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We consider a generalization of classic bootstrap percolation in which
two competing processes concurrently evolve on the same graph G(n,p).
Nodes can be in one of three states, conveniently represented by different
colors: red, black and white. Initially, a given number aR of active red nodes
(red seeds) are selected uniformly at random among the n nodes. Similarly, a
given number aB of active black nodes (black seeds) are selected uniformly
at random among the other n− aR nodes. All remaining nodes are initially
white (inactive). White nodes wake up at times dictated by independent Pois-
son clocks of rate 1. When a white node wakes up, it checks the state of
its neighbors: if the number of red (black) neighbors exceeds the number of
black (red) neighbors by a fixed amount r ≥ 2, the node becomes an active
red (black) node, and remains so forever. The parameters of the model are,
besides r (fixed) and n (tending to ∞), the numbers aR (aB) of initial red
(black) seeds, and the edge existence probability p = p(n). We study the
size A∗

R (A∗
B) of the final set of active red (black) nodes, identifying dif-

ferent regimes which are analyzed under suitable time-scales, allowing us to
obtain detailed (asymptotic) temporal dynamics of the two concurrent activa-
tion processes.

1. Introduction. Bootstrap percolation, in its classical form, is a simple activation pro-
cess on a graph that starts with a given number of initially active nodes (called seeds) and
evolves as follows. Every inactive node that has at least r ≥ 2 active neighbors is activated,
and remains so forever (an irreversible activation process). The process stops when no more
nodes can be activated, and unfolds over discrete rounds (or generations): in each round, all
susceptible vertices (i.e., vertices that can be activated) become active together (i.e., they are
synchronously activated).

As many percolation processes, bootstrap percolation exhibits an “all-or-nothing" behav-
ior: either the process percolates to (nearly) all vertices in the graph, or it stops very soon
with a final number of active vertices that is not much larger than the starting set. The process
is said to almost percolate if the final number of active nodes is n− o(n).

Historically, bootstrap percolation was first introduced in [1] on a Bethe lattice, and suc-
cessively investigated on regular grids and trees [2, 4]. More recently, bootstrap percolation
has been studied on random graphs and random trees, motivated by the increasing interest in
large-scale complex systems such as technological, biological and social networks.

A milestone in this direction is the paper by Janson et al. [8], where the authors have
provided a detailed analysis of the bootstrap percolation process on the Erdős–Rényi random
graph G(n,p). Specifically, in [8] authors study the critical size a0 of the starting set and
show that, for 1/n≪ p≪ n−1/r , there exists a threshold g(n,p, r) such that, for every ϵ > 0,
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a.s. the process almost percolates for a0 ≥ (1+ ϵ)g, whereas the final number of active nodes
is O(g) when a0 ≤ (1− ϵ)g.

We emphasize that in [8] seeds are chosen uniformly at random. Later, it has been shown
that the critical number of seeds triggering percolation can be significantly reduced if the
selection of seeds is optimized (in the form of so-called contagious sets) [24, 25].

Somehow related to ours is the work in [23], where authors study a variant of the classical
bootstrap percolation process on the G(n,p) graph with two types of vertices: excitatory
and inhibitory. The activation spreads to vertices for which the number of excitatory active
neighbors exceeds the number of inhibitory active neighbors by a certain amount. When
more than half of the vertices are inhibitory, they discover, in the traditional (round-based)
model, curious non-monotonous effects on the final size, which disappear in a continuous-
time setting in which some exponential (i.i.d.) transmission delays are added on the edges.
Note that we also consider a continuous-time setting, but we put exponential delays on nodes,
rather than on edges. Moreover, our process is very different from the one in [23], since we
study the competition between two opposite activation processes. Another variant of classic
bootstrap percolation, somehow related to our work, is majority bootstrap percolation [17],
in which a node becomes active if at least half of its neighbors are active.

Large deviations of classic bootstrap percolation in G(n,p) have also been studied: in
[26] authors calculate the rate function for the event that a small (subcritical) set of initially
active nodes eventually infects an unexpected number of vertices, and identify the least-cost
trajectory realizing such a large deviation. Large deviations in the super-critical regime have
instead been fully characterized in our previous work [21].

Bootstrap percolation has also been analyzed on random regular graphs [5], on random
graphs with given vertex degrees [9], on Galton–Watson random trees [6], on random geo-
metric graphs [15], on Chung–Lu random graphs [10, 11] (which notably permit considering
the case of power-law node degree distribution), on small-world random graphs [12, 13] and
on Barabasi–Albert random graphs [14]. In [22] we have analyzed the bootstrap percolation
process on the stochastic block model (SBM), a natural extension of the Erdős–Rényi random
graph that incorporates the community structure observed in many real systems.

Instead of considering yet another underlying graph, in this paper we open a new (to
the best of our knowledge) direction in the theory of bootstrap percolation, where nodes
can be in three states, and two competing bootstrap-like processes evolve in parallel over
continuous time. We analyze this process on the simple G(n,p) graph, leaving to future
work the extension of the analysis to different graphs.

2. Model description and main results.

2.1. Model description. In this paper we consider a generalization of the bootstrap
percolation process on the Erdős–Rényi random graph G(n,pn) = (V(n),E(n)), n ∈ N :=
{1,2, . . .}, introduced in [8]. Here V(n) := {1, . . . , n} is the set of nodes and E(n) is the set of
edges, which are independently added with probability pn ∈ (0,1). Our model is defined as
follows:

• Nodes can be red (R), black (B) or white (W ). In the following we will refer to either R
nodes or B nodes as active, and to W nodes as inactive.

• At time 0, an arbitrary number a(n)R of nodes (selected uniformly at random among the n
nodes) are set R, an arbitrary number a(n)B of nodes (selected uniformly at random among
the remaining n− a

(n)
R nodes) are set B, and all the other nodes are set W . Nodes already

active at time 0 are called “seeds”. 1

1As seeds are selected uniformly at random in a G(n,p) graph, the order in which the two seed sets are created
is not relevant, i.e., it has no impact on the process evolution.
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• Each node W periodically wakes up according to a Poissonian clock, i.e., the sequence
of times at which a node W wakes up forms a Poisson process with intensity 1. The
Poissonian clocks attached to different white nodes are stochastically independent. Upon
wake up, a node W activates by taking a color S ∈ {R,B} if the difference between
the number of its neighbors of color S and the number of its neighbors of color Sc ∈
{R,B} \ S is bigger than or equal to a given threshold r ∈ N \ {1}, otherwise the node
remains W . Throughout this paper we will refer such condition as “threshold condition
with respect to S".

• Active nodes never deactivate (i.e. change color), hence the number of nodes R (or B) is
non-decreasing over time.

• The process stops when no more nodes can be activated, i.e., no white node satisfies the
“threshold condition with respect to either R or B”.

The main objective of this paper is to study the asymptotic behavior of the final number
A

∗(n)
R (A∗(n)

B ) of nodes R (B), as n grows large. As a common practice in the theory of large
random graphs, in general we will omit the dependence on n of quantities, writing e.g. G in
place of G(n,pn), p in place of pn, aS in place of a(n)S , A∗

S in place of A∗(n)
S , S ∈ {R,B},

and so on. We will explicit such a dependence only when needed.
Moreover, in the following, we always assume that:

(2.1)
1

n
≪ p≪ 1

n1/r logn
.

(2.1) is slightly tighter than the corresponding condition in [8], (i.e., 1
n ≪ p≪ 1

n1/r ). This is
justified by the fact that our results are tighter (i.e., we prove almost sure convergence) than
those in [8] (where convergence in probability is shown). Furthermore, we assume:

(2.2) aR/q→ αR, aB/q→ αB, for some positive constants αR, αB > 0,

where the sequence {qn} is chosen in such a way that or

i) q = g :=

(
1− 1

r

)(
(r− 1)!

npr

) 1

r−1

with pg→ 0 or

ii) g≪ q≪ p−1 or iii) q = p−1 or iv) p−1 ≪ q≪ n.

(2.3)

REMARK 2.1. In contrast to the bootstrap percolation process considered in [8], where
the order in which nodes activate has no impact on the final size of active nodes (see Proposi-
tion 4.1 in [22]), in our case the order in which nodes activate is important, as one can check
on toy examples. Poissonian clocks have been introduced as a naturally way to solve this
problem: by so doing, essentially we consider a system in which, at any given time, the next
node to activate is chosen uniformly at random among the nodes that satisfy the threshold
condition with respect to either R or B.

REMARK 2.2. When aSc = 0, our process reduces to an asynchronous version of the
classic bootstrap percolation process, in which not yet active nodes, i.e. W nodes, become
S-active at the times of a suitably thinned unit-rate Poisson process. Therefore A∗

S equals the
final number of active nodes of the standard bootstrap percolation process on the Erdős-Renyi
random graph G with threshold r ≥ 2 and number of seeds aS , see [8].
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2.2. Main results. To state our results we need to introduce the following function
βS : [0,∞)2 →R, S ∈ {R,B}:

βS(xR, xB) :=


r−1(1− r−1)r−1(xS + αS)

r − xS if q = g
1
r!(xS + αS)

r if g≪ q≪ p−1∑∞
r′=r

∑r′−r
r′′=0

(xS+αS)r
′

r′!
(xSc+αSc )r

′′

r′′! e−(xR+xB+αR+αB) if q = p−1

11[0,∞)

(
xS+αS

xR+αR+xB+αB
− 1

2

)
if p−1 ≪ q≪ n.

(2.4)

Roughly speaking, βS(xR, xB) represents a suitably scaled asymptotic estimate of the av-
erage number of nodes satisfying the threshold condition with respect to S, when xRq nodes
have become R-active and xBq nodes have become B-active (see Lemma E.4 in Appendix).
As it will become clear in the following, the asymptotic behavior of the R and B activa-
tion processes on time-scale q (i.e., as long as the number of active nodes is Θ(q)) is tightly
related to the properties of function βS .

REMARK 2.3. Suppose that q = g. Function βS(xS) is strictly positive for αS > 1,
whereas it has two strictly positive zeros for αS < 1 (we denote by zS the smallest zero
in this case). When either g≪ q≪ p−1 or q = p−1, βS is strictly positive, while βS is non-
negative for p−1 ≪ q≪ n.

Assume (2.1), aR/g→ αR and aB = 0. It follows from the main results in [8] thatA∗/g→
zR+αR almost surely, provided that αR < 1; instead,A∗/n→ 1 almost surely when αR > 1.
This means that there exists a critical number of seeds under which the bootstrap percolation
process basically does not evolve, and above which it percolates the entire graph almost
completely. This well known behavior of the classical bootstrap percolation process suggests
us to adopt the following terminology. Restricting ourselves, without lack of generality, to
the case αR > αB , we say that the system is in the sub-critical regime whenever q = g and
αR < 1; we say that the system is in the super-critical regime whenever either g≪ q, or q = g
and αR > 1.

Consider the system evolution in the sub-critical regime. One would expect that, for the
effect of competition, the asymptotic final sizes of S-active nodes (S ∈ {R,B}) might be
smaller that those achieved in the absence of competition (e.g., when aSc = 0). However this
is not the case, as stated by the following theorem.

THEOREM 2.4. Assume q = g with αB <αR < 1. Then
A∗
R

q
→ zR + αR,

A∗
B

q
→ zB + αB P-a.s.

where zS is the smallest zero of βS (see Remark 2.3).

Theorem 2.4 states that, in the sub-critical regime, the two competing processes essentially
do not interact with each other. Indeed, A∗

S/q converges exactly to the same value it would
converge to, when aSc = 0.

Consider now the more interesting super-critical regime.

THEOREM 2.5. (i) when q = g and αR > 1, then

(2.5)
A∗
R

n
→ 1 and

A∗
B

q
→ gB(κg) + αB , P-a.s.

(ii) when g≪ q≪ n, then
A∗
R

n
→ 1 and

A∗
B

n
→ 0, P-a.s.
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where κg and gB(κg) := limx↑κg
gB(x) are defined as follows:

DEFINITION 2.6. (Underlying Cauchy problem). Let g(x) = (gR(x), gB(x)) denote the
maximal solution of the Cauchy problem:

(2.6) g′(x) = β(g(x)), x ∈ [0, κg), g(0) = (0,0)

where β := (βR, βB).

In words, Theorem 2.5 states that, in the super-critical regime, the R-activation process
percolates the entire graph almost completely, causing an “early stop" of the competing ac-
tivation process, even when αB > 1, i.e., when the B-activation process would potentially
percolate in the absence of competition. Observe that, while in the sub-critical regime the
process stops when O(q) nodes are active, in the super-critical regime almost all nodes be-
come active (i.e., the final size of active nodes is n− o(n)). A numerical illustration of our
results is provided in Appendix B.

3. Notation and Preliminary Analysis.

3.1. Main variables and their relations. In this subsection we introduce the random
quantities in terms of which we will describe the dynamics over G of our competing boot-
strap percolation processes and quantify their final sizes. All the random variables considered
hereafter are defined on an underlying probability space (Ω,F,P).

Let VW ⊂ V be the set of non-seed nodes, and set nW := |VW |= n− (aR + aB). Here,
given a finite set A, we denote by |A| its cardinality. We attach, independently to every node
v ∈ VW , a unit rate Poissonian clock, whose ordered points represent the successive wake-up
times of node v. More formally, we define a sequence {N ′

v}v∈VW
of independent Poisson

processes on [0,∞)×VW with N ′
v having mean measure dtδv(dℓ), where δv(·) is the Dirac

measure on VW concentrated at v ∈ VW . As it is well-known, the point process

(3.1) N ′ :=
∑
v∈VW

N ′
v

is still a Poisson process on [0,∞) × VW with intensity measure nWdtU(dv), where U
is the uniform law on VW . We denote by {(T ′

k, V
′
k)}k∈N the points of N ′ (with ordered

first coordinates): here T ′
k is the time at which the k-th wake-up event occurs and V ′

k is
the corresponding node. We denote by NS , S ∈ {R,B}, the S-activation point process on
[0,∞)× VW , i.e., for any t > 0 and any L⊆ VW , NS([0, t]× L) is the number of S-active
nodes in L⊆ VW at time t. Let (TSk , V

S
k ) denote the k-th point of NS . By construction TSk

is the “activation time” of node V S
k , i.e., the time at which node V S

k becomes S-active (by
taking color S). Note that white node V ′, which wakes up at time T ′, can become S-active
if and only if it satisfies the “threshold condition with respect to S”. Therefore, the point
process NS can be constructed by thinning {(T ′

k, V
′
k)}k∈N as follows: we retain only those

couples (T ′
k, V

′
k), k ∈N, for which, at time (T ′

k)
−, the white node V ′

k satisfies the “threshold
condition with respect to S”.

We set N :=NR +NB and denote by (Tk, Vk), k ∈ N, the points of N . Throughout this
paper we refer toN as the (global) activation process. In the following we will useNS(t) and
N(t) as a shorthand notation forNS([0, t]×VW ) andN([0, t]×VW ), respectively. Hereafter,
we denote by VS(t)⊂ VW , t≥ 0, the set of non-seed nodes which are S-active at time t, i.e.,

VS(t) = {V S
k }k:TS

k ∈[0,t] with VS(0) = ∅



6

and with VW (t)⊂ VW , t≥ 0, the set of non-seed nodes which are still W at time t, i.e.,

VW (t) := VW \ (VR(t)∪VB(t)) with VW (0) := VW .

Let {ER,(v)i }i∈N, {EB,(v)i }i∈N, v ∈ VW , be two independent sequences of independent
and identically distributed random variables with Bernoulli’s law and mean p, independent
of {(T ′

k, V
′
k)}k∈N. The random variable ES,(v) indicates the presence (or not) of an edge

between node v ∈ VW and an S-active node. We often refer to the random variables ES,(v)

as S-marks and define the quantities

(3.2) D
(v)
R (t) :=

NR(t)+aR∑
i=1

E
R,(v)
i and D

(v)
B (t) :=

NB(t)+aB∑
i=1

E
B,(v)
i , v ∈ VW ,

which represent the number of neighbors of node v whose color is, respectively, R or B at
time t. We also define the random variables:

VS(t
−) = {V S

k }k:TS
k ∈[0,t), VW (t−) := VW \ (VR(t−)∪VB(t

−)),

D
(v)
R (t−) :=

NR([0,t)×VW )+aR∑
i=1

E
R,(v)
i and D

(v)
B (t−) :=

NB([0,t)×VW )+aB∑
i=1

E
B,(v)
i , v ∈ VW .

Moreover, the set of S-susceptible nodes at t is defined as

(3.3) SS(t) = {v ∈ VW : D
(v)
S (t)−D

(v)
Sc (t)≥ r},

and similarly the set of S-susceptible nodes at time t− is defined as SS(t−) := {v ∈ VW :

D
(v)
S (t−)−D

(v)
Sc (t−)≥ r}.

Lastly, we denote by

S(t) := SR(t)∪ SB(t) and S(t−) := SR(t
−)∪ SB(t

−)

the set of susceptible nodes at time t and t−, respectively.

S(t) := SR(t)∪ SB(t)

the set of susceptible nodes at time t. The final number of active nodes is clearly given by

A∗ :=A∗
R +A∗

B, where A∗
S :=NS([0,∞)) + aS .

Furthermore, defined

K∗ := min{k ∈N : S(Tk−1)∩VW (Tk−1) = ∅}, (we conventionally set T0 := 0)

we have

A∗ =K∗ + aR + aB − 1.

Note that the overall activation process N naturally stops at time TK∗−1, since no node
becomes active after TK∗−1. For the moment, we conventionally define Tk := ∞ on the
event {K∗ ≤ k}, and note that TK∗ =∞. We mention that, for technical reasons, in Section
3.4 we will “artificially" extend, in a suitable way, the activation process beyond TK∗−1,
redefining Tk on the event {K∗ ≤ k}. Of course, such extension will not have any impact on
the dynamics of the activation process until TK∗−1. We remark that random graphs G(n,pn),
as well as the dynamical processes evolving on top of them, are independent for different
values of n.
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REMARK 3.1. During the evolution of the activation process, every edge (v,w) ∈ E is
unveiled potentially twice, i.e., when both v and w get active; consistency between the two
choices is not guaranteed, nevertheless this has no effect on the dynamical process, similarly
to what happens in the bootstrap percolation process studied in [8]. Indeed, assuming that v
gets active before w, the mark potentially added to v (already active), when w gets active,
has no impact on the activation process.

3.2. Further notation. Throughout this paper, all the unspecified limits are taken as
n→∞. Given two numerical sequences {f(n)}n∈N and {g(n)}n∈N, we write: f(n)≪ g(n)

if f(n) = o(g(n)), i.e., f(n)/g(n)→ 0; f(n) =O(g(n)) if limsupn→∞

∣∣∣f(n)g(n)

∣∣∣<∞; f(n) =
Θ(g(n)) if both f(n) = O(g(n)) and g(n) = O(f(n)), f(n) ∼ g(n) if f(n)/g(n) → 1.
We denote with || · || the euclidean norm, and with ⌊·⌋ and ⌈·⌉ the floor and the ceiling
functions, respectively. Given set A, we denote with Ac the complementary set. Moreover,
given a sequence of real-valued random variables {Xn}n∈N, we write Xn = oa.s.(f(n)) if
P
(
lim
∣∣∣ Xn

f(n)

∣∣∣= 0
)
= 1. Given two real-valued random variables X and Y , we denote by

X ≤st Y the usual stochastic order, i.e., we write X ≤st Y if P(X > z)≤ P(Y > z), z ∈R.
Bin(m,θ), Po(λ) and EXP(λ) respectively denote random variables distributed according
to a binomial law with parameters (m,θ), a Poisson law and an exponential law (both with
parameter λ > 0). Symbol L

= denotes the identity in law. At last, throughout this paper we
will use several times the function

(3.4) H(x) := 1− x+ x logx, x > 0, H(0) := 1.

3.3. Markovianity of the process. As consequence of our assumptions, the considered
system can be described by a Markovian process2 specified by the following proposition

PROPOSITION 3.2. The stochastic process

X= {X(t)}t≥0 = {(11{v∈VR(t)},11{v∈VB(t)},D
(v)
R (t),D

(v)
B (t))v∈VW

}t≥0

is a regular-jump continuous time homogeneous Markov chain, i.e., a continuous time ho-
mogeneous Markov chain such that, for almost all ω, the cardinality of Disc(ω) ∩ [0, c] is
finite for any c ≥ 0. Here Disc(ω) denotes the set of discontinuity points of the mapping
t 7→ X(t,ω). The state space of X, say X, is contained in ({0,1} × {0,1} × {0, . . . , n} ×
{0, . . . , n})|VW |, with diagonal elements of the transition-rate matrix:

qx := lim
h→0

1− P(X(h) = x |X(0) = x)

h
= |VW (x)∩ S(x)| ≥ 0, x ∈X.

Regarding notation in the r.h.s., observe that, for any t ≥ 0, both VW (t) and S(t) are, by
construction, σ{X(t)}-measurable. Therefore, we will conveniently denote VW (t) and S(t)
also with VW (X(t)) and S(X(t)), respectively.

Observe that the sequence of transition times of X coincides, by construction, with the
sequence of activation times {Tk}k≥0 of nodes. 3 Let FX

t := σ{X(s) : s ≤ t} be the
natural filtration of the Markov chain X and {Xk}k∈N∪{0} the embedded chain defined
by Xk = X(Tk). On the event {K∗ − 1 ≤ k} we have Xk = X(∞) ∈ ∆ := {x ∈ X :
qx = 0}, while {Xk}0≤k<K∗−1 ∈ X \ ∆ = {x ∈ X : qx > 0}. Moreover, given K∗ and

2Our suggested reference for Markov Chains is [3].
3We recall that conventionally we have T0 = 0.
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{Xk}0≤k<K∗−1, the random variables {Wk}0≤k<K∗−1, Wk := Tk+1 − Tk are independent
and Wk is exponentially distributed with mean 1/q

Xk
. In particular, for an arbitrary finite

sequence of states {xh}0≤h≤k ⊂ X \∆ and an arbitrary finite sequence of positive numbers
{ah}0≤h≤k ⊂ (0,∞), we have

(3.5) P

 ⋂
0≤h<k

{Xh = xh} ∩ {Wh > ah}

= P(X0 = x0)
∏

0≤h<k
pxhxh+1

e−qxh
ah ,

where (pxy) denotes the transition matrix of {Xk}k.

3.3.1. Discrete time notation. To study the evolution of the system at the points {Tk}k∈N,
it is convenient to introduce some discrete time notation. For k ∈N∪ {0}, we set 4

NS [k] :=NS(Tk), SS [k] := SS(Tk), VW [k] := VW (Tk), D
(v)
S [k] :=D

(v)
S (Tk).

Since all these random variables are σ{Xk}-measurable, therefore, when convenient to high-
light the dependence on the state, we write

NS [k] =NS(Xk), SS [k] = SS(Xk), VW [k] = VW (Xk), D
(v)
S [k] =D

(v)
S (Xk).

Moreover, we define

URk+1 = UR(Xk) :=
|VW (Xk)∩ SR(Xk)|
|VW (Xk)∩ S(Xk)|

, UBk+1 = 1−URk+1, ∀k ∈N∪ {0},

where conventionally we put 0/0 := 1/2. Finally, we note that

(3.6) NS [k+ 1] =NS [k] +MS
k+1, S ∈ {R,B}

with

MS
k+1 := 11{Vk+1∈VW [k]∩SS [k]}11{K∗−1>k} = 11{Vk+1∈VW [k]∩SS [k]}11{Xk∈X\∆}

were we used that 11{K∗−1>k} = 11{Xk∈X\∆} by construction. Note thatMS
k+1 ∈ σ{Xk,Xk+1}.

Hereafter, we set Hk := σ{Xh : 0≤ h≤ k}. The following proposition holds.

PROPOSITION 3.3. For S ∈ {R,B} and k ∈N∪ {0}, we have

P(MS
k+1 = 1 |Hk) = P(MS

k+1 = 1 |Xk) = P(Vk+1 ∈ VW (Xk)∩ SS(Xk),Xk ∈X \∆ |Xk)

= USk+111{Xk∈S\∆} = USk+111{K∗−1>k}.

Here, the first equality is a consequence of the Markovianity of {Xk}, while the last one
follows from elementary properties of Poisson processes: indeed, given Xk, Vk+1 is uni-
formly distributed over the set VW (Xk)∩ S(Xk) whenever VW (Xk)∩ S(Xk) ̸= ∅. 2

For u :=m1/m2, where m1 ∈ {0,1, · · ·m2} and m2 ∈ {1, · · ·nW }, define Xu as the set
of states x such that UR(x) = u, i.e.

Xu := {x ∈X : UR(x) = u}.

Note that by construction: {URk+1 = u}= {UR(Xk) = u}= {Xk ∈ Xu}. Moreover, we de-
fine X̂m := {x ∈X : qx =m} for any m ∈ {0,1, · · · , nW }.

As direct consequence of Markovianity, the following two propositions, whose proofs is
reported in Appendix O.

4By construction, on the event {K∗ ≤ k}, we have SS [k] = SS [K
∗ − 1], VW [k] = VW [K∗ − 1], etc.
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PROPOSITION 3.4. For any S ∈ {R,B} and k ∈N∪{0}, given {Xk ∈Xu}, the random
variable MS

k+1 is independent of the sequence {MS
h }1≤h≤k.

PROPOSITION 3.5. For k ∈ N ∪ {0}, let {mh}0≤h≤k ⊆ {1, · · · , nW }. Given the event⋂
0≤h≤k{Xh ∈ X̂mh

}, the sojourn-time random variables {Wh}0≤h≤k are independent.
Moreover, for every 0≤ h≤ k, Wh is exponentially distributed with parameter mh.

3.4. Prolonging the process N beyond TK∗−1. Since VW [K∗ − 1] ∩ S[K∗ − 1] = ∅,
we have N((TK∗−1,∞) × VW ) = 0. To simplify the analysis, it is convenient to extend
N beyond TK∗−1 by activating nodes that are not susceptible. Hereon, we still denote
by NS and N the activation processes extended beyond TK∗−1 and by {(TSk , V S

k )}k≥1

and {(Tk, Vk)}k≥1 their points respectively. Points (TK∗+j , VK∗+j), for j ≥ 0, are de-
fined by thinning the point process {(T ′

k′ , V ′
k′)}k′: T ′

k′>TK∗−1
and retaining only those cou-

ples (T ′
k′ , V ′

k′) such that V ′
k′ is still W. More precisely, given points {(Th, Vh)}1≤h≤k, on

{K∗ − 1≤ k}, we set (Tk+1, Vk+1) := (T ′
ℓk+1

, V ′
ℓk+1

) with

(3.7) ℓk := {k′ : T ′
k′ = Tk}, ℓk+1 := min{k′ > ℓk : V

′
k′ ∈ VW (T ′

ℓk)}.

Then we assign to Vk+1 either color R or color B (regardless of the fact that Vk+1 is R-
susceptible or B-susceptible) by flipping a biased coin. I.e., we define the processes NS for
S ∈ {R,B} on the event {K∗ ≤ k} as:

(3.8) (TSNS [k]+1, V
S
NS [k]+1) := (Tk+1, Vk+1) with probability USk+1

where

UK∗ :=
1

2
, USk+1 :=

|QSk+1|
|QRk+1|+ |QBk+1|

, on {K∗ ≤ k}

QSk+1 := |SS [k]| −NS [k] + |(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|

− |SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|(3.9)

and QS1 := |SS(0)|. In the expression of the random variable QSk+1, the first addend is the
number of S-susceptible nodes, at time Tk; the second addend is the number of S-active
nodes (excluding seeds), at time Tk; the third addend is the number of S-active nodes (ex-
cluding seeds), at time Tk, which have at least r S-active neighbors, but are not S-susceptible;
the fourth addend is the number of Sc-active nodes (excluding the seeds), at time Tk, which
have at least r Sc-active neighbors and are S-susceptible. Note that also the extended pro-
cess stops when all the nodes have got a color, i.e., when k equals the number of nodes that
were originally white, i.e., k = nW := |VW | = n− aR − aB . Finally, note that, (3.2) holds
for any 0≤ k ≤ nW , since also on the event {K∗ − 1≤ k} nodes that become S-active dis-
tribute S-marks to all of their neighbors. As before, we conventionally set Tk =∞ for every
k > nW . We emphasize that the definition of random variable QSk+1 is purely instrumental to
guarantee that on the event {k ≤K∗ − 1} we have QSk+1 = |VW [k]∩ SS [k]|, as stated by the
following lemma, which is proved in Appendix C.

LEMMA 3.6. We have:

(3.10) QSk+111{K∗>k} = |VW [k]∩ SS [k]|11{K∗>k},

(3.11) |SS [k]| − k ≤QSk+1 ≤ |SS [k]|, k ∈N∪ {0}
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PROPOSITION 3.7. Note that, after its extension, the stochastic process

X=X(t) = {(11{v∈VR(t)},11{v∈VB(t)},D
(v)
R (t),D

(v)
B (t))v∈VW

, (11TK∗≤t)}t≥0

is still a regular-jump continuous time homogeneous Markov chain.

Similarly to before, we denote by X the space state of X and with ∆ the set of absorb-
ing states, which correspond to the states in which all nodes are either R or B. Recall that
{Xk}k∈N∪{0} is the embedded chain defined by Xk = X(Tk). Note that, conditionally on
{Xk = x ∈X\∆}, the sojourn timeWk = Tk+1−Tk in state Xk is exponentially distributed
with parameter

(3.12) qx :=R(x) =RR(x) +RB(x)

where

(3.13) RS(x) :=QS(x)11{K∗−1>k}(x) + (nW −N(x))US(x)11{K∗−1≤k}(x).

RS(x) is the aggregate rate of all transitions from state x induced by the S-activation of a
new node. Propositions 3.3, 3.4 and 3.5 naturally extend also to the prolonged process, by
redefining for k ∈N∪ {0}:

MS
k+1 := 11{Vk+1∈VW [k]∩SS [k]}11{K∗−1>k} + 11{K∗−1≤k}11{Lk+1<US

k+1}11{Xk∈X\∆}

where Lk+1 is a random variable uniformly distributed on [0,1], independent of Hk. In par-
ticular, since, as already noticed, 11{Xk∈X\∆} = 11{k<nW }, we have for S ∈ {R,B}:

PROPOSITION 3.8. P(MS
k+1 = 1 |Hk) = USk+111{Xk∈X\∆} = USk+111{k<nW }.

3.4.1. Properties of the extended process. By definition (see (3.3)), we have

|SS [k]|=
∑
v∈VW

1{D(v)
S [k]−D(v)

Sc [k]≥r}, k ∈N∪ {0},

and recalling (3.2) it follows

(3.14) |SS [k]| | {N[k] = k} L
=Bin(nW , πS(k)),

where k := (kR, kB) ∈ (N∪ {0})2, k := kR + kB ≤ nW , N[k] := (NR[k],NB[k]), and

(3.15) πS(k) := P(Bin(kS + aS , p)−Bin(kSc + aSc , p)≥ r).

Moreover defined for k ≤ nW and h≤ k:

Nh,k := {NR[k]≥ k− h,NB[k]≤ h}= {NR[k]≥ k− h}= {NB[k]≤ h},

LEMMA 3.9. It holds:

|SR[k]| |Nh,k ≥st Bin(nW , πR(k− h,h); |SB[k]| |Nh,k ≤st Bin(nW , πB(k− h,h)).

The proof of Lemma 3.9 is elementary (it is reported in Appendix D for completeness).

REMARK 3.10. Note that, for q≪ p−1, βS(xR, xB) = βS(xS), i.e. βS does not depend
on xSc ; while, for q = p−1 and p−1 ≪ q, the function βS depends on both xR and xB ,
The fact that, for q ≪ p−1, βS does not depend on xSc expresses formally that the two
activation processesNR andNB evolve essentially independently on time-scales q′ which are
asymptotically less than p−1. On the other hand, the fact that, for q = p−1 and p−1 ≪ q, βS
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depends on both xR and xB expresses formally that the two activation processes NR and NB

interact on time-scales which are comparable with p−1 or are asymptotically bigger than p−1.
Indeed, roughly speaking, given that xSq nodes have been S-active, by (3.2) we have that the
number of S-marks collected by a node v ∈ VW ,D(v)

S (xSq), is binomially distributed and the
average xSqp tends to 0, whenever q≪ p−1. Therefore, only a negligible fraction of the S-
susceptible nodes (i.e. nodes v ∈ VW , for which D(v)

S (xSq)−D
(v)
Sc (xSq)≥ r) got more than

the minimum number of marks, (i.e., r marks of color S and 0 of color Sc, as shown in the
proof of Lemma E.4). In conclusion, the number of S-susceptible nodes is not significantly
impacted by the presence of Sc-marks. In other words, the two activation processes evolve
without significantly interfering, because they insist on different sets of nodes. Instead, when
q gets comparable with p−1, both the number of S-susceptible nodes, as well as, the number
of S-marks that have been distributed turns out to be of order n. This implies that the fraction
of S-susceptible nodes that received marks of color Sc is not anymore negligible, and the
activation processes NR and NB start interacting.

3.5. Brief overview of main proofs. As a guide to the reader, we briefly describe, at high
level, the strategy of the proofs. First, we analyze the activation process on time-scale q, i.e.,
we analyze the asymptotic behavior of NS [⌊xq⌋]/q for bounded values of x.

The main result on time-scale q is provided by Theorem 4.2, which shows that a suit-
able regularized version of the trajectories NS [⌊xq⌋]/q converges P-a.s to the (determinis-
tic) solution of the Cauchy Problem (CP) stated in Definition 4.1. To prove convergence of
above trajectories, we exploit their structural properties, resorting to Ascoli-Arzela’ theorem
to claim their P-a.s. pointwise convergence to a weak limit (i.e., we show the convergence
of some sub-sequence). Then, we provide sufficiently tight upper and lower bounds to the
incremental ratio of trajectories within a neighborhood of a fixed point. By so doing we show
that limit trajectories are derivable (with assigned derivative), and therefore solution of the
CP formulated in Definition 4.1. As side effect, given the uniqueness of CP solutions, we are
able to strengthen previous convergence result showing a P-a.s. pointwise convergence for
the whole sequence. Theorem 4.7 complements previous results showing that suitably nor-
malized versions of both T⌊xq⌋ and TS⌊xq⌋ converge almost surely to deterministic quantities.

When the activation processes of nodes do not stop at time-scale q, (i.e., in the super-
critical regime) we complement previous study considering time-scales larger than q. In this
case, analyzing the solutions of the Cauchy problem (defined in 4.2) we show that the ratio
NB[⌊xq⌋]/N [⌊xq⌋] becomes arbitrarily small as x grows large.

The analysis at time-scales q′ ≫ q is based on the observation that the number of S-
susceptible nodes, |SS(t)|, is sufficiently concentrated around its average, which in turn de-
pends super-linearly on the number of active nodes NS(t). Therefore, as shown in Theorems
5.1, 5.2 and 5.3, the ratio between the rates at which the two competing activation processes
evolve tends quickly to diverge, letting the advantaged R-process to percolate before the
competing B-process has managed to activate a non negligible fraction of nodes. In partic-
ular, for the case q = g we can show that A∗

B = O(g). This is done: (i) by first analyzing
the dynamics of an auxiliary process, the stopped process, where the R-activation process is
stopped at a given point and only the B-activation process is allowed to go on; (ii) by then
inferring properties on the original process, exploiting a simple coupling argument (8.1).

4. Analysis at time-scale q: main results. In this section we report the main findings of
our analysis about the activation process NS , S ∈ {R,B}, when N =Θ(q), i.e., it is of the
same order of the number of seeds. We remark that in the following we will always assume,
without lack of generality, αR > αB . Proofs of results stated in this section are reported in
Sec. 7.
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Hereon, we start introducing the linear interpolation of NS defined by:

(4.1) ÑS(xq) :=NS

[
⌊xq⌋

]
+ (xq− ⌊xq⌋)

(
NS

[
⌈xq⌉

]
−NS

[
⌊xq⌋

])
, x≥ 0

with Ñ(xq) = (ÑR(xq), ÑB(xq)), and the sequence {Fn(x)}n∈N given by:

Fn(x) := (FR,n(x), FB,n(x)) with FS,n(x) :=
ÑS(xqn)

qn
.

As usual, when no confusion arises, we omit the dependence on n of Fn and FS,n. It turns
out (see Theorem 4.2) that, under suitable assumptions, F converges to a vectorial function
f , which is the solution of the following Cauchy problem:

DEFINITION 4.1. (Cauchy problem). Let f(x) = (fR(x), fB(x)) denote the maximal so-
lution of the Cauchy problem:

(4.2) f ′(x) =
β(f(x))

βR(f(x)) + βB(f(x))
, x ∈ (0, κf ), f(0) = (0,0),

with β(x) := β(xR, xB) := (βR(xR, xB), βB(xR, xB)).

THEOREM 4.2. Assume (2.1) and (2.2) with αR > αB and let f be the solution of the
Cauchy problem (4.2). Then:
(i) If q = g with αR < 1, then
(4.3) For any compact set K⊂ [0, zR + zB), sup

x∈K
∥F(x)− f(x)∥→ 0, P-a.s.,

where zS is the first zero of βS(xS).
(ii) If αR > 1 and either q = g or q≫ g, then
(4.4) For any compact set K⊂ [0,∞), sup

x∈K
∥F(x)− f(x)∥→ 0, P-a.s..

As immediate consequence of previous theorem we have:

COROLLARY 4.3. For every κ < κf : and S ∈ {R,B}:

(4.5) lim
ÑS(κq)

q
= fS(κ), P-a.s.

4.1. On the solution of the Cauchy problem (4.2). Recalling that g is the maximal solu-
tion of Cauchy problem (2.6), the following proposition, whose proof is reported in Appendix
A, holds:

PROPOSITION 4.4. (i) For q = g and αR < 1, f is defined on (0, zR + zB) (i.e., κf =
zR + zB) and

fR(x) ↑ zR, fB(x) ↑ zB, as x ↑ zR + zB .
(ii) For q = g and αR > 1, or g≪ q≪ p−1, then f is defined on (0,∞) (i.e κf =∞) and

fR(x) ↑+∞, fB(x) ↑ gB(κg)<∞ as x ↑+∞,

with κg :=
∫∞
0

dx
βR(x) ∈ (0,∞), and gB(κg) := limx↑κg

gB(x).
(iii) For q = p−1, then f is defined on (0,∞) and

fR(x) ↑+∞, fB(x) ↑ fB, as x ↑+∞,
for some constant fB ∈ (0,∞).
(iv) For p−1 ≪ q≪ n and αR >αB , then f is defined on (0,∞) and is given by

fR(x) := x, fB(x) := 0.

Moreover if q = g and αB ≤ 1<αR then gB(κg)< zB .
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4.2. Analysis of K∗ and A∗
B . The following two theorems complement previous results.

THEOREM 4.5. (i) For every κ < κf :

(4.6) lim inf
K∗

q
> κ, P-a.s.

Moreover (ii) if either q = g and αR > 1 or g≪ q≪ p−1, then

(4.7) lim inf
A∗
B

q
≥ gB(κg) + αB, P-a.s.

where gB(κg) and and κg are given in Proposition 4.4 (ii).

THEOREM 4.6. Assume q = g and αS < 1. Then, for any S ∈ {R,B},

limsup
A∗
S

q
≤ zS + αS , P-a.s.

4.3. Analysis of the sequences {Tk}k∈N and {TSk }k∈N at time-scale q. The next result
provides the asymptotic behavior of T⌊κq⌋ and TS⌊κSq⌋, for suitable κ > 0 and κS . Let

(4.8) η :=


1 for q = g
n(qp)r

q for g≪ q≪ p−1

n
q for either q = p−1 or q≫ p−1.

THEOREM 4.7. (i) Let κ < κf (with κf defined in Proposition 4.4). Then:

(4.9) ηT⌊κq⌋ →
∫ κ

0

1

βR(f(y)) + βB(f(y))
dy, P-a.s.

(ii) Let κS ∈ (0, limx→κf
fS(x)) for S ∈ {R,B}. Then:

(4.10) ηTS⌊κSq⌋ →
∫ f−1

S (κS)

0

1

βR(f(y)) + βB(f(y))
dy.

When q≪ p−1, from (4.2) it follows that:
∫ f−1(κS)
0

1
βR(f(y))+βB(f(y))dy =

∫ κS

0
1

βS(y)
dy.

5. Analysis at time-scales greater than q: main results. In this section we study the
joint evolution of N[·] and (|SR[·]|, |SB|[·]), at time-scales q′ ≫ q, i.e., for arguments asymp-
totically greater than the number of seeds. Recalling that function gB and constant κg are
given in Proposition 4.4(ii), the following theorems, whose proofs are given in Sec. 8, hold.

THEOREM 5.1. If either q = g and αR > 1, or g≪ q≪ p−1, then ∀ε > 0, we have:

(5.1) P
(
lim inf{NB

[
⌊f(n)p−1⌋)

]
≤ ⌊(gB(κg) + ε)q⌋} ∩ {K∗ − 1≥ ⌊f(n)p−1⌋}

)
= 1,

where f is a generic function such that f(n)→∞ and f(n)p−1 = o(n) in case (i); f(n) :=
c0/(qp)

r−1 →∞, for a sufficiently small positive constant c0 in case (ii).

THEOREM 5.2. Assume q = g and αR > 1. Then, ∀ε > 0 and c ∈ (0,1) we have:

(5.2) P (lim inf{NB[K
∗ − 1]≤ ⌊(gB(κg) + ε)g⌋} ∩ {K∗ − 1≥ ⌊cn⌋}) = 1.



14

THEOREM 5.3. Assume g≪ q≪ n. Then, ∀ c ∈ (0,1), we have

(5.3) P

(
lim inf{K∗ − 1≥ ⌊cn⌋} ∩

{
lim

NB

[
⌊cn⌋

]
cn

= 0

})
= 1.

6. Proofs of Theorems 2.4 and 2.5. The proofs of Theorems 2.4 and 2.5 are immediate
consequences of previously mentioned results.

6.1. Proof of Theorem 2.4. By Theorems 4.6 and 4.5(i) (with κf = zR + zB ), we have

zS + αS ≥ limsup
A∗
S

q
≥ lim inf

A∗
S

q
≥ lim inf

(
A∗

q
−
A∗
Sc

q

)
≥ lim inf

A∗

q
+ lim inf

(
−
A∗
Sc

q

)
≥ zR + zB + αR + αB − limsup

A∗
Sc

q
≥ zS + αS . □

6.2. Proof of Theorem 2.5. We start focusing on the case (i). By Theorem 5.2, for any
ε > 0 P-a.s. there exists a n′(ω) such that NB[K

∗− 1]≤ (gB(κg)+ ε)q, ∀n > n′(ω). There-
fore

limsup
A∗
B

q
= limsup

NB[K
∗ − 1]

q
+ αB ≤ gB(κg) + αB, P-a.s.

The second relation in (2.5) descends immediately from this upper bound and the matching
lower bound (4.7). As far as the first relation in (2.5) is concerned, we note that (5.2) implies
that, for any c ∈ (0,1) we have P-a.s.,

lim inf
A∗
R

n
= lim inf

NR[K
∗ − 1]

n
= lim inf

K∗ −NB

[
K∗ − 1

]
n

≥ c,

here, the final inequality follows from: (5.2), indeed, P-a.s., a n′(ω) can be found such that
jointly K∗ − 1 ≥ ⌊cn⌋ and NB[K

∗ − 1] ≤ (gB(κg) + ε)g for all n > n′(ω). The claim im-
mediately follows by the arbitrariness of c ∈ (0,1).

Now turning our attention to case (ii), second inequality; we recall that, by construction,
NB[K

∗ − 1]−NB[⌊cn⌋]≤max(0,K∗ − 1− ⌊cn⌋)≤ n− ⌊cn⌋, therefore P-a.s. we have

limsup
A∗
B

n
= limsup

NB[K
∗ − 1]

n
≤ limsup

(1− c)n

n
+
NB[⌊cn⌋]

n
= 1− c,

given that, by (5.3),
NB

[
⌊cn⌋
]

n → 0. The result follows from the arbitrariness of c. The first
inequality can be proved exactly as in previous case (i). 2

7. Proofs of Theorems 4.2 , 4.5, 4.6 and 4.7. The proofs of Theorems 4.2- 4.7 are based
on some ancillary preliminary concentration results. In this section we limit ourselves to state
these results and postpone their (rather standard) proofs to Appendices C, E, F, G.

7.1. Preliminaries. Let k := (kR, kB) ∈ (N ∪ {0})2 and k = kR + kB , we define the
following sets:

(7.1) Ik := {k : kR + kB = k}, k ∈N∪ {0}

Recalling the definition of κf in Proposition 4.4, for any κ < κf , we define:

T(κ) :=

{
{k : kR + kB ≤ κq}=

⋃
0≤k<κq Ik for q≪ p−1 or q = p−1{

k : kR + kB ≤ κq, kR+αRq
kB+αBq

≤ 1
2 +

αR

2αB
)
}

for q≫ p−1.
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Hereafter, we consider the following random variables

ΥS(κ) := sup
k∈T(κ)

YS(k), ΥS(κ) := sup
k∈T(κ)

Y S(k), NS(κ) :=
supj≤κq |N̂S [j]|

q
(7.2)

where

YS(k) := 11{N(k)=k}

∣∣∣USk+1 −
|βS(k/q)|

|βR(k/q)|+ |βB(k/q)|

∣∣∣,
Y S(k) := 11{N(k)=k}|QSk+1 − ηβS(k)q|

with η defined as in (4.8).

(7.3) N̂S [j] :=NS [j]− JS [j], JS [j] :=

min(j,nW )∑
h=1

USh ∀j ∈N, N̂(0) := 0.

Furthermore, letting x= (xR, xB) ∈ [0,∞)2, we introduce the compact sets:

T′(κ) :=

{
{x : xR + xB ≤ κ} for q≪ p−1 or q = p−1{
x : xR + xB ≤ κ and xR+αR

xB+αB
≥ 1

2 +
αR

2αB

}
for q≫ p−1.

(7.4)

Moreover, given κ as before, let z > 0 be a constant such that 2z < κ and ℓ ∈ T(κ− 2z), and

(7.5) Lℓ(κ, z) := {x : xR ≥ ℓR − z/2, xB ≥ ℓB − z/2, xR + xB ≤ ℓR + ℓB + 2z}.
At last, if either q≪ p−1 or q = p−1, we set

βS,Lℓ(κ,z)
:= max

x∈Lℓ(κ,z)

|βS(x)|
|βR(x)|+ |βB(x)|

, β
S,Lℓ(κ,z)

:= min
x∈Lℓ(κ,z)

|βS(x)|
|βR(x)|+ |βB(x)|

(7.6)

whereas for q≫ p−1, we set

(7.7) βS,Lℓ(κ,z) := max
x∈Lℓ(κ,z)

|βS(x)|
|βR(x)|+ |βB(x)|

11{Lℓ(κ,z)⊆T′(κ)} + 11{Lℓ(κ,z)̸⊆T′(κ)}

and

(7.8) β
S,Lℓ(κ,z)

:= min
x∈Lℓ(κ,z)

|βS(x)|
|βR(x)|+ |βB(x)|

11{Lℓ(κ,z)⊆T′(κ)}.

The proof of Theorem 4.2 makes use of the following Propositions 7.1 and 7.2, whose proofs
are rather standard and reported in the Appendices E and F, respectively.

PROPOSITION 7.1. Given η in (4.8) we have:

(7.9) max{ΥS(κ), (ηq)
−1ΥS(κ),NS(κ)}→ 0, P-a.s..

Hereafter, for κ > 0, we set

(7.10) Ωκ := {ω ∈Ω : max{ΥS(κ)(ω), (ηq)
−1ΥS(κ)(ω),NS(κ)(ω)}→ 0}.

PROPOSITION 7.2. For any y, z > 0 such that y+ 2z ≤ κ < κf (with κf given in Propo-
sition 4.4), we have:

z lim inf
∑

k∈I⌊yq⌋

β
S,Lk/q(κ,z)

11
{N
[
⌊yq⌋
]
=k}

≤ lim inf
ÑS(yq+ zq)− ÑS(yq)

q

≤ limsup
ÑS(yq+ zq)− ÑS(yq)

q
≤ z limsup

∑
k∈I⌊yq⌋

βS,Lk/q(κ,z)11{N
[
⌊yq⌋
]
=k}

(7.11)
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7.2. Proof of Theorem 4.2. We divide the proof in two steps. In the first step we assume
either q≪ p−1 or q = p−1. In the second step we extend the proof to the case p−1 ≪ q≪ n.
Step 1. Since by Proposition 7.1 we have P(Ωκ) = 1, it suffices to prove that limit (4.3) holds
for all ω ∈Ωκ. For x1, x2 ∈ [0, κ] such that x1 > x2 and ω ∈Ωκ, we have

FS(x1, ω)−FS(x2, ω) = q−1
(
ÑS(x1q)(ω)− ÑS(x2q)(ω)

)
≤ q−1

(
x1q− ⌊x1q⌋+NS

[
⌊x1q⌋

]
(ω)−NS

[
⌈x2q⌉

]
(ω) + ⌈x2q⌉ − x2q

)
≤ q−1(x1q− ⌊x1q⌋+ ⌊x1q⌋ − ⌈x2q⌉+ ⌈x2q⌉ − x2q)

= x1 − x2,

where we have used the inequality NS [j1]−NS [j2] ≤ j1 − j2, for any j1 ≥ j2, j1, j2 ∈
N∪ {0}. So, for x1, x2 ∈ [0, κ] and ω ∈Ωκ,

|FS(x1, ω)− FS(x2, ω)| ≤ |x1 − x2|.
Moreover, for any x ∈ [0, κ],

(7.12) FS(x,ω) =
ÑS(xq)(ω)

q
≤ q−1(xq) = x≤ κ.

Thus, for any ω ∈Ωκ, the functions FS(·, ω) are Lipschitz continuous with Lipschitz constant
less than or equal to 1 and uniformly bounded. Consequently, by the Ascoli-Arzelá theorem
there exists a subsequence {FS,n′(·, ω)}n′ converging uniformly on [0, κ] to some function
fS(·, ω) (which, clearly, is also Lipschitz continuous with Lipschitz constant less than or
equal to 1 and bounded by κ). From now on, to avoid confusion, we explicit the dependence
on n. We now prove that fS(·, ω) is differentiable on (0, κ) and compute its derivative. Note
that, for an arbitrarily fixed x ∈ (0, κ) and z ∈

(
x, κ+x2

)
, we have

fS(z,ω)− fS(x,ω) = lim
n′→∞

[FS,n′(z,ω)− FS,n′(x,ω)]

= limsup
n′→∞

q−1
n′ [ÑS(xqn′ + (z − x)qn′)(ω)− ÑS(xqn′)(ω)]

≤ (z − x) lim
n′→∞

∑
k∈I⌊xq

n′ ⌋

βS,Lk/q
n′ (κ,z−x)11{N

[
⌊xqn′⌋

]
(ω)=k}

(7.13)

where the last inequality descends from Proposition 7.2 (we refer the reader to (7.5) for the
definition of the set L·(·, ·)). Now, defined xn′ := ⌊xqn′⌋

qn′
, we have

N
[
⌊xqn′⌋

]
= ÑS(⌊xqn′⌋)(ω) = ÑS(xn′qn′)(ω) = FS,n′(xn′ , ω)qn′ .

and

FS,n′(x,ω)− 1

qn′
≤ FS,n′(x,ω)− (x− xn′)≤ FS,n′(xn′ , ω)≤ FS,n′(x,ω),

from which it follows:

(7.14) lim
n′→∞

Fn′(xn′ , ω) = lim
n′→∞

Fn′(x,ω) = f(x,ω).

Therefore, for any ω ∈Ωκ, we have

fS(z,ω)− fS(x,ω)≤ (z − x) limsup
n′→∞

∑
k∈I⌊xq

n′ ⌋

βS,Lk/q
n′ (κ,z−x)11{N[xn′qn′ ](ω)=k}

= (z − x) limsup
n′→∞

βS,LF
n′ (xn′ ,ω)(κ,z−x) = (z − x)βS,Lf(x,ω)(κ,z−x),(7.15)
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where the second equality follows by (7.14) and the continuity of the function u 7→
βS,Lu(κ,z−x). Similarly, exploiting the relation (7.11), for any ω ∈Ωκ, we have

fS(z,ω)− fS(x,ω)≥ (z − x)β
S,Lf(x,ω)(κ,z−x)

, ∀z ∈
(
x,
κ+ x

2

)
.

Thus, for any ω ∈Ωκ, any x ∈ (0, κ) and any z ∈
(
κ+x
2

)
, we have

(7.16)
fS(z,ω)− fS(x,ω)

z − x
≤ βS,Lf(x,ω)(κ,z−x),

fS(z,ω)− fS(x,ω)

z − x
≥ β

S,Lf(x,ω)(κ,z−x)
.

Since the set Lf(x,ω)(κ, z − x) is compact, it holds

βS,Lf(x,ω)(κ,z−x) =
|βS(v)|

|βR(v)|+ |βB(v)|
and β

S,Lf(x,ω)(κ,z−x)
=

|βS(w)|
|βR(w)|+ |βB(w)|

,

for some v = (vR, vB),w = (wR.,wB) ∈ Lf(x,ω)(κ,z−x). By the definition of the set
Lf(x,ω)(κ, z − x) it follows that

(7.17) vR,wR → fR(x,ω) and vB,wB → fB(x,ω), as z ↓ x.

Therefore, taking the limsup as z ↓ x in (7.16) and the lim inf as z ↓ x in (7.16), by (7.17)
and the continuity of βS , we have that the right-hand derivative of fS(·, ω) at x ∈ (0, κ) is:

(7.18) f
′+
S (x,ω) = φS(x,ω) :=

βS(fR(x,ω), fB(x,ω))

βR(fR(x,ω), fB(x,ω)) + βB(fR(x,ω), fB(x,ω))
.

Since, for fixed ω ∈ Ωκ, the functions fS(·, ω) and φS(·, ω) are continuous on [0, κ], and
φS(·, ω) by (7.18) is the right-hand derivative of fS(·, ω) on (0, κ), we have that f

′+
S (0, ω) =

φS(0, ω). Moreover φS(·, ω) is the derivative of fS(·, ω) on (0, κ) (see e.g. Theorem A22 p.
541 of [7]). At last, given that by construction f(0, ω) = (0,0), we conclude that f(·, ω) = f(·)
is the unique solution of the Cauchy problem (4.2).

Due to the uniqueness of the solution of the Cauchy problem (4.2), for any ω ∈ Ωκ, the
whole sequence {Fn(·, ω)}n converges to f(·). Indeed by repeating previous arguments, it
can be immediately shown that any converging sub-sequence {Fn′′(·, ω)}n′′ of {Fn(·, ω)}n
(among which the sub-sequences achieving the limsup and lim inf) must converge to the
unique solution of the Cauchy problem (4.2), f(·). Finally, since F(·, ω) and f(·) are both
Lipschitz continuous on [0, κ], P-a.s., the convergence F(·, ω)→ f(·) is uniform on [0, κ].
Step 2. Since the function βS(x) is discontinuous at the points (xR, xB) such that xR+αR

xB+αB
=

1, we have that the mapping u 7→ βS,Lu(κ,z−x) is not always continuous. However, the func-
tion u 7→ βS,Lu(κ,z−x) is continuous on T′(κ) (as defined in (7.4)) if z − x is such that
Lu(κ, z − x) ⊆ T′(κ). By Proposition 4.4(iv) we have f(x) ∈ T′(κ) if x < κ. Moreover,
as long as f(x) ∈ T′(κ) we can always make z − x so small that Lf(x,ω)(κ, z − x)⊆ T′(κ).
Hence we can again obtain (7.15) and then proceed as before. 2

7.3. Proof of Theorem 4.5 . We start proving (4.6). Let f as in (4.2) and define

b(κ) := min
x∈[0,κ]

max{βR(f(x)), βB(f(x))}> 0

where the strict positivity of b(κ) stems immediately from Remark 2.3 and Proposition 4.4.
For δ > 0 arbitrarily fixed, define:

(7.19) B′
f (κ, δ) := {x= (xR, xB) : x ∈ [0, κ]2 and ∥x− f(xR + xB)∥ ≤ δ},
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Denoted with T̊′(κ) the interior of T′(κ) as defined in (7.4), by construction f(xR + xB) ∈
T̊′(κ) for every x= (xR, xB) ∈ [0, κ]2. Therefore, since β is uniformly continuous on T′(κ)
we can always choose δ0 sufficiently small so that B′

f (κ, δ0)⊂ T′(κ) and

max
x∈B′

f (κ,δ0)
||β(x)−β(f(xR + xB))||< b(κ)/4

from which we immediately get:

(7.20) min
x∈B′

f (κ,δ0)
max{βR(x), βB(x)} ≥ 3b(κ)/4.

Now, by Proposition 7.1 and Theorem 4.2, setting Υ(κ) := max{ΥR(κ),ΥB(κ)}, we have

Υ(κ)/(ηq)→ 0, and sup
x∈[0,κ]

∥F(x)− f(x)∥→ 0, P-a.s.

Therefore, for P-a.e. ω ∈Ω, there exists n0(ω) such that for all n > n0(ω):

(7.21) F(x,ω) ∈ B′
f (κ, δ0) ∀ x ∈ [0, κ] and Υ(κ)/(ηq)< b(κ)/4.

Combining (7.21) with (7.20) it follows that for P-a.e. ω ∈Ω, there exists n0(ω) such that
for all n > n0(ω):

min
x∈[0,κ]

max

{
βR

(
N
[
⌊xq⌋

]
(ω)

q

)
, βB

(
N
[
⌊xq⌋

]
(ω)

q

)}

≥ min
x∈[0,κ]

max

{
βR

(
Ñ(xq)(ω)

q

)
, βB

(
Ñ(xq)(ω)

q

)}
≥ 3b(κ)/4.(7.22)

From the second relation in (7.21), the uniform continuity of βS(·) on T′(κ), for an arbitrarily
fixed x ∈ [0, κ] we have that for P-a.e. ω ∈Ω, there exists n1(ω) such that for all n > n1(ω)

(ηq)−1
∣∣∣QS⌊xq⌋+1(ω)− ηqβS(Ñ(xq)(ω)/q)

∣∣∣< b(κ)/4 S ∈ {R,B}

and therefore by (7.22) we have that for P-a.e. ω ∈Ω, and n >max{n0(ω), n1(ω)} it holds:

(ηq)−1QR⌊xq⌋+1(ω)> b(κ)/2 or (ηq)−1QB⌊xq⌋+1(ω)> b(κ)/2,

which implies:

(7.23) min
k∈[0,κq]

max{QRk+1(ω),Q
B
k+1(ω)}

(ηq)
> b(κ)/2.

By the definition of K∗ and Lemma 3.6 we have QRK∗ =QBK∗ = 0. Then (7.23) implies that
K∗(ω)> κq, for P-a.s. ω ∈Ω and for n >max{n0(ω), n1(ω)}. Then (4.6) follows.

7.3.1. Proof of (4.7).

lim inf
A∗
B

q
= lim inf

NB[K
∗ − 1]

q
+ αB ≥ lim inf

ÑB(κq)

q
+ αB ∀κ > 0 P-a.s.,

where the final inequality descends from (4.6) and the monotonicity of NB(·). Therefore,
recalling Corollary 4.3 and Proposition 4.4, we have

lim inf
NB[K

∗ − 1]

q
≥ lim
κ→∞

lim inf
ÑB(κq)

q
= lim
κ→∞

fB(κ) = gB(κg). □
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7.4. Proof of Theorem 4.6 . The proof of Theorem 4.6 exploits Lemma 7.3, which is
introduced in the next subsection.

7.4.1. Preliminaries: comparing activation processes. The next lemma compares the fi-
nal number of S-active nodes for two activation processes (denoted by label 1 and 2 re-
spectively), which start from different initial conditions (i.e. a different number of R and B
seeds). For instance, given h ∈ {1,2}, we denote by aS,h the number of S-seeds of process
h, and by A∗

S,h its corresponding final size of S-active nodes. Both processes are defined on
the probability space (Ω,F,P).

LEMMA 7.3. If aR,1 ≤ aR,2 and aB,1 ≥ aB,2, then

A∗
R,1 ≤st A

∗
R,2 and A∗

B,2 ≤st A
∗
B,1.

The proof exploits a standard coupling argument. We report it in Appendix G.

7.4.2. Proof of Theorem 4.6. The proof follows from a comparison between the dynam-
ics of the original system (say system 1) and a companion system (say system 2) in which we
set aSc,2 = 0, while we keep aS,2 = aS,1. As already noticed in Remark 2.2 the final size of
S-active nodes in the companion system, say A∗

S,2, equals the final size of active nodes of the
bootstrap percolation process studied in [8], see also [21, 22]. By Lemma 7.3 and Theorem
3.2 in [22], we have that for any δ > 0 there exist c(δ)> 0 and nδ such that, for any n≥ nδ ,

P
(
A∗
S,1

q
> zS + αS + δ

)
≤ P

(
A∗
S,2

q
> zS + αS + δ

)
=O(exp(−c(δ)q)).

The claim then follows by a standard application of the Borel-Cantelli lemma. 2

7.5. Proof of Theorem 4.7. Part (i). Denote with k = (kR, kB) ∈ (N ∪ {0})2 and x =
(xR, xB) ∈ [0,∞)2; and set:

Cf (k, ε) := {k : kR+kB = k, ||k/q−f(k/q)|| ≤ ε}, C′
f (k, ε) := {x : ||x−f(k/q)|| ≤ ε}.

By Theorem 4.5, Proposition 7.1 and Theorem 4.2 we have that, for any ω ∈ Ωκ and
ε ∈ (0,1) there exists n0(ω, ε) such that for any n > n0(ω, ε) we jointly have:

(7.24) K∗(ω)− 1> ⌊κq⌋, sup
0≤k≤⌊κq⌋

∥N[k](ω)/q− f(k/q)∥< ε

and

11{N[k](ω)=k}ηqβS(k/q)(1− ε)< 11{N[k](ω)=k}Q
S
k+1(ω)(7.25)

< 11{N[k](ω)=k}ηqβS(k/q)(1 + ε) ∀ k : kR + kB < ⌊κq⌋.

As long as k < ⌊κq⌋, by choosing ε sufficiently small, we can always guarantee that
C′
f (k, ε) ⊂ T′(κ), with T′(κ) in (7.4). Therefore by (7.25) and the uniform continuity of

βS(·) over C′
f (k, ε), we have

(1− ε)
∑

k∈Cf (k,ε)

11{N[k](ω)=k} min
x∈C′

f (k,ε)
ηqβS(x)

<
∑

k∈Cf (k,ε)

11{N[k](ω)=k}Q
S
k+1 < (1 + ε)

∑
k∈Cf (k,ε)

11{N[k](ω)=k} max
x∈C′

f (k,ε)
ηqβS(x).
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Note that since ∥N[k](ω)/q − f(k/q)∥ < ε implies N[k](ω) ∈ Cf (k, ε), then from the in-
equality on the right of (7.24), we have:∑

k∈Cf (k,ε)

11{N[k](ω)=k} = 11{N[k](ω)∈Cf (k,ε)} = 1 for ω ∈Ωκ and n > n0(ω, ε).

Moreover, recalling (3.13) we have

{K∗(ω)− 1> ⌊κq⌋} ⊆ {RSk+1 =QSk+1, ∀k < ⌊κq⌋,∀S ∈ {R,B}}.

Summarizing, we proved that, for any ω ∈ Ωκ and ε ∈ (0,1), there exists n0(ω, ε) such that
for any n > n0(ω, ε), it holds

0< (1− ε) min
x∈C′

f (k,ε)
ηqβS(x)<RSk+1 < (1 + ε) max

x∈C′
f (k,ε)

ηqβS(x)<∞,

for any k < ⌊κq⌋. By the regularity of functions βS(·) and fS(·), it follows that there exists a
c′ ∈ (0,∞) such that, for any k < ⌊κq⌋,

(7.26) βS(f(k/q))− c′ε < min
x∈C′

f (k,ε)
βS(x)≤ max

x∈C′
f (k,ε)

βS(x)≤ βS(f(k/q)) + c′ε.

So, for any ω ∈Ωκ and ε ∈ (0,1), there exists n0(ω, ε) such that for any n > n0(ω, ε),

RSk+1(ε) := (1−ε)ηq(βS(f(k/q))−c′ε)≤RSk+1 ≤R
S
k+1(ε) := (1+ε)ηq(βS(f(k/q))+c

′ε),

for any k < ⌊κq⌋. Note that the upper and lower bounds on RSk+1 are deterministic.
By Proposition 3.5, and its extension mentioned in Section 3.4, we have that the sojourn

times {Wk}1≤k≤⌊κq⌋ are conditionally independent given {(RRk ,RBk ) = (qRk , q
B
k )}1≤k≤⌊κq⌋

and Wk is distributed according to the exponential law with mean (qRk + qBk )
−1. On Ωκ, for

1≤ k ≤ ⌊κq⌋, we define the random variables

W
(ε)
k := η

RRk +RBk

R
R
k (ε) +R

B
k (ε)

Wk and W
(ε)
k := η

RRk +RBk
RRk (ε) +RBk (ε)

Wk.

It is immediate to verify that

W
(ε)
k | {(RRk ,RBk ) = (qRk , q

B
k )}

L
=EXP

(
RRk (ε) + RBk (ε)

η

)
,(7.27)

W
(ε)
k | {(RRk ,RBk ) = (qRk , q

B
k )}

L
=EXP

(
R
R
k (ε) + R

B
k (ε)

η

)
.(7.28)

By (7.24) and (7.25), for every ε > 0 and ω ∈ Ωκ, there exists n0(ω, ε) such that for any
n > n0(ω, ε) we have

(7.29) W
(ε)
k < ηWk <W

(ε)
k 1≤ k ≤ ⌊κq⌋.

Since random variables {Wk}1≤k≤⌊xq⌋ are conditionally independent given {(RRk ,RBk ) =
(qRk , q

B
k )}1≤k≤⌊xq⌋ and Wk | {(RRk ,RBk ) = (qRk , q

B
k )} follows the exponential law with

mean (qRk + qBk )
−1, a standard computation shows that sequences {W (ε)

k }1≤k≤⌊xq⌋ and

{W (ε)
k }1≤k≤⌊xq⌋ are independent. The proof is reported in Appendix K Furthermore, re-

lations (7.27) and (7.28) imply that

W
(ε)
k

L
=EXP

(
R
R
k (ε) +R

B
k (ε)

η

)
and W

(ε)
k

L
=EXP

(
RRk (ε) +RBk (ε)

η

)
,
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as can be checked by un-conditioning with respect to the random variables (RRk ,R
B
k ). By

(7.29), recalling that Wk := Tk+1 − Tk, for every ε > 0 and ω ∈ Ωκ, there exists n0(ω, ε)
such that for any n > n0(ω, ε) we have

⌊κq⌋−1∑
k=0

W
(ε)
k < ηT⌊κq⌋ <

⌊κq⌋−1∑
k=0

W
(ε)
k .

Therefore, for every ε > 0 and ω ∈Ωκ,

lim inf

⌊κq⌋−1∑
k=0

W
(ε)
k ≤ lim inf ηT⌊κq⌋ ≤ limsupηT⌊κq⌋ ≤ limsup

⌊κq⌋−1∑
k=0

W
(ε)
k .

Denoted with µ∗(κ) :=
∫ κ
0

1∑
S βS(f(y))

dy, due to the arbitrariness of ε > 0, the claim imme-
diately follows if we prove that

lim inf

⌊κq⌋−1∑
k=0

W
(ε)
k ≥ µ∗(κ)− γ(ε), limsup

⌊κq⌋−1∑
k=0

W
(ε)
k ≤ µ∗(κ) + γ(ε), P-a.s..

with γ(ε)→ 0 as ε→ 0. To prove these relations, since
∑⌊κq⌋

k=1 W
(ε)
k and

∑⌊κq⌋
k=1 W

(ε)
k are sum

of independent and exponentially distributed random variables, we apply the exponential tail
bounds provided in [16] and reported in Appendix K and the Borel-Cantelli lemma to infer
that ∑⌊κq⌋−1

k=0 W
(ε)
k − µ(ε)(κ)

µ(ε)(κ)
→ 0 and

∑⌊κq⌋−1
k=0 W

(ε)
k − µ(ε)(κ)

µ(ε)(κ)
→ 0, P-a.s.

where

(7.30) µ(ε)(κ) :=

⌊κq⌋−1∑
k=0

η

R
R
k (ε) +R

R
k (ε)

and µ(ε)(κ) :=

⌊κq⌋−1∑
k=0

η

RRk (ε) +RRk (ε)
.

Now, define

β
S
(x, ε) := (βS(x)− c′ε)(1− ε), βS(x, ε) := (βS(x) + c′ε)(1 + ε) and ∆ := 1/q,

with c′ defined just before (7.26) and ε > 0 chosen sufficiently small that β(x, ε) is strictly
positive. By the definition of Riemann’s integral we have

µ(ε)(κ) =

⌊κq⌋−1∑
k=0

η

R
R
k (ε) +R

R
k (ε)

=
∑

k∈N∪{0}:
0≤k<κ/∆

∆∑
S βS(f(k∆), ε)

−→
n→∞

∫ κ

0

1∑
S βS(f(x), ε)

dx

and µ(ε)(κ) −→
n→∞

∫ κ
0

1∑
S βS

(f(x),ε)dx. To conclude the proof of (4.9), we note that β(y, ε) and

β(y, ε) tend to β(y), as ε→ 0, uniformly in x ∈ [0, κ], and so∫ κ

0

1∑
S βS(f(x), ε)

dx ↓ µ∗(κ) and
∫ κ

0

1∑
S βS(f(x), ε)

dx ↑ µ∗(κ), as ε ↓ 0. □

The proof of Part (ii) follows similar lines.

8. Proof of theorems 5.1, 5.2 and 5.3. We start introducing a new auxiliary dynamical
process.
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8.1. Preliminaries: the R-stopped activation process. Let N(t) be an activation process
and Zstop be either a fixed time or a point of N , i.e., Zstop = Tk for some fixed k. We define
the R-stopped activation process N stop

R as follows: up to time Zstop the R-stopped process
coincides with the original process. On the event {TK∗−1 > Zstop}, at Zstop the R-activation
process stops (no further nodes becomes R-active), while the B-activation process goes on
according to the usual rules: upon wake-up every B-susceptible nodes which is still white
becomes B-active. The process terminates when no jointly white and B-susceptible nodes
are found. More formally, exactly as in the original process, for t≤ Zstop points of N stop

S are
obtained by thinning {(T ′

k, V
′
k)}k∈N, retaining only those couples (T ′

k, V
′
k), k ∈N, for which,

at time (T ′
k)

−, the white node V ′
k satisfies the “threshold condition with respect to S”. For

t > Zstop we retain in N stop
B only those couples (T ′

k, V
′
k), k ∈N, for which, at time (T ′

k)
−, the

white node V ′
k satisfies the “threshold condition with respect to B”. No points are added to

N stop
R for t > Zstop, i.e., N stop

R (t) =NR(min(t,Zstop)).
The R-stopped activation process can be prolonged beyond its natural termination along

similar lines as for the original process N . From now on we shall refer to the prolonged
process. To distinguish variables associated to the stopped and the original processes, we add
a superscripts/subscript “stop” to the former. Through a standard coupling argument we have

(8.1) A∗,stop
B ≥A∗

B and TB,stop
k ≤ TBk , ∀ k ∈N∪ {0} P-a.s.

The proof of (8.1). is reported in Appendix H. More details on the R-stopped process are in
Appendix M. Lastly we state a lemma, whose proof follows the same lines of Theorem 4.7.

LEMMA 8.1. Assume q≪ p−1 and Zstop ≤ TR⌊κq⌋ P-a.s., for some κ≥ 0, then it holds:

(8.2) ηTB,stop
⌊κBq⌋ →

∫ κB

0

1

βB(y)
dy, P-a.s.

for any κB ∈ (0, zB), when q = g and αB ≤ 1, and any κB ∈ (0,∞) otherwise.

8.2. Proof of Theorem 5.1. By Theorem 4.7, for any κ ∈ (0,∞), we have

(8.3) ηT⌊κq⌋ → τ :=

∫ κ

0

1∑
S∈{R,B} βS(f(y))

dy <∞ P-a.s..

Moreover, by (8.1) and Lemma 8.1, given an arbitrary ε > 0, we have P-a.s.

(8.4) TB,stop⌊(g(κg)+ε)q⌋ ≤ TB⌊(g(κg)+ε)q⌋ and ηTB,stop⌊gB(κg)+ε)q⌋ → ψ :=

∫ (gB(κg)+ε)

0

1

βB(y)
dy

We shall show in Appendix N.2 that ψ > τ either when q = g or g≪ q≪ p−1. Denoted
with m1 :=

ψ+2τ
3τ , m2 :=

2ψ+τ
3τ and κB := ⌊(gB(κg) + ε)q⌋, we introduce the event:

(8.5) A0 :=
{
TBκB

>m2τ, T⌊κq⌋ ≤m1τ, K
∗ − 1> ⌊κq⌋

}
, with P(limsup(Ac

0) = 0),

as immediate consequences of (8.3), (8.4) and Theorem 4.5 (i). Now let [Zi,Zi+1), for 0≤
i < i1 := ⌈log2

⌊f(n)p−1⌋
⌊κq⌋ ⌉ a set of intervals, defined by:

Z0 := T⌊κq⌋, Zi+1 := min(T2N(Zi),Zi +∆i) with ∆i =
2iκq

λi
and

(8.6) λi :=


2riκrg

[
e−1

2rr(1−1/r)r−1 − 2κ1−r
]
, q = g and 0≤ i < i0 := ⌊log2

⌊p−1⌋
⌊2κq⌋⌋

2irn(κqp)r e
−1

6r! , g≪ q≪ p−1 and 0≤ i < i0
c1n/3, i0 ≤ i < i1
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where c1 is a suitable strictly positive constant. From now on, for the case q = g we assume
that κ is a chosen sufficiently large to guarantee e−1

2rr(1−1/r)r−1 > 2κ1−r . Define Ki :=N(Zi)

for 0≤ i < i1, and introduce the events:

Di := {Ki+1 = 2i+1⌊κq⌋}, and Ei := {NB[h]≤ κB ∀h ∈ [Ki, Ki+1)}.

Note that, as immediate consequence of the definition of Ki, we have TKi
= Zi. Moreover

Ki+1 ≤ 2Ki, from which we obtain Ki ≤ 2i⌊κq⌋ and Di+1 ⊆Di. Moreover by (3.11)

QRk+1 ≥ |SR[k]| − k.(8.7)

In addition, note that

(8.8) Ei ∩ {k ∈ [KiKi+1)} ⊆ G(k) = {NB[k]≤ κB}.

Moreover by Lemma 3.9, for any k ∈ [2i⌊κq⌋,2i+1⌊κq⌋). we have:

(8.9) |SR[k]||G(k) ≥st Bin(nW , πS(k− κB, κB))≥st Bin(nW , πS(2i⌊κq⌋ − κB, κB))

At last, note that for any i such that 2i⌊κq⌋< p−1 we have:

πS(2
i⌊κq⌋ − κB, κB)≥P(Bin(2i⌊κq⌋ − κB + aR, p) = r)P(Bin(κB + aB) = 0)

=

(
2i⌊κq⌋ − κB + aR

r

)
pr(1− p)2

i⌊κq⌋−κB+aR−r(1− p)κB+aB

=
[(2i⌊κq⌋ − κB + aR)p]

r

r!
e−2i⌊κq⌋p(1 + o(1))

>
[(2i⌊κq⌋ − κB + aR)p]

r

r!
e−1(1 + o(1)),(8.10)

πS(2
i⌊κq⌋ − κB,−κB)≥P(Bin(2i⌊κq⌋ − κB + aR, p)≥ r)P(Bin(κB + aB, p) = 0)

=[P(Po((2i⌊κq⌋ − κB + aR)p)≥ r) +O(p)]P(Bin(κB + aB, p) = 0)

=[P(Po((2i⌊κq⌋ − κB + aR)p)≥ r] +O(p))(1 + o(1))> c1,(8.11)

for a sufficiently small constant c1 and any i such that 2i⌊κq⌋ ≥ p−1/2. Then, defining

(8.12) γi :=

{
e−1

2 n
(2i⌊κq⌋−κB+aR)r

r! , 0≤ i < i0
c1n/2, i0 ≤ i < i1

and Ki := {|SR[h]|> γi ∀h ∈ [Ki,Ki+1)} , for any 0≤ i < i1, we have

Ki ∩ {k ∈ [Ki,Ki+1)} ⊆K
(k)
i := {|SR[k]|> γi} and

Kc
i ={∃k ∈ [Ki,Ki+1) : |SR[k]| ≤ γi}=

⋃
k

[(K
(k)
i )c ∩ {k ∈ [KiKi+1)}](8.13)

By (8.8) and (8.9), setting conventionally D−1 := Ω, it follows

P
(
(K

(k)
i )c ∩ Ei ∩Di−1 ∩ {k ∈ [Ki,Ki+1)}

)
≤ P

(
(K

(k)
i )c ∩ G(k)

)
≤ P

(
(K

(k)
i )c | G(k)

)
= P

(
|SR[k]| ≤ γi | G(k)

)
≤ P

(
Bin(nW , πS(2i⌊κq⌋ − κB, κB))≤ γi

)
.

≤ hi :=

{
e−ne

−1 (2iκqp)r

3r!
H( 1

2) 0≤ i≤ i0

e−
c1n

2
H( 1

2) i0 < i≤ i1

(8.14)
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where the last inequality descends by (8.10) and (8.11), and the application of concentration
inequality for binomials (I.2). In addition, by (8.13) , (8.14), the definition of Di−1 and the
fact that Ki+1 ≤ 2Ki, we have

P(Kc
i ∩ Ei ∩Di−1) =P(∪k[(K

(k)
i )c ∩ {k ∈ [KiKi+1)}]∩ Ei ∩Di−1)

=P(∪k[(K
(k)
i )c ∩ {k ∈ [Ki,2Ki)} ∩ {k ∈ [Ki,Ki+1)}]∩ Ei ∩Di−1)

=P(∪k[(K
(k)
i )c ∩ {k ∈ [2i⌊κq⌋,2i+1⌊κq⌋)} ∩ {k ∈ [Ki,Ki+1)}]∩ Ei ∩Di−1)

=P(∪2i+1⌊κq⌋−1
k=2i⌊κq⌋ [(K

(k)
i )c ∩ {k ∈ [KiKi+1)} ∩ Ei ∩Di−1])

≤
2i+1⌊κq⌋−1∑
k=2i⌊κq⌋

P((K(k)
i )c ∩ G(k))≤ (2iκq)hi,

where in the final inequality we have applied sub-additivity of probability along with (8.14).
Now, for any 0≤ i < i0, from (3.11), by assuming κ sufficiently large, we have

QRk+1 |Ki ∩Di−1 ∩ {k ∈ [KiKi+1)} ≥
e−1

2
n
[(2iκq− κB + aR)p]

r

r!
− 2i+1κq

≥ e−1

2
n
[(2i − 1/2)(κqp)]r

r!
− 2i+1κq,(8.15)

e−1

2
n
[(2i − 1/2)(κgp)]r

r!
− 2i+1κg ≥ (2i − 1/2)rκrg

e−1

2r(1− 1/r)r−1
− 2i+1κg ≥ λi.

Now in the case q = g,

e−1

2
n
[(2i − 1/2)(κgp)]r

r!
− 2i+1κg ≥ (2i − 1/2)rκrg

e−1

2r(1− 1/r)r−1
− 2i+1κg

≥ λi := 2riκrg

[
e−1

2rr(1− 1/r)r−1
− 2κ−(r−1)

]
,(8.16)

where we have used the identity r
(
1− 1

r

)r−1 n(gp)r

r! = g. For the case

e−1

2
n
[(2iκq− κB + aR)p]

r

r!
− 2i+1κq ≥ e−1

3
n
[(2i − 1/2)(κqp)]r

r!

≥ λi := 2irn(κqp)r
e−1

6r!
(8.17)

where we have exploited that q≪ n(qp)r . Note also that

(8.18) QRk+1 |Ki ∩Di−1 ∩ {k ∈ [Ki,Ki+1)} ≥ c1n/2− (2i+1κ+ zB)g ≥ λi := c1n/3

for all n sufficiently large, i0 < i ≤ i1. Define Zi := {TKi+1
− TKi

< ∆i} and note that
Zi ⊆ {Ki+1 = 2Ki}, from which we immediately get that:

(8.19) ∩j<iZj ⊆ {Ki = 2i⌊κq⌋}=Di−1 and ∩i1−1
i=0 Zj ⊆ {Ki1 = 2i1⌊κq⌋ ≥ ⌊f(n)p−1⌋}

In addition since Ki |Di−1 = 2i⌊κq⌋ and Ki+1 ≤ 2Ki :

P (Zci |Ki ∩Di−1)≤ P
(
T2i+1⌊κg⌋ − T2i⌊κg⌋ >∆i |Ki ∩Di−1

)
, with

T2i+1⌊κq⌋ − T2i⌊κq⌋ =

2i⌊κq⌋−1∑
h=0

[
T2i⌊κq⌋+h+1 − T2i⌊κq⌋+h

]
=

2i⌊κq⌋−1∑
h=0

W2i⌊κq⌋+h+1



COMPETING BOOTSTRAP PROCESSES 25

where {WKi+h+1}h are conditionally independent given {R2i⌊κq⌋+h+1}h withW2i⌊κq⌋+h+1 |
{R2i⌊κq⌋+h+1 =m} L

= EXP(m). Then, proceeding similarly as in the proof of Theorem 4.7,

for any 0≤ i < i1 we can define a sequence of r.v.’s Ŵ (i)
h :=

R2i⌊κq⌋+h+1

λi
W2i⌊κq⌋+h+1, which

turn out to be conditionally independent, with law exp(λi), given the sequence of visited
states {X2i⌊κq⌋+h+1}h, as well as independent of H2i⌊κq⌋. Moreover Ŵ (i)

h >W
(i)
2i⌊κq⌋+h+1 on

{R2i⌊κq⌋+h+1 > λi}. Since for an arbitrary k ≤ 2i1κq we have n−N [k]≥ n− 2i1κq > λi, it
follows from (3.12), (3.13) and (3.10) that {Rk+1 ≤ λi} ⊆ {Rk+1 =QRk+1+QBk+1, Q

R
k+1 ≥

0, QBk+1 ≥ 0}, hence {Rk+1 ≤ λi} ⊆ {QRk+1 ≤ λi}. Now, recalling (8.15), we have
Ki ∩Di−1 ⊆ {QRk+1 > λi ∀k ∈ [Ki,Ki+1), Ki = 2i⌊κq⌋} ⊆ {Rk+1 > λi ∀k ∈ [Ki,Ki+1),

Ki = 2i⌊κq⌋} ⊆ {W (i)
2i⌊κq⌋+h+1 ≤ Ŵ

(i)
h , ∀ h ∈ [0,Ki+1 − 2i⌊κq⌋)}, and:

P
(
TKi+1

− TKi
>∆i |Ki ∩Di−1

)
=P
(
TKi+1

− T2i⌊κq⌋ >∆i |Ki ∩Di−1

)
≤P

Ki+1−2i⌊κq⌋−1∑
h=0

Ŵ
(i)
h >∆i |Ki ∩Di−1


≤P

2i⌊κq⌋−1∑
h=0

Ŵ
(i)
h >∆i |Ki ∩Di−1

= P

2i⌊κg⌋−1∑
h=0

Ŵ
(i)
h >∆i


=P
(
Po(λi∆i)< 2i⌊κq⌋

)
< exp(−λi∆iH(1/2)),(8.20)

where the latter inequality follows from (I.3). Now, since

A0 ∩
(
∩i1−1
i=0 (Ki ∩Zi)

)
⊆A0 ∩

(
∩i1−1
i=0 Zi

)
⊆

{
TR⌊f(n)p−1⌋ ≤m1τ +

i1−1∑
i=0

∆i

}

recalling that TKi
≤ TK0

+
∑i−1

i=0∆j , and observing that, for n and κ sufficiently large, we
can always assume

∑
i∆i < (m2 −m1)τ , it results that

(8.21) A0 ⊆∩i1−1
i=0 Ei = {TBκB

> TKi1
},

by (8.19) we have 5 A0 ∩ (∩j<i(Kj ∩Zj))⊆ (∩i1−1
i=0 Ei)∩Di−1 ⊆ Ei ∩Di−1, and:

P(Ac
0 ∪ (∪i1−1

i=0 (Kc
i ∪Zci ))) =P(Ac

0) + P(A0 ∩ [∪i1−1
i=0 (Kc

i ∩ [∩j<i(Kj ∩Zj)])])

P(A0 ∩ [∪i1−1
i=0 ((Zci ∩Ki)∩ [∩j<i(Kj ∩Zj)])])

≤P(Ac
0) + P(∪i(Kc

i ∩Di−1 ∩ Ei)) + P(∪i(Zci ∩Ki ∩Di−1))

≤P(Ac
0) +

∑
i

P(Kc
i ∩Di ∩ Ei) +

∑
i

P(Zci |Ki ∩Di−1).(8.22)

At last observe that by (8.19) right inclusion, (8.21) and the inclusion:

A0 ∩ (∩i1−1
i=0 Ki)⊆ {K∗ >K0,Q

R
k+1 > 0,∀ k ∈ [K0,Ki1)} ⊆ {K∗ >Ki1}.

given that by construction QRK∗ = 0, therefore

A0 ∩ [∩i1−1
i=0 (Ki ∩Zi)]⊆B := {NB(⌊f(n)p−1⌋)< κB} ∩ {K∗ − 1≥ ⌊f(n)p−1⌋}

5We conventionally set ∩j<0Zj = ∩j<0Kj = ∩j<0(Kj ∩ Zj) = Ω.
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Note that, by the application of the Borel-Cantelli lemma, we can claim that limsupP(Bc) =
0 provided that we show

∑
n P(Bc)≤

∑
n P(Ac

0∪(∪i1−1
i=0 (Kc

i ∪Zci )))<∞. Now, we can first
apply (8.22) to the r.h.s and then (??) and (8.20) to show that the resulting latter two infinite
sums are converging. Lastly,

∑
n P(Ac

0) converges due to the (second) Borel-Cantelli lemma
and (8.5) (we recall, indeed, that A(n)

0 are independent). 2

8.3. Proof of Theorem 5.2 . The proof of Theorem 5.2 exploits the following lemma,
whose proof is given in Appendix N.1 .

LEMMA 8.2. Let {Xn}n≥1 and {Yn}n≥1 be two sequences of non-negative random vari-
ables and {fn}n≥1 a sequence of non-negative numbers. IfXn ≤st Yn for every n, Yn/fn → 0
a.s., as n→∞, and {Yn}n≥1 are independent, then Xn/fn → 0 a.s., as n→∞.

Part I: proof of P (lim inf{NB[K
∗ − 1]≤ ⌊(gB(κg) + ε)q⌋}) = 1. Let f(n) be as in

Theorem 5.1(i). and consider the R-stopped process with Zstop = T⌊f(n)p−1⌋. Set κ0 :=

⌊f(n)p−1⌋, κ1 := κ0 + ⌊εg⌋, with ε > 0 arbitrarily fixed, κ(0)B := ⌊(gB(κg) + ε)g⌋ and
κ
(1)
B := ⌊(gB(κg) + 2ε)g⌋, and define the events:

B0 := {Tκ0
≤ TB

κ
(0)
B

}= {NB[κ0]≤ κ
(0)
B } and C0 := {K∗ − 1≥ κ0}.

By (3.11), we have QB,stop
κ0+1 =QBκ0+1 ≤ |SB[κ0]|. Now invoking Lemma 3.9, we have

|Sstop
B [κ0]| |B0 = |SB[κ0]| |B0 ≤st Bin(nW , πB(κ0 − κ

(0)
B , κ

(0)
B )) with

Bin(nW , πB(κ0 − κ
(0)
B , κ

(0)
B ))/g→ 0, P-a.s.;(8.23)

indeed it is rather immediate to check that nWπB(κ0 − κ
(0)
B , κ

(0)
B )/g → 0. Then applying

concentration inequality (I.1), we have P(Bin(nW , πB(κ0 − κ
(0)
B , κ

(0)
B ))> εg)< exp(− εg

2 ),
for n sufficiently large and ε > 0. The claim (8.23) follows by a standard application of
Borel-Cantelli lemma. Similarly, one has S

stop
B [κ1]| |B0 ≤st Bin(nW , πB(κ1 − κ

(1)
B , k

(1)
B ))

with Bin(nW , πB(κ1−κ(1)B , k
(1)
B )/g→ 0 P-a.s.. Therefore, by Lemma 8.2 we have (recall-

ing that the above r.vs for different n are independent):

(8.24) |Sstop
B [κ0]| |B0 = oa.s.(g) and |Sstop

B [κ1]| |B0 = oa.s.(g).

Now, consider the quantity QB,stop
κ1+1 . First note that

(8.25) SB[κ0] = S
stop
B [κ0]⊆ S

stop
B [κ0 + k]⊆ S

stop
B [κ1], ∀k ≤ ⌊εg⌋

since, focusing on theR-stopped process, no node becomesR-active after T stop
κ0 , and therefore

the number ofB-susceptible nodes after T stop
κ0 is monotonically increasing. Of course it holds:

(8.26) V
stop
B [κ0] = VB[κ0] and V

stop
R [κ0 + k] = V

stop
R [κ0] = VR[κ0], ∀k ≤ ⌊εg⌋.

Recalling that i) up to time TK∗−1 only S-susceptible nodes becomes S-active; ii) a node can
be S-susceptible only if it has collected at least r S-marks, i.e., {v ∈ SS(t)} ⊆ {Dv

S(t)≥ r};
iii) since Dv

S [k], i.e., the number of S-marks collected by a node v, is non-decreasing in k,
we have

11C0
|(VW \ Sstop

B [κ1])∩VB[κ0]∩ {v :Dv,stop
B [κ1]≥ r}|

(a)
=11C0

|(VW \ Sstop
B [κ1])∩VB[κ0]|

(b)

≤ 11C0
|(VW \ SB[κ0])∩VB[κ0]|.(8.27)
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Here equation (a) follows from the fact that, conditionally on C0, due to the previously men-
tioned properties i), ii) and iii) we have: VB[κ0]⊆ {v :Dv,stop

B [κ0]≥ r} ⊆ {v :Dv,stop
B [κ1]≥

r} and inequality (b) follows from (8.25). Then, noticing that: i) N stop
B [κ1] =NB[κ0]+ ⌊εg⌋;

ii) conditionally on C0 we have V
stop
R [κ0]⊆ {v :Dv,stop

R [κ0]≥ r}= {v :Dv,stop
R [κ1]≥ r}; and

recalling (3.9), (8.25), (8.26) and (8.27) we have

QB,stop
κ1+1 11B0∩C0

=

[
|Sstop
B [κ1]| −N stop

B [κ1]− |Sstop
B [κ1]∩V

stop
R [κ1]∩ {v :Dv,stop

R [κ1]≥ r}|

+|(VW \ Sstop
B [κ1]∩V

stop
B [κ1]∩ {v :Dv,stop

B [κ1]≥ r}|

]
11B0∩C0

=

[
|Sstop
B [κ1]| −N stop

B [κ1] + |(VW \ Sstop
B [κ0])∩VB[κ0]|

+|(VW \ Sstop
B [κ1])∩ (Vstop

B [κ1] \VB[κ0])∩ {v :Dv,stop
B [κ1]> r}|

−|Sstop
B [κ1]∩VR[κ0]|

]

≤11B0∩C0

[
|Sstop
B [κ1]| − |SB[κ0]|+ |SB[κ0]| −NB[κ0]− ⌊εg⌋

−|SB[κ0]∩VR[κ0]|+ |(VW \ Sstop
B [κ0])∩VB[κ0]|

+|(VW \ Sstop
B [κ1])∩ (Vstop

B [κ1] \VB[κ0])∩ {v :Dv,stop
B [κ1]> r}|

]

≤11B0∩C0

[
QB,stop
κ0+1 + |Sstop

B [κ1]| − ⌊εg⌋

+|(VW \ Sstop
B [κ1])∩ (Vstop

B [κ1] \VB[κ0])∩ {v :Dv,stop
B [κ1]> r}|

]
,(8.28)

where the last addend in (8.28) is not larger than ⌊εg⌋, since

|(Vstop
B [κ1] \VB[κ0])|=N stop

B [κ1]−NB[κ0] = ⌊εg⌋.

Moreover, the last addend in (8.28) is different from 0 only on the event {K∗,stop ≤ κ1}.
Indeed, for any k be such κ0 < k ≤ κ1, upon {K∗,stop > κ1} we have V stop

k ∈ S
stop
B (k) with

S
stop
B (k) ⊆ S

stop
B [κ1]. In other words, {K∗,stop > κ1} ⊆ {(Vstop

B [κ1] \ V
stop
B [κ0]) ∈ S

stop
B [κ1]}.

Consequently, we have

QB,stop
κ1+1 11B0∩C0

≤
[
QB,stop
κ0+1 + |Sstop

B [κ1]| − ⌊εg⌋11{K∗,stop>κ1}

]
11B0∩C0

, P-a.s..

Combining inequality (3.11) and (8.24), we have

(8.29) 11{K∗,stop>κ1}11B0∩C0
≤

−QB,stop
κ1+1 + oa.s.(g)

⌊εg⌋
11B0∩C0

.

By construction {QB,stop
κ1+1 < 0} ⊆ {K∗,stop ≤ κ1}, and so

(8.30) 11{K∗,stop>κ1} ≤ 11{QB,stop
κ1+1≥0}.
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By (8.29) and (8.30), after multiplying both sides by 11{QB,stop
κ1+1≥0} we immediately have

11{K∗,stop>κ1}11B0∩C0
≤

−QB,stop
κ1+1 + oa.s.(g)

⌊εg⌋
11{QB,stop

κ1+1≥0}11B0∩C0
.

Now, noticing that

limsup
−QB,stop

κ1+1 + oa.s.(g)

⌊εg⌋
11{QB,stop

κ1+1≥0}11B0∩C0
≤ limsup

oa.s.(g)

g
11B0∩C0

= 0 P-a.s.,

we deduce 11{K∗,stop>κ1}11B0∩C0
→ 0 P-a.s., which implies 11{K∗,stop>κ1} → 0 P-a.s., since

lim11B0∩C0
= lim inf 11B0∩C0

= 1 P-a.s., by Theorem 5.1. Now B0 ∩ {K∗,stop ≤ κ1} ⊆
{A∗stop

B ≤ κ
(0)
B + ⌊εg⌋+ aB} and the claim follows by the arbitrariness of ε and (8.1).

Part II: proof of P (lim inf{K∗ − 1≥ ⌊cn⌋}) = 1. Set ki = min{2iκ0, ⌊cn⌋} for 0 ≤ i ≤
i1 := ⌈log2

⌊cn⌋
⌊f(n)p−1⌋⌉, and define A0 := {K∗ − 1 ≥ κ0} ∩ {NB[K

∗ − 1] ≤ κ
(0)
B }, with

P(limsup(Ac
0) = 0) by Theorem 5.1 and Part I. Then for any 0≤ i < i1, we have:

{K∗ − 1 ∈ [ki, ki+1)} ∩A0 ⊆ {∃k ∈ [ki, ki+1) s.t. QRk+1 = 0,NB[k]≤ κ
(0)
B } with

P(∃k ∈ [ki, ki+1) s.t. QRk+1 = 0,NB[k]≤ κ
(0)
B )≤

ki+1−1∑
k=ki

P(QRk+1 = 0,NB[k]≤ κ
(0)
B )

and so by (3.11), Lemma 3.9 and concentration inequality (I.2), it follows

P(K∗ − 1 ∈ [ki, ki+1), A0)≤
ki+1−1∑
k=ki

P
(
SR[k]≤ k,NR[k]≥ k− κ

(0)
B ,NB[k]≤ κ

(0)
B

)

≤
ki+1−1∑
k=ki

P
(

Bin(nw, πR(k− κ
(0)
B , κ

(0)
B )< k)

)

≤ 2iκ0P
(

Bin(nw, πR(ki − κ
(0)
B , κ

(0)
B ⌋))< ki+1

)
< exp

(
−cnH

(
c

1
2 +

c
2

))
,

for any 0 ≤ i < i1 and n large enough. The claim, as in Theoren 5.1, follows by a joint
application of the two Borel-Cantelli lemmas (A(n)

0 are independent), by observing that:

P(K∗ − 1≥ ⌊cn⌋)≤ P(Ac
0) +

i1−1∑
i=0

P(K∗ − 1 ∈ [ki, ki+1),A0). □

8.4. Proof of Theorem 5.3 . Let f(n) be the function considered in the statement of
Theorem 5.1(ii), for the case g≪ q≪ p−1. Define

(8.31) κ0 :=

⌊f(n)p−1⌋ if g≪ q≪ p−1

⌊κp−1⌋ if q = p−1

⌊κq⌋ if p−1 ≪ q≪ n
κ
(0)
B :=


⌊p−1⌋ if g≪ q≪ p−1

⌊fBp−1⌋ if q = p−1

⌊q⌋ if p−1 ≪ q≪ n

where κ is arbitrary and fB is defined in Proposition 4.4 (iii). Due to the arbitrariness of κ
note that ratio κ0/κ

(0)
B can be assumed arbitrarily large for values of n large enough. Define:

(8.32)
C0 := {Tκ0

< TB
κ
(0)
B

}= {NB(κ0)< κ
(0)
B }, D0 := {TK∗−1 ≥ Tκ0

}= {K∗ − 1≥ κ0},
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Z0 := min(Tκ0
, TB
κ
(0)
B

), Zi+1 := min{T4i+1κ0
, TB

2i+1κ
(0)
B

, T⌊cn⌋}, i≥ 0.(8.33)

(8.34) I := min{i : N(Zi+1) = ⌊cn⌋}=min{i : Zi+1 = T⌊cn⌋}

We can bound I as follows:

(8.35) {i≤ I ≤ i}=Ω, with i :=
⌊
log4

⌊cn⌋
8κ0

⌋
, i :=

{⌈
log4

⌊cn⌋
κ0

⌉
+
⌈
log2

⌊cn⌋
κ
(0)
B

⌉}
for all n sufficiently large to guarantee that all previous expressions are meaningful. Letting
Ki =N(Zi), note that by construction:

(8.36) Ki :=N(Zi)≤min(4iκ0, ⌊cn⌋) and NB(Zi)≤ 2iκ
(0)
B .

Finally, consider the events

(8.37) Ai :=
{
Zi+1 =min

{
T4i+1κ0

, T⌊cn⌋
}}

=
{
Ki+1 =min

{
4i+1κ0, ⌊cn⌋

}}
, i≥ 0,

Bi := {QRh+1 > λi and QBh+1 ≤ ϕi ∀h ∈ [Ki,Ki+1), i≤ I} ∪ {i > I}, i≥ 0,(8.38)

Here

λi := n(1− δ)−min{4i+1κ0 + 2i+1κ
(0)
B , cn}, with δ ∈ (0,1− c) arbitrarily fixed,

ϕi := max
{
18ne−4iκ0pmin{(1−ε)H(1/8), 1

18
log( 1

18ε)}, g
}

where ε > 0 is arbitrarily small. Now, we can check that for n large enough:

(8.39) Ai ∩ C0 =Bi ∩ C0 = C0, for i > i.

Indeed choose i > i, then by (8.35), C0 ⊆ {i > I} = Ω = Bi. This proves Bi ∩ C0 = C0,
for i > i. Now, note that by construction ZI(ω)+j(ω) = T⌊cn⌋(ω), for any j ≥ 1. Therefore,
for any ω ∈ C0 and I(ω) ≤ i < i, we have Zi+1(ω) = ZI(ω)+j(ω) = T⌊cn⌋(ω) (with j =
i+ 1− I(ω)> 1), then

Zi+1(ω) = T⌊cn⌋(ω) =min{T4i+1κ0
(ω), TB

2i+1κ
(0)
B

(ω), T⌊cn⌋(ω)}=min{T4i+1κ0
(ω), T⌊cn⌋(ω)}

which finally yields ω ∈ Ai, for all n large enough and i > i, and the proof of (8.39) is
completed. We shall show that there exists n̄ such that for any n≥ n̄:

sup
0≤i≤i

P(Bc
i ∩ (∩0≤j≤i−1Aj)∩ C0)≤ n3

(
e
−n(1− δ

2)H
(

1−δ

1−δ/2

)
+ e−

ϕ0
2

log 8

)
,(8.40)

as well as,

(8.41) sup
0≤i≤i

P(Ac
i ∩Bi ∩ (∩0≤j≤i−1Aj ∩Bj)∩ C0 ∩D0)≤ e−

κ
(0)
B
2

log(10);

note that for the case i = 0 we conventionally set (∩0≤j≤−1Aj) := Ω. Now we prove the
relation

(∩i≥0Bi)∩D0 ∩ C0 ⊆ {TK∗−1 ≥ Z0,Q
R
k+1 > 0 ∀k ∈ [K0,KI+1)}

⊆ {TK∗ >ZI+1 = T⌊cn⌋};(8.42)
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observe, indeed, that we have

∩i≥0Bi = ∪j
(
(∩i≥0Bi)∩ {I = j}

)
= ∪j

((
(∩i≤jBi)∩ (∩i>jBi)

)
∩ {I = j}

)
⊇∪j

((
∩i≤j Bi

)
∩
(
∩i>j {i > I}

)
∩ {I = j}

)
= ∪j

((
∩i≤j Bi

)
∩ {I = j}

)
,(8.43)

where the set inclusion is a consequence of the relation Bi ⊇ {i > I}. Comparing the second
and last terms in (8.43), we immediately have

(8.44) ∩i≥0Bi = ∪j
(
(∩i≥0Bi)∩ {I = j}

)
= ∪j

((
∩i≤j Bi

)
∩ {I = j}

)
.

By the definition of Bi, we have Bi ⊆ {QRk+1 > 0,∀k : k ∈ [Ki,Ki+1), i≤ I} ∪ {i > I} and
so (∩i≤jBi) ∩ {I = j} ⊆ {QRk+1 > 0,∀k : k ∈ [K0,KI+1), I = j}, which, combined with
(8.44), yields ∩i≥0Bi ⊆ {QRk+1 > 0,∀k : k ∈ [K0,KI+1)}. Similarly we have

(8.45) ∩j≤iBj ⊆ {QRk+1 > 0 ∀k ∈ [K0,min(Ki+1,KI+1)}.

Considering the intersection with the set D0 ∩ C0, we finally have (8.42), where the last
inclusion therein follows by noticing that QRK∗ = 0. Now we prove the relation:

(8.46) (∩i≥0Ai)∩ C0 ⊆ {N(ZI+1)≥N(ZI)≥ 4Iκ0,NB(ZI+1)≤ 2I+1κ
(0)
B }.

By (8.33), the definition of C0 and Ai, and (8.34) for any ω ∈ Ai ∩ C0 ∩ {I(ω) = j},
with i < j, we have Zi+1(ω) = T4i+1κ0

(ω), T4i+1κ0
(ω) ≤ TB

2i+1κ
(0)
B

(ω) and T4i+1κ0
(ω) <

T⌊cn⌋(ω); while, for any ω ∈ Aj ∩ C0 ∩ {I(ω) = j} we have T⌊cn⌋(ω) ≤ T4j+1κ0
(ω) and

T⌊cn⌋(ω) ≤ TB
2j+1κ

(0)
B

(ω). In particular, for ω ∈ Aj−1 ∩ Aj ∩ C0 ∩ {I(ω) = j}, we have

Zj(ω) = ZI(ω) = T4Iκ0
(ω) ≤ Zj+1(ω) = ZI+1(ω) = T⌊cn⌋(ω) ≤ TB2I+1h0

(ω). Claim (8.46)
easily follows taking the union over all values j that I assumes. Combining (8.42) with
(8.46), we have:

(8.47) {(∩i≥0(Ai ∩Bi))∩ C0 ∩D0} ⊆ T :=

{
TK∗−1 ≥ T⌊cn⌋,

NB

[
⌊cn⌋

]
⌊cn⌋

≤ 2−i+1

}
,

where i is defined by (8.35). We shall show later on that

(8.48)
∑
n≥1

P([(∩i≥0(Ai ∩Bi))∩ C0 ∩D0]
c)<∞,

therefore by Borel-Cantelli lemma combined with (8.47), we obtain P(limsupTc) = 0,
which immediately implies (5.3). To prove (8.48), we observe that by (8.39), we have
(∩i≥0(Ai ∩Bi))∩ C0 ∩D0 = (∩ii=0(Ai ∩Bi))∩ C0 ∩D0, and so

P([(∩i≥0(Ai ∩Bi))∩ C0 ∩D0]
c) = P(∪0≤i≤i(A

c
i ∪Bc

i )∪ Cc0 ∪Dc
0)

= P(∪0≤i≤i(A
c
i ∪Bc

i )∩ C0 ∩D0) + P(Cc0 ∪Dc
0).(8.49)

Now we have P(lim inf C0 ∩D0) = 1, as immediate consequence of Theorem 5.1(i) for the
case g≪ q≪ p−1, (recalling that for n sufficiently large h0 := ⌊p−1⌋ > ⌊(gB(κg) + ε)q⌋)
and of Theorem 4.5 (i) and Corollary 4.3 in the remaining cases. Therefore, by the second
Borel-Cantelli lemma it follows

∑
n P(Cc0 ∪Dc

0)<∞, (events Cc0 ∪Dc
0 are independent for

different values of n), and so, thanks to (8.49), to get (8.48) we need to show that∑
n≥1

P(∪0≤i≤i(A
c
i ∪Bc

i )∩ C0 ∩D0)<∞.(8.50)
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To this aim, we note that proceeding similarly to (8.22), we have

P
(
∪0≤i≤i (A

c
i ∪Bc

i )∩ C0 ∩D0

)
≤

i∑
i=0

P
((

Bc
i ∩
(
∩0≤j<i Aj

))
∩ C0

)

+

i∑
i=0

P
((

Ac
i ∩
(
Bi ∩

(
∩0≤j<i (Aj ∩Bj)

))
∩ C0 ∩D0

)
.

Now given that i=O(log2(np)), (8.50) follows by (8.40), (8.41) and (2.1). Now to conclude
the proof of the Theorem we verify (8.40) and (8.41). 2

8.4.1. Proof of (8.40) . By (8.37) and (8.38), it follows

(8.51) Bc
i ∩ {i > I}= ∅ and Ac

i ∩ {i≥ I}= ∅, for all n large enough.

The first relation is an immediate consequence of (8.38). As far as the second relation is
concerned, by (8.34) we have ZI+1 = T[cn] that implies T[cn] ≤ T4I+1κ0

≤ T4i+1κ0
and T[cn] ≤

TB
2I+1κ

(0)
B

≤ TB
2i+1κ

(0)
B

on {i > I} by (8.33). Hence again by (8.33) we have Zi+1 = T[cn] =

min{T4i+1κ0
, T[cn]} on {i > I}. Then, the second relation in (8.51) immediately follows from

(8.37). Now, set

(8.52) Ei−1 := (∩1≤j≤i−1Aj)∩ C0 ∩ {i≤ I}.

Then, recalling the definition of κ0 and κ(0)B in (8.31) we have

(8.53) Ei−1 ⊆Ni := {N(h)≥ 4iκ0 and NB(h)≤ 2i+1κ
(0)
B , ∀h ∈ [Ki,Ki+1)}.

Indeed, if ω ∈ Ei−1, then

(8.54) ω ∈Ai−1 ∩ C0 ∩ {i≤ I} ⊆ {Zi = T4iκ0
}= {Ki = 4iκ0},

which implies N [k](ω) ≥ 4iκ0, for any k such that Tk(ω) ∈ [Zi(ω),Zi+1(ω)). Further-
more, (8.33) implies Zi+1(ω) ≤ TB

2i+1κ
(0)
B

(ω),which yields NB[k](ω) ≤ 2i+1κ
(0)
B , for any

k ∈ [Ki(ω),Ki+1(ω)). Moreover,

Ni ∩ {k ∈ [Ki,Ki+1)} ⊆ {N [k]≥ 4iκ0, NB[k]≤ 2i+1κ
(0)
B }

⊆M
(k)
i := {NR[k]≥ 4iκ0 − 2i+1κ

(0)
B ,NB[k]≤ 2i+1κ

(0)
B },

then recalling (8.53) it follows

(8.55) E
(k)
i−1 := Ei−1 ∩ {k ∈ [Ki,Ki+1)} ⊆M

(k)
i .

Then, setting k(i)R := 4iκ0 − 2i+1κ
(0)
B and k

(i)
B = 2i+1κ

(0)
B , by Lemma 3.9 (with k = k

(i)
R +

k
(i)
B = 4iκ0 and h= k

(i)
B ), we have

(8.56)
|SR[k]| |M(k)

i ≥st Bin(nW , πR(k
(i)
R , k

(i)
B )), |SB[k]| |M(k)

i ≤st Bin(nW , πB(k
(i)
R , k

(i)
B )).

Now, note that for any z ≥ r and any S ∈ {R,B}, it holds

πS(kS , kSc) = P(Bin(kS + aS , p)− Bin(kSc + aSc , p)≥ r)

≥ P(Bin(kS + aS , p)≥ z,Bin(kSc + aSc , p)≤ z − r)

≥ 1− P(Bin(kS + aS , p)< z)− P(Bin(kSc + aSc , p)> z − r).(8.57)



32

Note also that for n sufficiently large, by assuming κ(0)B /κ0 < (κ
(0)
B +aB)/κ0 < ε/2, we have

E[Bin(k(i)R + aR, p)]≥ E[Bin(k(i)R , p)]≥ 4iκ0p

(
1−

2κ
(0)
B

2iκ0

)
≥ 4iκ0p (1− ε)

E[Bin(k
(i)
B + aB, p)]≤ 2i+1(κ

(0)
B + aB)p.

Therefore, taking z = 4iκ0p/9 by (8.57) and the concentration inequalities in Appendix I,
for any i and sufficiently large n, it holds

πR(k
(i)
R , k

(i)
B )≥ 1− e−4iκ0p(1−ε)H(1/8) − e−

4i

18
κ0p log(2i−1· 1

9ε)

πB(k
(i)
R , k

(i)
B )≤ e−4iκ0p(1−ε)H(1/8) + e−

4i

18
κ0p log(2i−1· 1

9ε).

(8.58)

Combining (8.58) with (8.56), we have

E[|SR[k]| |M(k)
i ]≥ nW

(
1− e−κ0p(1−ε)H(1/8) − e−

1

18
κ0p log( 1

18ε)
)
,

where we have exploited the monotonicity with respect to i of the r.h.s. of (8.58). Note that
for n large enough we can always assume κ0p to be sufficiently large that E[|SR[k]| |M(k)

i ]≥
n
(
1− δ

2

)
for an arbitrary δ > 0. Now, applying again the concentration inequality reported

in Appendix I, for any i and all n large enough, we have

(8.59) P(|SR[k]| ≤ (1− δ)n |M(k)
i )< e

−n(1− δ

2)H
(

1−δ

1− δ
2

)
.

Similarly, given (8.56) and (8.58), for any i and all n sufiiciently large, we have

E[|SB[k]| |M(k)
i ]≤2ne−4iκ0pmin{(1−ε)H(1/8), 1

18
log( 1

18ε)} := µBi .

Setting ϕi := max(9µBi , g), for all i and all n large enough, we have

(8.60) P
(
|SB[k]| ≥ ϕi |M(k)

i

)
≤ e−

ϕi
2
log 8.

By (8.38), for any i and all n large enough, we have

P(Bc
i∩Ei−1) = P

(⋃
k

({
k ∈ [Ki, Ki+1), Q

R
k+1 ≤ λi or QBk+1 > ϕi

}
∩ Ei−1

))

= P

(⋃
k

({
QRk+1 ≤ λi or QBk+1 > ϕi

}
∩ E

(k)
i−1

))

=
∑
ki,ki+1

P
(
{Ki = ki,Ki+1 = ki+1}

⋂( ki+1−1⋃
k=ki

[
{QRk+1 ≤ λi} ∪ {QBk+1 > ϕi} ∩ E

(k)
i−1

]))
(a)

≤
∑
ki,ki+1

ki+1−1∑
k=ki

P
(
{Ki = ki,Ki+1 = ki+1} ∩

(
{QRk+1 ≤ λi} ∪ {QBk+1 > ϕi}

)
∩M

(k)
i

)

≤
∑
ki,ki+1

ki+1−1∑
k=ki

P(({QRk+1 ≤ λi} ∪ {QBk+1 > ϕi})∩M
(k)
i )
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(b)

≤
∑
ki,ki+1

ki+1−1∑
k=ki

P({|SR[k]| ≤ λi + k} ∪ {|SB[k]|> ϕi} |M(k)
i )

(c)

≤ n3

(
e
−n(1− δ

2)H
(

1−δ

1− δ
2

)
+ e−

ϕ0
2

log 8

)
,

(8.61)

where indices ki and ki+1 in the sums span over the support of Ki and Ki+1, respectively.
Here inequality (a) follows from (8.55), inequality (b) follows from the relations (3.11),
inequality (c) follows from the relations (8.59) and (8.60) (note that λi + k ≤ (1− δ)n), the
union bound, the fact that Ki, for every i, takes values in {0, . . . , nW } and the monotonicity
of ϕi w.r.t. i. Relation (8.40) follows from (8.61), noticing that, due to the first equality in
(8.51), we have

P(Bc
i ∩ (∩1≤j≤i−1Aj)∩ C0) = P(Bc

i ∩ (∩1≤j≤i−1Aj)∩ C0 ∩ {i≤ I}) = P(Bc
i ∩ Ei−1). □

8.4.2. Proof of (8.41) . Since QRK∗ = 0, by (8.32), (8.45) and (8.52), we have that

D0 ∩ (∩j≤iBj)∩ Ei−1 ⊆ C0 ∩D0 ∩ (∩j≤iBj)⊆ {TK∗ ≥ Zi+1}.

Therefore, by Lemma 3.6, on D0 ∩ (∩j≤iBj) ∩ Ei−1, for S ∈ {R,B}, we have QSk+1 =
|VW [k] ∩ SS [k]|,∀k ∈ [K0,Ki+1). In addition, by (3.6) we have NS(Ki+1) = NS(Ki) +∑Ki+1−Ki

k=1 MS
Ki+k

. Recalling that variables {USk }k∈N have a finite support, and letting u de-
note an arbitrary element in it, by proposition 3.3 we have that MS

k | {USk = u} is Bernoulli
distributed with mean u. Again by Proposition 3.4 random variable MS

k | {USk = u} is inde-
pendent of Hk−1. Consequently we can define the following sequence of random variables:

M
B
k :=

 1 on {MB
k = 1} ∪ {UBk > ϕi

λi+ϕi
}

Be
(

ϕi
λi+ϕi

−u
1−u

)
on {MB

k = 0} ∩ {UBk = u≤ ϕi

λi+ϕi
}

MR
k := 1−M

B
k

Clearly MB
k ≥MB

k and MR
k ≤MR

k P-a.s.. Moreover it is of immediate verification that:

(8.62) M
B
k := Be

(
ϕi

λi + ϕi

)
, on the event

{
UBk = u≤ ϕi

λi + ϕi

}
,

Note that random variables MB
k | {UBk = u} and MR

k | {UBk = u} are independent of Hk−1.
By (8.52) and (8.54), we have Ei−1 ⊆Ai−1 ∩ C0 ∩ {i≤ I} ⊆ {Ki = 4iκ0}, therefore,

(8.63) Gi :=D0 ∩ (∩j<iBj)∩ Ei−1 ⊆ {Ki = 4iκ0}.

In addition, recalling (8.38) we have

Bi ∩ {i≤ I} ⊆ B̃i :=

{
UBk+1 <

ϕi
λi + ϕi

∀ k : k ∈ [Ki,Ki+1)

}
.

Setting uh := (u1, . . . , uh), where um, for 1 ≤m ≤ h, denotes an arbitrary element in the
support of {USk }k∈N∪{0} and UB(uh) :=

⋂h
m=1{UB4iκ0+m

= um}, we have

B̃i ∩ {Ki+1 −Ki = h} ∩ {Ki = 4iκ0}=
⋃

uh<
ϕi

ϕi+λi
1

UB(uh)∩ {Ki+1 −Ki = h} ∩ {Ki = 4iκ0}.
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with 1 := (1, . . . ,1) ∈ Rh and |{uh : uh < ϕi

ϕi+λi
1}| <∞, as oblivious consequence of the

fact that the support of {USk }k∈N∪{0} is finite. Setting ∆max := min{4i+1κ0, ⌊cn⌋} − 4iκ0,
by (8.63), and the fact that Ei−1 ⊆ C0 ∩ {i≤ I} (see (8.52)), we have:

{Ki+1 <∆max +Ki} ∩Bi ∩ Gi ⊆
∆max−1⋃
h=0

{
Ki+1 = h+ 4iκ0

}
∩ B̃i ∩ Gi

=

∆max−1⋃
h=0

⋃
uh<

ϕi
λi+ϕi

1

{Ki+1 = h+ 4iκ0} ∩UB(uh)∩ Gi

⊆
∆max−1⋃
h=0

⋃
uh<

ϕi
λi+ϕi

1

{
h∑

m=1

MB
4iκ0+m ≥ 2iκ

(0)
B

}
∩UB(uh)∩ Gi(8.64)

⊆
∆max−1⋃
h=0

⋃
uh<

ϕi
λi+ϕi

1

{
h∑

m=1

M
B
4iκ0+m ≥ 2iκ

(0)
B

}
∩UB(uh)∩ Gi.(8.65)

Here, recalling (8.36) , the inclusion (8.64) stems from the fact that, for any 0≤ h <∆max,

{Ki+1 = h+ 4iκ0} ∩ Gi = {Ki+1 −Ki = h} ∩ Gi

⊆ {NB[Ki+1] =NB[Ki + h] = 2i+1κ
(0)
B } ∩ Gi(8.66)

= {NB[Ki + h]−NB[Ki] = 2i+1κ
(0)
B −NB[Ki],NB[Ki]≤ 2iκ

(0)
B } ∩ Gi(8.67)

⊆ {NB[Ki + h]−NB[Ki]≥ 2iκ
(0)
B } ∩ Gi =

{
h∑

m=1

MB
4iκ0+m ≥ 2iκ

(0)
B

}
∩ Gi,

where relation (8.67) is a consequence of (8.36) and the inclusion (8.66) follows from the def-
inition of Zi+1 in (8.33). Indeed, since h <∆max we have that Ki+1 <min{4i+1κ0, ⌊cn⌋},
i.e., Zi+1 < min{T4i+1κ0

, T⌊cn⌋}, and so Zi+1 = TB
2i+1κ

(0)
B

, i.e. NB(Ki+1) = 2i+1κ
(0)
B . By

(8.33) and the definition of Ai in (8.37), we have

Ac
i = {Ki+1 <min{4i+1κ0, ⌊cn⌋}},

and so by (8.65) we have

P (Ac
i ∩Bi ∩ Gi)≤ P

(
Ac
i ∩ B̃i ∩ Gi

)
= P

(
{Ki+1 <∆max + 4iκ0} ∩ B̃i ∩ Gi

)
≤

∆max−1∑
h=1

∑
uh<

ϕi
λi+ϕi

1

P

({
h∑

m=1

M
B
4iκ0+m ≥ 2iκ

(0)
B

}
∩UB(uh)∩ Gi

)

=

∆max−1∑
h=1

∑
uh<

ϕi
λi+ϕi

1

P

(
h∑

m=1

M
B
4iκ0+m ≥ 2iκ

(0)
B |UB(uh)∩ Gi

)
P (UB(uh)∩ Gi)

(a)
=

∆max−1∑
h=1

∑
uh<

ϕi
λi+ϕi

1

P

(
h∑

m=1

M
B
4iκ0+m ≥ 2iκ

(0)
B |UB(uh)

)
P (UB(uh)∩ Gi)
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(b)
=

∆max−1∑
h=1

P
(
Bin

(
h,

ϕi
λi + ϕi

)
≥ 2iκ

(0)
B

) ∑
uh<

ϕi
λi+ϕi

1

P (UB(uh)∩ Gi)

≤
∆max−1∑
h=1

P
(
Bin

(
h,

ϕi
λi + ϕi

)
≥ 2iκ

(0)
B

)
P (Gi)

≤ (∆max − 1)P
(
Bin

(
∆max − 1,

λi
λi + ϕi

)
≥ 2iκ

(0)
B

)
P (Gi)

≤ (3 · 4iκ0)P
(
Bin

(
3 · 4iκ0,

ϕi
λi + ϕi

)
≥ 2iκ

(0)
B

)
P (Gi) .

Here equality (a) follows from recalling that, given UB(uh), uh ≤ ϕi

λi+ϕi
1, random vari-

ables {MB
4iκ0+m}1≤m≤h are independent of H4iκ0

, and therefore of Gi, given that Gi =
D0∩ (∩j<iBi)∩Ei−1 ∈H4iκ0

. Equality (b) is a consequence of the fact that, given UB(uh),
with uh ≤ ϕi

λi+ϕi
1, random variables {MB

4iκ0+m}1≤m≤h follow the Bernoulli law with mean
ϕi

λi+ϕi
by (8.62). Finally, recalling that ∆max ≤ 3 · 4iκ0 and applying the usual concentration

inequality for the binomial law (see Appendix I), for all n large enough, we have

P
(
Bin

(
3 · 4iκ0,

ϕi
λi + ϕi

)
≥ 2iκ

(0)
B

)
≤ e−2i−1κ

(0)
B log(10).

Indeed, from the definition of ϕi and λi we get:

ϕi
λi + ϕi

3 · 4iκ0 ≤ 3 · 4iκ0
ϕi
λi

≤ 3 · 4iκ0
1− δ− c

max
{
18e−4iκ0pmin{(1−ε)H(1/8), 1

18
log( 1

18ε)}, g
n

}
<
κ
(0)
B

20
(8.68)

where we recall that we can assume κ0p to be sufficiently large. 2
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APPENDIX A: PROOF OF PROPOSITION 4.4

To prove Propositions 4.4(i)-(ii) we start establishing a relation between the solutions of
Cauchy Problems (4.2) and (2.6).

LEMMA A.1. Assume βS(xR, xB) = βS(xS), S ∈ {R,S}, and that the Cauchy problem
(2.6) has a unique maximal solution g on (0, κg) with gR and gB strictly increasing. Then
the Cauchy problem (4.2) has a unique maximal solution on (0, κf ), with κf := z(κg), where
z := gR + gB , given by

f(x) = g(z−1(x)).

For Cauchy’s problems of the form (2.6), recalling that we always assume αR > αB , the
following propositions hold:

PROPOSITION A.2. Under the assumption that q = g:
(i) If αR < 1, then Cauchy problem (2.6) has a unique solution g defined on (0,∞) and

gR(x) ↑ zR, gB(x) ↑ zB, as x ↑+∞.

(ii) If αR > 1, then Cauchy problem (2.6) has a unique solution g defined on (0, κg), with

gR(x) ↑+∞, gB(x) ↑ gB(κg) ∈ (0,∞), as x ↑ κg. and

κg :=

∫ ∞

0

dx

−x+ r−1(1− r−1)r−1(αR + x)r
<∞,

If αB < 1 then gB(κg)< zB .



COMPETING BOOTSTRAP PROCESSES 37

PROPOSITION A.3. Under the assumption that g ≪ q ≪ p−1, Cauchy problem (2.6)
admits the following unique solution g on (0, κg):

gS(x) =
1(

α1−r
S − r−1

r! x
)1/(r−1)

− αS S ∈ {R,B}, κg :=
r!

(r− 1)αr−1
R

,

Propositions 4.4(i)-(ii) immediately follow from Propositions A.2 and A.3 and Lemma
A.1. Proposition 4.4(iii) is a simple consequence of the next Lemma A.4 and the relation

βB(xR, xB)

βR(xR, xB)
≤
(
xB + αB
xR + αR

)r
, for xB + αB < xR + αR.

LEMMA A.4. Let f(x) be the solution of Cauchy problem 4.2 for q = p−1 and let f̃(x)
be the solution of the Cauchy problem:

(A.1) f̃
′
(x) =

β̃(f̃(x))

β̃R(f̃R(x)) + β̃B(f̃B(x))
, x ∈ (0, κf ), f(0) = (0,0)

where β̃S(x) = (xS+αS)
r , S ∈ {R,B}. Then fR(x)> f̃R(x) and fB(x)< f̃B(x), for every

x ∈ (0, κf ).

The proofs of the above Lemmas and Propositions are elementary. They are reported for
completeness in Appendix J.

APPENDIX B: NUMERICAL ILLUSTRATION OF THE RESULTS FOR q = g

For the purpose of numerical illustration of our results, we consider the case r = 2, which
allows closed-form solutions of many quantities of interest. We focus on the super-critical
case αR > 1 (super-critical R-activation process) and consider either the case αB < 1 or
αB > 1. Whenever αR > 1, with r = 2 we get from Proposition 4.4

(B.1) κg :=

∫ ∞

0

dx
(x+αR)2

4 − x
=

2√
αR − 1

(
π

2
− arctan

( αR

2 − 1
√
αR − 1

))
Note that κg can be interpreted as the physical time at which the red activation process
produces a number of susceptible red nodes of the order of n. As expected, with αR ↓ 1 we
have that κg tends to infinite. This can be understood by the fact that the activation process
becomes increasingly slow while approaching the percolation transition.

In the case αB < 1, recall that βB(x) =
(x+αB)2

4 − x has two zeros at xa = 2 − αB −
2
√
1− αB and xb = 2− αB + 2

√
1− αB .

In this case, we also get a closed-form expression for the generic integral:

(B.2)
∫ x

0

du

βB(u)
=

∫ x

0

du
(u+αB)2

4 − u
=

1

4
√
1− αB

log

(
xa(xb − x)

xb(xa − x)

)
(note that, as expected, the above integral diverges as x ↑ xa).

Let

ψ(αR, αB) := exp

(
2

√
1− αB
αR − 1

(
π

2
− arctan

( αR

2 − 1
√
αR − 1

)))
.

Exploiting the results in Theorem 4.7, after some simple algebra, we can compute the
asymptotic behavior of the (normalized) final number of active black nodes as:

(B.3)
A∗
B

q
∼ αB +

α2
B(ψ− 1)

(2− αB)(ψ− 1) + 2
√
1− αB(ψ+ 1)

.
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When αR ↓ 1 we have that ψ diverges to ∞, and we recover the well known result of the
classical subcritical bootstrap percolation process with r = 2, for which the final (normalized)
number of active nodes is 2− 2

√
1− αB .

In the case αB > 1, we define instead the constant:

ψ′(αR, αB) := arctan

( αB

2 − 1
√
αB − 1

)
+

√
αB − 1

αR − 1

(
π

2
− arctan

( αR

2 − 1
√
αR − 1

))
.

Then the (normalized) final number of active black nodes:

(B.4)
A∗
B

q
∼ 2 + 2

√
αB − 1 tan(ψ′).

As expected, with αB ↓ 1 this number tends to 2, matching the same figure obtained (in the
case αB < 1) when αB ↑ 1. One can also check that, for increasing values of αR, A∗

B/q
approaches αB (meaning that the infection of black nodes essentially does not evolve, being
immediately stopped by the red infection). Instead, as αR ↓ αB , A∗

B/q diverges (note indeed
that in this case ψ′ ↑ π

2 ).
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APPENDIX C: PROOF OF LEMMA 3.6

For every k, we have

|VW [k]∩ SS [k]|= |(VW \ (VR[k]∪VB[k])∩ SS [k]|

= |SS [k] \ ((VR[k]∪VB[k])∩ SS [k])|= |SS [k]| − |SS [k]∩VR[k]| − |SS [k]∩VB[k]|

and

|SS [k]∩VS [k]|= |VS [k]| − |(VW \ SS [k])∩VS [k]|=NS [k]− |(VW \ SS [k])∩VS [k]|.

Therefore

(C.1) |VW [k]∩ SS [k]|= |SS [k]| −NS [k] + |(VW \ SS [k])∩VS [k]| − |SS [k]∩VSc [k]|.

On the event {k <K∗}, we have VS [k]≡ VS [k] ∩ {v :Dv
S [k]≥ r}, due to the monotonicity

of paths of Dv
S(·) and the fact that a node becomes S-active only if it is S-susceptible

(C.2) |(VW \ SS [k])∩VS [k]|= |(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|
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and

(C.3) |SS [k]∩VSc [k]|= |SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|.

By (C.1), (C.2) and (C.3), it easily follows (3.10). Now we prove (3.11). For any 0≤ k < nW ,
by (3.9) we have

QSk+1 =|SS [k]| −NS [k] + |(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|

− |SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|

≥ |SS [k]| −NS [k]− |SB[k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|

≥ |SS [k]| −NS [k]− |VSc [k]|
= |SS [k]| −NS [k]−NSc [k] = |SS [k]| − k,

where we have applied the identities |VS [k]|=NS [k] and k =NS [k]+NSc [k]. On the other
hand

QSk+1 =|SS [k]| −NS [k] + |(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|

−|SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|

≤|SS [k]| −NS [k] + |(VW \ SS [k])∩VS [k]| ≤ |SS [k]|.(C.4)

The proof of relation (3.11) is completed.

APPENDIX D: PROOF OF LEMMA 3.9

We prove the first inequality. The second one can be proved in a similar way. Note that

|SR[k]|=
∑

kR,kB : kR+kB=k

|SR[k]|11{NR[k]=kR,NB [k]=kB},

and by the definition of Nk,h we have

|SR[k]|11Nk,h
=

∑
kR,kB : kR+kB=k,kR≥k−h,kB≤h

|SR[k]|11{NR[k]=kR,NB [k]=kB}.

For a≥ 0, we then have

P(|SR[k]|> a |Nk,h)P(Nk,h) = P(|SR[k]|11Nk,h
> a)

= P

 ∑
kR,kB

kR+kB=k,kR≥k−h,kB≤h

|SR[k]|11{NR[k]=kR,NB [k]=kB} > a


=

∑
kR,kB

kR+kB=k,kR≥k−hkB≤h

P(|SR[k]|> a,NR[k] = kR,NB[k] = kB)

≥
∑

kR,kB

kR+kB=k,kR≥k−h,kB≤h

P(Bin(nW , πR(k− h,h)> a)P(NR[k] = kR,NB[k] = kB)

= P(Bin(nW , πR(k− h,h)> a)P(Nk,h),

where the second equality is a consequence of the fact that for different values of (kR, kB)
the events {NR[k] = kR,NB[k] = kB} are disjoint and the inequality follows by (3.14) and
the stochastic ordering properties of the binomial distribution which imply

|SR[k]| | {NR[k] = kR,NB[k] = kB}
L
= Bin(nW , πR(kR, kB))≥st Bin(nW , πR(k− h,h)).

2
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APPENDIX E: PROOF OF PROPOSITION 7.1

Proposition 7.1 is an immediate consequence of the Borel-Cantelli lemma and the fol-
lowing propositions E.1 and E.2. Hereafter, when we write “for any κ > 0”, we implicitly
assume that κ is arbitrarily chosen in (0, zR + zB) in case q = g and αB <αR < 1.

PROPOSITION E.1. Given η in (4.8), for any κ > 0 and δ > 0, there exists a positive
constant c(κ, δ)> 0 such that

max{P(ΥS(κ)> δ),P(ΥS(κ)> δηq)}≪ e−c(κ,δ)ηq.

PROPOSITION E.2. For any κ > 0 and δ > 0, there exists a positive constant c(κ, δ)> 0
such that

(E.1) P(NS(κ)> δ)≪ e−c(κ,δ)q.

Proof of Proposition E.1: Auxiliary results. The proof of Proposition E.1 uses the
following lemmas.

LEMMA E.3. There exists a positive constant c(κ, δ)> 0 such that

max

{
sup

k∈T(κ)
P(Y S(k)> δηq), sup

k∈T(κ)
P(YS(k)> δ)

}
≪ e−c(κ,δ)ηq.

In turn the following lemmas E.4, E.5 and E.6 will be exploited to prove Lemma E.3.
Hereafter, we set k := (kR, kB) ∈ (N ∪ {0)})2. Recalling the definition of πS(k) given in
Sect. 3.4.1, we have:

LEMMA E.4. (i) If q = g, then, for any κ > 0,

sup
k∈T(κ)

∣∣∣ nWπS(k)

(gβS(kS/g) + kS/g)g
− 1
∣∣∣→ 0.

(ii) If g≪ q≪ n, then, for any κ > 0,

sup
k∈T(κ)

∣∣∣ nWπS(k)
ηqβS(kS/q)

− 1
∣∣∣→ 0.

Hereafter, we set

π̃S(k) := P(Bin(kS + aS , p)≥ r)P(Bin(kSc + aSc , p)≥ 1), k := (kR, kB) ∈ (N∪{0)})2.

LEMMA E.5. Assume q = g. Then, for any κ > 0,

sup
k∈T(κ)

∣∣∣ nW π̃S(k)

r−1[(1− r−1)]r−1(kSc/q+ αSc)(kS/q+ αS)rq2p
− 1
∣∣∣→ 0.

LEMMA E.6. Let {Xn}n∈N and {X ′
n}n∈N be two sequences of non-negative random

variables defined on the same probability space and such that P(X ′
n ≥Xn) = 1 for any n ∈N.

Let µn ≥ 0 and µ′n > 0, n ∈N, be two deterministic sequences with inf µ′n = µ > 0. Then

P
(∣∣∣Xn

X ′
n

− µn
µ′n

∣∣∣> ε

)
≤ P(|Xn−µn|> εµ/4)+P(|X ′

n−µ′n|> εµ/4), ∀ ε ∈ (0,1) and n ∈N.
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For the sake of clarity, we point out that, by the convention 0/0 := 1/2 and the assumption
P(X ′

n ≥Xn) = 1, for a Borel set B ⊆ [0,∞),{∣∣∣∣Xn

X ′
n

− µn
µ′n

∣∣∣∣ ∈B}=

{∣∣∣∣Xn

X ′
n

− µn
µ′n

∣∣∣∣ ∈B,X ′
n ̸= 0

}
∪
{∣∣∣∣12 − µn

µ′n

∣∣∣∣ ∈B,X ′
n = 0

}
.

Here we prove Proposition E.1 and Lemma E.3. For the other lemmas, whose proof is
rather elementary and tedious, we refer the reader to Appendix L .

Proof of Proposition E.1. We only prove Part (i). The proofs of Part (ii) and Part (iii)
are (“mutatis mutandis”) analogous. By the union bound, for any κ, δ > 0 we have

P(ΥS(κ)> δ)≤
∑

k∈T(κ)

P(YS(k)> δ)≤ |T(κ)| sup
k∈T(κ)

P(YS(k)> δ)≤ (κq)2 sup
k∈T(κ)

P(YS(k)> δ)

and P(ΥS(κ)> δq)≤ (κq)2 sup
k∈T(κ)

P(Y S(k)> δq).

The claim follows by Lemma E.3(i). 2

Proof of Lemma E.3. We prove only Part (i); Parts (ii), (iii) can be proved along
similar lines and, for completeness, a sketch is reported in Appendix L . For κ > 0, define

(E.2) βmin(κ) := min(xR,xB)∈T′(κ)(|βR(xR)|+ |βB(xB)|),

where T′(κ) is defined in (7.4). Throughout this proof, for arbitrarily fixed κ > 0 and δ ∈
(0,1) small enough, we denote with nκ,δ a threshold value for n (depending on κ and δ)
above which a given property holds. Note that nκ,δ may vary from line to line.

We divide the proof of Part (i) in two sub-parts, where we show that there exists c′(κ, δ)>
0 and c′′(κ, δ)> 0 (not depending on n) such that
(E.3)

(i) sup
k∈T(κ)

P(Y S(k)> δq)≪ e−c
′(κ,δ)q and (ii) sup

k∈T(κ)
P(YS(k)> δ)}≪ e−c

′′(κ,δ)q.

The claim then follows by setting c(κ, δ) := min{c′(κ, δ), c′′(κ, δ)}.

Proof of (E.3)-(i). By (3.9) we have

P(|QSk+1 − βS(kS/q)q|> δq |N[k] = k)

≤ P(||SS [k]| − kS − βS(kS/q)q|> (δq)/3 |N[k] = k)

+ P(|(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|> (δq)/3 |N[k] = k)

+ P(|SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|> (δq)/3 |N[k] = k).(E.4)

We proceed dividing the proof of (E.3)-(i) in two steps, where we give asymptotic exponen-
tial bounds (uniformly on k ∈ T(κ)) for the three terms in the right-hand side of (E.4).
Step 1: upper bound for the first addend in (E.4).
We prove that there exists nκ,δ such that, for all n≥ nκ,δ ,

(E.5) P(||SS [k]| − kS − βS(kS/q)q|> (δq)/3 |N[k] = k)≤ 2e−c1(κ,δ)q, ∀ k ∈ Z(κ)

where c1(κ, δ)> 0 is a suitable positive constant (not depending on n). By (3.14) we have
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P(||SS [k]| − kS − βS(kS/q)q|> (δq)/3 |N[k] = k)

≤ P
(
Bin(nW , πS(k))≤ (βS(kS/q) + kS/q− δ/3)q

)
+ P(Bin

(
nW , πS(k))≥ (βS(kS/q) + kS/q+ δ/3)q

)
.(E.6)

Taking δ′ ∈
(
0, δ

r−1(1−r−1)r−1(κ+αS)r

)
, and using Lemma E.4, we can conclude that there

exists nκ,δ ≥ 1 such that for any n≥ nκ,δ and for any k ∈ T(κ) :

(E.7) (βS(kS/q) + kS/q)q(1− δ′/3)< nWπS(k)< (βS(kS/q) + kS/q)q(1 + δ′/3)

where by construction for any n≥ nκ,δ and for any k ∈ T(κ)

(βS(kS/q) + kS/q)q(1− δ′/3)> (βS(kS/q) + kS/q− δ/3)q,

βS(kS/q) + kS/q)q(1 + δ′/3)< (βS(kS/q) + kS/q+ δ/3)q,
(E.8)

By (E.8), the usual concentration bound for the binomial distribution (see formula (I.2) in
Appendix I) and the fact that the function H defined in (3.4) decreases on [0,1), for any
n≥ nκ,δ , we have, uniformly in k ∈ T(κ),

P(Bin(nW , πS(k))≤ (βS(kS/q) + kS/q− δ/3)q)≤ e
−nWπS(k)H

(
(βS(kS/q)+kS/q−δ/3)q

nW πS(k)

)

≤ e
−[r−1(1−r−1)r−1αr

S−δ/3]H
(

1−δ/[3r−1(1−r−1)r−1αr
S ]

1−δ′/3

)
q
.(E.9)

Similarly, for any n≥ nκ,δ , uniformly on k ∈ T(κ), we have:

P(Bin(nW , πS(k))≥ (βS(kS/q) + kS/q+ δ/3)q)

≤ e
−[r−1(1−r−1)r−1αr

S−δ/3]H
(

1+δ/[3r−1(1−r−1)r−1(κ+αS)r ]

1+δ′/3

)
q
.(E.10)

Inequality (E.5) follows from (E.6), (E.9) and (E.10).
Step 2: upper bound for the second addend in (E.4). We prove that there exists nκ,δ such
that for all n≥ nκ,δ , and for all k ∈ T(κ):

(E.11) P(|(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|> (δq)/3 |N[k] = k)≤ e−c2(κ,δ)q,

where c2(κ, δ) > 0 is a suitable positive constant (not depending on n). Similarly, one can
show that, for all n≥ nκ,δ and for all k ∈ T(κ):

(E.12) P(|SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|> (δq)/3 |N[k] = k)≤ e−c3(κ,δ)q,

Inequality (E.3) easily follows from (E.4), (E.5), (E.11) and (E.12). To prove (E.11) note that

|(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|

≤
∑
v∈VW

1{D(v)
S [k]−D

(v)
Sc [k]≤ r− 1,D

(v)
S [k]≥ r} ≤

∑
v∈VW

1{D(v)
S [k]≥ r,D

(v)
Sc [k]≥ 1}.

By construction it follows∑
v∈VW

1{D(v)
S [k]≥ r,D

(v)
Sc [k]≥ 1}

∣∣∣{N[k] = k} L
=Bin(nW , π̃S(k)), and

(E.13)
P(|SS [k]∩VSc [k]∩{v :Dv

Sc [k]≥ r}|> (δq)/3 |N[k] = k)≤ P(Bin(nW , π̃S(k))> (δq)/3).
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By Lemma E.5 there exists nκ,δ ≥ 1 and constants b1, b2 > 0, such that, for any n≥ nκ,δ ,

(1− δ)b1q
2p < nW π̃S(k)< (1 + δ)b2q

2p, ∀ k ∈ T(κ).

By this relation, the concentration bound for the binomial distribution (see (I.1) ) and the fact
that function H increases on (1,+∞), for all n≥ nκ,δ , we have, uniformly on k ∈ T(κ),

P(Bin(nW , π̃S(k))> (δq)/3)≤ e
−nW π̃S(k)H

(
(δq)/3

nW π̃S(k)

)

≤ e
−(1−δ)b1qpH

(
δ/3

(1+δ)b2qp

)
q ≤ e−c2(κ,δ)q,(E.14)

for some positive constant c2(κ, δ)> 0 (not depending on n). Inequality (E.11) follows from
(E.13) and (E.14).

Proof of (E.3)-(ii). By the previous part of the proof, we have, for all n≥ nκ,δ ,

(E.15) P(|QSk+1 − βS(kS/q)q|> δq |N[k] = k)≤ δe−c̃(κ,δ)q, ∀ k ∈ T(κ)

for some positive constant c̃(κ, δ)> 0 (not depending on n). By the inequality ||x| − |y|| ≤
|x− y|, x, y ∈R, it follows

(E.16) P(||QSk+1| − |βS(kS/q)q||> δq |N[k] = k)≤ δe−c̃(κ,δ)q, ∀ k ∈ T(κ).

By the triangular inequality and the union bound, we have

P(||QSk+1|+ |QSc

k+1| − (|βS(kS/q)|+ |βSc(kSc/q)|)q|> δq |N[k] = k)

≤ P(||QSk+1| − |βS(kS/q)|q|> (δq)/2 |N[k] = k)+

P(||QSc

k+1| − |βSc(kSc/q)|q|> (δq)/2 |N[k] = k).

Combining this relation with (E.16), for all n≥ nκ,δ , and for all k ∈ T(κ) we have:
(E.17)

P(||QSk+1|+ |QSc

k+1| − (|βS(kS/q)|+ |βSc(kSc/q)|)q|> δq |N[k] = k)≤ 2δe−c4(κ,δ)q,

for some positive constant c4(κ, δ) > 0 (not depending on n). By Lemma E.6, (E.15) and
(E.17), for all n≥ nκ,δ , and for all k ∈ T(κ) we have:

P
(∣∣∣USk+1 −

|βS(kS/q)|
|βR(kR/q)|+ |βB(kB/q)|

∣∣∣> δ
∣∣∣N[k] = k

)
≤ c5(κ, δ, βmin)e

−c6(κ,δ,βmin)q,

for suitable positive constants c5(κ, δ, βmin) and c6(κ, δ, βmin) (not depending on n), where
constant βmin > 0 is defined by (E.2). Claim (E.3)-(ii) easily follows by this last inequality.

Proof of Proposition E.2. We shall show later on that the process {N̂S [k]}j∈N is an
{Hk}k∈N-martingale with increments bounded by 1, i.e., N̂S(1) ≤ 1 and N̂S(k + 1) −
N̂S [k] ≤ 1, P-a.s., for any j ∈ N. Therefore, by the union bound and the Azuma inequal-
ity (see e.g. Theorem 2.8 p. 33 in [19]), it follows that, for every κ, δ > 0,

P(NS(κ)> δ)≤
⌊κq⌋∑
k=1

P(|N̂S [k]|> δq)≤
⌊κq⌋∑
k=1

P

(∣∣∣ k∑
i=1

(N̂S [i]− N̂S [k− 1])
∣∣∣> δq

)

≤ 2κq exp

(
− δ2q2

2⌊κq⌋

)
≤ 2κq exp

(
−δ

2q

2κ

)
.
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It remains to prove that the process {N̂S [k]}k∈N is an {Hk}k∈N-martingale with increments
bounded by 1. For any j ∈N, N̂S [k] is clearly Hk-measurable, moreover

N̂S [k+1]− N̂S [k] =NS [k+1]−NS [k]−USk+111{k<nW } =MS
k+1−USk+111{k<nW } P-a.s.

Note that the second equality follows by (3.6) , therefore, by Proposition 3.8, we have

(E.18) E[N̂S(k+ 1)|Hk]− N̂S [k] = 0,

i.e., {N̂S [k]}j∈N is an {Hk}-martingale. Moreover, |MS
k+1 −USk+1|< 1.

APPENDIX F: PROOF OF PROPOSITION 7.2

Given i ∈ N, k= (kR, kB) ∈ (N ∪ {0})2 with k = kR + kB , observe that by construction
N[k+ i]−N[k] take values on Ii (defined in (7.1)). Hence:

(F.1)
∑
i∈Ii

1Ei(k,i) = 1 with Ei(k, i) := {ω ∈Ω : N[k+ i]−N[k] = i} , i ∈ Ii and

(F.2) 1Ei(k,i)1{N[k] = k}= 1Ei(k,i)1{N[k+ i] = k+ i}, for any i ∈ Ii.

So, for any z > 0, recalling the definition of JS [k] in (7.3), we have

(
JS [k+ ⌊zq⌋]− JS [k]

)
1{N[k] = k}=

⌊zq⌋−1∑
i=0

(
JS [k+ i+ 1]− JS [k+ i]

)1{N[k] = k}

=

⌊zq⌋−1∑
i=0

∑
i∈Ii

(
JS [k+ i+ 1]− JS [k+ i]

)
1Ei(k,i)1{N[k] = k}

=

⌊zq⌋−1∑
i=0

∑
i∈Ii

USk+i+11Ei(k,i)1{N[k] = k}=
⌊zq⌋−1∑
i=0

∑
i∈Ii

USk+i+11Ei(k,i)1{N[k+ i] = k+ i}.

Therefore, for any y, z > 0,

JS [⌊yq⌋+ ⌊zq⌋]− JS [⌊yq⌋] =
∑

k∈I⌊yq⌋

(
JS [⌊yq⌋+ ⌊zq⌋]− JS [⌊yq⌋]

)
1{N[⌊yq⌋] = k}

=
∑

k∈I⌊yq⌋

⌊zq⌋−1∑
i=0

∑
i∈Ii

US⌊yq⌋+i+11Ei(k,i)1{N(⌊yq⌋+ i) = k+ i}.(F.3)

Now fix κ < κf and assume y+2z ≤ κ, for any k ∈ I⌊yq⌋ and i ∈ {1, . . . , ⌊zq⌋−1}, we have

kR + kB + i= ⌊yq⌋+ i≤ (y+ z)q ≤ (κ− z)q.

Therefore, for any k ∈ I⌊yq⌋, i= 1, . . . , ⌊zq⌋− 1 and i ∈ Ii, we have k+ i ∈ T(κ). So, by the
definition of Ωκ in (7.10), for all ω ∈ Ωκ and any ε > 0 there exists n(ω, ε) such that for all
n≥ n(ω, ε), we have

1{N(⌊yq⌋+ i) = k+ i}(ω)
∣∣∣US⌊yq⌋+i+1(ω)−

|βS((kS + iS)/q)|
|βR((kR + iR)/q)|+ |βB((kB + iB)/q)|

∣∣∣< ε.

as long as k ∈ T(κ). By this inequality, the fact that q−1(kR + iR, kB + iB) ∈ Lk/q(κ, z),
(with Lk/q(κ, z) defined in (7.5)) the definition of βS,Lk/q(κ,z) and β

S,Lk/q(κ,z)
(in (7.6) or
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(7.7) and (7.8)) and the fact that 0≤ U⌊yq⌋+i+1 ≤ 1, it follows that, for all ω ∈ Ωκ and any
ε > 0, there exists n(ω, ε) such that, for all n≥ n(ω, ε),

1{N(⌊yq⌋+ i) = k+ i}(ω)(β
S,Lk/q(κ,z)

− ε)≤ 1{N(⌊yq⌋+ i) = k+ i}(ω)US⌊yq⌋+i+1(ω)

≤ 1{N(⌊yq⌋+ i) = k+ i}(ω)(βS,Lk/q(κ,z) + ε).

Combining this with (F.3), we have that, for all ω ∈ Ωκ and any ε > 0, there exists n(ω, ε)
such that for all n≥ n(ω, ε),

∑
k∈I⌊yq⌋

⌊zq⌋−1∑
i=0

∑
i∈Ii

1Ei(k,i)(ω)1{N(⌊yq⌋+ i) = k+ i}(ω)(β
S,Lk/q(κ,z)

− ε)

≤ JS [⌊yq⌋+ ⌊zq⌋](ω)− JS [⌊yq⌋](ω)

≤
∑

k∈I⌊yq⌋

⌊zq⌋−1∑
i=0

∑
i∈Ii

1Ei(k,i)(ω)1{N(⌊yq⌋+ i) = k+ i}(ω)(βS,Lk/q(κ,z) + ε)

i.e. (using (F.1) and (F.2)),

⌊zq⌋
∑

k∈I⌊yq⌋

1{N[⌊yq⌋] = k}(ω)(β
S,Lk/q(κ,z)

− ε)≤ JS [⌊yq⌋+ ⌊zq⌋](ω)− JS [⌊yq⌋](ω)

≤ ⌊zq⌋
∑

k∈I⌊yq⌋

1{N[⌊yq⌋] = k}(ω)(βS,Lk/q(κ,z) + ε).(F.4)

We note that, for any ω ∈Ωκ,

NS [⌊yq⌋+ ⌊zq⌋](ω)−NS [⌊yq⌋](ω)

= JS [⌊yq⌋+ ⌊zq⌋](ω)− JS [⌊yq⌋](ω) + N̂S [⌊yq⌋+ ⌊zq⌋](ω)− N̂S [⌊yq⌋](ω)].

Since ⌊yq⌋ ≤ ⌊yq⌋+ 2⌊zq⌋ ≤ κq, by the definition of Ωκ (in (7.10)), NS(κ) (in (7.2)) and
N̂S [k] (in (7.3)), we have that, for any ω ∈ Ωκ and any ε > 0, there exists n′(ω, ε) such that
for any n≥ n′(ω, ε), we have

−εq < N̂S [⌊yq⌋+ ⌊zq⌋](ω)− N̂S [⌊yq⌋](ω)< εq

and so

−εq+ JS [⌊yq⌋+ ⌊zq⌋](ω)− JS [⌊yq⌋](ω)<NS [⌊yq⌋+ ⌊zq⌋](ω)−NS [⌊yq⌋](ω)

< εq+ JS [⌊yq⌋+ ⌊zq⌋](ω)− JS [⌊yq⌋](ω).

Combining this inequality with (F.4), we have that, for all ω ∈Ωκ and any ε > 0, there exists
n′′(ω, ε) such that, for all n≥ n′′(ω, ε),

− εq+ ⌊zq⌋
∑

k∈I⌊yq⌋

1{N[⌊yq⌋](ω) = k}(β
S,Lk/q(κ,z)

− ε)

<NS [⌊yq⌋+ ⌊zq⌋](ω)−NS [⌊yq⌋](ω)

< εq+ ⌊zq⌋
∑

k∈I⌊yq⌋

1{N[⌊yq⌋](ω) = k}(βS,Lk/q(κ,z) + ε).

The claim follows dividing this relation by q, then taking the limsup and the lim inf as
n → ∞ and finally letting ε tend to zero. We recall that by construction 0 ≤ ÑS(xq) −
NS

[
⌊xq⌋

]
≤ 1, for any x > 0 as consequence of definition (4.1). 2
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APPENDIX G: PROOF OF LEMMA 7.3

We divide the proof in two steps. In the first step we prove the lemma assuming aR,1 =
aR,2. In the second step we consider the general case.
Step 1: the case aR,1 = aR,2. Let VS,h, S ∈ {R,B}, h ∈ {1,2}, denote the set of S-seeds
for process h. Note that |VS,h| = aS,h. Since aR,1 = aR,2 and aB,1 ≥ aB,2, without loss of
generality we assume that VR,1 ≡ VR,2 and VB,1 ⊇ VB,2. Note that VW,2 ⊇ VW,1 and

(G.1) VW,2 \VW,1 = VB,1 \VB,2.

Let VS,h(t) and WS,h(t) be, respectively, the random subset of VW,1 and VW,2, defined on
Ω, formed by S-active nodes at time t, for process h. We denote by VS,h(∞) and WS,h(∞),
respectively, the random subset of VW,1 and VW,2, defined on Ω, formed by S-active nodes
when process h stops. We shall show later on that

(G.2) VR,1(∞)⊆st VR,2(∞) and VB,2(∞)⊆st VB,1(∞);

The claim then immediately follows from noticing that |VS,1(∞)|=NS,1([0,∞)×VW,1) and
|WS,2(∞)|=NS,2([0,∞)×VW,2), S ∈ {R,B}, h ∈ {1,2}. For instance, for what concerns
theB-active nodes, by (G.2) (and the definition of ⊆st) we have that there exists a probability
space (Ω̃, F̃, P̃) and two random subsets defined on it, say ṼB,h(∞), h ∈ {1,2}, such that

ṼB,h(∞)
L
= VB,h(∞) and ṼB,2(∞)⊆ ṼB,1(∞), P̃-a.s..

From which, using an obvious notation,

Ã∗
B,1 = |ṼB,1(∞)|+ aB,1 ≥ |ṼB,2(∞)|+ aB,1

= |ṼB,2(∞)|+ |VW,2 \VW,1|+ aB,2 ≥ |W̃B,2(∞)|+ aB,2 = Ã∗
B,2,

where the second equation follows from (G.1). Last inequality instead descends from the fact
that by construction W̃B,2(∞)⊆ ṼB,2(∞)∪(VW,2 \VW,1). Now to prove (G.2), first observe
that N

′(h) :=
∑

v∈VW,h
N ′
v , and VW,1 ⊆ VW,2 immediately imply that N

′(1) ⊆st N
′(2).

Therefore, there exists a probability space (Ω̃, F̃, P̃) and two point processes Ñ (h) =

{(T̃ (h)
k , Ṽ

(h)
k )}k∈N, h ∈ {1,2}, defined on this space, such that Ñ (h) L

= N
′(h), h ∈ {1,2},

and Ñ (1) ⊆ Ñ (2) = Ñ (1) ∪ (Ñ (2) \ Ñ (1)), P̃-almost surely. Hereon, we consider a copy of
the competing bootstrap percolation process h defined on Ω̃, and we denote by ṼS,h(t) and
W̃S,h(t) the random subset of VW,1 and VW,2, defined on Ω̃, formed by S-active nodes at
time t, for the competing bootstrap percolation process h. Note that, by construction, for an
arbitrarily fixed k ∈ N, the set ṼS,h(t) is constant for T̃ (1)

k ≤ t < T̃
(1)
k+1, and may increase

(with respect to the set inclusion), by the addition of a new S node, at time t = T̃
(1)
k+1 The

relations (G.2) follow if we prove that, for any k ∈N,

(G.3) ṼR,1(T̃
(1)
k )⊆ ṼR,2(T̃

(1)
k ), ṼB,2(T̃

(1)
k )⊆ ṼB,1(T̃

(1)
k ), P̃-a.s.

Indeed by construction, for S ∈ {R,B} and h ∈ {1,2},

(G.4) ṼS,h(∞) =
⋃
k∈N

ṼS,h(T̃
(1)
k ), P̃-a.s.

and ṼS,h(∞) has the same law of VS,h(∞).
We prove the relations (G.3) by induction on k ≥ 1. Note that these relations are trivially

true for k = 1, indeed ṼS,h(T̃
(1)
1 ) = ∅ for h ∈ {1,2} and S ∈ {R,B}. We assume (G.3) for
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k = j and prove these relations for k = j + 1, where j is arbitrarily chosen in N. By the
inductive hypothesis we have, P̃-almost surely,

ÑR,2([0, T̃
(1)
j ]×VW,2)≥ ÑR,2([0, T̃

(1)
j ])×VW,1)

= |ṼR,2(T̃ (1)
j )| ≥ |ṼR,1(T̃ (1)

j )|= ÑR,1([0, T̃
(1)
j ]×VW,1)

and

ÑB,2([0, T̃
(1)
j ]×VW,1) = |ṼB,2(T̃ (1)

j )| ≤ |ṼB,1(T̃ (1)
j )|= ÑB,1([0, T̃

(1)
j ]×VW,1).

For v ∈ VW,2, let {Ẽ(v)
i }i∈N and {Ẽ

′(v)
i }i∈N be independent sequences of independent ran-

dom variables defined on Ω̃ with the Bernoulli law of mean p, independent of Ñ (2). By the
above relations, we have that, for every v ∈ VW,1, P̃-almost surely,

D̃
(v)
R,1(T̃

(1)
j ) :=

ÑR,1([0,T̃
(1)
j ]×VW,1)+aR,1∑
i=1

Ẽ
(v)
i ≤

ÑR,2([0,T̃
(1)
j ]×VW,2)+aR,2∑
i=1

Ẽ
(v)
i =: D̃

(v)
R,2(T̃

(1)
j )

and

D̃
(v)
B,2(T̃

(1)
j ) :=

ÑB,2([0,T̃
(1)
j ]×VW,2)+aB,2∑
i=1

Ẽ
′(v)
i ≤

ÑB,2([0,T̃
(1)
j ]×VW,1)+aB,1∑
i=1

Ẽ
′(v)
i

≤
ÑB,1([0,T̃

(1)
j ]×VW,1)+aB,1∑
i=1

Ẽ
′(v)
i =: D̃

(v)
B,1(T̃

(1)
j ).

note, indeed that aB,1 = |VW,2 \VW,1|+ aB,2. Therefore, P̃-almost surely, we have

S̃R,1((T̃
(1)
j )) := {v ∈ VW,1 : D̃

(v)
R,1((T̃

(1)
j ))− D̃

(v)
B,1((T̃

(1)
j ))≥ r}

⊆ {v ∈ VW,1 : D̃
(v)
R,2(T̃

(1)
j ))− D̃

(v)
B,2(T̃

(1)
j ))≥ r}

⊆ {v ∈ VW,2 : D̃
(v)
R,2(T̃

(1)
j ))− D̃

(v)
B,2(T̃

(1)
j ))≥ r}

=: S̃R,2((T̃
(1)
j )).(G.5)

Now note that, by construction, we have

v ∈ ṼR,h((T̃
(1)
j+1)) \ ṼR,h((T̃

(1)
j )), h ∈ {1,2}

if and only if

v ∈ S̃R,h((T̃
(1)
j )) \ ṼR,h((T̃

(1)
j )), h ∈ {1,2}.

Therefore, if v ∈ ṼR,1((T̃
(1)
j+1)) \ ṼR,1((T̃

(1)
j )) then v ∈ S̃R,1((T̃

(1)
j )) and so by (G.5) it fol-

lows that v ∈ S̃R,2((T̃
(1)
j )), from which we have v ∈ ṼR,2((T̃

(1)
j+1)), and the proof of the first

relation of (G.3) is completed (if v ∈ ṼR,1(T̃
(1)
j ) the claim immediately follows by the induc-

tive hypothesis). The second relation (G.3) follows along similar lines noticing that

S̃B,2((T̃
(1)
j ))∩VW,1 = {v ∈ VW,1 : D̃

(v)
B,2((T̃

(1)
j ))−D

(v)
R,2((T̃

(1)
j ))≥ r}

⊆ {v ∈ VW,1 : D̃
(v)
B,1((T̃

(1)
j ))−D

(v)
R,1((T̃

(1)
j ))≥ r}

= S̃B,1((T̃
(1)
j )).
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Step 2: the case aR,1 ≤ aR,2. The general case can be easily obtained by introducing a
third activation process with an initial configuration of the seeds given by (aB,3, aR,3) =
(aB,1, aR,2). Indeed, since aR,3 = aR,2 and aB,3 = aB,1 ≥ aB,2, by the previous step we have

(G.6) A∗
R,3 ≤st A

∗
R,2 and A∗

B,2 ≤st A
∗
B,3.

Again, since aB,3 = aB,1 and aR,3 = aR,2 ≥ aR,1, by the previous step (noticing that in the
proof the role of R and B can be interchanged) one has

(G.7) A∗
B,3 ≤st A

∗
B,1 and A∗

R,1 ≤st A
∗
R,3.

The claim follows combining (G.6) and (G.7). 2

APPENDIX H: PROOF OF (8.1)

By construction we have:

{(T ′stop
k , V ′stop

k )}k := {(T ′
k, V

′
k)}k

and

{E(v),stop
i }i∈N = {E(v)

i }i∈N, {E
′(v),stop
i }i∈N = {E

′(v)
i }i∈N.

Therefore

V
stop
S (t) = VS(t), S ∈ {R,B} on the event {t≤ Zstop}

In addition, on the event {t > Zstop}, we have:

V
stop
R (t) = V

stop
R (Zstop) = VR(Zstop)⊆ VR(t).

Therefore

(H.1) D
(v),stop
R (T ′

k)≤D
(v)
R (T ′

k) ∀ k ∈N, v ∈ VW .

We proceed proving by induction that

(H.2) VB(T
′
k)⊆ V

stop
B (T ′

k) ∀k ∈N,

The relation (H.2) is clearly true for k = 0, indeed VB(T
′
0) = V

stop
B (T ′

0) = ∅ P-a.s.6 Assume
that (H.2) is true for any k ≤ k0. Then

(H.3) D
(v),stop
B (T ′

k0)≥D
(v)
B (T ′

k0) ∀ v ∈ VW .

Combining (H.1) and (H.3) we have

SB(T
′
k0)⊆ S

stop
B (T ′

k0)

which implies

VB(T
′
k0+1)⊆ V

stop
B (T ′

k0+1) ∀k ∈N.

Indeed there are three cases:

i) V ′
k0 ∈ VB(T

′
k0) ii) V ′

k0 ∈ V
stop
B (T ′

k0) \VB(T
′
k0) iii) V ′

k0 ̸∈ V
stop
B (T ′

k0)

In the case i)

VB(T
′
k0+1) = VB(T

′
k0)∪{V

′
k0}= VB(T

′
k0)⊆ V

stop
B (T ′

k0) = V
stop
B (T ′

k0)∪{V
′
k0}= V

stop
B (T ′

k0+1).

6We recall that conventionally T ′
0 = 0.
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where the inclusion follows from the inductive hypothesis. In the case ii)

VB(T
′
k0+1) = VB(T

′
k0)∪ {V ′

k0} ⊆ V
stop
B (T ′

k0)∪ {V ′
k0}= V

stop
B (T ′

k0) = V
stop
B (T ′

k0+1).

Finally, in the case iii)

VB(T
′
k0+1) = VB(T

′
k0)∪ {V ′

k0} ⊆ V
stop
B (T ′

k0)∪ {V ′
k0}= V

stop
B (T ′

k0+1).

Then (8.1) immediately follows since:

A∗
B =

∣∣∣⋃
k

VB(T
′
k)
∣∣∣+ aB ≤

∣∣∣⋃
k

V
stop
B (T ′

k)
∣∣∣+ aB =A∗,stop

B . □

APPENDIX I: CONCENTRATION INEQUALITIES

Hereafter, H denotes the function defined in (3.4).
Let µ :=mq, m ∈N, q ∈ (0,1). For any integer 0< k <m, we have:

if k ≥ µ, then:

(I.1) P(Bin(m,q)≥ k)≤

e
−µH

(
k

µ

)
for k ≥ µ;

e
−( k

2 ) log
(

k

µ

)
for k ≥ e2µ;

(I.2) P(Bin(m,q)≤ k)≤ e
−µH

(
k

µ

)
for k ≥ e2µ;

For any integer 0≤ k ≤ λ, we have:

(I.3) P(Po(λ)≤ k)≤ e−λH(
k

λ);

APPENDIX J: CAUCHY PROBLEM 4.2 - COMPLEMENTARY MATERIAL

Proof of Lemma A.1. Let g be as in the statement and define f on [0, z(κg)), again as
in the statement. Then f(0) = g(0) = 0 and, for any x ∈ (0, z(κg)), we have

f ′(x) = (z−1)′(x)g′(z−1(x)) =
1

z′(z−1(x))
β(g(z−1(x)))

=
β(g(z−1(x)))

βR(gR(z−1(x))) + βB(gB(z−1(x)))

=
β(f(x))

βR(fR(x)) + βB(fB(x))
,

i.e., f solves (4.2) with κ := z(κg). 2

Proof of Propositions A.2 and A.3 . Propositions A.2 and A.3 are immediate conse-
quences of Lemmas J.1, J.2 and J.3, whose proof is given below. These lemmas consider one
dimensional Cauchy’s problems of the form

(J.1) g′S(x) = βS(gS(x)), x ∈ (0, κg), gS(0) = 0

where κg ∈ (0,+∞] and S ∈ {R,B}.

LEMMA J.1. Let q = g and assume αS < 1. Then the Cauchy problem (J.1) has a unique
solution gS on (0,∞) and gS(x) ↑ zS , as x ↑+∞.



50

LEMMA J.2. Let q = g and assume αS > 1. Then the Cauchy problem (J.1) has a unique
solution gS on (0, κg), with

κg :=

∫ ∞

0

dx

−x+ r−1(1− r−1)r−1(αS + x)r
<∞

and gS(x) ↑+∞, as x ↑ κg.

LEMMA J.3. Let g≪ q≪ p−1 Then the Cauchy problem (J.1) has a unique solution gS
on (0, κg), with

κg :=
r!

(r− 1)αr−1
S

,

given by

gS(x) =
1(

α1−r
S − r−1

r! x
)1/(r−1)

− αS .

J.1. Proof of Lemma J.2. By Remark 2.3 the function βS is strictly positive. Moreover,
limx→+∞ βS(x) = +∞, as it can be easily checked by a direct inspection. So equilibrium
points do not exist, the unique solution gS is strictly increasing, and g′S(x) is bounded away
from zero for all x large enough. In particular, this latter property of the solution gS guaran-
tees that it has not horizontal asymptotes. Therefore there are only two possible cases: i) gS
is defined on the whole non-negative half-line [0,∞) and gS(x) ↑ +∞, as x ↑ +∞; ii) gS
is defined on a finite interval of the form [0, κg), for some κg ∈ (0,∞) and gS(x) ↑+∞, as
x ↑ κg. We are going to check that we fall in the case ii). Let DgS be the domain of gS . By
the differential equation, we have

(J.2)
g′S(x)

βS(gS(x))
= 1, ∀ x ∈DgS

and so

(J.3)
∫ gS(x)

gS(0)

1

βS(u)
du=

∫ x

0

g′S(u)

βS(gS(u))
du=

∫ x

0
du= x, ∀ x ∈DgS .

Note that ∫ ∞

0

1

βS(x)
dx=

∫ ∞

0

dx

−x+ r−1[(1− r−1)]r−1(αS + x)r
= κg <∞.

Therefore by (J.3) we necessarily have DgS = [0, κg) and gS(x) ↑+∞, as x ↑ κg. 2

Proof of Lemma J.3. In this case we can compute explicitly the solution gS . Indeed,
letting DgS denote the domain of gS , we have∫ gS(x)

0

1

βS(u)
du= r!

∫ gS(x)

0

du

(u+ αS)r
= x, ∀ x ∈DgS

and ∫ gS(x)

0

du

(u+ αS)r
=
α1−r
S

r− 1
− (gS(x) + αS)

1−r

r− 1
.

This easily gives the claim. 2

Finally, we provide the proof of Lemma A.4.
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Proof of Lemma A.4. We prove this Lemma by contradiction. First note that

f ′R(0) =
β(0,0)

βR(0) + βB((0)
>

β̃(0,0)

β̃R(0) + β̃B(0)
= f̃ ′R(0)

and similarly f ′B(0) < f̃ ′B(0). Therefore fR(x) > f̃R(x) and fB(x) < f̃B(x) in a right-
neighborhood of 0. Now, let x0 = inf{x : fR(x) ≤ f̃R(x) or fB(x) ≥ f̃B(x)}, and assume
x0 <∞, then

fR(x0) = fR(0) +

∫ x0

0

βR(f(x))

βR(f(x)) + βB(f(x))
dx

> fR(0) +

∫ x0

0

β̃R(fR(x))

β̃R(fR(x)) + β̃B(fB(x))
dx

> f̃R(0) +

∫ x0

0

β̃R(f̃R(x))

β̃R(f̃R(x)) + β̃B(f̃B(x))
dx= f̃R(x0)

and similarly we obtain fB(x0) < f̃R(x0), which contradict the assumption. Therefore we
necessarily have x0 =∞. 2

APPENDIX K: PROOF OF THEOREM 4.7 - COMPLEMENTARY MATERIAL

Independence of {W (ε)
k }1≤k≤⌊xq⌋ and {W (ε)

k }1≤k≤⌊xq⌋. We only prove the in-

dependence of the r.v.’s {W (ε)
k }1≤k≤⌊xq⌋ as the independence of the r.v.’s {W (ε)

k }1≤k≤⌊xq⌋
can be shown similarly. For arbitrarily fixed k,h ∈ {1, . . . , ⌊xq⌋}, k ̸= h, and Borel sets
A,B ⊆ [0,∞), we have

P(W (ε)
k ∈A,W (ε)

h ∈B) =
∑

(qRs ,q
B
s ): 1≤s≤⌊xq⌋

P(W (ε)
k ∈A,W (ε)

h ∈B | {(RRs ,RBs ) = (qRs , q
B
s )}1≤s≤⌊xq⌋)

× P({(RRs ,RBs ) = (qRs , q
B
s )}1≤s≤⌊xq⌋)

=
∑

(qRs ,q
B
s )

P

(
qRk + qBk

R
R
k (ε) +R

B
k (ε)

Wk ∈A | (RRk ,RBk ) = (qRk , q
B
k )

)

× P

(
qRh + qBh

R
R
h (ε) +R

B
h (ε)

Wh ∈B | (RRh ,RBh ) = (qRh , q
B
h )

)
P({(RRs ,RBs ) = (qRs , q

B
s )}1≤s≤⌊xq⌋)

=
∑

(qRs ,q
B
s )

P(W (ε)
k ∈A)P(W (ε)

h ∈B)P({(RRs ,RBs ) = (qRs , q
B
s )}1≤s≤⌊xq⌋)

= P(W (ε)
k ∈A)P(W (ε)

h ∈B).

Explicit tail bounds. Define the quantities

a
(ε)
∗ (κ) := (1+ ε) min

0≤x≤κ

∑
S

(βS(x) +K∗ε), a
(ε)
∗ (κ) := (1− ε) min

0≤x≤κ

∑
S

(βS(x)−K∗ε).

and µ(ε)(κ) and µ(ε)(κ) as in (7.30). We chose ε > 0 so small that a(ε)∗ (κ), a
(ε)
∗ (κ)> 0. By

the bounds in [16], for any δ > 0, we have

P

⌊κq⌋∑
k=1

W
(ε)
k > (1 + δ)µ(ε)(κ)

<
1

1 + δ
exp(−qa(ε)∗ (κ)µ(ε)(κ)(δ− log(1 + δ)))
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and

P

⌊κq⌋∑
k=1

W
(ε)
k > (1 + δ)µ(ε)(κ)

<
1

1 + δ
exp(−qa(ε)∗ (κ)µ(ε)(κ)(δ− log(1 + δ))),

and, for 0< δ < 1, we have

P

⌊κq⌋∑
k=1

W
(ε)
k < (1− δ)µ(ε)(κ)

< exp(−qa(ε)∗ (κ)µ(ε)(κ)(−δ− log(1− δ)))

and

P

⌊κq⌋∑
k=1

W
(ε)
k < (1− δ)µ(ε)(κ)

< exp(−qa(ε)∗ (κ)µ(ε)(κ)(−δ− log(1− δ))).

APPENDIX L: PROOF OF LEMMA E.3: PARTS (ii), (iii)

L.1. Proof of Part (ii). Although the proof is quite similar to the proof of Part (i), we
provide some details. We divide the proof in two steps: for arbitrarily fixed κ, δ > 0, we prove
that there exist c′(κ, δ)> 0 and c′′(κ, δ)> 0 (not depending on n) such that

(L.1) sup
k∈T(κ)

P(ỸS(k)> δn(qp)r)≪ e−c
′(κ,δ)n(qp)r

and

(L.2) sup
k∈T(κ)

P(YS(k)> δ)}≪ e−c
′′(κ,δ)n(qp)r .

Part (ii) then follows setting c(κ, δ) := min{c′(κ, δ), c′′(κ, δ)}.

Step 1: Proof of (L.1). Arguing similarly to the derivation of (E.4), we have

P(|QSk+1 − βS(kS/q)n(qp)
r|> δn(qp)r |N[k] = k)

≤ P(||SS [k]| − βS(kS/q)n(qp)
r|+NS [k]

+ |(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|

+ |SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|N[k] = k)

≤ P(||SS [k]| − βS(kS/q)n(qp)
r|> (δn(qp)r)/4 |N[k] = k)

+ P(NS [k]> (δn(qp)r)/4 |N[k] = k)

+ P(|(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|> (δn(qp)r)/4 |N[k] = k)

+ P(|SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|> (δn(qp)r)/4 |N[k] = k).(L.3)

Now, note that, for any k ∈ Z(κ), we have

NS [k]≤ κq

|(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}| ≤NS [k]≤ κq

and

|SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|> (δn(qp)r)/4 | ≤NSc(k)≤ κq.
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Since q≪ n(qp)r (which follows by (2.3) ii)), we then have that there exists nκ,δ such that,
for all n≥ nκ,δ ,

P(NS [k]> (δn(qp)r)/4 |N[k] = k) = 0, ∀ k ∈ T(κ)

P(|(VW \ SS [k])∩VS [k]∩ {v :Dv
S [k]≥ r}|> (δn(qp)r)/4 |N[k] = k) = 0, ∀ k ∈ T(κ)

and

P(|SS [k]∩VSc [k]∩ {v :Dv
Sc [k]≥ r}|> (δn(qp)r)/4 |N[k] = k) = 0, ∀ k ∈ T(κ).

Therefore, by (L.3), for any n≥ nκ,δ ,

P(|QSk+1 − βS(k1/q)n(qp)
r|> δn(qp)r |N[k] = k)

≤ P(||SS [k]| − βS(k1/q)n(qp)
r|> (δn(qp)r)/4 |N[k] = k), ∀ k ∈ Z(κ).

(L.4)

We proceed distinguishing two sub-steps. In the first step we provide an exponential bound
(uniformly in k ∈ T(κ)) for the probability in (L.4), in the second step we conclude the proof
of (L.1).

Sub-step 1: Exponential bound for the probability (L.4). We prove that there exists
nκ,δ ≥ 1 such that, for all n≥ nκ,δ ,
(L.5)
P(||SS [k]| − nβS(k1/q)(qp)

r|> (δn(qp)r)/4 |N[k] = k)≤ 2e−c1(κ,δ)n(qp)
r

, ∀ k ∈ Z(κ)

where c1(κ, δ)> 0 is a suitable positive constant (not depending on n). By (3.14) we have

P(||SS [k]| − nβS(kS/q)(qp)
r|> (nδ(qp)r)/4 |N[k] = k)

≤ P(Bin(nW , πS(k))≤ n(qp)r(βS(kS/q)− δ/4))

+ P(Bin(nW , πS(k))≥ n(qp)r(βS(kS/q) + δ/4)).(L.6)

Taking

δ′ ∈
(
0,

δ(r!)

(κ+ αS)r

)
,

and using Lemma E.4 we have that there exists nκ,δ ≥ 1 such that, for any n≥ nκ,δ ,

(L.7) nWπS(k)> nβS(kS/q)(qp)
r(1− δ′/4)> n(qp)r(βS(kS/q)− δ/4), ∀ k ∈ T(κ)

and

(L.8) nWπS(k)< nβS(kS/q)(qp)
r(1 + δ′/4)< n(qp)r(βS(kS/q) + δ/4), ∀ k ∈ T(κ).

By (L.7), the usual concentration bound for the binomial distribution (see (I.2)) and the fact
that the function H defined by (3.4) decreases on [0,1), for any n≥ nκ,δ , we have, uniformly
in k ∈ T(κ),

P(Bin(nW , πS(k))≤ n(qp)r(βS(kS/q)− δ/4)

≤ exp

(
−nWπS(k)H

(
n(qp)r(βS(kS/q)− δ/4)

nWπS(k)

))
≤ exp

(
−n(qp)r(βS(kS/q)− δ/4)H

(
βS(kS/q)− δ/4

βS(kS/q)(1− δ′/4)

))
≤ exp

(
−n(qp)r(αrS − δ/4)H

(
1− δ/(4(αS)

r)

1− δ′/4

))
.(L.9)
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By (L.7), (L.8), the usual concentration bound for the binomial distribution (see (I.1) ) and
the fact that the function H increases on (1,∞), for any n ≥ nκ,δ , we have, uniformly in
k ∈ T(κ),

P(Bin(nW , πS(k))≥ n(qp)r(βS(kS/q) + δ/4))

≤ exp

(
−nWπS(k)H

(
n(qp)r(βS(kS/q) + δ/4)

nWπS(k)

))
≤ exp

(
−n(qp)r(βS(kS/q)− δ/4)H

(
βS(kS/q) + δ/4

βS(kS/q)(1 + δ′/4)

))
≤ exp

(
−n(qp)r(αrS − δ/4)H

(
1 + δ/(4(αS)

r)

1 + δ′/4

))
.(L.10)

The inequality (L.5) follows by (L.6), (L.9) and (L.10).

Sub-step 2: Conclusion of the proof of (L.1). The claim easily follows by (L.4) and
(L.5).

Step 2: Proof of (L.2). By the previous part of the proof, we have that, for all n≥ nκ,δ ,
(L.11)

P(|QSk+1 − βS(kS/q)n(qp)
r|> δn(qp)r |N[k] = k)≤ δe−c̃(κ,δ)n(qp)

r

, ∀ k ∈ T(κ)
for a suitable positive constant c̃(κ, δ) > 0 (not depending on n). By the inequality ||x| −
|y|| ≤ |x− y|, x, y ∈R, it follows
(L.12)
P(||QSk+1| − |βS(k1/q)n(qp)r||> δn(qp)r |N[k] = k)≤ δe−c̃(κ,δ)n(qp)

r

, ∀ k ∈ T(κ).
By the triangular inequality and the union bound, we have

P(||QSk+1|+ |QSc

k+1| − (|βS(kS/q)|+ |βSc(kSc/q)|)n(qp)r|> δn(qp)r |N[k] = k)

≤ P(||QSk+1| − |βS(kS/q)|n(qp)r|> (δn(qp)r)/2 |N[k] = k)+

P(||QSc

k+1| − |βSc(kSc/q)|n(qp)r|> (δn(qp)r)/2 |N[k] = k).

Combining this relation with (L.12), for all n≥ nκ,δ , we have
(L.13)
P(||QSk+1|+|QSc

k+1|−(|βS(kS/q)|+|βSc(kSc/q)|)n(qp)r|> δn(qp)r |N[k] = k)≤ 2δe−c2(κ,δ)n(qp)
r

,

∀ k ∈ T(κ) and some positive constant c2(κ, δ) > 0 (not depending on n). By Lemma E.6,
(L.11) and (L.13), for all n≥ nδ , we have

P
(∣∣∣USk+1 −

|βS(kS/q)|
|βS(kS/q)|+ |βSc(kSc/q)|

∣∣∣> δ
∣∣∣N[k] = k

)
≤ c3(κ, δ, βmin)e

−c4(κ,δ,βmin)n(qp)r ,

∀ k ∈ T(κ) and suitable positive constants c3(κ, δ, βmin) and c4(κ, δ, βmin) (not depending
on n), where the constant βmin > 0 is defined by (E.2). The claim (L.2) easily follows by this
inequality.

Proof of Part (iii). The proof of Part (iii) follows the same lines as the proof of Part
(ii). In particular, one first shows that, for any κ, δ > 0, there exists nκ,δ ≥ 1 such that, for
any n≥ nκ,δ ,

P(|QSk+1 − βS(kR/q, kB/q)n|> δn |N[k] = k)

≤ P(||SS [k]| − βS(kR/q, kB/q)n|> (δn)/4 |N[k] = k), ∀ k ∈ T(κ).(L.14)

Then one provides an exponential bound (uniformly on k ∈ T(κ)) for the probability in
(L.14), from which the claim follows. We omit the details.
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Proof of Lemma E.4.

Proof of Part (i). We divide the proof of the Part (i) in two steps, where we prove that
for every κ > 0

(L.15) sup
k∈T(κ)

∣∣∣∣1− [(kS/q+ αS)qp]
r/r!

πS(k)

∣∣∣∣→ 0

and

(L.16) sup
k∈T(κ)

∣∣∣nw((kS/q+ αS)qp)
r/r!

(βS(kS/q) + kS/q)q
− 1
∣∣∣→ 0,

respectively. The claim then easily follows combining these two uniform convergences on
T(κ).

Step 1: Proof of (L.15). We divide the proof of (L.15) in two further steps. In the first
step, we show the non-uniform convergence, i.e., we prove that, for any sequence kn = k=
(kS , kSc) ∈ (N∪ {0})2 such that kS/q→ xS , for some xS ∈ [0,∞)2, it holds

πS(k) =
[(kS + aS)p]

r

r!

(
1 +O

(
(k1 + aS)p+ (kS + aS)

−1
))

(L.17)

∼ ((xS + αS)qp)
r

r!
.(L.18)

In the second step, we conclude the proof of (L.15) lifting the convergence (L.17) to a uniform
convergence on T(κ). We warn the reader that in the proof of (L.17) and (L.18) we omit the
dependence on n since no confusion arises in the computations. Such a dependence is instead
made explicit in the second step.

Sub-Step 1: Proof of (L.17) and (L.18). We have

πS(k) =

kS+aS−r∑
m=0

P(Bin(kS + aS , p)≥m+ r)P(Bin(kSc + aSc , p) =m).

By e.g. formula (8.1) in [8], we have, for any j, ℓ,m ∈N,

P(Bin(j + ℓ, p)≥m) =
[(j + ℓ)p]m

m!

(
1 +O

(
(j + ℓ)p+ (j + ℓ)−1

))
.

Since (1− p)(kSc+aSc )p → 1, for n large enough we have

πS(k) = P(Bin(kS + aS , p)≥ r)P(Bin(kSc + aSc , p) = 0)

+

kS+aS−r∑
m=1

P(Bin(kS + aS , p)≥m+ r)P(Bin(kSc + aSc , p) =m)

= (1− p)(kSc+aSc )p [(kS + aS)p]
r

r!

(
1 +O

(
(k1 + aS)p+ (kS + aS)

−1
))

+

kS+aS−r∑
m=1

P(Bin(kS + aS , p)≥m+ r)P(Bin(kSc + aSc , p) =m)

=
[(kS + aS)p]

r

r!

((
1 +O

(
(k1 + aS)p+ (kS + aS)

−1
))
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+
r!

[(k1 + aS)p]r

×
kS+aS−r∑
m=1

P(Bin(kS + aS , p)≥m+ r)P(Bin(kSc + aSc , p) =m)

)
.

The claim (L.17) follows if we check that
(L.19)

r!

[(kS + aS)p]r

kS+aS−r∑
m=1

P(Bin(kS+aS , p)≥m+r)P(Bin(kSc+aSc , p) =m) =O((kS+aS)p).

By the usual concentration bound for the binomial distribution (see (I.1)) letting H denote
the function defined by (3.4), for n large enough we have

kS+aS−r∑
m=1

P(Bin(kS + aS , p)≥m+ r)P(Bin(kSc + aSc , p) =m)

≤
∑
k≥r+1

P(Bin(kS + aS , p)≥ k)

≤
∑
k≥r+1

exp

(
−(kS + aS)pH

(
k

(kS + aS)p

))

≤
∑
k≥r+1

exp

(
−k
(
log

k

(kS + aS)p
− 1

))

≤
∑
k≥r+1

exp

(
−(r+ 1)

(
log

k

(kS + aS)p
− 1

))

= er+1
∑
k≥r+1

(
(kS + aS)p

k

)r+1

= er+1

 ∑
k≥r+1

1

kr+1

 [(kS + aS)p]
r+1.

The relation (L.19) follows by this inequality, and the proof of (L.17) is completed. As far as
(L.18) is concerned, we note that by (2.2) and (2.3), we have

[(kS + aS)p]
r

r!

(
1 +O

(
(kS + aS)p+ (kS + aS)

−1
))

∼ [(kS + aS)p]
r

r!

∼ ((xS + αS)qp)
r

r!
.

Sub-Step 2: Conclusion of the proof of (L.15). Reasoning by contradiction, suppose
that

limsup
n→∞

sup
k∈Tn(κ)

∣∣∣∣1− [(kS/qn + αS)qnpn]
r/r!

πS(ka(n))

∣∣∣∣= c > 0,

where a(n) = (a
(n)
R , a

(n)
B ) and c > 0 is a positive constant. Letting {n′} denote a subsequence

that realizes the limsup, we have

lim
n′→∞

sup
k∈Tn′ (κ)

∣∣∣∣1− [(kS/qn′ + αS)qn′pn′ ]r/r!

πS(ka(n′))

∣∣∣∣= lim
n′→∞

max
k∈Tn′ (κ)

∣∣∣∣1− [(kS/qn′ + αS)qn′pn′ ]r/r!

πS(ka(n′))

∣∣∣∣= c > 0.
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Setting

k∗
n′(κ) := arg max

k∈Tn′

∣∣∣∣1− [(kS/qn′ + αS)qn′pn′ ]r/r!

πS(ka(n′))

∣∣∣∣ ,
we have (using an obvious notation)

(L.20) lim
n′→∞

∣∣∣∣1− [((k∗n′(κ))S/qn′ + αS)qn′pn′ ]r/r!

πS((k∗
n′(κ))a(n′))

∣∣∣∣= c > 0.

Since the sequence k∗
n′(κ)/qn′ is contained in the compact T′(κ) defined as in (7.4), there

exists a subsequence {n′′} such that k∗
n′′ (κ)/qn′′ → (zS , zSc) ∈K(κ). So by (L.20) it follows

lim
n′′→∞

∣∣∣∣∣1− [((k∗
n′′ (κ))S/qn′′ + αS)qn′′pn′′ ]r/r!

πS((k∗
n′′ (κ))a(n

′′
))

∣∣∣∣∣= lim
n′′→∞

∣∣∣∣∣1− [(zS + αS)qn′′pn′′ ]r/r!

πS((k∗
n′′ (κ))a(n

′′
))

∣∣∣∣∣= c > 0,

which contradicts (L.18).

Step 2: Proof of (L.16). We have

(L.21) nW
((kS/q+ αS)qp)

r

r!
= (kS/q+ αS)

rqpnW
(qp)r−1

r!
.

So, by the definition of g and assumption q = g, it follows

nW
((kS/q+ αS)qp)

r

r!
∼ r−1[1− r−1)r−1(kS/q+ αS)

rq

= (βS(kS/q) + kS/q)q.(L.22)

Arguing as in the proof of Step 2 for (L.15) (i.e., reasoning by contradiction, considering a
subsequence realizing the corresponding limsup, using the compactness of T′(κ) and finally
using (L.22)) one proves that the convergence (L.22) is indeed uniform on T(κ).

Proof of Part (ii). By (L.21), the current definition of the function βS and the fact that
n∼ nW , it follows

nW
((kS/q+ αS)qp)

r

r!
∼ nβS(kS/q)(qp)

r.

Arguing as in the proof of Step 2 for (L.15) one has

sup
k∈Z(κ)

∣∣∣nW (kS/q+ αS)
r(qp)r/r!

nβS(kS/q)(qp)r
− 1
∣∣∣→ 0.

The claim follows combining this uniform convergence with (L.15) (whose derivation does
not depend on the assumptions on the asymptotic behavior of q and the particular definition
of βS).

Proof of Part (iii), for q = p−1. We start noticing that

πS(k) := P(Bin(kS + aS , p)−Bin(kSc + aSc , p)≥ r)

=

ks+as∑
r′=r

P(Bin(kS + aS , p) = r′)P(Bin(kSc + aSc , p)≤ r′ − r)

=

∞∑
r′=r

P(Bin(kS + aS , p) = r′)P(Bin(kSc + aSc , p)≤ r′ − r)
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and that

π̂S(k) := P(Po((kS + aS)p)−Po((kSc + aSc)p)≥ r)

=

∞∑
r′=r

P(Po((kS + aS)p) = r′)P(Po((kSc + aSc)p)≤ r′ − r).

This implies

|πS(k)− π̂S(k)| ≤ 2κ2p.

Indeed, letting dTV denote the total variation distance and recalling that dTV (Bin(m,p),Po[mp])≤
mp2, we have

|πS(k)− π̂S(k)| ≤
∞∑
r′=r

∣∣∣P(Bin(kS + aS , p) = r′)P(Bin(kSc + aSc , p)≤ r′ − r)

− P(Po((kS + aS)p) = r′)P(Po((kSc + aSc)p)≤ r′ − r)
∣∣∣

≤
∞∑
r′=r

P(Bin(kS + aS , p) = r′)
∣∣∣P(Bin(kSc + aSc , p)≤ r′ − r)− P(Po((kSc + aSc)p)≤ r′ − r)

∣∣∣
+

∞∑
r′=r

∣∣∣P(Bin((kS + aS)p) = r′)− P(Po((kS + aS)p) = r′)
∣∣∣P(Po((kSc + aSc)p)≤ r′ − r)

≤ dTV (Bin(kSc + aSc , p),Po((kSc + aSc)p))

∞∑
r′=r

P(Bin(kS + aS , p) = r′)

+

∞∑
r′=r

∣∣∣P(Bin((kS + aS)p) = r′)− P(Po((kS + aS)p) = r′)
∣∣∣

≤ dTV (Bin(kSc + aSc , p),Po((kSc + aSc)p)) + dTV (Bin(kS + aS , p),Po((kS + aS)p)).

Therefore, noticing that by (2.4) we have βS(kR/q, kB/q) = π̂S(k), it follows

sup
k∈T(κ)

∣∣∣ nWπS(k)

nβS(kR/q, kB/q)
− 1
∣∣∣= sup

k∈T(κ)

∣∣∣nWπS(k)
nπ̂S(k)

− 1
∣∣∣

= sup
k∈T(κ)

∣∣∣nWπS(k)− nπ̂S(k)

nπ̂S(k)

∣∣∣
≤ sup

k∈T(κ)

∣∣∣nWπS(k)− nW π̂S(k)

nπ̂S(k)

∣∣∣+ n− nW
n

≤ sup
k∈T(κ)

∣∣∣ 2κp

π̂S(k)

∣∣∣+ n− nW
n

→ 0,

where the latter limit follows since infk∈T(κ) π̂S(k) is bounded away from 0.

Proof of Part (iii), for p−1 ≪ q ≪ n. We start noticing that kS+aS

kSc+aSc
> 1, and so,

setting χ := (kS+aS+kSc+aSc )qp
2 , we have

πS(k) := P(Bin(kS + aS , p)−Bin(kSc + aSc , p)≥ r) = 1− P(Bin(kS + aS , p)−Bin(kSc + aSc , p)< r)

≥ 1− [[P (Bin(kS + aS , p)≤ χ+ r) + P (Bin(kSc + aSc , p)≥ χ)]→ 1,
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where the latter limit can be checked using the concentration inequalities reported in Ap-
pendix I to bound the last two terms. Similarly one can check that πSc(k)→ 0.

Proof of Lemma E.5. By the definition of g, we have

nW (kSc/q+ αSc)(kS/q+ αS)
r (qp)

r+1

r!
= (kSc/q+ αSc)qp(kS/q+ αS)

rqpnW
(qp)r−1

r!

∼ r−1[1− r−1]r−1(kSc/q+ αSc)(kS/q+ αS)
rq2p.(L.23)

Along similar lines as in the proof of Step 1 for (L.15) (see the proof of Lemma E.4), one has

(L.24) nW π̂S(k)∼ nW (k2/q+ αSc)(kS/q+ αS)
r (qp)

r+1

r!
.

Arguing as in the proof of Step 2 for (L.15) (again, see the proof of Lemma E.4), one has that
the convergences (L.23) and (L.24) are indeed uniform on T(κ), and the claim follows.

Proof of Lemma E.6. For ε ∈ (0,1), define the events

B
(n)
εµ/4 :=

{
|Xn − µn| ≤

εµ

4

}
, C

(n)
εµ/4 :=

{
|X ′

n − µ′n| ≤
εµ

4

}
, n ∈N.

Note that

µn −
εµ

4
≤Xn(ω)≤ µn +

εµ

4
, ∀ ω ∈B(n)

εµ/4

and

0< µ′n −
εµ

4
≤X ′

n(ω)≤ µ′n +
εµ

4
, , ∀ ω ∈C(n)

εµ/4.

Therefore, C(n)
εµ/4 ⊆ {X ′

n ̸= 0} and, for any ω ∈B(n)
εµ/4 ∩C

(n)
εµ/4, we have

(L.25)
4µn − εµ

4µ′n + εµ
≤ Xn(ω)

X ′
n(ω)

≤ 4µn + εµ

4µ′n − εµ
.

We shall check later on that this inequality implies

(L.26)
∣∣∣∣Xn(ω)

X ′
n(ω)

− µn
µ′n

∣∣∣∣≤ ε.

Therefore,

B
(n)
εµ/4 ∩C

(n)
εµ/4 ⊆

{∣∣∣∣Xn

X ′
n

− µn
µ′n

∣∣∣∣≤ ε,X ′
n ̸= 0

}
⊆
{∣∣∣∣Xn

X ′
n

− µn
µ′n

∣∣∣∣≤ ε

}
,

and so

P
(∣∣∣∣Xn

X ′
n

− µn
µ′n

∣∣∣∣> ε

)
≤ P

(
(B

(n)
εµ/4)

c ∪ (C
(n)
εµ/4)

c
)
≤ P(|Xn−µn|> εµ/4)+P(|X ′

n−µ′n|> εµ/4).

It remains to check that (L.25) implies (L.26). Indeed

4µn + εµ

4µ′n − εµ
=

4µn + εµ

4µ′n(1−
εµ
4µ′

n
)
<

4µn + εµ

4µ′n

(
1 +

2εµ

4µ′n

)
=
µn
µ′n

+
1

4

εµ

µ′n
+
1

2

εµµn
(µ′n)

2
+
1

8

(εµ)2

(µ′n)
2
<
µn
µ′n

+ε,

where the first inequality holds since 1
1−x < 1 + 2x, x ∈ (0,1/2). Similarly,

4µn − εµ

4µ′n + εµ
=

4µn − εµ

4µ′n(1 +
εµ
4µ′

n
)
>

4µn − εµ

4µ′n

(
1− εµ

4µ′n

)
=
µn
µ′n

− 1

4

εµ

µ′n
− 1

4

εµµn
(µ′n)

2
+

1

16

(εµ)2

(µ′n)
2
>
µn
µ′n

−ε,

where the first inequality holds since 1
1+x > 1− x, x ∈ (0,1).
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APPENDIX M: THE STOPPED PROCESS

Formal definition. N stop
S is the point process on [0,∞)× VW constructed by thinning

{(T ′
k, V

′
k)}k∈N in the following manner: for k ∈ N with T ′

k < Zstop, we retain those couples
(T ′
k, V

′
k) for which, at time (T ′

k)
−, the node V ′

k is white and satisfies the “threshold condition
with respect to S”; for k ∈N with T ′

k ≥ Zstop, we keep, exclusively in the processN stop
B , those

couples (T ′
k, V

′
k) for which, at time (T ′

k)
−, the node V ′

k is still white and satisfies “threshold
condition with respect to B”. Note that the process N stop

S is indistinguishable from NS , up
to time Z−

stop. Furthermore, the process N stop
R does not evolve after Zstop, while the process

N stop
B evolves beyond Zstop. Formally, for A ∈B([0,∞)) and L⊆ VW , we define the Tstop-

stopped R activation process as

N stop
R (A×L) :=

∑
k∈N: T ′

k<Zstop

1A(T
′
k)1VW (T ′

k)∩L(V
′
k)1{D

(V ′
k)

R (T ′
k)−D

(V ′
k)

B (T ′
k)≥ r}

(M.1)

and the tstop-stopped B activation process as

N stop
B (A×L) :=

∑
k∈N: T ′

k<Zstop

1A(T
′
k)1VW (T ′

k)∩L(V
′
k)1{D

(V ′
k)

B (T ′
k)−D

(V ′
k)

R (T ′
k)≥ r}

+
∑

k∈N: T ′
k≥Zstop

1A(T
′
k)1VW,stop(T ′

k)∩L(V
′
k)1{D

(V ′
k)

B,stop(T
′
k)−D

(V ′
k)

R,stop(T
′
k)≥ r}.

We call the point process N stop :=N stop
R +N stop

B R-stopped activation process, and de-
note by {(T stop

k , V stop
k )}k∈N its points. Setting

A∗,stop :=A∗,stop
R +A∗,stop

B , where A∗,stop
S :=N stop

S ([0,∞)×VW ) + aS ,

and

K∗
stop := min{k ∈N : T stop

k , SB(T
stop
k )∩VW (T stop

k ) = ∅},
it turns out

A∗,stop =K∗
stop + aR + aB − 1.

Note that by construction

A∗,stop
R =N stop

R ([0,Zstop)×VW ) + aR =NR([0,Zstop)×VW ) + aR ≤A∗
R P-a.s.

Extending the stopped process beyond its natural termination. Note that the stopped
process naturally terminates at T stop

K∗
stop−1. The above construction is used also to extend the

R-stopped process beyond T stop
K∗

stop−1. In particular we define NB beyond T stop
K∗

stop−1 as follows:
the points (Tk, Vk) are defined by thinning the point process {(T ′

k, V
′
k)}k: T ′

k>TK∗
stop−1

retaining
only those points for which the corresponding node V ′

k is still W , i.e. defined ℓk and ℓk+1 as
in (3.7) we set

(Tk+1, Vk+1) := (T ′
ℓk+1

, V ′
ℓk+1

).

Then we assign to Vk+1 color B (regardless of the fact that Vk+1 is B-susceptible or not).
I.e., we define the processes NB beyond T stop

K∗
stop−1 as

(TBNB [k]+1, V
B
NB [k]+1) := (Tk+1, Vk+1).

Of course the extension of the processes NB and N described above has no effect on the
evolution of the nodes’ activation process up to time T stop

K∗
stop−1.
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APPENDIX N: PROOFS OF THEOREMS 5.1, 5.2 AND 5.3- COMPLEMENTARY
MATERIAL

N.1. Proof of Lemma 8.2. We prove the lemma reasoning by contradiction. Assume
that there exists α > 0 such that P(limsup{Xn > αfn}) = P(

⋂
n

⋃
m≥n{Xm > αfm}) =

β > 0. Then

lim inf
n→∞

∑
m≥n

P(Xm >αfm)≥ lim
n→∞

P(
⋃
m≥n

{Xm >αfm}) = P(
⋂
n

⋃
m≥n

{Xm >αfm}) = β.

Therefore, we necessarily have
∞∑
n=0

P(Xn >αfn) =∞.

By the hypothesis about the stochastic ordering, it follows
∞∑
n=0

P(Yn >αfn)≥
∞∑
n=0

P(Xn >αfn) =∞.

By the Borel-Cantelli lemma, this implies P(limsup{Yn >αfn}) = 1, which contradicts the
assumption Yn/fn → 0 a.s., as n→∞.

N.2. Proof of Theoreom 5.1: Proof of ψ > τ . Rewriting (J.2), we have:

g′S(x)

βS(gS(x))
= 1, ∀ x ∈DgS , S = {R,B}.

Therefore, for every x > 0, x ∈DgR ∩DgB , we have∫ x

0

g′R(y)

βR(gR(y))
dy =

∫ x

0

g′B(y)

βB(gB(y)
dy = x.

By a change of variables it follows∫ gR(x)

gR(0)

1

βR(z)
dv =

∫ gR(x)

0

1

βR(z)
dv =

∫ gB(x)

gB(0)

1

βB(z)
dv =

∫ gB(x)

0

1

βB(z)
dv = x.

Recalling the definition of κg and its properties stated in Proposition A.2(ii) (or Proposition
A.3), we have

κg =

∫ ∞

0

dv

βR(z)
<∞,

and gR(x) ↑∞ for x ↑ κg and gB(κg)<∞, which implies DgR ∩DgB = [0, κg). Therefore
for any κ′g < κg ∫ gR(κ′

g)

gR(0)

1

βR(z)
dz =

∫ gB(κ′
g)

0

1

βB(z)
dv = κ′g

and so letting κ′g ↑ κg we have∫ ∞

0

1

βR(z)
dv =

∫ gB(κg)

0

1

βB(z)
dv = κg.

The claim follows noticing that by the positiveness of βS(·) we have

τ :=

∫ x0

0

1∑
S βS(z)

dz <

∫ x0

0

1

βR(z)
dz < κg =

∫ gB(κg)

0

1

βB(z)
dv <

∫ gB(κg)+ε

0

1

βB(z)
dv = ψ.
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N.3. Proof of (8.35). For i < i, we have

2i+1h0 ≤ 4ik0 < 8−1⌊cn⌋, for all n large enough.

Therefore by (8.36) we have

N(Zi+1) =NR(Zi+1) +NB(Zi+1)≤ 4i+1k0 < ⌊cn⌋.

This proves the lower bound in (8.35). For the upper bound, note that for i ≥ i, we have
N(Zi+1) = ⌊cn⌋ , which follows by (8.33), and the fact that 4i+1k0 > ⌊cn⌋ and 2i+1h0 >
⌊cn⌋.

APPENDIX O: PROOF OF PROPOSITIONS 3.4 AND 3.5

O.1. Proof of Proposition 3.4. Note that by construction

(O.1) {U sk = u}= ∪i∈Xu
{Xk = i}→ P(U sk = u) =

∑
i∈Xu

P(Xk = i)

Now, if |Su|= 1, the claim follows immediately from markovianity. Otherwise, first observe
from Proposition 3.3 we immediately get:

(O.2) P(MR
k = 1 |Xk = i) = u ∀ i ∈Xu

Now, for j ∈ {0,1} we have:

P(MR
k+1 = 1,MR

h = j | URk = u) =
P(MR

k+1 = 1,MR
h = i,URk = u)

P(URk = u)

=
∑
i∈Xu

P(MR
k+1 = 1,MR

h = j,URk = u,Xk = i)

P(URk = u)

(a)
=
∑
i∈Xu

P(MR
k+1 = 1,MR

h = j,Xk = i)

P(URk = u)

=
∑
i∈Xu

P(MR
k+1 = 1,MR

h = j |Xk = i)P(Xk = i)

P(URk = u)

(b)
=
∑
i∈Xu

P(MR
k+1 = 1 |Xk = i)P(MR

h = j |Xk = i)P(Xk = i)

P(URk = u)

(c)
= u

∑
i∈Xu

P(MR
h = j |Xk = i)P(Xk = i)

P(URk = u)
= u

∑
i∈Xu

P(MR
h = j,Xk = i)

P(URk = u)

= u
P(MR

h = j,URk = u)

P(URk = u)

(d)
= P(Mk+1 = 1 | URk = u)P(Mh = j | URk = u)

where equation (a) holds because from (O.1) we have {Xk = i} ⊆ {URk = u} ∀ i ∈ Xu, (b)
from markovianity, while equations (c) and (d) from (O.2). 2

O.2. Proof of Proposition 3.5. The proof of Proposition 3.5 is omitted as it is a rather
immediate consequence of (3.5) and the identity⋂

0≤h≤k
{Xh ∈ X̂mh

}=
⋃

x1∈X̂κ1 ,...,xk∈X̂mk

⋂
0≤h≤k

{Xh = xh}.
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