditional definition
requires forming the abstraction λx∈{D} : C.B and its type, and hence an
additional type formation rule, it is worth noting that, adding support for FSDs
to suitable systems does not require huge changes. This is the case since although
not always prominently stated in theory papers, in practice, proof assistants
support definitions in the formal systems of their implementations.

Section 3 introduces into the λ-cube the new feature of finite-set declarations.
Section 4 presents examples that demonstrate how the new syntax can be used to
simulate intersection types and shows how a term of Urzyczyn which is untypable
in the λ-cube can be typed in the f-cube.

Let N1 = N \ {0} be the positive natural numbers. Given i, j ∈ Z, define
i..j = {k ∈ Z | i ≤ k ≤ j} and [i..j) = i..(j − 1). Write |S| for the size of set S.

As usual, the composition X ◦ Y is {(y, x) | ∃z.(y, z) ∈ Y and (z, x) ∈ X}.
Given n ∈ N1, let Xn be such that X1 = X and X i+1 = X ◦ (X i) for i ∈ N1.

3 Extending the Syntax of the λ-cube

The new syntax has declarations of the form xρ : A, meaning that the variable
x has type A and x also obeys restriction ρ = ∈{A1, · · · , Ak} for k ∈ N. When
k = 0, then x∈{} : A is the usual (unrestricted) declaration x : A of the λ-cube.
When k ∈ N1, we get the new restricted finite-set declaration (FSD) xρ : B
which only permits x to be one of the Ai’s. These FSDs are the innovation of
the f-cube.

Definition 1 (Syntax). Figures 1 and 2 use the usual pseudo-grammar no-
tation to define the sets of syntactic entities. Many of these entities are clear
from the usual type-free/typed λ-calculus. In the λ-cube we have the sorts ∗ and
✷, the rules R ∈ RuleSet, and the declarations δ and contexts ∆. In the ex-
tended cube however, the declarations are a generalised version of those of the
λ-cube and a declaration δ may not only be of the the usual form x : A (which
we also write as x⋄ : A and states that x is of type A) but may also be of the
form x∈{A1, · · · , Ai} : A which states that x is declared as any of the Ajs (for
j ∈ 1..i) and is of type A. We call declarations of the form x∈{A1, · · · , Ai} : A,
where i 6= 0 restricted declarations and these belong to RDeclaration.

Expressions of the f-cube and the pure λ-calculus are given respectively by
Term and LTerm. Figure 1 defines default set ranges for metavariables. Variable
is used as the set of what we call names. There are two name classes: Variable∗

marked with sort ∗ and Variable✷ marked with sort ✷. For embedding reasons,

Intersection Types via Finite-Set Declarations 5

it is usual to take the type free λ-calculus variables LVariable to be Variable∗. So,
x∗ and ẋ range over Variable∗ = LVariable whereas x✷ ranges over Variable✷.
If no confusion occurs, we simply write x to range over Variable = Variable∗ ∪
Variable✷. Let Syntax be the uniton of all the sets of syntactic entities that

a, b, i, . . . , n, q, r ∈ N

ς ∈ Sort ::= ∗ | ✷
aς , . . . , zς ∈ Variable

ς

f, g, h, q, . . . , z ∈ Variable = Variable
∗ ∪ Variable

✷

ȧ, · · · , ḣ, k̇, · · · , ż ∈ LVariable = Variable
∗

Ȧ, · · · , Ż ∈ LTerm ::= ẋ | λẋ.Ṁ | ṀṄ (type-free λterms)

Fig. 1. Metavariable declarations and type free terms.

we define in Figures 1 and 2. Let χ range over Syntax. We assume the usual
assumptions of binding, α-conversion and the Barendregt variable renaming. We
take α-convertible expressions to denote the same syntactic entities, e.g., even if
ẋ 6= ẏ, it nonetheless holds that λẋ.ẋ = λẏ.ẏ. As usual, let FV(χ) be the collection
of all variables in χ. We say χ is closed iff FV(χ) = {}. We assume the usual
substitution in the λcalculus where the capture of free variables must be avoided.

π ∈ Binder ::= λ | Π
ρ ∈ Restriction ::= ∈{A1, . . . , Ai} where i ∈ N

δ ∈ Declaration ::= x ρ :A
∆ ∈ Context ::= ε | δ1, . . . , δi where i ∈ N1

γ ∈ RDeclaration ::= x ρ where ρ 6= ⋄
Γ ∈ RContext ::= ε | γ1, . . . , γi where i ∈ N1

A, . . . ,H, J, L, . . . ,W ∈ Term ::= ς | x | πδ.A | AB

Rule ::= (ς, ς ′)
R ∈ RuleSet ::= {X ⊆ Rule | (∗, ∗) ∈ X}

– Define the null restriction ⋄ = ∈{} and write x⋄ : A as the usual declaration
x : A.

– Define the restriction declarations of ∆ by: rdec(x ⋄ :A,∆) = rdec(∆);
rdec(ε) = ε; and rdec(x∈{A1, . . . , Ak} :A,∆) = x∈{A1, . . . , Ak}, rdec(∆).

– For the λ-cube, Restriction = {⋄}; RDeclaration = ∅ and rdec(∆) = ε.
– Define the variables of a δ or γ by: vars (xρ : A) = vars (xρ) = {x} and define

vars (ε) = {}; vars (δ,∆) = var(δ)∪ vars (∆); vars (γ, Γ) = var(γ)∪ vars (Γ).
– Define ♯(B), the degree of B where ♯ ∈ Term→ 0..3 by:

♯(✷) = 3, ♯(∗) = 2, ♯(xς) = ♯(ς)− 2, and ♯(πδ.A) = ♯(AB) = ♯(A).
– Define rsort and tsort by:

• If ♯(B) = 0 then rsort(B) = ∗ and if ♯(B) = 1 then rsort(B) = ✷.
• If ♯(B) = 1 then tsort(B) = ∗ and if ♯(B) = 2 then tsort(B) = ✷.

Fig. 2. λ- and f-cube systems syntax definitions.

6 Fairouz Kamareddine and Joe Wells

Definition 2 (Rewriting). We use the usual notion of compatibility of a re-
lation on syntactic entities. Let β and β be the smallest compatible relations
where:

(λx. Ṁ)Ṅ β Ṁ [x := Ṅ]

(λxρ :A.B)C β B[x := C]

For r ∈ {β, β}, let →r, →→r, and =r be defined as usual: (→r) = (r); and →→r

is the smallest transitive relation containing r that is reflexive on Syntax; and
=r is the smallest transitive symmetric relation containing →→r.

The following theorem shows that our rewriting rules are confluent.

Theorem 1 (Confluence for β). If χ1 →→β χ2 and χ1 →→β χ3 then there
exists χ4 ∈ Syntax such that χ2 →→β χ4 and χ3 →→β χ4.

Proof. First, translate Syntax and β into a higher-order rewriting (HOR) frame-
work, e.g., van Oostrom’s framework [18]. It is then straightforward to show that
β is orthogonal. It follows by a standard HOR result that β is confluent. ⊠

Definition 3 (Normal Forms). A syntactic entity χ is a normal form, written
isnf(χ), iff there is no χ′ such that χ →r χ′ for r ∈ {β, β}. The normal form of χ,
written nf(χ), is the unique syntactic entity χ′ such that χ →→r χ′ for r ∈ {β, β}
and isnf(χ′). (Note that nf(χ) might be undefined, e.g., consider χ = BB ∈ Term

where B = λx ⋄ : y. x x, has no normal form (and is also not type-correct).) A
syntactic entity χ is strongly normalizing, written SN(χ), iff there is no infinite
r-rewriting sequence starting at χ for r ∈ {β, β}.

Each of the λ-cube and the f-cube has 8 type systems each defined by a set R
which contains type formation rules which the (Π) and (λ) rules use to regulate
the allowed abstractions. Figure 3 gives the 8 systems defined by these Rs. E.g.,

λ̂C uses all combinations (ς, ς ′) where ς ∈ {∗,✷}.

λ̂→ (∗, ∗)

λ̂2 (∗, ∗) (✷, ∗)

λ̂P (∗, ∗) (∗,✷)

λ̂P2 (∗, ∗) (✷, ∗) (∗,✷)

λ̂ω (∗, ∗) (✷,✷)

λ̂ω (∗, ∗) (✷, ∗) (✷,✷)

λ̂Pω (∗, ∗) (∗,✷) (✷,✷)

λ̂C (∗, ∗) (✷, ∗) (∗,✷) (✷,✷)

✏
✏
✏
✏

✏
✏
✏
✏

✏
✏
✏
✏

✏
✏
✏
✏

λ̂→
λ̂P

λ̂2

λ̂P2

λ̂ω λ̂Pω

λ̂Cλ̂ω

♣ ♣

♣♣

♣ ♣

♣♣

✲

✻

✏✏✶
(∗,✷)

(✷,✷)
(✷, ∗)

Fig. 3. The rule sets for the λ-cube and f-cube

Definition 4 (Typing Rules and Judgements and Type Systems). The
typing rules for the λ- and f-cubes are given in figure 5. If ∆ ⊢R A : B then:

Intersection Types via Finite-Set Declarations 7

(ref)
i ∈ 1..n; B =β Ai

ε B∈{A1, · · · , An}

(ctR)
x 6∈ vars (Γ) ; ∀i ∈ 1..n. Γ [x := Ai] B[x := Ai] ρ[x := Ai]

x∈{A1, . . . , An}, Γ B ρ

Fig. 4. Restriction Satisfaction/Utilisation Judgements (Γ Bρ)

– In type system λR and in context ∆ the term A has type B.
– ∆, A, and B are λR-legal (or simply legal) and A and B are ∆-terms.
– A has sort ς if also ∆ ⊢R B : ς holds (in this case, note that sort(A) = ς).

Let ∆ ⊢R A :B : C stand for ∆ ⊢R A :B and ∆ ⊢R B :C. If R is omitted from
⊢R, then the reader should infer it.

As we see in Figure 5, the λ- and f-cubes only differ in rules (start), (app)
and (conv). For the f-cube, (start) is an obvious generalisation of that of the λ-
cube (checking that the Bjs have the correct type), whereas (app) and (conv) use
Figure 4 to check that only well behaved restrictions are used. Here, rdec(∆)
Aρ and rdec(∆) B∈{C} ensure that the restrictions via FSDs are activated
according to Figure 4 so that if ρ = ∈{C1, · · · , Cn}, then for all i, A =β Ci

modulo substitutions based on FSDs in rdec(∆). Thus, if there are no FSDs, i.e.
rdec(∆) = ε, then the rdec(∆) B∈{C} of (conv) becomes the B =β C in the
λ-cube.1

The next definition gives the function TE which erases types and all informa-
tion at degree 1 or more from elements of Term to return pure untyped λ-terms.
TE is like the function E of [9], but is simpler because we only need TE(A) to be
meaningful when ∆ ⊢f A : B : ∗. If A is not legal or the sort (type of the type)
of A is not ∗, then we do not care whether TE(A) is defined or if so what it is.

Definition 5 (Type Erasure). Let TE ∈ Term → LTerm be the smallest func-
tion where: TE(x) = x and
TE(AB) = TE(A)TE(B) if ♯(B) = 0 TE(λx∗ ρ :A.B) = λx∗.TE(B)
TE(AB) = TE(A) if ♯(B) = 1 TE(λx✷ ρ :A.B) = TE(B)

Definition 4 stated how we can type explicily typed terms (those of Term). The
next definition states how to type pure type-free terms (those of LTerm).

Definition 6 (Typability of Pure λ-Terms). A pure λ-term Ṁ is typable
iff there exist ∆, A, and B such that ∆ ⊢f A : B : ∗ and TE(A) = Ṁ .

4 Implementing Intersection Types

This section defines intersection types using FSDs and shows that Urzyczyn’s
famous term is typable in the f-cube. Throughout, assume we are using one of

1 The (weak) rule differs slighly from that of the λ-cube, but a simple check shows
that this formalisation of the λ-cube is equivalent to that of [1].

8 Fairouz Kamareddine and Joe Wells

(axiom) ε ⊢R ∗ : ✷ (weak)
∆, δ ⊢R

A : B; ∆ ⊢R
C : D

∆, δ ⊢R
C : D

(start)

(
xς 6∈ vars (∆) ; ∆ ⊢R A : ς;
if ρ = ∈{B1, · · · , Bn} then ∀j ∈ 1..n.∆ ⊢R Bj : A

)

∆,x
ς
ρ :A ⊢R

x
ς : A

(Π)
∆,x ρ :A ⊢R

B : ς; ∆ ⊢R
A : ς ′; (ς ′, ς) ∈ R

∆ ⊢R
Πxρ :A.B : ς

(λ)
∆, δ ⊢R

B
′ : B; ∆ ⊢R

Πδ.B : ς

∆ ⊢R
λδ.B

′ : Πδ.B

(app)
∆ ⊢R

F : (Πxρ :C.B); ∆ ⊢R
A : C; (if ρ 6= ⋄ then rdec(∆) Aρ)

∆ ⊢R
F A : B[x := A]

(conv)
∆ ⊢R

A : B; ∆ ⊢R
C : ς; rdec(∆) B∈{C}

∆ ⊢R
A : C

– In the λ-cube, the if-then statements of (start) and (app) do not apply, and the
rdec(∆) B∈{C} of (conv) becomes b =β C by Figure 4.

– We write ∆ ⊢R

λ A : B resp. ∆ ⊢R

f
A : B for type derivation in the λ- resp. f-cube.

Fig. 5. Typing rules of the λ- and f-cubes.

the 2 systems that allow forming functions “from types to types” (“type con-
structors”) and “from types to terms” (“type polymorphism”). Thus, prefix every
statement with “If {(✷,✷), (✷, ∗)} ⊆ R, then · · · ” and read every “⊢” as “⊢R

f
”.

The next definitions give pieces of syntax and abbreviations that are needed
to define intersection types in the f-cubes.

Definition 7 (General Syntax Abbreviations).

– A→B = Πwς :A.B where wς 6∈ FV(B) and ς = tsort(A).
→ associates to the right, that is, A→ B → C stands for A→ (B → C).

– ∗0 = ∗ and ∗i+1 = ∗→ ∗i.
– Given names for declarations δv1 , . . ., δvn , define: ∆v1,...,vn = δv1 , . . . , δvn .

Definition 8 (Pieces of Syntax Used in Intersection Types). The trans-
lations use the yj’s to represent type variables, use the xi’s to build type-choice
combinators, and use the zjq’s as variables restricted to range over type-choice
combinators. We implement these specialized purposes by using the declarations,
restrictions, and terms defined for i, j ∈ N and q ∈ N1 by:
δyj = y✷j ⋄ : ∗
δxi = x✷

i ⋄ : ∗
Pi,q = λδx1 . · · · .λδxq . xi where i ∈ 1..q (P for “projection”)
ρP..q = ∈{P1,q, . . . , Pq,q}

δz
j
q = zjq

✷

ρP..q : ∗q

γzj
q = rdec(δz

j
q) = zjq ρ

P..q

Intersection Types via Finite-Set Declarations 9

We are ready to define intersection types in the f-cube. We only take the intersec-
tion of terms whose degree is 1 and hence whose required sort is ✷ (these terms
correspond to types). From definition 8, zjq ρ

P..q is zjq ∈{P1,q, . . . , Pq,q} and hence

whichever Pi,q is chosen from ∈{P1,q, . . . , Pq,q} for zjq , we get (zjq A1 · · · Aq) =β

Ai and we see that Πδz
j
q . (zjq A1 · · · Aq) is the intersection of A1, · · · , Aq.

Definition 9 (Intersection Types in the f-cube). Given ∆-terms A1, . . .,
Aq where q ∈ N1 and ♯(A1) = · · · = ♯(Aq) = 1, the intersection of A1, . . ., Aq is
defined as:⋂

· {A1, . . . , Aq} = Πδz
j
q . (zjq A1 · · · Aq) where zjq /∈ FV(Ai) for i ∈

1..q.

Definition 10 (Syntax Abbreviations for Intersection Types).

– For translations that use only y0 from the y’s, let: y = y0 and δy = δy0 .
– For examples that use only one of the z’s at a particular arity q ∈ N1, let:

zq = z0q δzq = δz
0

q γzq = γz0

q .

– Let A = A→A Ã = A→A A = (A→ Ã) = A→ ((A→A)→A)

A
0
= A and A

i+1
= A

i
A0 = A and Ai+1 = Ai.

The following lemma sets a type-building toolkit to be used in our examples.
Its proof is straightforward using the machinery of PTSs.

Lemma 1 (Type-Building Toolkit for Examples). The following hold:

1. For i, j ∈ N and q ∈ N1, ε ⊢ ∗i : ✷; ε ⊢ Pi,q : ∗q for i ∈ 1..q; δz
j
q ⊢ zjq : ∗q.

2. If ∆ is legal and uς ρ :A ∈ ∆, then ∆ ⊢ uς : A : ς.
3. Let j ∈ N, let i ∈ N1, let n ∈ 1..i, and let u1, . . . , un ∈ {yk | k ∈ N}. Suppose

for l ∈ 1..n that Al ∈ {ul, ul}. Let ∆ be legal such that δz
j

i ∈ ∆ and for all
l ∈ 1..n, δul ∈ ∆. Then ∆ ⊢ zjiA1 . . . An : ∗i−n : ✷.

4. If q ∈ N1, and ∆ ⊢ A : ∗q, and ∆ ⊢ Bi : ∗ for i ∈ [0..q), then for j ∈ [0..q) it
holds that ∆ ⊢ AB0 · · · Bj : ∗q−(j+1).

5. If ∆ ⊢ A : ∗ and ∆ ⊢ B : ∗ then ∆ ⊢ A→ B : ∗.

6. If ∆ ⊢ A : ∗ and i ∈ N then ∆ ⊢ A
i
: ∗ and ∆ ⊢ Ai : ∗ and ∆ ⊢ Ã : ∗.

4.1 Simple Examples

Definition 11 (Needed Terms and Declarations). Define the following:
U = z2 y y δu = u :U where u 6= z2 and u 6= y V = z2 y y2

W ′ = (λδz2 . λδu. u) W = (Πδz2 . Π δu. U) = (Πδz2 . (U → U)) δw = w :W

Example 1 (Derivation Simulating Polymorphic Identity with Intersection Types).
All the derivations in this example follow from Lemma 1 and the typing rules.

1. ∆y,z2 ⊢ U : ∗ by Lemma 1.
2. ∆y,z2,u ⊢ u : U by Lemma 1.
3. ∆y,z2 ⊢ (λδu. u) : (Πδu. U) : ∗ by (λ) and (app).
4. δy ⊢ W ′ : W : ∗ by (λ) and (app).

10 Fairouz Kamareddine and Joe Wells

We have a polymorphic identity function W ′, but the type W = Πδz2 . (Πδu. U) =
Πδz2 . (U → U) doesn’t look like an intersection type. Let’s see if we can reach
something that looks more like an intersection type instead.
5. ∆y,z2 is legal
6. ∆y,z2 ⊢ y : ∗ and ∆y,z2 ⊢ y : ∗ and ∆y,z2 ⊢ y2 : ∗ by Lemma 1.
7. ∆y,z2 ⊢ z2 : ∗2 and ∆y,z2 ⊢ V : ∗ by Lemma 1.
8. ∀i ∈ 1..2. (Πδu. U)[z2 := Pi,2] = (Pi,2 y y)→ (Pi,2 y y) =β y2 =β

(Pi,2 y y
2) = V [z2 := Pi,2]

9. ∀i ∈ 1..2. ε (Πδu. U)[z2 := Pi,2]∈{V [z2 := Pi,2]} by (ref) of Figure 4.
10. γz2 Πδu. U ∈{V } by (ctR) of Figure 4.
11. ∆y,z2 ⊢ (λδu. u) : V : ∗ by 3., 10., and (conv).
12. δy ⊢ W ′ : (Πδz2 . V) : ∗ by 11., and (λ).

The result type here looks better: Πδz2 . V = Πδz2. (z2 y y2) =
⋂
· {y, y2}. It

is more obvious that one can simply choose either y or y2, just like with the
intersection type y ∩ y2. So what would that choice look like? Instantiating
Πδz2 . V to either y or y2 goes like this:

13. δy is legal (as a context)
14. ∀i ∈ 1..2. δy ⊢ Pi,2 : ∗2 : ✷ by Lemma 1 and (weak).
15. ∀i ∈ 1..2. ε Pi,2 ∈{P1,2, P2,2} by (ref) of Figure 4.
16. ∀i ∈ 1..2. rdec(δy) Pi,2 ∈{P1,2, P2,2} by (ctR) of Figure 4.
17. ∀i ∈ 1..2. δy ⊢ (λδu. u)[z2 := Pi,2] : V [z2 := Pi,2] : ∗ by 11., 15.,

substitution.
18. ∀i ∈ 1..2. (λδu. u)[z2 := Pi,2] = (λu : (Pi,2 y y). u) →β (λu :yi−1. u)
19. ∀i ∈ 1..2. V [z2 := Pi,2] = (Pi,2 y y

2) →β yi

20. ∀i ∈ 1..2. δy ⊢ (λu :yi−1. u) : yi : ∗ by 17., 18., 19., and subject reduction.

So both 4., and 12., above are roughly like (λu. u) : y∩y2 with intersection types
and the instantiations are like (λu. u) : y and (λu. u) : y2.

Example 2 (Derivation for (λw.w w) (λu. u) in Intersection Types Style). We
make use of 1., 4., 14., and 15. of example 1 in the following.

21. δy ⊢ W : ∗ : ✷ by 1., of example 1.
22. ∆y,w ⊢ w : W : ∗ by 21., & (start).
23. ∆y,w is legal by 22., & definition 4.
24. ∀i ∈ 1..2. ∆y,w ⊢ Pi,2 : ∗2 : ✷ by 23., & 14., of example 1
25. ∀i ∈ 1..2. rdec(∆y,w) Pi,2 ∈{P1,2, P2,2} by 16., of example 1.
26. ∀i ∈ 1..2. ∆y,w ⊢ wPi,2 : (Πδu.U)[z2 := Pi,2] : ∗ by 22., 24., 25., & (app).
27. ∀i ∈ 1..2. ∆y,w ⊢ wPi,2 : (Πu :(Pi,2 y y). (Pi,2 y y)) : ∗ by 26.
28. ∆y,w ⊢ wP1,2 : y : ∗ by 27.
29. ∆y,w ⊢ wP2,2 : y → y : ∗ by 27.
30. ∆y,w ⊢ (wP2,2 (wP1,2)) : y : ∗ by 28., 29., & (app)
31. δy ⊢ (λδw. w P2,2 (wP1,2)) : W → y : ∗ by 30., & (λ)
32. δy ⊢ (λδw. w P2,2 (wP1,2))W

′ : y : ∗ by 4., of example 1, 31.

This is the equivalent of typing (λw.w w) (λu. u) with intersection types.

Intersection Types via Finite-Set Declarations 11

4.2 Typing Urzyczyn’s Untypable Term

Urzyczyn [17] proved U̇ = (λr. h(r(λfλs. f s))(r(λq.λg. g q)))(λo. o o o) is unty-
pable in Fω . [9] proved every pure λ-term is typable in Fω iff it is typable in the
λ-cube. Hence U̇ is untypable in the λ-cube. This section types U̇ in the f-cube
by using finite-set declarations.

Definition 12 (Terms of Type ∗ and Sort ✷ for Urzyczyn’s Term).

F = z3 y
3 y2 y Q = z3 y y y

S = z3 y
2 y1 y G = z3 y2 y (y)

M = z3 (̃y) y y

B = F → S → S A = Q→G→M

E1 = y4 D1 = y → y
2
→ (̃y)

E2 = y3 D2 = y

E3 = y2 D3 = y
2

E = Πδz3 . B D = Πδz3 .A

C1 = y2 R′ = O→ C

C2 = (̃y) R1 = E → C1

C = z2 C1 C2 R2 = D → C2

O = z2ED R = Πδz2 .R′

The proof of the following lemma is straightforward from the typing rules.

Lemma 2. Let H ∈ {F, S,B,Q,G,M,A} and J ∈ {E,D,R}. The following
hold: δy, δz3 ⊢ H : ∗ and δy ⊢ J : ∗ and δy, δz2 ⊢ C : ∗ and δy, δz2 ⊢ R′ : ∗.

Example 3 (Viewing E, D, and R as Intersection Types).

E = Πδz3 . F → S → S
nf(B[z3 := P1,3]) = y3 → y2 → y2 = y4 = E1

nf(B[z3 := P2,3]) = y2 → y1 → y1 = y3 = E2

nf(B[z3 := P3,3]) = y → y → y = y2 = E3

D = Πδz3 . Q → G → M

nf(A[z3 := P1,3]) = y → y
2

→ (̃y) = D1

nf(A[z3 := P2,3]) = y → y → y = y = D2

nf(A[z3 := P3,3]) = y → (y) → y = y
2
= D3

R = Πδz2 . O → C
nf(R′[z2 := P1,2]) = E → C1 = R1

nf(R′[z2 := P2,2]) = D → C2 = R2

Consider the type E and its component types F and S which we list in separate
columns in the table above. Both F and S act like tuples of 3 types. The restric-
tion in the declaration of z3 forces whatever replaces z3 to simply pick one of

12 Fairouz Kamareddine and Joe Wells

the three types. By looking at the above table, we see that the column with F
at the top lists the components of F in the three rows below, and the columns
with S at the top work similarly. The first row lists E and the three rows below
list the results of the three possible instantiations of E. In effect, E works like
the intersection type y4 ∩ y3 ∩ y2 = E1 ∩ E2 ∩ E3.

The same argument shows that the type D works like the intersection type
D1 ∩D2 ∩D3 and that the type R works like the intersection type R1 ∩R2.

Definition 13 (Declarations for Urzyczyn’s Term). Let δh = h :(C1 → C2 → y);
δr = r :R; δo = o :O; δf = f :F ; δs = s :S; δq = q :Q; and δg = g :G.

Definition 14 (Terms of Sort ∗ for Urzyczyn’s Term). Let
T = λδz3 . λδf . λδs. f s J = λδz3 . λδq. λδg. g q L = h (r P1,2 T) (r P2,2 J)
V = λδz2 . λδo. o P1,3 (o P2,3) (o P3,3) U = (λδr. L)V

Again the following lemma is straightforward according to the typing rules.

Lemma 3. The following hold:

1. (a) γz3 F ∈{S → S}
(b) γz3 G∈{Q→M},
(c) γz2 O ∈{Πδz3 . (z2 B A)}

2. δy ⊢ T : E : ∗.
3. δy ⊢ J : D : ∗.
4. (a) ∆y,z2,o ⊢ (o Pi,3) : (z2 Ei Di) : ∗ for i ∈ {1, 2, 3}.

(b) ∆y,z2,o ⊢ (oP1,3)(oP2,3)(oP3,3) : C : ∗.
(c) δy ⊢ V : R : ∗.

5. (a) ∆y,h,r ⊢ (r Pi,2) : Ri : ∗ for i ∈ {1, 2}.
(b) ∆y,h,r ⊢ (r P1,2 T) : C1 : ∗.
(c) ∆y,h,r ⊢ (r P2,2 J) : C2 : ∗.

6. ∆y,h,r ⊢ L : y : ∗ and ∆y,h ⊢ λδr.L : Πδr.y : ∗.
7. ∆y,h ⊢ U : y : ∗.

Now we show that Urzyczyn’s famous term is typable in the f-cube.

Example 4 (Urzyczyn’s Term Is Typable). Clearly, Urzyczyn’s term U̇ = TE(U).
Since Lemma 3.7 shows that ∆y,h ⊢ U : y : ∗, then by Definition 6, U̇ is typable.

5 Conclusion

In this paper we introduced an extension of the PTS λ-cube using finite set
declarations that allow us to translate intersection types as λ-terms. We gave
the translation of Urzyczyn’s famous term U (which is untypable in the λ-cube)
in the f-cube and showed that this term is indeed typable in the f-cube. The
set up and machinery presented in this paper can be followed to prove that the
f-cube characterizes all strongly normalising terms.

Intersection Types via Finite-Set Declarations 13

References

1. H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay,
T. S. E. Maibaum, eds., Handbook of Logic in Computer Science, vol. 2. Oxford
University Press, 1992.

2. S. Berardi. Type Dependency and Constructive Mathematics. Phd thesis, Carnegie
Mellon University and Università di Torino, 1990.

3. R. Bloo, F. Kamareddine, R. Nederpelt. The Barendregt cube with definitions and
generalised reduction. Inform. & Comput., 126(2), 1996.

4. V. Bono, B. Venneri, L. Bettini. A typed lambda calculus with intersection types.
Theoretical Computer Science, 398, pages 95–113, 2008.

5. B. Capitani, M. Loreti, B. Venneri. Hyperformulae, parallel deductions and inter-
section types. Electronic Notes in Theoretical Computer Science, 50, 2001. Proceed-
ings of ICALP 2001 workshop: Bohm’s Theorem: Applications to Computer Science
Theory (BOTH 2001), Crete, Greece, 2001-07-13.

6. A. B. Compagnoni, B. C. Pierce. Higher-order intersection types and multiple
inheritance. Math. Structures Comput. Sci., 6(5), 1996.

7. M. Coppo, M. Dezani-Ciancaglini. An extension of the basic functionality theory
for the λ-calculus. Notre Dame J. Formal Logic, 21(4), 1980.

8. J. Dunfield. Elaborating intersection and union types. J. Functional Programming,
24(2–3), 2014.

9. P. Giannini, F. Honsell, S. Ronchi Della Rocca. Type inference: Some results, some
problems. Fund. Inform., 19(1/2), 1993.

10. L. Liquori and S. Ronchi Della Rocca. Intersection-types à la Church. Information
and Computation, 205 (9), pages 1371–1386, 2007.

11. B. D. Oliveira, Z. Shi, J. Alpuim. Disjoint intersection types. In Proc. ICFP, 2016.
12. G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J. R.

Hindley, J. P. Seldin, eds., To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism. Academic Press, 1980.

13. S. Ronchi Della Rocca, L. Roversi. Intersection logic. In Computer Science Logic,
CSL ’01. Springer, 2001.

14. S. Ronchi Della Rocca. Intersection Typed lambda-calculus. Intersection Types
and Related Systems, ITRS 2002. Electronic Notes in Theoretical Computer Science,
70, pages 163–181, 2002.

15. P. Severi, E. Poll. Pure type systems with definitions. In Proc. 3rd Int’l Conf. on
Logical Foundations of Computer Science (LFCS ’94), vol. 813 of LNCS. Springer,
1994.

16. J. Terlouw. Een nadere bewijstheoretische analyse van GSTT’s. Manuscript, 1989.
17. P. Urzyczyn. Type reconstruction in Fω. Math. Structures Comput. Sci., 7(4),

1997.
18. V. van Oostrom. Confluence for Abstract and Higher-Order Rewriting. PhD thesis,

Vrije Universiteit Amsterdam, 1994.
19. B. Venneri. Intersection types as logical formulae. J. Logic Comput., 4(2), 1994.
20. J. B. Wells, A. Dimock, R. Muller, F. Turbak. A calculus with polymorphic and

polyvariant flow types. J. Funct. Programming, 12(3), 2002.
21. J. B. Wells, C. Haack. Branching types. In Programming Languages & Systems,

11th European Symp. Programming, vol. 2305 of LNCS. Springer, 2002.

	Intersection Types via Finite-Set Declarations

