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We consider a generalization of classic bootstrap percolation in which
two competing processes concurrently evolve on the same graph G(n,p).
Nodes can be in one of three states, conveniently represented by different
colors: red, black and white. Initially, a given number a  of active red nodes
(red seeds) are selected uniformly at random among the n nodes. Similarly, a
given number a g of active black nodes (black seeds) are selected uniformly
at random among the other n — a i nodes. All remaining nodes are initially
white (inactive). White nodes wake up at times dictated by independent Pois-
son clocks of rate 1. When a white node wakes up, it checks the state of
its neighbors: if the number of red (black) neighbors exceeds the number of
black (red) neighbors by a fixed amount r > 2, the node becomes an active
red (black) node, and remains so forever. The parameters of the model are,
besides 7 (fixed) and n (tending to 00), the numbers ap (ap) of initial red
(black) seeds, and the edge existence probability p = p(n). We study the
size A*R (A*B) of the final set of active red (black) nodes, identifying dif-
ferent regimes which are analyzed under suitable time-scales, allowing us to
obtain detailed (asymptotic) temporal dynamics of the two concurrent activa-
tion processes.

1. Introduction. Bootstrap percolation, in its classical form, is a simple activation pro-
cess on a graph that starts with a given number of initially active nodes (called seeds) and
evolves as follows. Every inactive node that has at least > 2 active neighbors is activated,
and remains so forever (an irreversible activation process). The process stops when no more
nodes can be activated, and unfolds over discrete rounds (or generations): in each round, all
susceptible vertices (i.e., vertices that can be activated) become active together (i.e., they are
synchronously activated).

As many percolation processes, bootstrap percolation exhibits an “all-or-nothing" behav-
ior: either the process percolates to (nearly) all vertices in the graph, or it stops very soon
with a final number of active vertices that is not much larger than the starting set. The process
is said to almost percolate if the final number of active nodes is 7 — o(n).

Historically, bootstrap percolation was first introduced in [1] on a Bethe lattice, and suc-
cessively investigated on regular grids and trees [2, 4]. More recently, bootstrap percolation
has been studied on random graphs and random trees, motivated by the increasing interest in
large-scale complex systems such as technological, biological and social networks.

A milestone in this direction is the paper by Janson et al. [8], where the authors have
provided a detailed analysis of the bootstrap percolation process on the Erdés—Rényi random
graph G(n,p). Specifically, in [8] authors study the critical size ag of the starting set and
show that, for 1/n < p < n~1/ ", there exists a threshold g(n, p, ) such that, for every € > 0,
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a.s. the process almost percolates for ag > (1 + €)g, whereas the final number of active nodes
is O(g) when ap < (1 —¢€)g.

We emphasize that in [8] seeds are chosen uniformly at random. Later, it has been shown
that the critical number of seeds triggering percolation can be significantly reduced if the
selection of seeds is optimized (in the form of so-called contagious sets) [24, 25].

Somehow related to ours is the work in [23], where authors study a variant of the classical
bootstrap percolation process on the G(n,p) graph with two types of vertices: excitatory
and inhibitory. The activation spreads to vertices for which the number of excitatory active
neighbors exceeds the number of inhibitory active neighbors by a certain amount. When
more than half of the vertices are inhibitory, they discover, in the traditional (round-based)
model, curious non-monotonous effects on the final size, which disappear in a continuous-
time setting in which some exponential (i.i.d.) transmission delays are added on the edges.
Note that we also consider a continuous-time setting, but we put exponential delays on nodes,
rather than on edges. Moreover, our process is very different from the one in [23], since we
study the competition between two opposite activation processes. Another variant of classic
bootstrap percolation, somehow related to our work, is majority bootstrap percolation [17],
in which a node becomes active if at least half of its neighbors are active.

Large deviations of classic bootstrap percolation in G(n,p) have also been studied: in
[26] authors calculate the rate function for the event that a small (subcritical) set of initially
active nodes eventually infects an unexpected number of vertices, and identify the least-cost
trajectory realizing such a large deviation. Large deviations in the super-critical regime have
instead been fully characterized in our previous work [21].

Bootstrap percolation has also been analyzed on random regular graphs [5], on random
graphs with given vertex degrees [9], on Galton—Watson random trees [6], on random geo-
metric graphs [15], on Chung—Lu random graphs [10, 11] (which notably permit considering
the case of power-law node degree distribution), on small-world random graphs [12, 13] and
on Barabasi—Albert random graphs [14]. In [22] we have analyzed the bootstrap percolation
process on the stochastic block model (SBM), a natural extension of the Erdés—Rényi random
graph that incorporates the community structure observed in many real systems.

Instead of considering yet another underlying graph, in this paper we open a new (to
the best of our knowledge) direction in the theory of bootstrap percolation, where nodes
can be in three states, and two competing bootstrap-like processes evolve in parallel over
continuous time. We analyze this process on the simple G(n,p) graph, leaving to future
work the extension of the analysis to different graphs.

2. Model description and main results.

2.1. Model description. In this paper we consider a generalization of the bootstrap
percolation process on the Erdés—Rényi random graph G(n,p,) = (V", ("), n e N :=
{1,2,...}, introduced in [8]. Here V(™) := {1,... n} is the set of nodes and & is the set of
edges, which are independently added with probability p,, € (0,1). Our model is defined as
follows:

* Nodes can be red (R), black (B) or white (I¥). In the following we will refer to either R
nodes or B nodes as active, and to W nodes as inactive.

* At time 0, an arbitrary number agl) of nodes (selected uniformly at random among the n

nodes) are set R, an arbitrary number agL) of nodes (selected uniformly at random among

the remaining n — ag) nodes) are set B, and all the other nodes are set W. Nodes already

w1

active at time O are called “seeds”.

! As seeds are selected uniformly at random in a G(n, p) graph, the order in which the two seed sets are created
is not relevant, i.e., it has no impact on the process evolution.
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* Each node W periodically wakes up according to a Poissonian clock, i.e., the sequence
of times at which a node W wakes up forms a Poisson process with intensity 1. The
Poissonian clocks attached to different white nodes are stochastically independent. Upon
wake up, a node T activates by taking a color S € {R, B} if the difference between
the number of its neighbors of color S and the number of its neighbors of color S¢
{R, B} \ S is bigger than or equal to a given threshold » € N\ {1}, otherwise the node
remains W. Throughout this paper we will refer such condition as “threshold condition
with respect to S

» Active nodes never deactivate (i.e. change color), hence the number of nodes R (or B) is
non-decreasing over time.

* The process stops when no more nodes can be activated, i.e., no white node satisfies the
“threshold condition with respect to either R or B”.

The main objective of this paper is to study the asymptotic behavior of the final number

A*R(") (A;(n)) of nodes R (B), as n grows large. As a common practice in the theory of large
random graphs, in general we will omit the dependence on n of quantities, writing e.g. G in
place of G(n,py), p in place of p,, ag in place of agn), § in place of Ag(n), S e {R, B},
and so on. We will explicit such a dependence only when needed.

Moreover, in the following, we always assume that:

1
2.1 — <L pL .
@D n PSS i logn

(2.1) is slightly tighter than the corresponding condition in [8], (i.e., % LLp K #). This is
justified by the fact that our results are tighter (i.e., we prove almost sure convergence) than
those in [8] (where convergence in probability is shown). Furthermore, we assume:

(2.2) ar/q— ar, ap/q— ap, forsome positive constants ag,ap > 0,
where the sequence {g,} is chosen in such a way that or

i) q:g::<1—1> (Oﬂ_l)!):lwith pg—0 or

T np”

(2.3)

1

ii) g<q<p b or i) q=p*

or w) pl<g<Ln.

REMARK 2.1. In contrast to the bootstrap percolation process considered in [8], where
the order in which nodes activate has no impact on the final size of active nodes (see Proposi-
tion 4.1 in [22]), in our case the order in which nodes activate is important, as one can check
on toy examples. Poissonian clocks have been introduced as a naturally way to solve this
problem: by so doing, essentially we consider a system in which, at any given time, the next
node to activate is chosen uniformly at random among the nodes that satisfy the threshold
condition with respect to either R or B.

REMARK 2.2. When ag. = 0, our process reduces to an asynchronous version of the
classic bootstrap percolation process, in which not yet active nodes, i.e. W nodes, become
S-active at the times of a suitably thinned unit-rate Poisson process. Therefore A% equals the
final number of active nodes of the standard bootstrap percolation process on the Erd6s-Renyi
random graph G with threshold r > 2 and number of seeds ag, see [8].



2.2. Main results. To state our results we need to introduce the following function
Bs:[0,00)2 =R, S €{R,B}:

2.4)
r 11 —r Y Y zg +ag)” — g ifg=g
nlrs +as)” ifg<g<p!
ﬁs(l’R,J}B) = Zo? er/—ro (xS“I‘C'VS)T (l"sc-i-a'sC)T e—(xR+:pB+aR+aB) if ¢ :p—l
r'=r Lair''= /1 7771
1(0,00) (% - %) if p~t < g <.

Roughly speaking, Ss(x g, xp) represents a suitably scaled asymptotic estimate of the av-
erage number of nodes satisfying the threshold condition with respect to S, when x pq nodes
have become R-active and x pq nodes have become B-active (see Lemma E.4 in Appendix).
As it will become clear in the following, the asymptotic behavior of the R and B activa-
tion processes on time-scale ¢ (i.e., as long as the number of active nodes is O(q)) is tightly
related to the properties of function Sg.

REMARK 2.3. Suppose that ¢ = g. Function Sg(xg) is strictly positive for ag > 1,
whereas it has two strictly positive zeros for ag < 1 (we denote by zg the smallest zero
in this case). When either ¢ < ¢ < p~! or ¢ = p~!, Bg is strictly positive, while 85 is non-
negative for p~! < g < n.

Assume (2.1), ar/g — ag and ap = 0. It follows from the main results in [8] that A*/g —
2R + ar almost surely, provided that o < 1; instead, A*/n — 1 almost surely when o > 1.
This means that there exists a critical number of seeds under which the bootstrap percolation
process basically does not evolve, and above which it percolates the entire graph almost
completely. This well known behavior of the classical bootstrap percolation process suggests
us to adopt the following terminology. Restricting ourselves, without lack of generality, to
the case ag > ap, we say that the system is in the sub-critical regime whenever ¢ = g and
ap < 1; we say that the system is in the super-critical regime whenever either g < ¢,or g =g
and ap > 1.

Consider the system evolution in the sub-critical regime. One would expect that, for the
effect of competition, the asymptotic final sizes of S-active nodes (S € {R, B}) might be
smaller that those achieved in the absence of competition (e.g., when ag- = 0). However this
is not the case, as stated by the following theorem.

THEOREM 2.4. Assume ¢ = g with ap < ar < 1. Then
* *

—R—>zR+aR, B s p+ap P-as.
q q
where zg is the smallest zero of S5 (see Remark 2.3).

Theorem 2.4 states that, in the sub-critical regime, the two competing processes essentially
do not interact with each other. Indeed, A% /q converges exactly to the same value it would
converge to, when ag. = 0.

Consider now the more interesting super-critical regime.

THEOREM 2.5. (i) when ¢ = g and ag > 1, then

* A*
(2.5) “E_ 41 and £ 9B(kg) +ap, P-as.
n q

(¢4) when g < ¢ < n, then
*

A% A
B 1 and “£ 50, P-as.
n
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where kg and gp(kg) := limgq., gp(7) are defined as follows:

DEFINITION 2.6. (Underlying Cauchy problem). Let g(x) = (gr(x),g9p(x)) denote the
maximal solution of the Cauchy problem:

(2.6) g'(x)=B(g(x)), w€[0,rg), g(0)=1(0,0)
where 3 := (Br, BB)-

In words, Theorem 2.5 states that, in the super-critical regime, the R-activation process
percolates the entire graph almost completely, causing an “early stop" of the competing ac-
tivation process, even when ap > 1, i.e., when the B-activation process would potentially
percolate in the absence of competition. Observe that, while in the sub-critical regime the
process stops when O(g) nodes are active, in the super-critical regime almost all nodes be-
come active (i.e., the final size of active nodes is n — o(n)). A numerical illustration of our
results is provided in Appendix B.

3. Notation and Preliminary Analysis.

3.1. Main variables and their relations. In this subsection we introduce the random
quantities in terms of which we will describe the dynamics over G of our competing boot-
strap percolation processes and quantify their final sizes. All the random variables considered
hereafter are defined on an underlying probability space (2, F, P).

Let Vyr C 'V be the set of non-seed nodes, and set ny := |Vyy| =n — (ar + ap). Here,
given a finite set A, we denote by |A| its cardinality. We attach, independently to every node
v € Vyy, a unit rate Poissonian clock, whose ordered points represent the successive wake-up
times of node v. More formally, we define a sequence {N]},cv,, of independent Poisson
processes on [0, 00) x Vy with N/ having mean measure dtd, (d¢), where d,/(+) is the Dirac
measure on Vyy concentrated at v € Vyy. As it is well-known, the point process

(3.1) N:=>" N,

’UGVW

is still a Poisson process on [0,00) x Vi with intensity measure nyydtU(dv), where U
is the uniform law on Vy,. We denote by {(7},V})}ken the points of N’ (with ordered
first coordinates): here 77, is the time at which the k-th wake-up event occurs and V is
the corresponding node. We denote by Ng, S € {R, B}, the S-activation point process on
[0,00) X Vyy, i.e., for any ¢ > 0 and any L C Vy, Ng([0,t] x L) is the number of S-active
nodes in L C Vyy at time ¢. Let (7 g , Vks ) denote the k-th point of Ng. By construction 7; ,f
is the “activation time” of node V}?, i.e., the time at which node Vks becomes S-active (by
taking color S). Note that white node V', which wakes up at time 7", can become S-active
if and only if it satisfies the “threshold condition with respect to S”. Therefore, the point
process Ng can be constructed by thinning {(7},V}))}xren as follows: we retain only those
couples (77, V), k € N, for which, at time (7},)~, the white node V/ satisfies the “threshold
condition with respect to .S”.

We set N := N + Np and denote by (T}, V%), k € N, the points of N. Throughout this
paper we refer to N as the (global) activation process. In the following we will use Ng(t¢) and
N (t) as a shorthand notation for Ng([0,t] x Vi) and N ([0, t] x V), respectively. Hereafter,
we denote by Vg(t) C Vi, t > 0, the set of non-seed nodes which are S-active at time ¢, i.e.,

Vs(t) ={VP hrsepy Wwith Vs(0) =0
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and with Vyy (t) C Vyy, t > 0, the set of non-seed nodes which are still W at time ¢, i.e.,
Vw(t) =Vw \ (VR(t) U VB(t)) with Vw(O) = V.

Let {EZR ’(”)}ieN, {Ef’(v)}ieN, v € Vyy, be two independent sequences of independent
and identically distributed random variables with Bernoulli’s law and mean p, independent
of {(T},V})}ken. The random variable E%) indicates the presence (or not) of an edge
between node v € Vyr and an S-active node. We often refer to the random variables ES:)
as S-marks and define the quantities

Nr(t)+ar N5 (t)+ags
(3.2) = > EFY and DY Z EPO yevy,
=1

which represent the number of neighbors of node v whose color is, respectively, R or B at
time . We also define the random variables:

Vo(t™) ={Vi rsepy,  Yw(t)=Yw \ (Vr(t")UVs(t)),

Nr([0,)xVw)+ar N ([0,t)xVw)+as
DY ()= > EPY and DY) .= 3 EPO yevy
=1 =

Moreover, the set of S-susceptible nodes at ¢ is defined as

(3.3) Ss(t)={veVy: D (t)— DY (t) > r},

and similarly the set of S-susceptible nodes at time ¢~ is defined as Sg(t ™) :={v € Vy :
DY ()~ DG () =1

Lastly, we denote by

S8(t):=8r(t)US8p(t) and 8(t7):=8r(t7)US8p(t")
the set of susceptible nodes at time ¢ and ¢, respectively.
8(t) :=8gr(t) USk(t)
the set of susceptible nodes at time ¢. The final number of active nodes is clearly given by
A" = AR+ A, where Ag:= Ng([0,00))+ as.
Furthermore, defined
K*:=min{k e N: §(T)_1) N Vw (Tx—1) =0}, (we conventionally set Ty := 0)
we have
A*=K*+ag+ap—1.

Note that the overall activation process /N naturally stops at time Tx~_1, since no node
becomes active after Tk ~_1. For the moment, we conventionally define T}, := oo on the
event { K* < k}, and note that T~ = co. We mention that, for technical reasons, in Section
3.4 we will “artificially" extend, in a suitable way, the activation process beyond Tx~_1,
redefining T}, on the event { K* < k}. Of course, such extension will not have any impact on
the dynamics of the activation process until T -_;. We remark that random graphs G(n, p,,),
as well as the dynamical processes evolving on top of them, are independent for different
values of n.
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REMARK 3.1. During the evolution of the activation process, every edge (v,w) € & is
unveiled potentially twice, i.e., when both v and w get active; consistency between the two
choices is not guaranteed, nevertheless this has no effect on the dynamical process, similarly
to what happens in the bootstrap percolation process studied in [8]. Indeed, assuming that v
gets active before w, the mark potentially added to v (already active), when w gets active,
has no impact on the activation process.

3.2. Further notation. Throughout this paper, all the unspecified limits are taken as
n — oo. Given two numerical sequences { f(n) }nen and {g(n) }nen, we write: f(n) < g(n)

if £(n) = o(g(n)), ie., £(n)/g(n) > 0; (1) = O(g(n)) if lmnsup,, .. | 23] < 003 f(n) =
©(g(n)) if both f(n) = O(g(n)) and g(n) = O(f(n)), f(n) ~g(n) if f(n)/g(n) — 1.
We denote with || - || the euclidean norm, and with [-] and [-]| the floor and the ceiling
functions, respectively. Given set A, we denote with A° the complementary set. Moreover,
given a sequence of real-valued random variables { X, }nen, we write X, = 0a5.(f(n)) if
P (hm ‘% = O) = 1. Given two real-valued random variables X and Y, we denote by
X <4 Y the usual stochastic order, i.e., we write X <4 Y if P(X > 2) <P(Y > z), z € R.
Bin(m, @), Po(\) and EXP()) respectively denote random variables distributed according
to a binomial law with parameters (m, 6), a Poisson law and an exponential law (both with

parameter A > 0). Symbol L denotes the identity in law. At last, throughout this paper we
will use several times the function

(3.4) H(z):=1—z+zlogz, x>0, H(0):=1.

3.3. Markovianity of the process. As consequence of our assumptions, the considered
system can be described by a Markovian process® specified by the following proposition

PROPOSITION 3.2. The stochastic process

X ={X()}iz0 = {(Mjwev@) Livevs @) DY (1), DY) (1)) vevy bizo

is a regular-jump continuous time homogeneous Markov chain, i.e., a continuous time ho-
mogeneous Markov chain such that, for almost all w, the cardinality of Disc(w) N [0,¢] is
finite for any ¢ > 0. Here Disc(w) denotes the set of discontinuity points of the mapping
t — X(t,w). The state space of X, say X, is contained in ({0,1} x {0,1} x {0,...,n} x
{0,...,n})!Vwl with diagonal elements of the transition-rate matrix:

. 1-P(X(h) =x|X(0) =x)
e h

=|Vw(x)N8(x)| >0, xeX.

Regarding notation in the r.h.s., observe that, for any ¢ > 0, both Vy(¢) and S(t) are, by
construction, 0{X(t) }-measurable. Therefore, we will conveniently denote Vyy(¢) and S(¢)
also with Vi (X(t)) and 8(X(¢)), respectively.

Observe that the sequence of transition times of X coincides, by construction, with the
sequence of activation times {7} }r>o of nodes. * Let X := o{X(s) : s < t} be the
natural filtration of the Markov chain X and {Xj}renugoy the embedded chain defined
by X = X(T%). On the event {K* — 1 < k} we have X; = X(o0) € A:={xe€ X :
gx = 0}, while {Xj}o<ker—1 € X\ A={xeX: g« > 0}. Moreover, given K* and

20ur suggested reference for Markov Chains is [3].
3We recall that conventionally we have T = 0.
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{X}\ }o<k<k+—1, the random variables {Wj }o<r<r+—1, Wy := Tj41 — T}, are independent
and Wj, is exponentially distributed with mean 1/ dx, - In particular, for an arbitrary finite
sequence of states {xp, }o<p<x C X \ A and an arbitrary finite sequence of positive numbers
{an}o<n<k C (0,00), we have

3-5) P ﬂ {Xp =xp} N {Wp, >an} | =P(Xg=xq) H Drnsn € Ln
0<h<k 0<h<k

where (pxy ) denotes the transition matrix of {X }.

3.3.1. Discrete time notation. To study the evolution of the system at the points {7}, } ke,
it is convenient to introduce some discrete time notation. For k € NU {0}, we set *

Nglk] :=Ns(Ty),  Sslk]:=8s(T),  Vwlk]:=Vw(Tx), DY [k]:=DY(T}).

Since all these random variables are o { X}, }-measurable, therefore, when convenient to high-
light the dependence on the state, we write

Nslk] = No(Xi),  Sslk]=8s5(Xz),  Vwlk]=Vw(Xy), D[k =D (Xy).

Moreover, we define

. V(X)) NSR(Xy)]
Uiha = U*(Xy) 1= Vi (Xi) N 8(Xp)|

where conventionally we put 0/0 := 1/2. Finally, we note that
(3.6) Nglk+1] = Ng[k] + My, ,, S€{R,B}
with

Ul =1-Ul,, vkeNU{0},

Mks+1 =1y eva knssE} Lk 158 = v ev knssk]} Lixex\a)

were we used that 1154} = 1yx, ex\a} by construction. Note that MEH € o{X, Xg+1}-
Hereafter, we set Hy := o{X}, : 0 < h < k}. The following proposition holds.

PROPOSITION 3.3. For S € {R, B} and k € NU {0}, we have
P(Mp ., =1]Hg) =P(M,, =1|Xp) =P(Vir1 € Vi (Xg) N 85(Xp), X € X\ A | Xy)

=Uf1x,es\ar = U ik —154)-

Here, the first equality is a consequence of the Markovianity of {Xy}, while the last one
follows from elementary properties of Poisson processes: indeed, given Xy, Vj41 is uni-
formly distributed over the set Vi (Xy) N 8(Xy) whenever Vyy (X ) N 8(Xy) # 0. O

For u := my /mg, where m1 € {0,1,---mg} and my € {1,---ny }, define X,, as the set
of states x such that U (x) = u, i.e.

Xy :={xeX: Ulx)=u}.
Note that by construction: {U[ | =u} = {UR(X}) = u} = {X}, € X,,}. Moreover, we de-

ﬁneﬁ\Cm::{XGDC: gx =m} forany m € {0,1,--- ,nw}.
As direct consequence of Markovianity, the following two propositions, whose proofs is
reported in Appendix O.

“By construction, on the event { K* < k}, we have Sglk] =8g[K™ — 1], Viy[k] = Vi [K* — 1], etc.
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PROPOSITION 3.4. Forany S € {R, B} and k € NU{0}, given {X}, € X,,}, the random
variable M ,f ', is independent of the sequence {1/, ;f HM<h<k-

PROPOSITION 3.5. For k € NU {0}, let {mp}o<n<r € {1, ,nw}. Given the event

No<n<iiXhn € Xm, }» the sojourn-time random variables {Wh}o<n<i are independent.
Moreover, for every 0 < h < k, W}, is exponentially distributed with parameter my,.

3.4. Prolonging the process N beyond T-_1. Since Viy[K* — 1] N S[K* — 1] = 0,
we have N((Tx~-1,00) x Vi) = 0. To simplify the analysis, it is convenient to extend
N beyond Tk-_1 by activating nodes that are not susceptible. Hereon, we still denote
by Ng and N the activation processes extended beyond Tx-_; and by {(T,f ,VkS ) He>1
and {(7T%,Vk)}r>1 their points respectively. Points (T4, Vi+1j), for j > 0, are de-
fined by thinning the point process {(7},,V},)}x: 1/, >Ty-_, and retaining only those cou-
ples (T7},,V},) such that V}, is still W. More precisely, given points {(T}, V) 1<n<k, on
{K* — 1<k}, weset (Tit1, Viey1) := (17, |, Vp, ) with

(3.7 by = {k‘/ : T];, = Tk}, Ek:-i-l = min{k" >l Vk/' € Vw(Ték)}

Then we assign to Vi, either color R or color B (regardless of the fact that Vi1 is RR-
susceptible or B-susceptible) by flipping a biased coin. I.e., we define the processes Ng for
S € {R, B} on the event { K* < k} as:

(3.8) (TN 1 Visiger) = (Thaa, Vers)  with probability U,
where
Uk~ = L Up = ‘Q£H| on {K* <k}
=0 k = s >
2 i ‘QkR+1‘ + ’QE—H

Q711 1= I8s[K]| — Ns[k] +|(Vw \ Ss[k]) N Vs[k] N {v: Dg[k] >1}|
(3.9) — |8s[k] N Vse[k] N {v: DY [k] > 1}

and Q7 := |85(0)]. In the expression of the random variable Q7 - the first addend is the
number of S-susceptible nodes, at time 7}; the second addend is the number of S-active
nodes (excluding seeds), at time T}; the third addend is the number of S-active nodes (ex-
cluding seeds), at time 7}, which have at least r S-active neighbors, but are not S-susceptible;
the fourth addend is the number of S°-active nodes (excluding the seeds), at time 7}, which
have at least r S“-active neighbors and are S-susceptible. Note that also the extended pro-
cess stops when all the nodes have got a color, i.e., when &k equals the number of nodes that
were originally white, i.e., k = ny := |Vyy| = n — ar — ap. Finally, note that, (3.2) holds
for any 0 < k < nyy, since also on the event { K* — 1 < k} nodes that become S-active dis-
tribute S-marks to all of their neighbors. As before, we conventionally set 7}, = co for every
k > ny . We emphasize that the definition of random variable Q,f 1 is purely instrumental to
guarantee that on the event {k < K* — 1} we have Q7 1= |VYw(k] N 8s[k]|, as stated by the
following lemma, which is proved in Appendix C.

LEMMA 3.6. We have:

(3.10) Qi1 Lixc-sky =V [k] N Ss[k] L x5y,

(3.11) 8s[k]| —k < Q41 <ISsKll,  keNu{0}
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PROPOSITION 3.7. Note that, after its extension, the stochastic process

X =X () = {(Lpevno}s Lpevn @), D% (), DY (1) vevy s (M. <0) b0

is still a regular-jump continuous time homogeneous Markov chain.

Similarly to before, we denote by X the space state of X and with A the set of absorb-
ing states, which correspond to the states in which all nodes are either R or B. Recall that
{ Xk} renuqoy is the embedded chain defined by X = X(T}). Note that, conditionally on
{X; =x € X\ A}, the sojourn time W}, = T}, 1 — T}, in state X}, is exponentially distributed
with parameter

(3.12) 4x := R(x) = RT(x) + RP(x)
where
(3.13) R%(x) 1= Q° (X)L {151} (X) + (nw — N(x)) U (%)L ¢+ 1<y (%)

R%(x) is the aggregate rate of all transitions from state x induced by the S-activation of a
new node. Propositions 3.3, 3.4 and 3.5 naturally extend also to the prolonged process, by
redefining for K € NU {0}:

Mgy = 1y, cvwknss iy Lk —15k) + Vg —a<myYr,, <vp, 1 1{x,ex\a}

where Ly is a random variable uniformly distributed on [0, 1], independent of 3. In par-
ticular, since, as already noticed, 1¢x, ex\a} = L{r<n,,}» We have for S € {R, B}:

PROPOSITION 3.8.  P(MJ | =1|H) =Up, Iixexvar = Up i Lpny }-

3.4.1. Properties of the extended process. By definition (see (3.3)), we have
’85[1{7” = Z l{ngv)[k}—D(svc)[k]Zr}’ keNU {0},
vEVy

and recalling (3.2) it follows

(3.14) Ss[k]| | {N[k] = k} = Bin(ny, 75 (k)).
where k := (kR,/{?B) € (N U {0})2, k:= ij + k‘B < nw, N[k‘} = (NR[k:],NB[k?]), and
(3.15) ms(k) :=P(Bin(ks + ag,p) — Bin(kse + age,p) > ).

Moreover defined for k < ny and h < k:

Npi = {Ng[k] > k — h, Ng[k] < h} = {Ng[k] > k — h} = {Np[k] < h},

LEMMA 3.9. It holds:
ISr[K]| | Nuk >t Bin(nw,mr(k—h,h); |SB[k]|| Nigk <st Bin(nw,ng(k — h,h)).

The proof of Lemma 3.9 is elementary (it is reported in Appendix D for completeness).

REMARK 3.10. Note that, for ¢ < p~!, Bs(xr,2B) = Bs(zs), i.e. Bs does not depend
on xg-; while, for ¢ = p~! and p~! <« ¢, the function S5 depends on both zx and zp,
The fact that, for ¢ < p~!, B does not depend on xg. expresses formally that the two
activation processes Ni and Np evolve essentially independently on time-scales ¢’ which are
asymptotically less than p~!. On the other hand, the fact that, for ¢ = p~! and p~! < ¢, Bs



COMPETING BOOTSTRAP PROCESSES 11

depends on both x i and x p expresses formally that the two activation processes N and Np
interact on time-scales which are comparable with p~! or are asymptotically bigger than p—!.
Indeed, roughly speaking, given that g nodes have been S-active, by (3.2) we have that the
number of S-marks collected by a node v € Vyy, ng) (xsq), is binomially distributed and the
average x5qp tends to 0, whenever ¢ < p~!. Therefore, only a negligible fraction of the S-
susceptible nodes (i.e. nodes v € Vyy, for which Dg)) (rsq) — Dgi) (r5q) > r) got more than
the minimum number of marks, (i.e., » marks of color S and 0 of color 5S¢, as shown in the
proof of Lemma E.4). In conclusion, the number of S-susceptible nodes is not significantly
impacted by the presence of S¢-marks. In other words, the two activation processes evolve
without significantly interfering, because they insist on different sets of nodes. Instead, when
q gets comparable with p~!, both the number of S-susceptible nodes, as well as, the number
of S-marks that have been distributed turns out to be of order n. This implies that the fraction
of S-susceptible nodes that received marks of color S¢ is not anymore negligible, and the

activation processes Ni and Ny start interacting.

3.5. Brief overview of main proofs. As a guide to the reader, we briefly describe, at high
level, the strategy of the proofs. First, we analyze the activation process on time-scale ¢, i.e.,
we analyze the asymptotic behavior of Ng[| z¢]]/q for bounded values of .

The main result on time-scale g is provided by Theorem 4.2, which shows that a suit-
able regularized version of the trajectories Ng[|z¢|]/q converges P-a.s to the (determinis-
tic) solution of the Cauchy Problem (CP) stated in Definition 4.1. To prove convergence of
above trajectories, we exploit their structural properties, resorting to Ascoli-Arzela’ theorem
to claim their P-a.s. pointwise convergence to a weak limit (i.e., we show the convergence
of some sub-sequence). Then, we provide sufficiently tight upper and lower bounds to the
incremental ratio of trajectories within a neighborhood of a fixed point. By so doing we show
that limit trajectories are derivable (with assigned derivative), and therefore solution of the
CP formulated in Definition 4.1. As side effect, given the uniqueness of CP solutions, we are
able to strengthen previous convergence result showing a P-a.s. pointwise convergence for
the whole sequence. Theorem 4.7 complements previous results showing that suitably nor-
malized versions of both 7', and T[i, 4| converge almost surely to deterministic quantities.

When the activation processes of nodes do not stop at time-scale g, (i.e., in the super-
critical regime) we complement previous study considering time-scales larger than ¢. In this
case, analyzing the solutions of the Cauchy problem (defined in 4.2) we show that the ratio
Np[|zq]|]/N[|xq|] becomes arbitrarily small as = grows large.

The analysis at time-scales ¢’ > ¢ is based on the observation that the number of S-
susceptible nodes, |Sg(t)|, is sufficiently concentrated around its average, which in turn de-
pends super-linearly on the number of active nodes Ng(t). Therefore, as shown in Theorems
5.1, 5.2 and 5.3, the ratio between the rates at which the two competing activation processes
evolve tends quickly to diverge, letting the advantaged RR-process to percolate before the
competing B-process has managed to activate a non negligible fraction of nodes. In partic-
ular, for the case ¢ = g we can show that A}, = O(g). This is done: (¢) by first analyzing
the dynamics of an auxiliary process, the stopped process, where the R-activation process is
stopped at a given point and only the B-activation process is allowed to go on; (77) by then
inferring properties on the original process, exploiting a simple coupling argument (8.1).

4. Analysis at time-scale g: main results. In this section we report the main findings of
our analysis about the activation process Ng, S € {R, B}, when N = ©(q), i.e., it is of the
same order of the number of seeds. We remark that in the following we will always assume,
without lack of generality, g > ap. Proofs of results stated in this section are reported in
Sec. 7.
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Hereon, we start introducing the linear interpolation of Ng defined by:
@4.1)  Ns(vq) = Ns|leq)] + (zq — |q)) (Ns[[q]] = Ns[lzq]]), x>0
with N(zq) = (Ng(2q), Ng(zq)), and the sequence {F,,(z)}nen given by:

. Ns(zg
F,(z):=(Fpn(z),Fpn(z)) with Fg,(x):= ((Jn)
n
As usual, when no confusion arises, we omit the dependence on n of F,, and FJ . It turns
out (see Theorem 4.2) that, under suitable assumptions, F' converges to a vectorial function

f, which is the solution of the following Cauchy problem:

DEFINITION 4.1.  (Cauchy problem). Let f(z) = (fr(x), f5(x)) denote the maximal so-
lution of the Cauchy problem:

_ B(E@)
Br(f(z)) + Bp(f(x))’
with B(x) := B(zg,2B) := (Br(zR,7B), BB(TR, TB)).
THEOREM 4.2. Assume (2.1) and (2.2) with ag > ap and let f be the solution of the

Cauchy problem (4.2). Then:
(i) If ¢ = g with aug < 1, then

4.2) f'(x)

x € (0,r¢), f£(0)=(0,0),

(4.3) For any compact set K C [0, zr + zp), sup |F(z) — f(x)|| — 0, P-as.,
rzeK

where zg is the first zero of Sg(xg).
(7i) If g > 1 and either ¢ = g or ¢ > g, then

(4.4) For any compact set K C [0,00), sup ||F(z) — f(z)|| = 0, P-as..
zeK

As immediate consequence of previous theorem we have:

COROLLARY 4.3. Forevery k < k¢ : and S € {R, B}:

‘i NS(“Q)

4.5) li = fs(k), P-as.

4.1. On the solution of the Cauchy problem (4.2). Recalling that g is the maximal solu-
tion of Cauchy problem (2.6), the following proposition, whose proof is reported in Appendix
A, holds:

PROPOSITION 4.4. (i) For ¢ =g and ar < 1, f is defined on (0, zr + 25) (i.e., kf =
zr + zp) and
fr(®)T2r, fp(x) T2, asz?tzp+ 2.
(ii) For ¢ = g and ag > 1, or g < ¢ < p~', then f is defined on (0, 00) (i.e k¢ = oc) and
fr(z) T 4+o00, f(z)Tgn(kg) <oo aszT4oo,

oo dx

with kg 1= [ Fn@) € (0,00), and gp(kg) == limg g, g5(x).
(iii) For ¢ = p~!, then f is defined on (0, c0) and
fr(z) 400, fp(x)t fp, asaz?T+oo,

for some constant f 5 € (0, 00).
(iv) For p~! < ¢ < n and ag > ap, then f is defined on (0, 00) and is given by

fr(z) =2z, fp(z):=0.

Moreover if ¢ = g and ap <1 < ap then gg(kg) < zB.
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4.2. Analysis of K* and A};. The following two theorems complement previous results.

THEOREM 4.5. (i) For every k < Kg:

*

(4.6) lim inf K
q

Moreover (i) if either ¢ = g and ag > 1 or g < ¢ < p~ !, then

>k, P-as.

A*
4.7) liminf =2 > gp(kg) + ap, P-as.
q
where gp(kg) and and kg are given in Proposition 4.4 (ii).

THEOREM 4.6. Assume ¢ = g and ag < 1. Then, for any S € {R, B},

*
S

lim sup <zg+ag, P-as.

4.3. Analysis of the sequences {Ty }ren and {T }ren at time-scale q. The next result
provides the asymptotic behavior of T}, and Tf; sal’ for suitable x > 0 and kg. Let

1 forg=g
(4.8) =14 M2 for g < g<p!

n

7 for either ¢=p~!

or ¢>p L.

THEOREM 4.7. (i) Let k < k¢ (with k¢ defined in Proposition 4.4). Then:
1

9 Mgy = /0 BrEw) + B T
(73) Let kg € (0,limy—y, fs(x)) for S € {R, B}. Then:
fst(ks) 1
S
(10 Mlwsa) / Br(Ew) 1 BaEw) Y

When ¢ < p~L, from (4.2) it follows that: [/ %) o E Y = Ji s dy.

5. Analysis at time-scales greater than g: main results. In this section we study the
joint evolution of N[-] and (|Sg[-]|,|85][-]), at time-scales ¢’ > ¢, i.e., for arguments asymp-
totically greater than the number of seeds. Recalling that function gp and constant kg are
given in Proposition 4.4(i7), the following theorems, whose proofs are given in Sec. 8, hold.

THEOREM 5.1. Ifeither =g and ar > 1, or g < ¢ < p~ ', then Ve > 0, we have:

(5.1) P (liminf{Ng[|f(n)p™'])] < [(gB(kg) + €)a]} N{EK* = 1> [f(n)p~']}) =1,

where f is a generic function such that f(n) — co and f(n)p~! = o(n) in case (i); f(n) :=
co/(qp)" ! — oo, for a sufficiently small positive constant cg in case (ii).

THEOREM 5.2. Assume ¢ =g and ar > 1. Then, Ve > 0 and ¢ € (0, 1) we have:
(5.2) P(liminf{Ng[K* — 1] < |(gB(kg) +€)g]} N{K* —1> [cn]})=1.
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THEOREM 5.3.  Assume g < ¢ < n. Then, V¢ € (0,1), we have

(5.3) P(liminf{K*—lZ Lcnj}ﬁ{limNBchH:O}> =1.

cn

6. Proofs of Theorems 2.4 and 2.5. The proofs of Theorems 2.4 and 2.5 are immediate
consequences of previously mentioned results.

6.1. Proof of Theorem 2.4. By Theorems 4.6 and 4.5(7) (with k¢ = zg + zp ), we have

A% A% A* A% A* A%,
zg + ag > limsup S >liminf =2 > liminf (— S ) > liminf — + lim inf (— S >
q q q q q q

*

A%,
> 2zr+ 2+ ar + ap — limsup S >zs+ag. O
q

6.2. Proof of Theorem 2.5. We start focusing on the case (i). By Theorem 5.2, for any
g > 0 PP-a.s. there exists a n/(w) such that Ng[K* — 1] < (gp(kg) +¢€)gq, ¥Yn > n/(w). There-
fore

A% Np[K*—1
limsup —2 = limsup M
q

+ap <gp(kg) +ap, P-as.

The second relation in (2.5) descends immediately from this upper bound and the matching
lower bound (4.7). As far as the first relation in (2.5) is concerned, we note that (5.2) implies
that, for any c € (0, 1) we have P-a.s.,

A% Np[K* -1
liminf =2 = liminf 1%[7
n

K* — Np[K*—1]
n

= liminf >c,
here, the final inequality follows from: (5.2), indeed, P-a.s., a n’(w) can be found such that
jointly K* —1> |en| and Ng[K* — 1] < (9p(kg) + €)g for all n > n/(w). The claim im-
mediately follows by the arbitrariness of ¢ € (0, 1).

Now turning our attention to case (i7), second inequality; we recall that, by construction,
Np[K* — 1] — Np[|en]] < max(0,K* —1— |en|) <n — |en], therefore P-a.s. we have

AL :hmsupNB[K*—l] (1—c)n+NB[7£cnj]

lim sup < limsup =1-—c¢,

given that, by (5.3), % — 0. The result follows from the arbitrariness of c. The first

inequality can be proved exactly as in previous case (7). a

7. Proofs of Theorems 4.2 ,4.5,4.6 and 4.7. The proofs of Theorems 4.2- 4.7 are based
on some ancillary preliminary concentration results. In this section we limit ourselves to state
these results and postpone their (rather standard) proofs to Appendices C, E, F, G.

7.1. Preliminaries. Let k := (kg,kp) € (NU {0})? and k = kg + kp, we define the
following sets:

(7.1) ]Ik::{k: kR—i-kB:k}, kENU{O}
Recalling the definition of x¢ in Proposition 4.4, for any x < k¢, we define:
T {k: kR+kB§I£q}=UOSk<Kqu forg<p torg=p!
(1) = {k: kr + kp < kg, ],:B’fizzg S%—I—%)}forq»p‘l.
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Hereafter, we consider the following random variables

(72) Yg(k):= sup Yg(k), Tg(k):= sup Yg(k), Ng(k) ::w

keT (k) keT(k) q
where
o s 1Bs(k/q)|
Y500 = Linor-10| U ~ G+ s
Ys(k) = Lng—iy Qi1 — nBs(k)q]
with 77 defined as in (4.8).
R min(j,nw) R
(73)  Nsljl:=Nslil = Jslil, Jslil== > U VieN, N(0):=0.
h=1

2

Furthermore, letting x = (zr,xp) € [0,00), we introduce the compact sets:

{x: zp+2p <k} forq<p~torg=p!

{x:xR+:pB§m and m2%+2‘f}é—z}f0rq>>p_1.

rp+ap

(74) T'(k):= {

Moreover, given « as before, let z > 0 be a constant such that 2z < x and £ € T(k — 2z), and
(7.5) Le(k,2):={x: ap>lr—2/2, 25 >lp —2/2, zp+xp <lp+{p+2z}.

At last, if either g < p~ ' or g =p~!, we set
(7.6)
= 1Bs(x)] . 1Bs(x)]
= max , = min
ﬁS’LE(”’z) xELg(k,2) |BR(X)| + |5B (X)‘ éS,]L[(n,z) XELg(k,2) |ﬁR(X)| + ’,BB(X)|
whereas for ¢ > p~1, we set
= Bs(x)]
(7.7) J(kz) = Iax Lo, k) cr o)y + oL, ()2 (5
Fstune = 08X g 1B 0] LS ()} HLe(e 22T ()
and
. Bs(x)]
7.8 = min Lor, (k)T (1)) -
(7.8) Cstetn) ' oelilne) [Bal)| +1BpG0] | (HRIST ()

The proof of Theorem 4.2 makes use of the following Propositions 7.1 and 7.2, whose proofs
are rather standard and reported in the Appendices E and F, respectively.

PROPOSITION 7.1.  Given 7 in (4.8) we have:

(7.9) max{Ys(k),(ng) ' YTs(k),Ns(k)} =0, P-as..

Hereafter, for k > 0, we set
(7.10) Q= {w € Q: max{Ts(k)(w), (ng) " Ts(k)(w), Ng(k)(w)} = 0}.

PROPOSITION 7.2.  For any y, z > 0 such that y + 2z < k < k¢ (with k¢ given in Propo-
sition 4.4), we have:

. .. Ns(yq+2q) — Ns(yq)
zlim 1nsz éS,Lk/q(n,z)l{N [Lyqj] i) < liminf .
EHLqu

Ns(ya+ 2q) — Ns(ya) _ .. S B
< zlimsup B8 Laesa() 1 =
q kel yq / ™ [Lqu] -

(7.11)  <limsup
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7.2. Proof of Theorem 4.2. 'We divide the proof in two steps. In the first step we assume
either ¢ < p~! or ¢ = p~!. In the second step we extend the proof to the case p~! < ¢ < n.
Step 1. Since by Proposition 7.1 we have P(£2,) = 1, it suffices to prove that limit (4.3) holds
for all w € ;. For z1, 2 € [0, k| such that 1 > z2 and w € Q,;, we have

Fy(a1,0)~Fs(w2,0) =q ' (Ns(210)(@) — Ns(220) )
<q’! (xlq — |#1q] + Ns[lz1q]] (w) — Ng[[22q]] (w) + [229] — 5132(1)

<q M(w1q — [21q] + [21q) — [w2q] + [w29] — 229)
=T — T2,
where we have used the inequality Ng[j1] — Ng[jo] < j1 — j2, for any ji > jo, ji,j2 €
N U {0}. So, for z1,x2 € [0, k] and w € Q,
|Fs(z1,w) — Fs(x2,w)| < |z1 — 22|

Moreover, for any z € [0, k],

Ns(zq)(w)
q
Thus, for any w € €, the functions F(-,w) are Lipschitz continuous with Lipschitz constant
less than or equal to 1 and uniformly bounded. Consequently, by the Ascoli-Arzela theorem
there exists a subsequence {Fs,(-,w)}, converging uniformly on [0, x| to some function
fs(-,w) (which, clearly, is also Lipschitz continuous with Lipschitz constant less than or
equal to 1 and bounded by x). From now on, to avoid confusion, we explicit the dependence
on n. We now prove that fg(-,w) is differentiable on (0, x) and compute its derivative. Note

that, for an arbitrarily fixed z € (0, ) and z € (z, “£2), we have

(7.12) Fs(z,w) = <q Nzq) =z <k.

fs(z,w) = fs(z,w) = lim [Fsuw(z,w) = Fsu(z,w)]

n’—o00

= limsup qg,l [Ng(an/ +(z—z)gn ) (w) — Ng(an/)(w)]

n'—o0
(7 13) < (Z - IL’) 'n}gnoo ke]IZ BS,]Lk/qn, (kyz—x) ]I'{N [l_an’J] (w)=k}
lza, /]

where the last inequality descends from Proposition 7.2 (we refer the reader to (7.5) for the

definition of the set L. (-, -)). Now, defined x,, := %, we have

N[quwﬂ = NS(LxQn’J)(W) = Ng(xn/qn/)(w) = Fgn (@p,w)qn .

and
FS,n’(myw) - q < FS,n’(xaw) - (.CU - xn’) < FS,n’(xn/yw) < FS,n’(wi)7
n/
from which it follows:
(7.14) lim Fp (z,,w)= lim F, (z,w)="1{(z,w).
n’—oo n’—o0o

Therefore, for any w € €,;, we have

fS(va) - fS(:B,CU) < (Z - J}) lim sup Z BS,]Lk/q”, (n,z—x)]l{N[x,,L/qn/](w):k}

n’—o00
kel lza,,r]

(7.15) =(z—x) limSUPBS,]LFn,(Z",,w)(n,zf:r) =(z— x)BS,Lf(z,m(&Z*m)’

n’—o00
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_ where the second equality follows by (7.14) and the continuity of the function u
BS.L.(x,2—z)- Similarly, exploiting the relation (7.11), for any w € €2,;, we have

K+
fs(evw) = fs(o) = (G-, vZe(w, ’ )

Thus, for any w € Q,., any = € (0, ) and any z € (“52), we have

fs(z,w) — fs(z,w) fs(z,w) — fs(z,w)

<B >
(716) Z— - ﬂsvﬂ-‘f‘(v—'-,w)('@Z—x)7 Z— - és,]Lf(l.,w)(K,fo)'
Since the set L¢(, ) (k, 2 — x) is compact, it holds
= Bs(v)] |Bs(w)|
/8 £(s K2—T) — and B = )
St = [t + s " Etenieen) = [Galw)|+ 55 (w)

for some v = (vg,vB),W = (WR.,wB) € Ly w)(x,:—z)- BY the definition of the set
L (g w) (K, 2 — z) it follows that

(7.17) vr,Wr — fr(z,w) and wvp,wp— fp(z,w), aszl|z.

Therefore, taking the limsup as z | « in (7.16) and the liminf as z | x in (7.16), by (7.17)
and the continuity of Sg, we have that the right-hand derivative of fg(-,w) at z € (0, k) is:

BS(fR(mvw)afB(xaw))
wi)afB(faw)) + BB(fR(wi)va(x’w))'

Since, for fixed w € Q,, the functions fs(-,w) and pg(-,w) are continuous on [0, x|, and
©s(-,w) by (7.18) is the right-hand derivative of fs(-,w) on (0, x), we have that fls+(0, w) =
©s(0,w). Moreover ¢g(-,w) is the derivative of fs(-,w) on (0, x) (see e.g. Theorem A22 p.
541 of [7]). At last, given that by construction f(0,w) = (0, 0), we conclude that f(-,w) = f(+)
is the unique solution of the Cauchy problem (4.2).

Due to the uniqueness of the solution of the Cauchy problem (4.2), for any w € €, the
whole sequence {F,,(-,w)}, converges to f(-). Indeed by repeating previous arguments, it
can be immediately shown that any converging sub-sequence {F,, (-, w)}n~ of {Fy,(-,w)}n
(among which the sub-sequences achieving the limsup and lim inf) must converge to the
unique solution of the Cauchy problem (4.2), f(-). Finally, since F(-,w) and f(-) are both
Lipschitz continuous on [0, x|, P-a.s., the convergence F(-,w) — f(-) is uniform on [0, x].

Step 2. Since the function Bs(x) is discontinuous at the points (g, p) such that T2T0E —

is not always continuous. However, the func-

(718)  fgt(z,w) = ps(z,w) == Br(fr(

1, we have that the mapping v — BSL”(K,Z,QS)
tion u — BS,Lu(n,z—x) is continuous on T'(x) (as defined in (7.4)) if = — = is such that
Ly (k,z — ) C T'(k). By Proposition 4.4(iv) we have f(z) € T'(k) if x < k. Moreover,
as long as f(x) € T'(x) we can always make z — x so small that L, . (k, 2 — ) C T'(s).
Hence we can again obtain (7.15) and then proceed as before. O

7.3. Proof of Theorem 4.5. We start proving (4.6). Let f as in (4.2) and define
b(k):= Ie%n]maX{BR(f(x)),BB(f(x))} >0

K

where the strict positivity of b(x) stems immediately from Remark 2.3 and Proposition 4.4.
For § > 0 arbitrarily fixed, define:

(7.19) Bt (k,0) ;= {x=(zg,z5): x€[0,x]> and |x—f(zr+2zp)| <},
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Denoted with T'(k) the interior of T'(x) as defined in (7.4), by construction f(z + 25) €
T'(k) for every x = (zg, ) € [0, k). Therefore, since 3 is uniformly continuous on T'(x
we can always choose ¢ sufficiently small so that B (x, dp) C T'(x) and

max_||B(x) — B(f(zr +zp))|| <b(r)/4
x€B}(k,d0)

from which we immediately get:

(7.20) min = max{fr(x), Bp(x)} > 3b(k)/4.
x€B; (k,00)

Now, by Proposition 7.1 and Theorem 4.2, setting T (k) := max{Y g(x), T 5(x)}, we have
T(x)/(ng) =0, and sup |F(x)—f(x)|—0, P-as.

z€|0,k
Therefore, for P-a.e. w € €2, there exists ng(w) such that for all n > ng(w):
(7.21) F(r,w) €B;(k,60) Vxel0,k] and Y(x)/(ng) <b(k)/4.

Combining (7.21) with (7.20) it follows that for P-a.e. w € €2, there exists no(w) such that
for all n > ng(w):

min max{ﬁR <N[quﬂ(w)> .85 (NH:CqH(LL)))}
z€[0,K] q q

(7.22) > min max {ﬁR (W) ,BB <W> } > 3b(k)/4.

z€[0,x] q q

From the second relation in (7.21), the uniform continuity of Ss(-) on T’(k), for an arbitrarily
fixed z € [0, k] we have that for P-a.e. w € (2, there exists n; (w) such that for all n > n (w)

(10) |5,y 1)~ maBs(N(zg)()/a)| <b(s)/4 S € (R,B)
and therefore by (7.22) we have that for P-a.e. w € 2, and n > max{ng(w),n1(w)} it holds:
(09) QL 11 (@) > b(k) /2 or  (ng) ' Q)41 (w) > b(K)/2,
which implies:
R B
(7.23) min 2@ (D@ Wy
kef0.xq) (nq)

By the definition of K* and Lemma 3.6 we have Qf}* = Qﬁ* = 0. Then (7.23) implies that
K*(w) > kg, for P-a.s. w € Q and for n > max{ng(w),ni(w)}. Then (4.6) follows.

7.3.1. Proof of (4.7).

A% NplK* -1

liminf —£ = liminf M
q q

where the final inequality descends from (4.6) and the monotonicity of Np(-). Therefore,

recalling Corollary 4.3 and Proposition 4.4, we have
Np[K* —1] Np(kq)

lim inf —2 > lim liminf B = lim fp(k)=gB(kKg). O
q K—00 q K—00

Np(rq)

+ap > liminf — 2%/ +ap V>0 P-as.,
q
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7.4. Proof of Theorem 4.6 . The proof of Theorem 4.6 exploits Lemma 7.3, which is
introduced in the next subsection.

7.4.1. Preliminaries: comparing activation processes. The next lemma compares the fi-
nal number of S-active nodes for two activation processes (denoted by label 1 and 2 re-
spectively), which start from different initial conditions (i.e. a different number of R and B
seeds). For instance, given h € {1,2}, we denote by ag, the number of S-seeds of process
h, and by Ag ;, its corresponding final size of S-active nodes. Both processes are defined on
the probability space (2, F,P).

LEMMA 7.3. If aR.1 < aR.2 and ap,1 > ap,2, then

A}%,l Sst A*R,2 and A*B,2 Sst A*B,l
The proof exploits a standard coupling argument. We report it in Appendix G.

7.4.2. Proof of Theorem 4.6. 'The proof follows from a comparison between the dynam-
ics of the original system (say system 1) and a companion system (say system 2) in which we
set age 2 = 0, while we keep ag2 = ag, 1. As already noticed in Remark 2.2 the final size of
S-active nodes in the companion system, say Ay ,, equals the final size of active nodes of the
bootstrap percolation process studied in [8], see also [21, 22]. By Lemma 7.3 and Theorem
3.2 in [22], we have that for any § > 0 there exist ¢(d) > 0 and ns such that, for any n > ng,

Ag’,l AZ’Q —
P . >zgt+ag+d) <P e >zg+ag+6 ) =0(exp(—c(d)q)).
The claim then follows by a standard application of the Borel-Cantelli lemma. a

7.5. Proof of Theorem 4.7. Part (i). Denote with k = (kg, kg) € (NU {0})? and x =
(zR,zp) € [0,00)?%; and set:
Ce(k,e):=={k: krt+kp=Fk, [[k/q—f(k/q)l|<c}, Ci(k,e):={x: |[x—£(k/q)l| <e}.

By Theorem 4.5, Proposition 7.1 and Theorem 4.2 we have that, for any w € €2, and
e € (0,1) there exists no(w, &) such that for any n > ng(w,e) we jointly have:

(7.24) K*(w) —1> |Kq], sup  [|N[k](w)/q —£(k/q)|| <e
0<k< g

and

(7.25) L) ()= 19535 (K /@) (1 = €) < Linpijw) =13 Qi1 ()

< LN w)=ky198s(k/q)(1 +¢) Vk: kg +kp < |kq].

As long as k < |kq], by choosing ¢ sufficiently small, we can always guarantee that
Ct(k,e) C T'(k), with T'(k) in (7.4). Therefore by (7.25) and the uniform continuity of
Bs(-) over Ci(k,e), we have

(1-2) > INkw-x min ngBs(x)
x€C;(k,e)
keCe(k,e)

< Y INpw—@in <1+ D LNkw—k} ggf}f)n(ﬁs(X)
KeC (ke) KeCe (k) HEelE
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Note that since ||N[k](w)/q — f(k/q)|| < e implies N[k](w) € C¢(k,e), then from the in-
equality on the right of (7.24), we have:

Z ]L{N[k](w):k} = l{N[k}(w)e(Cf(k,e)} =1 forwe,andn > ng(w,a).
keCe(k,e)
Moreover, recalling (3.13) we have
{K*(w) = 1> |rq|} C{R{,1 = QFy1, Yk <|rql,VS € {R,B}}.

Summarizing, we proved that, for any w € €,; and ¢ € (0, 1), there exists ng(w, &) such that
for any n > ng(w,e), it holds

0<(1— i <R ,<(1 < 00,
(10, g A0 < Rl < 14 )_ st <o

for any k < |kq|. By the regularity of functions 3g(-) and fg(-), it follows that there exists a
¢’ € (0,00) such that, for any k < |kq],

(726)  fs(f(k/q)) —ce< min fs(x)< max Bs(x)<Bs(E(k/a) +Ce.

So, for any w € §2,; and € € (0, 1), there exists ng(w, €) such that for any n > ng(w, ),

R4 (e) = (1—e)na(Bs(E(k/q)) — 'e) < Riyy < Risa(e) = (1+)na(Bs (E(k/a) +ce),

for any k < | kq|. Note that the upper and lower bounds on R,f 41 are deterministic.

By Proposition 3.5, and its extension mentioned in Section 3.4, we have that the sojourn
times {Wj}1<p<|xq| are conditionally independent given {(RE,RB) = (¢}, 4P ) F1<k<|rq
and Wy, is distributed according to the exponential law with mean (q}f + q}f)_l. On (2, for
1 <k < |kq]|, we define the random variables

RE+ RB
=R, . =B, .\
Ry (e) + Ry, (¢)

It is immediate to verify that

— RE 4+ RB
W) .= W, and W& i=p——k "%
L ¢ ¢ TUREe) +RE(e)

R B
(7.27) WO | {(RE,RE) = (F'. )} L EXP (R’f ©) - (5)) |
L By (e)+ Ry (o)
(7.28) Wﬁf‘)r{<RE,R£>=<qE,qE>}:EXP< R )

By (7.24) and (7.25), for every ¢ > 0 and w € Q, there exists ng(w,e) such that for any
n > ng(w,e) we have

(7.29) WE <qw, < W 1<k<|rql.

Since random variables {W} }1<j<|+q) are conditionally independent given { (RE,RB) =
(a8, a8 ) Yi<n<|wq) and Wi [{(Rf,R}) = (qff,qf)} follows the exponential law with
mean (qu + qf )~1, a standard computation shows that sequences {w;(j)hgkﬂxq | and

{ng)}lgk:gp:q | are independent. The proof is reported in Appendix K Furthermore, re-
lations (7.27) and (7.28) imply that

w' LExp (Rk €) By (5>> and W, LEXP (R’f ©) ;Rk (5>> :
U
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as can be checked by un-conditioning with respect to the random variables (Rk,R, R,f ). B
(7.29), recalling that Wy, := Tjy.11 — T}, for every € > 0 and w € €, there exists ng(w,¢)
such that for any n > ng(w, ) we have

lkq]— lrg]—1

Z Wi < T} < Z Wi

Therefore, for every € > 0 and w € (),

lrg) = lrg) -1
liminf Z W < liminfn7) ., <limsupnT]., < limsup Z W, ©
k=0 k=0
Denoted with pi, (K fo Wdy, due to the arbitrariness of € > 0, the claim imme-
diately follows if we prove that
lrq)—1 lkgJ-1
lim inf Z w,(:) > (k) —(g), lim sup Z W,(f) < (k) +v(e), P-as..
k=0 k=0

with v(¢) — 0 as € — 0. To prove these relations, since ) | ]EﬂquJ W,(:) and ) ,Eflj w,(:) are sum
of independent and exponentially distributed random variables, we apply the exponential tail
bounds provided in [16] and reported in Appendix K and the Borel-Cantelli lemma to infer
that

IE’Z%_IW(/;%&) _H(E)(R)—m and 'Ejﬁqj 1W(8) 7(6)(5)%0, P-a.s
1 (k) 1 (k)

where

(730) 1 (x): Lwil 1 d 79 (k): szfl 1
W L e M YT & me e
Now, define

Bg(x,€) = (Bs(x) — de)(1—¢), Bg(x,e):=(Bs(x)+e)(1+¢) and A:=1/q,

with ¢’ defined just before (7.26) and € > 0 chosen sufficiently small that 3(x,¢) is strictly
positive. By the definition of Riemann’s integral we have

©)(x) = " _ A " !

w (k) = — — = — — — dz

. kzz:o Rf(s) + RkR(e) keNzu;o}: > s Bs(E(kA),e) oo Jo Yoo Bs(f(2),€)
0<k<r/A

and ﬂ(g) (k) — fo'i mdx. To conclude the proof of (4.9), we note that 5(y,<) and

Y,€) tend to ﬁ ( ), as € — 0, uniformly in = € [0, ], and so
=—————dz | pu(k) and / f—de,u*(n), ase 0. O
/ 25 B4(E(x),€) 0 2sBs(f(x)e)
The proof of Part (i7) follows similar lines.

8. Proof of theorems 5.1, 5.2 and 5.3. We start introducing a new auxiliary dynamical
process.
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8.1. Preliminaries: the R-stopped activation process. Let N(t) be an activation process
and Z,, be either a fixed time or a point of IV, i.e., Zyop = T}, for some fixed k. We define
the R-stopped activation process N;Op as follows: up to time Zy,, the R-stopped process
coincides with the original process. On the event {Tx-_1 > Zgop}, at Zop the R-activation
process stops (no further nodes becomes R-active), while the B-activation process goes on
according to the usual rules: upon wake-up every B-susceptible nodes which is still white
becomes B-active. The process terminates when no jointly white and B-susceptible nodes
are found. More formally, exactly as in the original process, for ¢ < Z, points of N§ P are
obtained by thinning {(77, V}/) }xen, retaining only those couples (7}, V}), k € N, for Wthh
at time (77,)~, the white node V) satisfies the “threshold condition with respect to S”. For
t > Zyop We retain in N only those couples (7}, V}), k € N, for which, at time (7})~, the
white node V satisfies the “threshold condition with respect to B”. No points are added to
NP for t > Zyop, i€, NpP(t) = Ng(min(t, Zyop))-

The R-stopped activation process can be prolonged beyond its natural termination along
similar lines as for the original process N. From now on we shall refer to the prolonged
process. To distinguish variables associated to the stopped and the original processes, we add
a superscripts/subscript “stop” to the former. Through a standard coupling argument we have

(8.1) AP > A% and TP <TE,  VkeNu{0}  P-as.

The proof of (8.1). is reported in Appendix H. More details on the R-stopped process are in
Appendix M. Lastly we state a lemma, whose proof follows the same lines of Theorem 4.7.

LEMMA 8.1. Assume ¢ < p_1 and Zgop < TLR | P-a.s., for some « > 0, then it holds:
B stop
(8.2) Lan / 53 dy, P-as.
for any kg € (0, zp), when ¢ =g and ap < 1, and any kp € (0, 00) otherwise.
8.2. Proof of Theorem 5.1. By Theorem 4.7, for any € (0,00), we have

(8.3) Tlq = T

dy <oo P-as..

/ ZSE{RB}/BS( (v))

Moreover, by (8.1) and Lemma 8.1, given an arbitrary € > 0, we have P-a.s.

g5 (Kkg)+te) 1
B,stop B B,stop
@D Tigne)+era) < Tllatwar+e)a) 09 1T g gy 1erq) = V7= / o) "
We shall show in Appendix N.2 that 1) > 7 either when ¢ = g or g < ¢ < p~!. Denoted

with my : w;rTQT, ma = 21/”” and kg := | (gB(kg) + €)q], we introduce the event:

(8.5) Ag:={TE >mor, T\, <mur, K* —1> |kq]}, with P(limsup(A§)=0),
as immediate consequences of (8.3), (8.4) and Theorem 4.5 (7). Now let [Z;, Z; 1), for 0 <

i <1y :=[logy L/ (n (L )pJ J} a set of intervals, defined by:

kg

Zy = T\_ Ziy1:= min(TzN(Zi), Z; + A2> with A; =

Kq|» .
i

—1

27‘1',%7'9 [W - 2fﬂllir:| ,q=4g and O < 1< 'l.() = UOgQ MJ

[2rq]
8.6) X\, := 2"n(/iqp) 67“!1 7 gL <K p~! and 0<i< i
cn/3, 1o <1 <1y



COMPETING BOOTSTRAP PROCESSES 23

where c; is a suitable strictly positive constant. From now on, for the case ¢ = g we assume
that « is a chosen sufficiently large to guarantee — > 2k Define K; := N (Zi)

for 0 <14 < 41, and introduce the events:
Di = {Ki—H = 2i+1 Lfqu}, and 82 = {NB[h] < KB Vh € [Ki, Ki—l—l)}-

Note that, as immediate consequence of the definition of K;, we have T, = Z;. Moreover
K;+1 < 2K, from which we obtain K; < 2'|kq| and D; 11 C D;. Moreover by (3.11)

8.7) Qf 1 > |Sg[K]| — .
In addition, note that
(8.8) &in{ke|KiKi1)} CS™ ={Ng[k] < rp}.

Moreover by Lemma 3.9, for any k € [2¢|kq/, 2"} | kq]). we have:

8.9 [Sr[K|IS™ > Bin(nw, ms(k — kg, £p)) > Bin(nw, 7s(2' | kq| — k5, 5))

1

At last, note that for any i such that 2¢| kq] < p~! we have:

752" kq| — kB, k) >P(Bin(2'|kq| — kB + ar,p) = r)P(Bin(kp + ap) = 0)

2 kq| — ’
:< |J‘JQJ THB + aR>pr(1 _p)2 anjfl-cBJraRfr(l _p)/-cBJraB

[(22 L/ﬂ” — kBt aR)pre—Qi lkqlp

- . (1+0(1)
(8.10) > [(2Z LKQJ *:!B + aR)p}refl(l + 0(1))7

ws(2'|kq| — K, —kp) >P(Bin(2'|rq| — kB + ar,p) > r)P(Bin(kp + ap,p) = 0)
[P(Po((2'|wg) — #p +ar)p) = 1) + O(p)|P(Bin(rp + ap,p) = 0)
[P(Po((2' k) — K +ar)p) > 7]+ O(p))(1+0o(1)) > e,

for a sufficiently small constant c; and any 4 such that 2| kq| > p~! /2. Then, defining

-1 21 _ _,’_ [ . .
vi = { eTn(‘Lﬁqij rotan)l ) <<y

(8.11)

r!

8.12
(8.12) en/2, in <i< iy
and I; := {|Sr[h]| > v Vh € [K;, K;4+1)}, for any 0 < i < i1, we have
KN {k € [Ki, Kit1)} CKP = {|Sg[k]| >} and
(8.13) Ks = {3k € [Ki, Kin1) : SrIK]| < 7} = UK {k € [K; Kii1))]
k
By (8.8) and (8.9), setting conventionally D_; := (2, it follows

P ((9<§’“>)c N&ND_ Nike [KZ-,KZ-H)}) <P ((9<§’“>)c N 9<’f>)
<P (%) 19) =P (1Sglkl| <7 | §®) <P (Bin(nw, ms(2'|5q] - £5.k5)) < %)

(8.14)
iy T T

e HFHG)  jy<i<i
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where the last inequality descends by (8.10) and (8.11), and the application of concentration
inequality for binomials (I.2). In addition, by (8.13) , (8.14), the definition of D;_; and the
fact that K; 11 < 2K, we have

P(KN & NDi_1) =P(Us[(KF)e N {k € [Ki Kiy1) Y NENDi_1)

(Uk[(Y
P(UL[(K¥Ye N {k € (K, 2K)} N {k € [K;, Kip1)}] N & N Dy_1)
P(UR[(K™)e N {k € [2¢| kg, 27 [ 5q))} N {k € [K;, Ki1)}] N &N Dy_y)

1| g —
:P(Uizzi&gjj 1[(99( )N{ke K Kiy1)}NEND;_q])

21+ kg |—1
< > P ng®) < (2kg)hi,
k=2|rq]

where in the final inequality we have applied sub-additivity of probability along with (8.14).
Now, for any 0 <4 < ig, from (3.11), by assuming « sufficiently large, we have

-1

[(2'kq — kB + ar)p]” _gitl

e
Qﬁq | K NDiin{ke K Kit1)} 2771 - Kq
-1 ro
(8.15) N (Gl V221G ) PYAE
2 7l
et (2= 1/2)(kgp))" e |
— 2l > (20— 1/2 ¢ gitlg s
2 n r! Hg ( / ) K’ 92 (1 _ 1/,’")71,1 K/g sl
Now in the case ¢ = g,
et (2= 1/2)(kgp)]" - e |
_9itl s (9f 1/ T gitl
2 " r! rg > ( /2) Kg27“(1—1/r)7“—1 Kg
o1
#.16) > \i= 2 | 20

rr(l—=1/r)"

1 r
T n(%)) = g. For the case

where we have used the identity 7 (1 — 1)

LN (2R R PR (. Ve T
r T

. ~1
(8.17) > A :=2"n(kqp)" Z ,
where we have exploited that ¢ < n(gp)". Note also that

(8.18) Q| KiNDiiN{k€[Ki, Kiy1)} > cin/2 — (27 s+ 25)g > N :=c1n/3

for all n sufficiently large, ig < i <. Define Z; := {Tk,,, — Tk, < A;} and note that
Z; C{K;+1 =2K;}, from which we immediately get that:

8.19) Nj<iZ; C{K; =2'|kq|} = D;_; and ﬂ“ ! Z2; C{K;, = 24 kq| > | f(n)p 1]}
In addition since K; | D; 1 =2'|kq| and K; 1 < 2K; :
P(Z; | KinD;—1) <P (TT'HLNQJ — T lkg] > A KN pi—l) ,  with

2'| kg1 2'| kg1

T2’3+1|_nqj — Ty lkq] = Z [TQ kgl +h+1 T anJ-I—h Z W [kq]+h+1
h=0 h=0
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where {W, {11} are conditionally independent given { Ry: | cq|+h+1} 4 With Woi g 441 |

{Ryi|wq|4+hp1 =M} = = EXP(m). Then, proceeding similarly as in the proof of Theorem 4.7,

R
for any 0 <+¢ < i1 we can define a sequence of r.v.’s W( D= WWW |kq|+h+1> Which

turn out to be conditionally independent, with law exp()\ ), given the sequence of visited
states {Xi| g |+h+1 - as Well as independent of 3Hy: ;|- Moreover W(z) > Wz(Z)an |+h41 ©
{Roi|kg)+h+1 > Ai}. Since for an arbitrary k < 2" kg we have n — N[k] > n — 2" kq > )\z, it
follows from (3.12), (3.13) and (3.10) that { Rj1 < A} C{Ripy1 = QF,; + QP 1, QFy 1 >
0, QEH > 0}, hence {Rri1 < N} C {Qk}“z+1 < \;}. Now, recalling (8.15), we have
KinD;—1 C {Qk,Jrl >N VEk €Ki, Kit1), Ki =2"kq|} C{Rgs1 > \i Vk € [K;, Kiy1),

= 2| kql} C {WQ“MM+1 <W' Vhe0,Kiyy —2|kq))}, and:
P (TKiJrl — Ty, > A; ‘ XN Di—l) =P (TKiJrl — Ty lrkq] = A; | XN Di—l)

K,H,l*?i \_:‘qu —1

<P Z /WIEZ) >N | K;NDiq
h=0
2rq)-1 2ngl-1
<P S WIsAKNDi | =P Y WA
h=0
(8.20) =P (Po(\;A;) < 2°|kq)) < exp(—\AH(1/2)),

where the latter inequality follows from (I.3). Now, since
11 1
Ao N (ﬁz;ﬁl (:Kl N Z.Z)) CApN (ﬂ;lziolz,z) - {Tﬁc(n)plj <my7+ Z Al}
i=0

recalling that Ty, < Ty, + ZZ:;(I) A, and observing that, for n and « sufficiently large, we
can always assume » .. A; < (mg — my)T, it results that

(8.21) Ao CNigte ={T2 > Tk, },
by (8.19) we have 5 Ag N (N;<i(X; N Z;)) C (N2, €) NDi—y € & ND;_1, and:
P(AG U (Ui (K5 U Z5))) =P(AF) + P(Ao N UL (K N [N5<i (35 N Z)])])
P(Ao N U5 (2§ N K3) N [N<i(K5 01 25)])])
<P(AS) + P(Us (KE NDy1 N &) + P(U(ZE MK NDyp))
(A

(8.22) <PAG) + > PKENDiNE)+ Y P2 KinD;y).

At last observe that by (8.19) right inclusion, (8.21) and the inclusion:
Ao N (NMKG) C UK > Ko, QR > 0,V k € [Ko, K;,)} C{K* > K;, }.
given that by construction QE* = 0, therefore

Ao N[5 (K NZ)] € B o= {Np(Lf(n)p™!]) <kp} N {K* = 12> [ f(n)p™']}

5 .
We conventionally set N <02 = N;j<oX; =Nj<o(K; NZ;) =
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Note that, by the application of the Borel-Cantelli lemma, we can claim that lim sup P(B¢) =
0 provided that we show > P(B°) < 3 P(ASU (UL HKEUZE))) < 0o. Now, we can first
apply (8.22) to the r.h.s and then (??) and (8.20) to show that the resulting latter two infinite
sums are converging. Lastly, > P(Af) converges due to the (second) Borel-Cantelli lemma

and (8.5) (we recall, indeed, that A(()”) are independent). O

8.3. Proof of Theorem 5.2 . The proof of Theorem 5.2 exploits the following lemma,
whose proof is given in Appendix N.1 .

LEMMA 8.2. Let{X,},>1 and {Y}, },>1 be two sequences of non-negative random vari-
ables and { f,, }»,>1 a sequence of non-negative numbers. If X,, <, Y}, forevery n,Y,,/f, — 0
a.s., as n — oo, and {Y}, },,>1 are independent, then X,/ f,, — 0 a.s., as n — oo.

Part I: proof of P (liminf{Np[K* —1] < |[(9B(kg)+€)q]}) =1. Let f(n) be as in
Theorem 5.1(¢). and consider the R-stopped process with Zg,p, = T\ fnyp-1)- Set Ko =

| f(n)p~t], K1 := ko + |eg], with ¢ > O arbitrarily fixed, m( ) = |(9B(Kkg) + €)g] and
(1) = |(g9B(kg) + 2¢)g], and define the events:

Boiz{TnoSTH(0>}:{NB[/€O]§HB} and Cp:={K"—1>kop}.

By (3.11), we have Qfﬂ’iolp =QP5 | <|85[ko]|. Now invoking Lemma 3.9, we have
185 k0] | | Bo = |S5ro]| | Bo <« Bin(nw, w5 (ro — iy, £1))  with
(8.23) Bin(nw, mp(ko — Hg),ﬁB ))/g—0, P-as,;

indeed it is rather immediate to check that nyymp (ko — 533) K ) /g — 0. Then applying

concentration inequality (I.1), we have P(Bin(ny, 7 (ko — mg), K(B))) >eg) < exp(—%),

for n sufficiently large and ¢ > 0. The claim (8.23) follows by a standard application of

Borel-Cantelli lemma. Slmllarly, one has 85" [k1]| | Bo <t Bin(nw,mp(k1 — mg),kg)))

(1)

with Bin(nw,7g(k1 — kg, k )/g — 0 P-as.. Therefore, by Lemma 8.2 we have (recall-
ing that the above r.vs for dlfferent n are independent):
(8.24) 185" Kol | Bo = 0a.5.(9) and [85"[k1]]] Bo = 0a.s.(9)-

Now, consider the quantity Q o +§’ First note that

(8.25) 8plko] = 8 ko] C SF ko + k] C 8K k1], VE < |eg]

since, focusing on the R-stopped process, no node becomes R-active after Th. ", and therefore
the number of B-susceptible nodes after T " is monotonically increasing. Of course it holds:
(8.26)  ViPlko] =Vplko] and V3P[ko+ k| =ViP[ko] = Vrlko],  Vk< |eg].

Recalling that ) up to time Tk~ _1 only S-susceptible nodes becomes S-active; i) a node can
be S-susceptible only if it has collected at least 7 S-marks, i.e., {v € Sg(t)} € {Dg(t) >r};
it1) since D¢[k], i.e., the number of S-marks collected by a node v, is non-decreasing in F,
we have

Le,|(Vw \ 85 k1)) N V[ro] N{v: D k1] > 7}

(@)

B2 e, (Vi \ 85 [xa]) N Visliol] € e, [(Vr\ Sio]) 1 Vislioll
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Here equation (a) follows from the fact that, conditionally on Cy, due to the previously men-

tioned properties 7), ii) and iii) we have: V[ro] C {v: D} P[ro] > 1} C {v: D3 P[r1] >

r} and inequality (b) follows from (8.25). Then, noticing that: i) N [k1] = Ng[ro] + [eg];
ii) conditionally on Cy we have Vi [ro] C {v: D} ®[ro] > 7} = {v: D} P[k1] > r}; and
recalling (3.9), (8.25), (8.26) and (8.27) we have

QP 15,e, = [|551§°p[f€1]! — Ng"[k1] = 185 (k1] N VR lka] N {v : D[] > 7}
+ (Vi \ 857 (k1] N VP [k1] N {v: DF*Plr1] > r}|| 1z ne,

= [lSEOP[mH — N [sa] + |(Vw \ 85" [k0]) NV [rol|
+(Vw \ 85" [k1]) N (V5" (k1] \ Vlro]) N {v : D [k1] > 7}

—|8 55" [k1] N Vr[ro) !]

<1g,ne, [\S%OP[MH — [8Blrol| + [8Blro]| — NB[ro] — €g]
—[8lro] N Vrlko]| + |(Vi \ S5¥[ko]) N V5 [ko]l

+|(Vw \ 857 [k1]) N (V5" [k1] \ Vilro]) N {v: D P [k1] > 7“}\]
<1p,ne, [Qfﬁolp + |85 k1] — ey

(8.28) +H(Vw \ 85" [1]) N (VP[] \ Vis[so]) N {v - D[] > T}\] )

where the last addend in (8.28) is not larger than |eg], since

(V5" [r1]\ Vako])| = Ng[r1] — Nplro] = [eg].

Moreover, the last addend in (8.28) is different from O only on the event { K™% < k;}.
Indeed, for any k be such rg < k < k1, upon {K*¥P > k;} we have V;'P € 83" (k) with
8%P(k) C 8% [k1]. In other words, {K** > x1} C {(V5P[k1] \ V3P [ko]) € 8Pk}
Consequently, we have

Qfl’iolplﬁomeo < [Qfo’iolp + |S%0p[f£1]| — Legj ]I.{K*,slop>nl}:| ]L'Boﬂeoa P-a.s..
Combining inequality (3.11) and (8.24), we have

B
_Qm’it—olp + 0qg.s. (g)

(8.29) ]l{K*’S"’P>m1}]l‘Boﬂ€0 S LEgJ ]I“BOOGO'
By construction {Qfl’iolp <0} C{K*"P <k}, and so
(8.30) ]I,{K*,stop>ﬁl} S I{inﬁ){)zo}.
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By (8.29) and (8.30), after multiplying both sides by 1 (QPr>0) We immediately have

B
1 1 _Qnﬁ-olp + 04.5.(9) 1 1
{K*,slop>,€1} 30ﬂ60 >~ ngJ {QB.slopZO} BOQGO'

k141

Now, noticing that

Bistop
— + 0q.s.
QH1+169J a.s <g> I{QB,SIOPZO}IBOQCO S thU.p Oa.S-(g)

k1+1
we deduce 1ip-sorsp,ylB,ne, = 0 P-a.s., which implies 1x-sos,,3 — 0 P-ass., since
lim1g,ne, = liminf 15,ne, = 1 P-a.s., by Theorem 5.1. Now By N {K*%P < ;} C
{AFP < /{g) + |eg] 4+ ap} and the claim follows by the arbitrariness of ¢ and (8.1).
Part II: proof of P (liminf{K* —1> |en]}) = 1. Set k; = min{2%ko, |cn|} for 0 <i <
i = [logy 1721, and define Ag := {K* — 1 > o} N {Np[K* — 1] < &9}, with

[f(n)p~1]
P(limsup(A§) = 0) by Theorem 5.1 and Part I. Then for any 0 < i < 41, we have:

lim sup 1s,ne, =0 P-as.,

{K* — 1€ [ki, kis1)} N Ao C {3k € [ki ki) st QFF .y =0, Np[k] < w10} with

k,;+1—1
P(3k € [ki ki) s.t. QFyy =0, Np[k] <s35) < S P(QF,, =0, Np[k] < &)
k:ki

and so by (3.11), Lemma 3.9 and concentration inequality (1.2), it follows

i+1_1

k
P(K* — 1€ [kiskis1), Ao) < > P (Splk] <k, Nalk] = k - vif), Np[k] < vy )
k=k;

kigi—1
< Z P (Bin(nw,TrR(k: — lig), Hg)) < k:))

. ] c
< 2P <B1n(nw,7rR(k¢ - ,‘{(BP)’K,(BP)J)) < k¢+1> < exp (—an (1 - >> ,
2T 3
for any 0 < ¢ < 47 and n large enough. The claim, as in Theoren 5.1, follows by a joint
application of the two Borel-Cantelli lemmas (A(()”) are independent), by observing that:
ii—1
P(K* — 1> [en]) <P(AG) + Y P(K* — 1€ [ki kiy1),Ao). O
i=0

8.4. Proof of Theorem 5.3 . Let f(n) be the function considered in the statement of
Theorem 5.1(i7), for the case g < ¢ < p~!. Define

Lf(n)p~Hif g<qg<p! 0 p' i g<g<p
8.31) wo:=1 [wp~ '] if g=p! kp =1 Lfep]if q=p7"
| Kq| if pl<g<n lq] if pl<g<n

where « is arbitrary and f 5 is defined in Proposition 4.4 (ii7). Due to the arbitrariness of
note that ratio g/ ng) can be assumed arbitrarily large for values of n large enough. Define:

(8.32)
Coi={Tu, < T/} = {Np(ro) <ri'}, Doi={T—1>Te} = {K* =12 o},



COMPETING BOOTSTRAP PROCESSES 29

(8.33) Zy = min(THO,TZn), Zitq = min{Tyit1,,, Tzﬁlng) Tien }s >0,

(834) I:= mln{z . N(Zz—i-l) = LCTLJ} = mm{z . Zi+1 = TLan}

We can bound I as follows:

8/1'0

(835) {i<I<i}=Q, withi:= L10g4 ] J i= { [10%4 L,c.@m * PogQ %W }
kB

for all n sufficiently large to guarantee that all previous expressions are meaningful. Letting
K; = N(Z;), note that by construction:

(8.36) K; = N(Z;) <min(4'rg, |cn]) and Np(Z;) <2k,
Finally, consider the events

(8.37) Ai={Ziy1 =min {Tys11ey, Ten } } = { Kiy1 =min {4 kg, [en] }}, >0,

(838)  B;:={Qf,,>NandQp,, < ¢ Vhe K, Kip1),i <I}U{i>TI}, i>0,
Here

A i=n(1 = 6) — min{4" ko + 216\ en},  with 5 € (0,1 — c) arbitrarily fixed,

¢; 1= max {18ne74i”°pmin{(1’E)H(1/S)’Tls IOg(ﬁ)},g}

where € > 0 is arbitrarily small. Now, we can check that for n large enough:
(8.39) A;NCy=B,NCy=Cy, fori> 7.

Indeed choose i > i, then by (8.35), Cy C {i > I} = Q = B;. This proves B; N €y = €y,
for i > i. Now, note that by construction Z I(w)+j (W) = T|en|(w), for any j > 1. Therefore,
for any w € Cp and I(w) <@ < i, we have Z;1(w) = Zj(u)4;(w) = Ten|(w) (With j =
i+1—I(w)>1), then

Zi+1(w) = Tl_an (w) = min{T47:+1,{0 (UJ), T2€+1K’(BP) (w), T\_C”J (UJ)} = miH{T47:+1HO (w), T\_an (w)}

which finally yields w € A;, for all n large enough and i > 4, and the proof of (8.39) is
completed. We shall show that there exists 7 such that for any n > n:

(8.40) sup P('Bf N (ﬂogjgiflflj) N 60) < n3 (e_n(l_g)H(llgjz) + e—";‘)log8> ,

0<i<i
as well as,
o)
0<i<i

note that for the case i = 0 we conventionally set (Ng<j<—1.A;) := Q. Now we prove the
relation

(Ni=0Bi) N Do N Co C{Tk-—1> Zo, Q1 >0k € [Ko, Kr41)}
(8.42) C{Tr- > Zr1=Tien) };
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observe, indeed, that we have
Ni>0B; = U; ((ﬂizoﬁi) n{I Zj}> =Uj (((mingi) N (Ni>jBs)) N{I = j}>

843) DU (( Ni<; Bi) N (Nisj {i > 1}) N{I = j}) gy (( Ni<; Bi) N{I = j}),

where the set inclusion is a consequence of the relation B; O {i > I'}. Comparing the second
and last terms in (8.43), we immediately have

(8.44) NisoBi = U, ((mzoﬂ%i) n{I= j}) —U; (( Ni<; Bi) N{I = j}).

By the definition of B;, we have B; C {QF, |, > 0,Vk: k € [K;, Kiy1),i <I}U{i> I} and
so (Ni<;B;) N{I =4} C {Qk,RJr1 >0,Vk: k€ [Ky,Kry1),I = j}, which, combined with
(8.44), yields Ni>0B; C{QF,, >0,Vk: k € [Ko, K;41)}. Similarly we have

(8.45) ﬂjgz’Bj - {QkRJrl >0 Vke [Kg,min(Ki+1,K]+1)}.

Considering the intersection with the set Dy N Cp, we finally have (8.42), where the last
inclusion therein follows by noticing that Qﬁ* = 0. Now we prove the relation:

(8.46) (Niz0Ai) N Co C{N(Z141) > N(Z1) > 4" ko, Np(Z111) < 2”1/@%))}-

By (8.33), the definition of Cy and A;, and (8.34) for any w € A; N Cy N {I[(w) = j},
with i < j, we have Z;y1(w) = Tyit1,,(w), Tyit1p,(w) < T§+ln(0) (w) and Tyiv1y, (w) <

T|cn(w); while, for any w € A; N Co N {I(w) = j} we have T, (w) < Tyi+1x,(w) and
Tenj(w) < B (w). In particular, for w € A;_1 NA; N Cy N {I(w) = j}, we have

2i+14()
Zj(w) = Z[(w) = T41,€0 (w) S Zj+1(w) = ZI+1(w) = TLCHJ (w) S T2B;+1h0 (w) Claim (846)
easily follows taking the union over all values j that I assumes. Combining (8.42) with
(8.46), we have:

(8.47) {(ﬁizo(ﬂi N 'Bz)) NGy N 'Do} CT:= {TK*—I > T\_an , ]VBL[C&LCJTLH < 2_i+1} ,

where ¢ is defined by (8.35). We shall show later on that
(8.48) D P([(Nizo(Ai NB4)) N €N D) < oo,

n>1
therefore by Borel-Cantelli lemma combined with (8.47), we obtain P(limsup T¢) = 0,

which immediately implies (5.3). To prove (8.48), we observe that by (8.39), we have
(ﬂizo(ﬂi N 'BZ)) NCyNDy= (mgzo(ﬂi M Bz)) N Gy N Dy, and so
P([(Ni>0(As N B;)) N € N Do) =P(Up<; <5 (AF U BF) U EGU D)
(8.49) =P(Uy<; <3 (A5 UBF) N Co N Do) +P(CGU D).
Now we have P(liminf Gy N D) = 1, as immediate consequence of Theorem 5.1(z) for the
case g < q < p~ !, (recalling that for n sufficiently large ho := [p~1| > | (9B (kg) + €)q])
and of Theorem 4.5 (7) and Corollary 4.3 in the remaining cases. Therefore, by the second

Borel-Cantelli lemma it follows ) P(C§ U D) < oo, (events Cf U D are independent for
different values of n), and so, thanks to (8.49), to get (8.48) we need to show that

(8.50) D P(Upeii(AS UBF) N € N'Dy) < 0.

n>1
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To this aim, we note that proceeding similarly to (8.22), we have

IP( Up<ici (A UBF)NECN Do) < zi:P ((35 N (No<j<i Aj)> N 60)
=0

+ Zi:P ((Af N (Bi N (Noj<i (AN Bj))) NECyN 90) :
i=0

Now given that i = O(log,(np)), (8.50) follows by (8.40), (8.41) and (2.1). Now to conclude
the proof of the Theorem we verify (8.40) and (8.41). O

8.4.1. Proof of (840). By (8.37) and (8.38), it follows
(8.51) BSN{i>I}=0 and A{N{i>1}=0, foralln large enough.

The first relation is an immediate consequence of (8.38). As far as the second relation is
concerned, by (8.34) we have Z111 = Ty, thatimplies T{c,,) < Tyr+1y, < Thyivryg, and Ty <
7B < TBJAH%)) on {i > I} by (8.33). Hence again by (8.33) we have Z;11 = T, =

21+1H§30) — T 9i
min{7yi+14,, Tjen) } on {i > I'}. Then, the second relation in (8.51) immediately follows from
(8.37). Now, set

(8.52) Ei—1:=(Mi<j<i—1A;) NCoN{i < T}.

Then, recalling the definition of xy and Hg) in (8.31) we have

(8.53) €1 CNi:={N(h) > 4'ro and Np(h) < 2 kW Vh € [K;, Kiy1)}.
Indeed, if w € €;_1, then

(8.54) wEA 1NCN{i<I}C{Zi =Ty} = {Ki=4"0},

which implies N[k](w) > 4%k, for any k such that Ty (w) € [Zi(w), Zi+1(w)). Further-
more, (8.33) implies Z;41(w) < T§+ln$) (w),which yields Np[k](w) < 2”1"@5;?), for any
k€ [K;(w), Kit1(w)). Moreover,

Ni N {k € [KiaKi—l—l)} C {N[k] > 4i/£0, NB[k‘] < 2i+1/€(39)}
C MW = (Ng[k] > 4k — 277 k) Np[k] < 271640,
then recalling (8.53) it follows

(8.55) eM =&y N {k € [Ki Kip1)} M.

Then, setting Eg) =4k — 2”1;@530) and Eg) = 2”1%?, by Lemma 3.9 (with k = @ﬁ? +
Eg) =4'kgand h = Eg)), we have

(8.56)

Srlkl] 10" 2. Bin(rw, (k) K5), 1861k | M) < Bin(mw, m(kf) K5)).
Now, note that for any z > r and any S € { R, B}, it holds
ms(ks, kse) = P(Bin(ks + as,p) — Bin(kge + age,p) >r)
> P(Bin(ks + as,p) > z,Bin(kge + age,p) <z —71)
(8.57) >1—P(Bin(ks + ag,p) < z) — P(Bin(kse + age,p) >z — ).
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Note also that for n sufficiently large, by assuming mg) /Ko < (mg) +ap)/ko < €/2, we have

(0)
. 4 4 ) .
EBin(kY) + ag,p)] > EBin(kY,p)] > 4'kop (1 _ B ) > dikop (1 —¢)

AT

E[Bin(Ey +ap,p)] <27 (v + ap)p.

Therefore, taking 2z = 4°kop/9 by (8.57) and the concentration inequalities in Appendix I,
for any ¢ and sufficiently large n, it holds

(2) E(l)) >1— e—4ilﬁop(1—8)H(1/8) - ef%ﬁoplog(f_l-g—ls)
(8.58)

B (EE?,E?) < e 4rop(1=e)H(1/8) | o= 5roplog(2'~157)

Combining (8.58) with (8.56), we have

E“SR[}{:” ’ Mgk‘)] Z nw <1 _ e—/{op(l—a)H(l/S) _ e—;fsngplog(lés)> ,

where we have exploited the monotonicity with respect to ¢ of the r.h.s. of (8.58). Note that
for n large enough we can always assume kp to be sufficiently large that E[|S[k]| | Mik)] >

n (1 — %) for an arbitrary 6 > 0. Now, applying again the concentration inequality reported
in Appendix I, for any ¢ and all n large enough, we have

—n(1-8)H 172
(8.59) P(|Sg[k]| < (1—8)n|MP) <e (=) <>
Similarly, given (8.56) and (8.58), for any ¢ and all n sufiiciently large, we have
E[|S5[H| |M£k)] §2nef4inopmin{(lfs)H(l/S),ﬁlog(é)} =75,
Setting ¢; := max(9ﬁf ,g), for all 7 and all n large enough, we have
(8.60) P (18mlk]l = g1 | M) ) <o et

By (8.38), for any ¢ and all n large enough, we have

P(BiNE;—1) =P (U ({k‘ €Ki, Kit1), Qf i S hior Qi > ¢i} N 811))

k

P ( ({QkRJrl <Nior QP > ¢i} N 81@)1))
k

kipa—1
Z P({Ki =ki, Kip1 =kiy1} ﬂ ( U {QE L < NYU{QE., > ¢} N 8@1]))
kikit1 k=k;
@ — M
< P ({K = ki, Kisn = ki } 0 ({QF0 <A} U{QEL > o)) n ()
kikiv1 k=k;
hipa—1

N

< 3N PHQEL <A FU{REL > o nv®)

k‘i ,k’7;+1 k:k1
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b kiJrl*l

< 3> PSR < X+ kY U{[SplH > 6i} | M)
kikiv: k=k;

—~
=

(8.61)

where indices k; and k;11 in the sums span over the support of K; and K1, respectively.
Here inequality (a) follows from (8.55), inequality (b) follows from the relations (3.11),
inequality (c) follows from the relations (8.59) and (8.60) (note that \; + & < (1 — d)n), the
union bound, the fact that K, for every i, takes values in {0, ..., ny } and the monotonicity
of ¢; w.r.t. i. Relation (8.40) follows from (8.61), noticing that, due to the first equality in
(8.51), we have

P(B; N (M<j<i—145) NCo) =P(B N (Migj<i-1A;) NCoN{i < I}) =P(ByNé&;i—1). U

8.4.2. Proof of (8.41). Since QE. =0, by (8.32), (8.45) and (8.52), we have that
Do N (ﬂjg{Bj) NE_1CCNDyN (ﬂjgifBj) - {TK* > Zi+1}~
Therefore, by Lemma 3.6, on Dg N (M;<;B;) N &1, for S € {R, B}, we have Q,, =
|V [k] N 8s[k]|,VEk € [Ko, K;+1). In addition, by (3.6) we have Ng(K;11) = Ng(K;) +
Zf;ll_K M ;3 4~ Recalling that variables {U, '} ken have a finite support, and letting u de-
note an arbitrary element in it, by proposition 3.3 we have that M, ,f | {U. ;f = u} is Bernoulli

distributed with mean u. Again by Proposition 3.4 random variable M, k,s | {U,f =u} is inde-
pendent of J{;,_;. Consequently we can define the following sequence of random variables:

—B 1 on {Mszl}U{UkB>ﬁ} R — 5
My, = Ve B B i M= 1= My
Be 1—u on {Mk = 0} N {Uk; =u< )\H_d)i}
Clearly Mf > M, ,f and M E <M, ,f P-a.s.. Moreover it is of immediate verification that:
—B b B bi
8.62 M, :=Be , ontheevents U’ =u < ,
(8.62) b (AH-@') { K )\Z-—i-(bi}

Note that random variables Hf | {UP =u} and M | {UP = u} are independent of Hy 1.
By (8.52) and (8.54), we have £,_1 C A1 NCyN{i < I} C{K; =4"k0}, therefore,

(8.63) G;:=DgN (ﬂj<i3j) Né&i_1C {Kz = 4i/€0}.
In addition, recalling (8.38) we have
Blﬂ{lgl}gﬁl = {Ulf—i-l <AVkik€[Ki,Ki+l) }
Ai + @i
Setting uy, := (u1,...,up), where u,,, for 1 < m < h, denotes an arbitrary element in the

support of {Uig}keNu{o} and Ug(up) := ﬂﬁlzl{Uﬁmﬁm = U, }, we have

fﬁi N {Ki—H - K; = h} N {Kz = 4i/£0} = U uB(U_h) N {Ki-i-l —K;= h} N {Kz = 4iI€0}.

b
it

u, <
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with 1:=(1,...,1) € R" and |{u, : u;, < #1}4 < 00, as oblivious consequence of the

fact that the support of {U} }xenugoy i finite. Setting Ay := min{4™ kg, [cn]} — 4%k,
by (8.63), and the fact that £;,_1 C Cy N {i < I'} (see (8.52)), we have:

Amar—1
{Kit1 < Amax + K} NB;NG; C U {Kiy1=h+4'k0} NB;NG;
h=0

U U {Kip1=h+4"k0} N Up(up) NG
1

h=0 u, <

A +¢>
Amax— h
(8.64) C U U { > ME = 2%9} NUp(u,)NG;
h=0 u,<x‘+¢‘1 m=1

(8.65) C U U {ZMW > 20 ()}HUB(uh)HSi.

h O uh</\::»ld>i1 m=1
Here, recalling (8.36) , the inclusion (8.64) stems from the fact that, for any 0 < A < Apax,
{Ki+1 =h+ 4iI€0} ng;, = {KiJrl —K;= h} Ng;
(8.66)  C{Np[Kiw1] = Np[K; +h] =216} n G,
8.67)  ={Np[Ki+h] - Np[K;]| =2 '&) — Np[K)], Ns[K,] < 26D1 1 g,

h
C {Np[K; + h] — Np[K,] > 2x0}Nn G, = {Z ME, > 2k “”} NS,

m=1

where relation (8.67) is a consequence of (8.36) and the inclusion (8.66) follows 'from the def-
inition of Z; ;1 in (8.33). Indeed, since h < Ay We have that K; 1 < min{4" kg, [en]},

ie., Zi+1 < min{T4'i+1,{07TL6nJ}, and so Zi+1 = T21?+1H<0)’ 1e. NB(Ki—H) = 2i+1/ig). By
(8.33) and the definition of A; in (8.37), we have

‘Az = {Ki+1 < min{4i+1/€0a I_C”J}}v
and so by (8.65) we have

PASNB,NG) <P (Af NB;N 91> =P ({Km < Amax +4'k0} NB; N 9i)

Amax—1 h
Z 2 7 <{ > My > 2%590)} NUp(un) N 91)

llh< d)l 1 m=1

Apax—1

h
> Z (Z Miingrm 2255 | Un(ur) N 9> P (Up(un) NGi)
m=1

up

5 h
= > P (Z Myyim 2 265 | uB<uh>> P(Up(uy)NG;)
1
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Apax—1 )
® ]P’(Bin <h fs ¢>>21 “) ST PUp(up)NG)

h=1 ¢4
Un <337,

< Byl IP(Bm( O >>2l())]1>(9i)
Pt + ¢

. /\z' i (0
< (Amax - 1)P (Bln (Amax -1, )\z‘i‘(bz) >2 H(B)> ]P)(gz)

< (3-4'ko)P (Bin (3.4%0, Oi ¢>>2l ())IP’(SZ-).

Here equality (a) follows from recalling that, given Ug(uy), uy < ﬁl random vari-

ables {Mﬁm +mf1<m<n are independent of Jy:,,, and therefore of G;, given that G; =
DoN (ﬂjQB )N Ei—1 € Hyiy, . Equality (b) is a consequence of the fact that, given Ug(uy,),

}1<m<n follow the Bernoulli law with mean

with up < - + ‘5.1, random variables {M dikgtm

recalling that Ay, < 3 -4%kg and applying the usual concentration
inequality for the binomial law (see Appendix I), for all n large enough, we have

P (Bin (3-4%0, O s ) > 940 >> < 27Ky log(10)

Indeed, from the definition of ¢; and \; we get:

¢i ; ¢z
— 3.4ty <34k
Ai + @i 0= O\
i (0)
(8.68) B3tk {188741‘;{0;0min{(lfs)H(l/S), Liog(:)} 9 } _hp
—1-6—-c n 20
where we recall that we can assume xqp to be sufficiently large. O
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APPENDIX A: PROOF OF PROPOSITION 4.4
To prove Propositions 4.4(i)-(ii) we start establishing a relation between the solutions of

Cauchy Problems (4.2) and (2.6).

LEMMA A.l1. Assume Ss(zgr,zp) = Bs(zs), S € {R, S}, and that the Cauchy problem
(2.6) has a unique maximal solution g on (0, kg) With gr and gp strictly increasing. Then
the Cauchy problem (4.2) has a unique maximal solution on (0, k¢), with k¢ := 2(Kg), where
z:=gRr+ gB, given by

f(z) =g(=""(2)).

For Cauchy’s problems of the form (2.6), recalling that we always assume o > ap, the
following propositions hold:

PROPOSITION A.2. Under the assumption that g = g:
(7) If ap < 1, then Cauchy problem (2.6) has a unique solution g defined on (0, c0) and
gR('r)TzRa gB(x)TZBv aS$T+OO'
(i7) If g > 1, then Cauchy problem (2.6) has a unique solution g defined on (0, kg ), with

gr(z) T +00, gp(x) T gp(kg) € (0,00), aszT Kg. and

/O" dzx <

Kg 1= 00,
& o —z4+rtA1—r-)r—agp+az)

If ap <1 then gp(kg) < zB.
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PROPOSITION A.3. Under the assumption that g < ¢ < p~!, Cauchy problem (2.6)
admits the following unique solution g on (0, kg ):
1 rl

)= ey s SERBL e

Qg —

P —)
(r—1)ag

Propositions 4.4(7)-(ii) immediately follow from Propositions A.2 and A.3 and Lemma
A.1. Proposition 4.4(iii) is a simple consequence of the next Lemma A.4 and the relation

Be(zRr,zB) < <96B +ap
Br(zr,xB) ~ \ TR+ QR

T
> , forrg 4+ ap <zxp+ apg.

LEMMA A.4. Let f(x) be the solution of Cauchy problem 4.2 for ¢ = p~! and let f(ac)
be the solution of the Cauchy problem:
= 3 ?
(A1) fllz)=~—— A=) :
Br(fr(x)) + Be(fB(x))

where Bg(x) = (zg+as)", S € {R, B}. Then fr(z) > fr(z) and f5(z) < fz(x), for every
x € (0, kg).

€ (0,r¢), £(0)=(0,0)

The proofs of the above Lemmas and Propositions are elementary. They are reported for
completeness in Appendix J.

APPENDIX B: NUMERICAL ILLUSTRATION OF THE RESULTS FOR ¢ =g

For the purpose of numerical illustration of our results, we consider the case » = 2, which
allows closed-form solutions of many quantities of interest. We focus on the super-critical
case ap > 1 (super-critical R-activation process) and consider either the case ap < 1 or
ap > 1. Whenever ar > 1, with » = 2 we get from Proposition 4.4

(B.1) K '—/OO dz = 2 T _ arctan QTR;
' R S %_x_\/aiq—l 2 Vagp—1

Note that xg can be interpreted as the physical time at which the red activation process
produces a number of susceptible red nodes of the order of n. As expected, with ag | 1 we
have that kg tends to infinite. This can be understood by the fact that the activation process

becomes increasingly slow while approaching the percolation transition.

2
In the case ap < 1, recall that Sp(x) = % — x has two zeros at z, =2 — ag —

2y/1—agand 2, =2 — ap + 21— ag.

In this case, we also get a closed-form expression for the generic integral:

T odu v du 1 a:a(:nb—x))
B.2 — = = log | —/———
(B.2) /0 B (u) /0 W_u 4y/1—ap °8 (mb(ma—x)

(note that, as expected, the above integral diverges as = 1 ).

Let
1_ 51
Y(ag, ap) = exp <2 ” — (g — arctan (\/Zﬁ») '

Exploiting the results in Theorem 4.7, after some simple algebra, we can compute the
asymptotic behavior of the (normalized) final number of active black nodes as:

Ap o (¢ —1)
P -ap)W-1)+2V/T—ap(@+1)

(B.3)




38

When ap | 1 we have that ¢ diverges to co, and we recover the well known result of the
classical subcritical bootstrap percolation process with = 2, for which the final (normalized)
number of active nodes is 2 — 24/1 — ag.

In the case ap > 1, we define instead the constant:

Y (ag,ap) := arctan ol + 2Es T _ arctan Fot
e Voap—1) " Vag-1\2 Jor—1))

Then the (normalized) final number of active black nodes:

(B.4) ng ~2+2vapg — Ttan(y).

As expected, with ap | 1 this number tends to 2, matching the same figure obtained (in the
case ap < 1) when ag T 1. One can also check that, for increasing values of agr, A%/q
approaches ap (meaning that the infection of black nodes essentially does not evolve, being
immediately stopped by the red infection). Instead, as g | ap, A};/q diverges (note indeed
that in this case ¢’ 1 7).

2

1000

‘OLB=‘O‘5‘ T | 1t —

L9 ap =038 500 dg=1.01
1.8 | og =09 og=1.1
17 F OLB=0.95 op = 1.5
el o = 0.99 200 o =2
. og =0.9999 og=3
1.5 100
14 b i

= 13t | = 50 |

@ i | @

? |
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09 t . sl
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06— ]
0‘5 | | | | | 1 1
1 2 3 4 5 6 78910
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FIG 1. ap < 1: A /q as function of g, for dif- FIG 2. ap > 1: A /q as function of ag > ap,
ferent values of ag. for different values of a .

APPENDIX C: PROOF OF LEMMA 3.6
For every k, we have
Vw k] N 8s[kl| = [(Vw \ (Vr[k] UVB[K]) N Ss[k]|
= [8s[k]\ (Vr[k]UVp[K]) N 8s[k])| = [8s[k]| — [Ss[k] N Vr[E]| — [Ss[k] N V(K]

and

8s[k]NVs[k]| =Vs[k]l = [(Vw \ Ss[k]) N Vs[k]| = Ns[k] — |(Vw \ Ss[k]) N Vs[k]].
Therefore
(C.1)  [Vwl[k] N8s[k]| = 85[k]| = Ns[k] + |(Vw \ 8s[k]) N Vs (k]| — [Ss[k] N Vse[k]|.

On the event {k < K*}, we have Vg[k] = Vg[k] N {v: D¢[k] > r}, due to the monotonicity
of paths of D¢(-) and the fact that a node becomes S-active only if it is S-susceptible

(C2) |(Vw \ 8s[k]) N Vs[k]| = (Vi \ 8s[k]) N Vs[k] N {v: Dg[k] = r}|
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and
(C.3) ISs[k] N Vse[k]| = |Ss[k] N Vge[k] N {v: D%.[k] >r}|.

By (C.1), (C.2) and (C.3), it easily follows (3.10). Now we prove (3.11). For any 0 < k < nyy,
by (3.9) we have

Qny1 =ISs[k]| — Ns[k] + |(Vw \ Ss[k]) N Vs[k] N {v: Dg[k] > r}]
— [8s[k] N Vge[k] N{v: DE[k] > r}

185[k]| — Ns[k] — [S5[k] N Vse[k] N {v: Dg.[k] > r}]
|85 [k]| — Ns[k] — [Vse [K]]

|8s[k]| — Ns[k] — Ng-[k] = |8s[k]| — &,

where we have applied the identities |Vg[k|| = Ng[k] and k = Ng[k] + Ng<[k]. On the other
hand

(A\VARLY]

Qi1 =I8s[k]| = Ns[k] + |(Vw \ 8[k]) N Vs[k] N {v: D[k] > r}|
—|8s[k] N Vge[k] N{v: D¢ [k] >}
(C4) <|8s[k]| = Ns[k] + |(Vw \ 8s[k]) N Vs[k]| < [Ss[K]].
The proof of relation (3.11) is completed.
APPENDIX D: PROOF OF LEMMA 3.9

We prove the first inequality. The second one can be proved in a similar way. Note that

ISr[k]| = Z S RIEI Ly N [k =k, N [k] =5 }
kr,kp: kr+kp=k

and by the definition of N, ;, we have

ISRk, , = Z ISRIFI LN [k =k, N s [K] = } -
k’RJi‘BI kR-i-kJB:k‘,k‘RZk—h,k’BSh

For a > 0, we then have
P(ISr[K]| > a | Ngn)P(Ng.p) =P(ISr[K]|[ 1, , > a)

=P Z ISRIK LN gk =k p, No[k]=ks} > @
kr-Hhn—hon Sh—h,kn <h
= > P(|Sr[kl| > a, Nr[k] = kr, Np[k] = kp)
krn-Hhn=hinSh—hka<h
> > P(Bin(ny, mr(k — h,h) > a)P(Ng[k] = kr, Ng[k] = k)
kn-Hhn—hinSk—h,kn<h
= ]P’(Bin(nw, 7TR(/€ —h, h) > a)P(Nk,h),
where the second equality is a consequence of the fact that for different values of (kg, kp)
the events { Nr[k] = kr, Np[k] = kp} are disjoint and the inequality follows by (3.14) and
the stochastic ordering properties of the binomial distribution which imply
L. .
‘SR[kH ‘ {NR[k] = kR,NB[k] = kB} = Bln(nw,ﬂR(kR, kB)) >st Bll’l(nw,ﬂ'R(k — h, h))
O
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APPENDIX E: PROOF OF PROPOSITION 7.1

Proposition 7.1 is an immediate consequence of the Borel-Cantelli lemma and the fol-
lowing propositions E.1 and E.2. Hereafter, when we write “for any x > 0”, we implicitly
assume that « is arbitrarily chosen in (0, zg + zp) in case ¢ = g and ap < ag < 1.

PROPOSITION E.1. Given 7 in (4.8), for any £ > 0 and § > 0, there exists a positive
constant ¢(k,d) > 0 such that

max{P(Ts(k) > 8),P(Ts(x) > dng)} < e clwdma,

PROPOSITION E.2.  For any x > 0 and 6 > 0, there exists a positive constant ¢(x,d) > 0
such that

(E.1) P(Mg(k) > ) < e~c0a,

Proof of Proposition E.1: Auxiliary results. The proof of Proposition E.1 uses the
following lemmas.

LEMMA E.3. There exists a positive constant ¢(x,d) > 0 such that

max{ sup P(Yg(k)>dnq), sup P(Ys(k)>d) p < e ctm0ma,
KET(k) KET(k)

In turn the following lemmas E.4, E.5 and E.6 will be exploited to prove Lemma E.3.
Hereafter, we set k := (kg, kg) € (NU {0)})2. Recalling the definition of 75(k) given in
Sect. 3.4.1, we have:

LEMMA E4. (i) If ¢ = g, then, for any x > 0,

nwﬂ'g(k)
sup — 1‘ — 0.
ker(x) | (98s(ks/g) +ks/g)g
(13) If g < ¢ < n, then, for any x > 0,
nwﬂ'g(k)
sup |————— — 1‘ — 0.
ket () 1m9Bs (ks /q)

Hereafter, we set

75(k) := P(Bin(ks + as,p) > r)P(Bin(kse +age,p) > 1), k:=(kg,kg) € (NU{0)})*

LEMMA E.5. Assume q = g. Then, for any x > 0,

ms(k
sup nw s (k)

—1|—0.
ker() | 7 H(L = )] (kse /g + ase ) (ks /g + as)"g?p

LEMMA E.6. Let {X,},en and {X] }nen be two sequences of non-negative random
variables defined on the same probability space and such that P(X,, > X,,) = 1 forany n € N.
Let p, >0 and p], > 0, n € N, be two deterministic sequences with inf x), =y > 0. Then

P ‘&_@
Xn o1

n

>€> <P(| Xy — pn| > ep/4)+P(| X], —pl,| > ep/4), Vee(0,1)andneN.
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For the sake of clarity, we point out that, by the convention 0/0 := 1/2 and the assumption
P(X] > X,,) =1, for a Borel set B C [0, c0),

Xn  n Xn  fn L pn
5t -t lemp = {5 - i empofufs- 4

Xn o 2
Here we prove Proposition E.1 and Lemma E.3. For the other lemmas, whose proof is
rather elementary and tedious, we refer the reader to Appendix L .

eB,X{l_O}.

Proof of Proposition E.1. 'We only prove Part (7). The proofs of Part (i) and Part (7i7)
are (“mutatis mutandis”) analogous. By the union bound, for any «, > 0 we have

B(Ys(k)>0) < S B(Ys(k)>6) < |T(x)| sup B(Ys(k)>0) < (kg)® sup P(Ys(k)> )

KeT(x) keT(x) KET(x)
and  P(Yg(k) > dq) < (kq)* sup P(Yg(k) > dq).
keT(k)
The claim follows by Lemma E.3(3). O

Proof of Lemma E.3. We prove only Part (¢); Parts (i7), (ii7) can be proved along
similar lines and, for completeness, a sketch is reported in Appendix L . For x > 0, define

(E.2) Bmin(K) :=min(, o+ er(x) (|Br(TR)| + [BB(zB)]),

where T'(k) is defined in (7.4). Throughout this proof, for arbitrarily fixed x > 0 and ¢ €
(0,1) small enough, we denote with n, s a threshold value for n (depending on x and J)
above which a given property holds. Note that n,, s may vary from line to line.

We divide the proof of Part (i) in two sub-parts, where we show that there exists ¢/ (k,0) >
0 and ¢’ (k,0) > 0 (not depending on n) such that
(E.3)

(i) sup P(Yg(k)>dq) <e €U and (i) sup P(Yg(k)>d)} < e ¢ (w0,

keT(k) keT (k)

The claim then follows by setting ¢(k,d) := min{c(k,d), " (k,d)}.

Proof of (E.3)-(2). By (3.9) we have
P(|Q41 — Bs(ks/q)q| > 6¢| N[k] = k)
<P(||8s[k]| — ks — Bs(ks/a)al > (09)/3 | N[k] =k)
+ P(|(Vw \ 8s[k]) N Vs[k] N {v: Dg[k] = r}| > (6¢)/3| N[k] = k)
(E4) + P(|8s[k] N Vge[k] N {v: D& [k] > r}| > (6q)/3 | N[k] = k).

We proceed dividing the proof of (E.3)-(7) in two steps, where we give asymptotic exponen-
tial bounds (uniformly on k € T(k)) for the three terms in the right-hand side of (E.4).

Step 1: upper bound for the first addend in (E.4).

We prove that there exists n,; 5 such that, for all n > n,, s,

(B.5)  P(||Ss[k]| — ks — Bs(ks/q)q| > (0q) /3| N[k] = k) < 2e~ (894 v k € Z(k)

where c¢;(k,0) > 0 is a suitable positive constant (not depending on n). By (3.14) we have
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P(||8s(k]| — ks — Bs(ks/q)al > (3q)/3 | N[k] = k)
<P(Bin(nw,ms(k)) < (Bs(ks/q) + ks/qa—6/3)q)
(E.6) +P(Bin(nw, ws(k)) > (Bs(ks/q) + ks/qa+3/3)q).

Taking &' € (O, r—l(l—r—l)é—l(ﬁ-‘,-ocs)T) , and using Lemma E.4, we can conclude that there
exists n,; 5 > 1 such that for any n > n, 5 and for any k € T(x) :
E.7)  (Bs(ks/q) +ks/a)q(1 —06"/3) <nwrs(k) < (Bs(ks/q) + ks/q)a(1+0"/3)

where by construction for any n > n,, 5 and for any k € T(x)

(Bs(ks/q) +ks/q)a(1—0"/3) > (Bs(ks/q) + ks/q —6/3)q,
Bs(ks/q) +ks/q)q(1+6'/3) < (Bs(ks/q) + ks/q+/3)q,

By (E.8), the usual concentration bound for the binomial distribution (see formula (I.2) in
Appendix I) and the fact that the function H defined in (3.4) decreases on [0, 1), for any
n > n, 5, we have, uniformly in k € T(k),

(E.8)

(Bs(ks/q)+ks/q—§/3)q)

P(Bin(nw, ms(K)) < (Bs(ks/q) + ks /g — 6/3)q) <& ™ 0OH (L

_ Cive—1 1—6/[3r L(1—r— =147
@yt -a /sl o Dl

(E.9)
Similarly, for any n > n,, 5, uniformly on k € T(x), we have:

P(Bin(nw, ms(k)) = (Bs(ks/q) + ks/q+6/3)q)

_ Ciyr—1 148/[3r=ta—r=H" " (ktag)”
7[7, 1(177. 1) 101375/3}[_[( [ 1;5//3 Ktag ]>q'

(E.10) <e

Inequality (E.5) follows from (E.6), (E.9) and (E.10).
Step 2: upper bound for the second addend in (E.4). We prove that there exists n,, s such
that for all n > n,, 5, and for all k € T(x):

(E.1D)  P(|(Vw \ 8s[k]) N Vs[k] N {v: DY[k] > r}| > (5¢)/3 | N[k] = k) < e (0,

where c2(k,9) > 0 is a suitable positive constant (not depending on n). Similarly, one can
show that, for all n > n,, 5 and for all k € T(k):

(E12)  B(8s[k]NVse[k] N {v: DY [k] > r}| > (5q)/3| N[k] = k) < e,
Inequality (E.3) easily follows from (E.4), (E.5), (E.11) and (E.12). To prove (E.11) note that
|(Vw \ 8s[k]) N Vs[k] N {v: Dg[k] = r}|
< S DY K - DYk <r—1,DY k] >y < S 1D K] >, DY k] > 1.

vEVW vEVw
By construction it follows

> YDk = r, DYk > 1} | {N[K = k} £ Bin(nw, 7s(k)),  and

UEVW

(E.13)
P([8s[k]NVs:[k]N{v: Dg:[k] = 7} > (3¢)/3 | N[k] = k) <P(Bin(nw, 7s(k)) > (6¢)/3).
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By Lemma E.5 there exists n,, s > 1 and constants by, b2 > 0, such that, for any n > n, s,
(1 —0)b1¢’p < nwTs(k) < (1+6)bag’p, Yk T(k).

By this relation, the concentration bound for the binomial distribution (see (I.1) ) and the fact
that function H increases on (1, 400), for all n > n,, 5, we have, uniformly on k € T(x),

(8a)/3

P(Bin(my, 7s(k)) > (5q)/3) < ¢ ™ 704 (5455
(E.14) < o= (555 )1 < gealmdda
for some positive constant cy(k,d) > 0 (not depending on n). Inequality (E.11) follows from

(E.13) and (E.14).

Proof of (E.3)-(i%). By the previous part of the proof, we have, for all n > n, 5,
(E.15) P(|Q341 — Bs(ks/q)q| > 6q|N[k] = k) < e (=7 k € T(k)

for some positive constant ¢(x,d) > 0 (not depending on n). By the inequality ||z| — |y|| <
|z —y|, x,y € R, it follows

E16)  P(IQ] — Bs(ks/a)all > 6q| N[K] = k) < de c51, ¥ k & T(x).
By the triangular inequality and the union bound, we have

P(1QF | + Q%1 = (18s(ks /@)l + s (ks /g))al > 6g| N[k] = k)

< P(|Q¢41| — 18s(ks/a)lal > (6q)/2|N[k] = k)+

P(|Qi41| = [Bse(kse/@)lal > (5¢)/2| N[K] = k).
Combining this relation with (E.16), for all n > n, s, and for all k € T (k) we have:
(E.17) ,
P(|Q7 1] + Q51| = (1Bs(ks/a)l + |Bse (ks /q))g] > dq | N[k] = k) < 25~ (=),

for some positive constant c4(x,d) > 0 (not depending on n). By Lemma E.6, (E.15) and
(E.17), for all n > n,, 5, and for all k € T(x) we have:

s 1Bs(ks/q)|
v (‘U’““ Br(kr/a) + 185 (ks /a

for suitable positive constants ¢5(%, 0, Smin) and cg(k, 0, fmin) (not depending on n), where
constant By, > 0 is defined by (E.2). Claim (E.3)-(i7) easily follows by this last inequality.

)| ’ >0 ) N[k] = k) < 05(’%7 (57 /Bmin)eicﬁ(ﬁ’a’ﬁmi“)q’

Proof of Proposition E.2. We shall show later on that the process { Ng[k]}jey is an
{H},} ren-martingale with increments bounded by 1, i.e., Ng(1) <1 and Ng(k + 1) —
Ns[k‘] <1, P-as., for any j € N. Therefore, by the union bound and the Azuma inequal-
ity (see e.g. Theorem 2.8 p. 33 in [19]), it follows that, for every «, 6 > 0,

k

g Lrg)
P(Ns(r)>8) <> P(Ns[k]|>dq) <Y P (‘ S (Nsli] — Ns[k — 1])‘ > 5q>
k=1 k=1 =1

2 2 2
< 2kqexp <_25ijqj> < 2Kqexp <—62§) .
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It remains to prove that the process {]\7 s]k] tren is an {H}, }ren-martingale with increments
bounded by 1. For any j € N, Ng[k] is clearly H-measurable, moreover

Nslk +1] = Ns[k] = Nslk +1] = Ns[k] = U1 Lpany) = Midiy = Uppi L gen,)  P-as.
Note that the second equality follows by (3.6) , therefore, by Proposition 3.8, we have
(E.18) E[Ns(k+1)] 3] — Ns[k] =0,

ie., {Nglk] }jen is an {3 }-martingale. Moreover, |le+1 - U,f+1| <1

APPENDIX F: PROOF OF PROPOSITION 7.2

Giveni € N, k = (kg, kp) € (NU{0})? with k = kg + kp, observe that by construction
N[k + ] — NJk] take values on I; (defined in (7.1)). Hence:

E1) > e gn=1 with &(k,i):={weQ: N[k+i - N[k]=i}, i€l and

icl;
(F2) 18,(k,z)1{N[k] :k}:]_gl(kﬂ)l{N[k—i-Z] :k+l}, fOI‘ aHyIEHZ
So, for any z > 0, recalling the definition of Jg[k] in (7.3), we have
[zq]—1
(Jslk+ [2q]] — Js[k]) 1{N[k] =k} = Z (Jslk+i+1] — Js[k +1]) | 1{N[k] =k}
i=0
lzq] -1
= > > (Jslk+i+1] = Js[k +i]) Le, 0,5 L{N[K] =k}
i=0 i€l,
lzq)—1 [zq]—1
= > Y UliinlewmaHUNE =k} = Y > Udile, oy {NE +i] =k +i}.
i=0 i€l i=0 i€l

Therefore, for any y, z > 0,

Isllya) + [za]]l = Tsllyall = D (Isllya) + L2q)] — Ts[lyal]) 1{N[lyq]] =k}
kel yq)

lzq]—1

(E3) = > N MUl tewn Ny +i) =k +i}.

kEHLqu =0 ie]li
Now fix k < ¢ and assume y + 2z < x, forany k € I},,; andi € {1,...,|2q| — 1}, we have
kr+kp+i=|yq +i<(y+2)a<(x—2)q

Therefore, forany k € I)q),i=1,...,|2¢q| — 1 and i € [;, we have k +i € T(k). So, by the
definition of 2 in (7.10), for all w € Q) and any ¢ > 0 there exists n(w, ) such that for all
n > n(w,e), we have

B |Bs((ks +1is)/q)]

1Br((kr +ir)/0)|+ |B((kB +iB)/q)]
as long as k € T(k). By this inequality, the fact that ¢~ (kg + ir, kB + iB) € Li/q(x, 2),
(with Ly /4 (k, 2) defined in (7.5)) the definition of B Lo (r,z) and Q&]Lk/q(m) (in (7.6) or

H{N([yg) +) = k+i}(w)|U}} g s (@) <e.
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(7.7) and (7.8)) and the fact that 0 < U lyg]+i+1 < 1, it follows that, for all w € €,; and any
e > 0, there exists n(w, ) such that, for all n > n(w, ),

LN (Lya) +1) =k + 1) By, oy~ ) < HN(lya] +9) =k + @)U, i1 (@)

< 1{N(lya +1) =k +iHw)(Bs ) (s,2) T )-

Combining this with (F.3), we have that, for all w € Q,; and any ¢ > 0, there exists n(w,¢)
such that for all n > n(w,¢),

lzq|—1

S Y St @) N (L) +1) =k @) (B, (o~ ©)

kEHLqu 1=0 i€l

< Js[lyq] + LZ 1](w) = Js[lyq]](w)
lzq)—

Z Z Z 18 (ki) 1{N( LyQJ + Z) k+ i}(w)(BS,]Lk/q(n,z) + 6)

ke]ILqu i=0 el
i.e. (using (F.1) and (F.2)),
lzq) D 1{N[lyq]] =k}(w)(3 Bt umy ~ ) = Isllyal + [zall(w) = Js[lyg]l(w)

kel yq)
(F4) <lzq] Y UN[lya)] =k}w)(Bsp,,,rz) +)-
kel yq)

We note that, for any w € €,

Nsllyq] + [2q]](w) — Ns[lyq]](w)

= Jsllya) + |2q))(w) — Js[lya)l(w) + Ns[lya) + [2¢])(w) — Ns[lyql](w)].
Since |yq| < |yq| + 2|zq] < kg, by the definition of 2,; (in (7.10)), Mg(x) (in (7.2)) and
N, s[k] (in (7.3)), we have that, for any w € Q, and any ¢ > 0, there exists n’(w, ¢) such that
for any n > n/(w,e), we have
—eq < Nslyq] + |2q]](w) — Ns[lyql](w) < g

and so

—eq+ Jsllyq) + [zq]1(w) = Is[lyall(w) < Ns[lyg] + [zq]](w) — Ns[lyg]](w)
<eq+Jsllyal + [2q]](w) = Js[lyal](w).
Combining this inequality with (F.4), we have that, for all w € €, and any € > 0, there exists
n”(w, e) such that, for all n > n"(w, €),

—eq+[zq) Y YN[lygllw) =k}(Bgy, (.. —9)

kel yq)

< Ns[lyq] + [2¢]](w) — Ns[lyq]](w)
<eq+|zq] Y 1{N[lyq|](w) =k} (Bsr,,.(xz +€)-
kel yq)

The claim follows dividing this relation by g, then taking the limsup and the liminf as
n — oo and finally letting ¢ tend to zero. We recall that by construction 0 < Ng(xq) —
Ns|[lzq]] <1, for any z > 0 as consequence of definition (4.1). O
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APPENDIX G: PROOF OF LEMMA 7.3

We divide the proof in two steps. In the first step we prove the lemma assuming ag 1 =
ag,2. In the second step we consider the general case.
Step 1: the case ap) = arys. Let Vg, S € {R,B}, h € {1,2}, denote the set of S-seeds
for process h. Note that [Vg | = ag . Since ar1 = ar2 and a1 > ap 2, without loss of
generality we assume that Vg 1 = Vg2 and Vg1 O Vp 2. Note that Vyy o O Vi and

(G.1) Vw2 \Vwi="Vs1\ Va2

Let Vg 5,(t) and Wg 5, (¢) be, respectively, the random subset of Vyy; and Vyy 2, defined on
2, formed by S-active nodes at time ¢, for process h. We denote by Vg 1, (c0) and Wg 5, (00),
respectively, the random subset of Vyy,; and Vyy 2, defined on (2, formed by S-active nodes
when process h stops. We shall show later on that

G.2) Vr1(00) Cst Vra(oo) and Vg a(00) Ce Vi,1(00);

The claim then immediately follows from noticing that | Vg 1 (c0)| = Ng1([0,00) x V1) and
|'Ws2(00)| = Ng2(]0,00) X Viy2), S € {R, B}, h € {1,2}. For instance, for what concerns
the B-acti\ie nodes, by (G.2) (and the definition of C;) we Eave that there exists a probability
space (€2, F,P) and two random subsets defined on it, say V B,h(00), h € {1,2}, such that

Vpn(00) £V a(00) and Vpa(oo) CVpi(co), P-as..

From which, using an obvious notation,
A1 =1VB(00)| +ap, = [Vpa(oo)| +ap,

= [Vp,2(00)| + Vw2 \ V| + apa > [Wp2(c0)| +apz = A,

where the second equation follows from (G.1). Last inequality instead descends from the fact
that by construction Wp 2(00) C % B,2(00)U(Vw2\ Viv.1). Now to prove (G.2), first observe
that N'(0) .= ZveVWh N/, and Vi1 C Vyy o immediately imply that NO c, N@,

Therefore there exists a probability space (ﬁ §" Iﬁ’) and two point processes N® =
{(T(h Vk )}keN, hed{l, 2} defined on this space, such that N®WLN® pe {1,2},
and NOU € N@ = NO g (N®\ NO), P-almost surely. Hereon, we consider a copy of
the competing bootstrap percolation process h defined on ), and we denote by \75 n(t) and

WS 1(t) the random subset of Vyy; and Vyy 2, defined on Q formed by S-active nodes at
time ¢, for the competing bootstrap percolation process h. Note that, by construction, for an

arbitrarily fixed k£ € N, the set \757h( ) is constant for T( ) <t < T,g 4_)1, and may increase

(with respect to the set inclusion), by the addition of a new .S node, at time ¢ = f,g_lgl The
relations (G.2) follow if we prove that, for any k£ € N,

(G.3) Ver(TM) CVRa(T),  VpaoT) SV (T),  Pas.
Indeed by construction, for S € {R, B} and h € {1,2},

(G.4) VSh U VSh T( )) P-a.s.
keN

and @Sﬁ(oo) has the same law of Vg ,(c0).
We prove the relations (G. 3) by induction on k£ > 1. Note that these relations are trivially

true for k& = 1, indeed \75 h( ) () for h € {1,2} and S € {R, B}. We assume (G.3) for
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k = j and prove these relations for k = j + 1, where j is arbitrarily chosen in N. By the
inductive hypothesis we have, P-almost surely,

N[0, 7Y x Visa) > N ([0, 70]) x Vi)
= V2T > VR (T = Nea([0,717] x Vi)

and

N[0, T x V1) = Ve (T < Vi (T1)] = Npa([0,T1V] x V).

For v € Vyy o, let {E }zeN and {E )}ZGN be independent sequences of 1ndependent ran-
dom variables defined on Q with the Bernoulli law of mean p, independent of N N (2) . By the
above relations, we have that, for every v € Vyy 1, P-almost surely,

NR,l([OJ:;I)]XVW,l)JraR,l NR,z([O,Tj(I)]XVW,z)JraRz
~@) (1 (v v ~) (1
DY) = > B < B = Dy (T}")
=1 =1
and
NB,z([(),T;l)]XVWg)JraBJ NB,Z([Oyi'(l)]XVW,l)JFaB,l
=) (1 = (v = (v
=1 =1
NBJ([O,TJ(I)]XVWJ)-FG,BJ
< > B = D\ (T}").
=1

note, indeed that ap 1 = Vw2 \ Vw 1| + ap 2. Therefore, P-almost surely, we have
Sra((Tf")) = {v € Vo : DRY(T) - DR (T}) = 1)
f2(T}") = DEh(T) 2 v}
C {v €V Diy(T) = Dy(T)) 2 1)

Q{UGVWJ:ZN)U

(G.5) =: gRQ((fj‘(l)))'
Now note that, by construction, we have

v VRl \ Vea((TV), hef1,2}
if and only if

v €8rn((T)\ Vral(T). he{L,2).

Therefore, if v € V1 ((T12) \ Va1 (7)) then v € 8p1 ((T1V)) and so by (G.5) it fol-
lows that v € 8 R’Q((I}( ))) from which we have v € V R72(<fj(i)1))’ and the proof of the first

relation of (G.3) is completed (if v € % R (fj(l)) the claim immediately follows by the induc-
tive hypothesis). The second relation (G.3) follows along similar lines noticing that

$5.2((TM)) N Vi = {v € Vit : DSH(T))) = DL (TM)) = 7)

C{veVwa: DL ((TV)) — DR (T > r}
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Step 2: the case ar < ar2. The general case can be easily obtained by introducing a
third activation process with an initial configuration of the seeds given by (ap3,ar3) =
(ap,1,ar2). Indeed, since ar 3 = apr2 and ap 3 = ap 1 > ap2, by the previous step we have

(G6) A*R,3 Sst AE,Q and A*B,2 Sst A*B,3

Again, since ap3 = ap,1 and ag3 = ag2 > ag,1, by the previous step (noticing that in the
proof the role of R and B can be interchanged) one has

(G7) *B,?) Sst A*B,]. and A}(‘?q]. Sst A*R,?)

The claim follows combining (G.6) and (G.7). O

APPENDIX H: PROOF OF (8.1)
By construction we have:

(T V) e = (T, Vi) b

and
{Ei(v)’smp}ieN = {Ei(v)}ieNa {E;(msmp}ieN = {E;(U)}ieN-
Therefore
VEP(t)=Vs(t), Se€{R,B} ontheevent {t< Zyo}
In addition, on the event {t > Zp }, we have:
Vitzop(t) = Vjtzop(zsmp) ="Vr(Zop) € Vr(1).

Therefore
(H.1) Dy < DT VkeNveV.
We proceed proving by induction that
(H.2) Vp(Ty) SV (Th)  VEEN,

The relation (H.2) is clearly true for k = 0, indeed V5(T}) = V¥ (T}) = 0 P-a.s.° Assume
that (H.2) is true for any k < kg. Then

(H.3) DY V> DT Yue V.
Combining (H.1) and (H.3) we have
$5(T%,) € SE" (Ty,)
which implies
V(Thys1) SV (T01)  VEEN.
Indeed there are three cases:
i) Vi, € Vp(Ty,) i) Vi, € VP (Tx, )\ V(Ty,) i) Vi, & VE* (T},
In the case 7)

Vi(Ti, 1) = Vi(Ti, ) ULVE,} = ViB(T},) S VEP(T},) = V" (Tx, ) U{Vi, } = V" (Ti, ).

®We recall that conventionally Té =0.
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where the inclusion follows from the inductive hypothesis. In the case i)
Vi(Ti,1) = Vi(Ti,) U{Vi,} S VEP(T;,) ULVi,} = VE* (T},) = V5" (Th,11)-
Finally, in the case i77)
V(T 1) = Vi (Tz,) U{Vi,} S VB (T,) U{Vi,} = VET (Th,11).
Then (8.1) immediately follows since:

Ap = ‘ UVB(TIQ)‘ +ap < ‘UVEOP(TIQ) tap= A, -
k k

APPENDIX I: CONCENTRATION INEQUALITIES

Hereafter, H denotes the function defined in (3.4).
Let o :=mgq, m €N, g € (0,1). For any integer 0 < k < m, we have:
if £ > p, then:

e_“H(f) for k > p;

(L1) P(Bin(m,q) > k) < . k
ef<5)log(5> for k > e?u;

1.2) P(Bin(m,q) <k)<e " ) fork > e?u;

For any integer 0 < k < ), we have:

(L3) P(Po(\) < k) <e (%),

APPENDIX J: CAUCHY PROBLEM 4.2 - COMPLEMENTARY MATERIAL

Proof of Lemma A.1. Let g be as in the statement and define f on [0, z(kg)), again as
in the statement. Then f(0) = g(0) = 0 and, for any « € (0, z(kg)), we have

f'(2) = (7)) (2)g' (7 (2) = = B8 (2)))

Br(fr(x)) + Ba(fB (7))’

i.e., f solves (4.2) with x := 2(kg). O

Proof of Propositions A.2 and A.3 . Propositions A.2 and A.3 are immediate conse-
quences of Lemmas J.1, J.2 and J.3, whose proof is given below. These lemmas consider one
dimensional Cauchy’s problems of the form

d.n 95(x) = Bs(gs(z)), =z €(0,kg), gs(0)=0
where kg € (0,+00] and S € {R, B}.

LEMMA J.1. Letq= g and assume «g < 1. Then the Cauchy problem (J.1) has a unique
solution gg on (0,00) and gg(x) 1 zg, as x T +oo.



50

LEMMA J.2. Let ¢ = g and assume aig > 1. Then the Cauchy problem (J.1) has a unique
solution gg on (0, kg), with

/OO dx <
Fg = 00
& o —z+r Y1 —r-)r—1(ag+z)"

and gs(x) T +00, as x T Kg.

LEMMA J.3. Let g < ¢ < p~' Then the Cauchy problem (J.1) has a unique solution gg
on (0, kg ), with

7!
Kg 1= ———————,
£ (r—1)ag!
given by
1
gS(x) = 1 1/(r—1) —Qg.
(a5 =)

J.1. Proof of Lemma J.2. By Remark 2.3 the function (g is strictly positive. Moreover,
lim, 1o Bs(z) = +00, as it can be easily checked by a direct inspection. So equilibrium
points do not exist, the unique solution gg is strictly increasing, and g% (z) is bounded away
from zero for all x large enough. In particular, this latter property of the solution gg guaran-
tees that it has not horizontal asymptotes. Therefore there are only two possible cases: i) gg
is defined on the whole non-negative half-line [0, 00) and gg(z) T +00, as x T +o0; i) gs
is defined on a finite interval of the form [0, kg ), for some kg € (0,00) and gg(z) T 400, as
x 1 Kkg. We are going to check that we fall in the case ii). Let Dy be the domain of gg. By
the differential equation, we have

9s(z)
J.2) m:l, VzeD,,
and so
gs(@) 1 v gl(u) T

J.3) /gs(o) 5S(u)du: ; qu(lb))duz/o du=z, VzeDgy.
Note that

/00 ! dx:/oo do = Kg < 00.

o Bs(z) o —r+rtA-rTHrtas+a)r E

Therefore by (J.3) we necessarily have Dy = [0, kg) and gg(x) T +00, as = T Kg. O

Proof of Lemma J.3. In this case we can compute explicitly the solution gg. Indeed,
letting D, denote the domain of gg, we have

gs(z) gs(z)
/ ! du—r!/ ﬂzx, VaxeDy,
0 0 (

65(u) u+ag)"
and
/gs(w) du _ aé—r ~ (g95(z) +OZS)1_T
0 (ut+ag)” r—1 r—1 ’
This easily gives the claim. |

Finally, we provide the proof of Lemma A 4.
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Proof of Lemma A.4. We prove this Lemma by contradiction. First note that

oy B(0,0) B(0,0)
IO = 50 + 86~ Fa0) + B0
and similarly f;(0) < fg(O) Therefore fr(z) > ZR(x) and fg(z) < fa(z) in a right-

neighborhood of 0. Now, let zg = inf{z : fr(z) < fr(z) or fz(x) > fp(x)}, and assume
T < o0, then

= f#(0)

B o Br(f(z))
fR(xo)—fR(0)+/0 Br(f(z ))+63(f(x))
o Br(fr(x))
>fR(0)+/0 5R(fR(x))+ﬁB(fB( )
N 20 Br([r(x))
>fR(0)+/0 Br(fr(z)) + Bs(fa(x ))

and similarly we obtain fp(zg) < fR(:UO), which contradict the assumption. Therefore we
necessarily have xy = oo. a

dx

= fr(wo)

APPENDIX K: PROOF OF THEOREM 4.7 - COMPLEMENTARY MATERIAL
Independence of {E;(:)}lgkgpnq | and {W](:)}ISk:Sl_mq |- We only prove the in-

dependence of the r.v.’s {E;(:)}lgkgpcq | as the independence of the r.v.’s {Wi(:)}lgkﬂxq |
can be shown similarly. For arbitrarily fixed k,h € {1,...,|zq]|}, k # h, and Borel sets
A, B C[0,00), we have

P eawdeB = S PW e AW € BI{(RE,RP) = (¢F",¢®) }i<o<oq))
(¢ft,qP): 1<s<|zq]
X IP({(RR RB) (qs 1 s >}1<3<quj)

af +ap R pB R B
= Z Pl 77— Wr € Al (R, RY) = (a5, a)
(qf,qSB) Rk (5) + Rk (8)

R B
q;, +4q
Rh( )+ Ry, (e)
= Z POV € APW,Y € BYP{(RE,RY) = (4l a) i <os g))
(¢%,q2
- ]}D(m(f) e AP(W'® € B).
Explicit tail bounds. Define the quantities

ai)( ) :=(1+¢) rnln Z Bs(x) + K*¥¢e), gff)(/i) :=(1—¢) min (ﬁs(a:)—K*E).

0<z<k

and 4% (k) and 7i®) (k) as in (7.30). We chose & > 0 so small that @(f)( ) (E)( ) > 0. By
the bounds in [16], for any é > 0, we have

Lxa]
(ZW > (1+ ) (s >)<1i ~exp(—qal? (5)) () (6 — log(1 + 6))
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and

Lxaq]
P (Z W > (1+ 5)#“”(%)) < 15 exp(—aa? () ()0 — log(1 +9),
k=1

and, for 0 < § < 1, we have

[+q]
(Z Wi < (4= e )) < exp(—qa®) (k)7 () (—5 — log(1 — 8))

and
[xq]
P (Z Wi < (1 6>u<€><n>) < exp(—gal” (1) p®) (k) (=0 — log(1 — §))).
k=1

APPENDIX L: PROOF OF LEMMA E.3: PARTS (i), (i)

L.1. Proof of Part (¢¢). Although the proof is quite similar to the proof of Part (i), we
provide some details. We divide the proof in two steps: for arbitrarily fixed x,§ > 0, we prove
that there exist ¢/ (k,d) > 0 and ¢”’(k, ) > 0 (not depending on n) such that

(L.1) sup P(Ys(k) > dn(qp)") < e~ ¢ (m0niap)”
keT(x)
and
(L.2) sup P(Ys(k) > 4)} <<e_c//(,{’6)n(qp)r'
keT(k)

Part (i) then follows setting ¢(k,d) := min{c (k,d), " (x,0)}.

Step 1: Proof of (L.1). Arguing similarly to the derivation of (E.4), we have
P(|Q}s1 — Bs(ks/a)n(ap)"| > on(gp)” | N[k] = k)
<P(|[Ss[K]| — Bs(ks/a)n(gp)"| + Nsk]
+1(Vw \ 8s[k]) N Vs[k] N {v: Dg[k] > 1}
+ [8s[k] N Vge[k] N {v: Dg.[k] > r}|N[k] = k)
(I skl = Bs(ks/a)n(qp)"| > (dn(qp)") /4| N[k] = k)
+ P(Ns[k] > (0n(qp)")/4| N[k] = k)
+P(|(Vw \ 8s[k]) N Vs[k] N {v: Dg[k] = r}| > (dn(qp)") /4| N[k] = k)
(L.3) +P(ISs[k] N Vse[k] N {v: Dgc[k] = r}| > (6n(qp)") /4| N[k] = k).
Now, note that, for any k € Z(k), we have
Ns[k] < kq

|(Vw \ 8s[k]) NVs[k] N {v: Dg[k] = r}| < Ng[k] < rq
and

8s[k]NVse[k]N{v: Dg.[k] > r}| > (0n(qp)")/4] < Ns-(k) < rg.
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Since ¢ < n(gp)" (which follows by (2.3) 7)), we then have that there exists n, s such that,
for all n > ny s,

B(Ns[k] > (n(qp)")/4|N[K =k) =0, VkeT(x)

P(|(Var \ Ss[k]) N Vs[k] N {v: D[R] > r}] > (Sn(gp)")/4|N[k] =k) =0, ¥k e T(x)
and

P(|8s[k] N Vge[k] N{v: D [k] >r}| > (dn(qp)")/4|N[k] =k) =0, VkeT(k).
Therefore, by (L.3), for any n > n, s,

P(1Q 41 — Bs(k1/a)n(qp)| > on(qp)" | N[k] =k)

(L4)
<P([8s[kl| = Bs(k1/q)n(gp)"| > (dn(gp)") /4| N[k] = k), ¥k € Z(~).

We proceed distinguishing two sub-steps. In the first step we provide an exponential bound
(uniformly in k € T(k)) for the probability in (L.4), in the second step we conclude the proof
of (L.1).

Sub-step 1: Exponential bound for the probability (L.4). We prove that there exists
N5 > 1 such that, for all n > n, s,
(L.5)
B(|[Ss[k]| — nBs(k1/q)(ap)| > (5n(qp)") /4| N[k = k) < 2~ =n@)" vk € Z(x)

where ¢ (k,0) > 0 is a suitable positive constant (not depending on n). By (3.14) we have
B(|[8s[k]| — nBs(ks/a)(ap)’| > (nd(qp)") /4| N[k] = k)
< P(Bin(nw, ms(k)) < n(gp)"(Bs(ks/q) —/4))
(L.6) + P(Bin(nw, ms(k)) > n(qp)" (Bs(ks/q) +0/4)).

Taking
!
§ e (0, ot > :
(k+ag)"

and using Lemma E.4 we have that there exists n,, s > 1 such that, for any n > n, s,

(L7) nwms(k) > nbs(ks/a)(ap) (1 — &' /4) > n(ap) (Bs(ks/a) — §/4), VkeT(x)
and

(L.8) nwms(k) <nBs(ks/q)(qp)"(1+0'/4) <n(gp)"(Bs(ks/q) +3/4), VkeT(k).

By (L.7), the usual concentration bound for the binomial distribution (see (1.2)) and the fact
that the function H defined by (3.4) decreases on [0, 1), for any n > n, 5, we have, uniformly
ink € T(k),

P(Bin(nw,ms(k)) < n(qp)" (Bs(ks/q) — 6/4)
n(qp)” (Bs(ks/q) — 5/4)>>

nwﬂ'g(k)

<exp —nwﬂs(k)H<

Bs(ks/q) —d/4 >>
Bs(ks/q)(1—6'/4)

Losjea)))

(
< exp (—nlap) st/ — /)1 (
( 0

L) < exp (—nlap)" (0% — 6/4)H (
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By (L.7), (L.8), the usual concentration bound for the binomial distribution (see (I.1) ) and
the fact that the function H increases on (1,00), for any n > ny s, we have, uniformly in
k € T(k),

P(Bin(nw,ms(k)) > n(qp)" (Bs(ks/q) +/4))

B )
<o (-ntan sthsto) o/ (5 000 ) )
(L.10) < exp (—n<qp>f<ag ~ojy (S

The inequality (L.5) follows by (L.6), (L.9) and (L.10).

Sub-step 2: Conclusion of the proof of (L.1). The claim easily follows by (L.4) and
(L.5).

Step 2: Proof of (L.2). By the previous part of the proof, we have that, for all n > n,, s,
(L.11) - ‘
P(1Q3 11 — Bs(ks/a)n(ap)"| > on(gp)” N[K] = k) < de=®=0man)" v k € T(x)
for a suitable positive constant ¢(k,0) > 0 (not depending on n). By the inequality ||z| —
lyl| < |z —yl|, z,y €R, it follows
(L.12) ~ :
P(||Q¢41| — |Bs (k1 /g)n(ap)"|| > on(gp)” |N[k] = k) < de~“=0m@) v k € T(x).

By the triangular inequality and the union bound, we have
P( — (1Bs(ks/a)| + Bse (ks /q) )n(qp)"| > dn(qp)" | N[k] = k)

< P(|Q 1] — Iﬁs(ks/Q)ln(qp)Tl > (0n(gp)")/2| N[k] = k)+

IP( — [Bse(kse/q)In(gp)"| > (dn(gp)")/2 | N[k] = k).
Combining this relation with (L.12), for all n > n, s, we have
(L.13) . .
P(||Q% 1| +1Qi1 1= (185 (ks /@) +|Bse (ks /) )n(gp)”| > dn(gp)” |N[k] = k) < 25e=(mO)mar),
V k € T (k) and some positive constant c2(k,d) > 0 (not depending on n). By Lemma E.6,
(L.11) and (L.13), for all n > ng, we have

- (‘Uksle B 1Bs(ks/q)| ’

1Bs(ks/a)| + |Bse (ks /q)|
V k € T(x) and suitable positive constants c3(k,d, Smin) and c4(k, 0, fmin) (not depending
on n), where the constant B, > 0 is defined by (E.2). The claim (L.2) easily follows by this
inequality.

> 5 | N[k = k) < ¢3(K, 6, Bynin Je 10 ) (ap)”

Proof of Part (ii¢). The proof of Part (iii) follows the same lines as the proof of Part
(7i). In particular, one first shows that, for any x,d > 0, there exists ny s > 1 such that, for
any n > ny g,

P(1Qi41 — Bs(kr/a,kp/a)n| > on|N[k] = k)
(L.14) <P(|[8s[kl| — Bs(kr/a.kB/q@)n| > (dn)/4|N[k] =k), VkeT(x).

Then one provides an exponential bound (uniformly on k € T(k)) for the probability in
(L.14), from which the claim follows. We omit the details.
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Proof of Lemma E.4.

Proof of Part (¢). We divide the proof of the Part (7) in two steps, where we prove that
for every k >0

(L.15) sup |1 — [(ks/q+as)ap]"/r!|
KET(k) ms(k)
and
nw((ks/q+ as)gp)”/r!
L.16 _q 0.
10 k?ﬂ%&) (Bs(ks/q) +ks/a)q ‘ -

respectively. The claim then easily follows combining these two uniform convergences on
T(k).

Step 1: Proof of (L.15). We divide the proof of (L..15) in two further steps. In the first
step, we show the non-uniform convergence, i.e., we prove that, for any sequence k,, =k =
(ks,ks-) € (NU{0})? such that ks/q — xg, for some z5 € [0,00)?, it holds

LD sl = R (10 (U ol (ks ) )
(L.18) N (CESJFSSMP)T'

In the second step, we conclude the proof of (L.15) lifting the convergence (L.17) to a uniform
convergence on T(x). We warn the reader that in the proof of (L.17) and (L.18) we omit the
dependence on n since no confusion arises in the computations. Such a dependence is instead
made explicit in the second step.

Sub-Step 1: Proof of (L.17) and (L.18). We have
ks+asf1"
ms(k) = Z P(Bin(ks + ag,p) > m + r)P(Bin(kge + age,p) =m).

m=0
By e.g. formula (8.1) in [8], we have, for any j,¢,m € N,

(7 +O)p]™

P(Bin(j +£,p) > m) = LT

(L+0(G+Op+3G+07Y).

Since (1 — p)(*ksetase)r 5 1 for n large enough we have
ms(k) = P(Bin(ks + as,p) > 7)P(Bin(ks + ase,p) = 0)

ks+as—7‘
+ Z P(Bin(ks + as,p) > m + r)P(Bin(kse + age,p) =m)
m=1

=(1 _p)(ksc-l—aSC)p W (1 +0 ((k'l +as)p+ (ks + as)_l))

ks Jras —Tr

+ Z P(Bin(ks + ag,p) > m + r)P(Bin(kge + age,p) =m)
m=1

_ (ks +as)pl” ((1 + 0 ((k1 + as)p+ (ks +as)™"))

r!
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r!
T [ - as)o)

]{?s+a577‘
X Z P(Bin(ks + as,p) > m+r)P(Bin(kg- + age,p) = m)) .

m=1
The claim (L.17) follows if we check that
(L.19)
ks—'ras—’r‘

W > P®Bin(ks+as,p) > m+r)P(Bin(ks +age,p) = m) = O((ks +as)p).
m=1

By the usual concentration bound for the binomial distribution (see (I.1)) letting H denote
the function defined by (3.4), for n large enough we have
ks+as—r
Z P(Bin(ks + as,p) > m + r)P(Bin(kse + age,p) =m)

m=1

< > P®Bin(ks + as,p) > k)

k>r+1
k

3 oo ()

2, (s aslp
< Z exp <—k (logk — 1))
S5 (ks +as)p
< ep( ( —i—l)(log k 1>>
< xp | —(r _

i (ks +as)p

r+1
o (ks +as)p
HURS (k
k>r+41

The relation (L.19) follows by this inequality, and the proof of (L.17) is completed. As far as
(L.18) is concerned, we note that by (2.2) and (2.3), we have

[(ks +as)pl" ~I;!as)p]r (1+0 ((ks +as)p+ (ks +as) ™)) ~ (ks +as)pl” t?S)p]r
_ ((zs +as)ap)”
7l '

Sub-Step 2: Conclusion of the proof of (L.15). Reasoning by contradiction, suppose
that

[(ks/qn + as)gnpn]” /7!
75(Kam)
() ()

where af”) = (ap’,ap’) and ¢ > 0 is a positive constant. Letting {n'} denote a subsequence
that realizes the lim sup, we have

k / ’ ’ T !
lim sup 1— [( S/qn + aS)Qn Pn ] /7"
n’—o00 keT, (k) TS (ka(’"’))

1—

limsup sup
n—oo keT, (k)

=c>0,

[(ks/qn + as)qnpn]” /7!

1-— =c>0.
75 (Kae)

= lim max
n'—ookeT,, (k)
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Setting

[(kS/Qn’ + aS)qun/]r/r!
75 (kac)

ky. (k) :=arg max |1 —

" keT,,, ’

we have (using an obvious notation)

(k7 (£))s/an + cs)qnpu]" /7!
s (K7, (K))acn)

Since the sequence k?,(k)/qy is contained in the compact T’(x) defined as in (7.4), there

exists a subsequence {n"} such thatk*, (x)/q,” — (zs, 2s-) € K(k). So by (L.20) it follows

[((k;” (’%))S/qn" + aS)qn”pn”]T/T!
WS((kZ” (“))am”))

which contradicts (L.18).

(L.20) lim

n’—o00

1-— =c>0.

[(ZS + as)qn”pn"]r/r!

lim (0 (R)) g

n'’’—o00

= lim |1-—

n'’’—o00

1—

=c>0,

Step 2: Proof of (L.16). We have

ks/q+ « " r Tl
L21) nyy ((Es/4 . )P _ o1+ ag) qpnw(qpr),-
So, by the definition of g and assumption g = g, it follows
k +a " — —1\r— T
nw(( s/4 o s)ap) ~T 1[1—7“ 1) 1(kS/Q+OéS) q
(L.22) = (Bs(ks/q) +ks/q)q-

Arguing as in the proof of Step 2 for (L.15) (i.e., reasoning by contradiction, considering a
subsequence realizing the corresponding lim sup, using the compactness of T’ () and finally
using (L.22)) one proves that the convergence (L.22) is indeed uniform on T(k).

Proof of Part (iz). By (L.21), the current definition of the function Sg and the fact that
n ~ nyy, it follows

ay 88/ t,aS)qp)r ~nBs(ks/a)(ap)".

Arguing as in the proof of Step 2 for (L.15) one has

k "(gp)" /1!
sup rw (ks /g + o) (ap)'/r —1] —=0.

KEZ(x) nBs(ks/q)(qp)"
The claim follows combining this uniform convergence with (L.15) (whose derivation does
not depend on the assumptions on the asymptotic behavior of ¢ and the particular definition

of Bs).

Proof of Part (iii), for g = p— 1.

ms(k) :=P(Bin(ks + ag,p) — Bin(kse + age,p) > )
kstas
= > P(Bin(ks + as,p) =r")P(Bin(ks: + age,p) <1’ —7)

r'=r

We start noticing that

= Z P(Bin(ks + as,p) = v )P(Bin(kse + age,p) <7’ — 1)

r'=r
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and that
75(k) ;= P(Po((ks + as)p) — Po((kse + ase)p) > 1)
= Z P(Po((ks + as)p) = 7" )P(Po((kse + ag<)p) <1’ — 7).
This implies

Irs(k) — 75(k)| < 2x%p.

Indeed, letting d7y denote the total variation distance and recalling that dpy (Bin(m, p), Po[mp]) <
mp?, we have

ms(k) —7sk)| < 3 ‘P(Bin(kg + ag,p) = r)P(Bin(ks- + age,p) <1’ —1)

r'=r

—P(Po((ks + as)p) = r")P(Po((kse + age)p) <r' — r)‘

<Y P(Bin(ks +as,p) =1')

r’'=r

P(Bin(kse + age,p) <1’ — 1) — P(Po((kse + ag:)p) <1’ — 1)

+ Z ‘P(Bin((ks +ag)p) =71") —P(Po((ks + as)p) =1") ‘P(Po((kgc +age)p) <1’ —r)

r'=r

<dry(Bin(kse + ase,p),Po((ks: + as:)p)) Z P(Bin(ks + ag,p) =)

r'=r

+ 3" [P(Bin((ks + as)p) =1') — P(Po((ks + as)p) = 1')

r'=r

< dpy (Bin(kse + ase,p),Po((kse + as)p)) + drv (Bin(ks + ag,p),Po((ks + as)p)).
Therefore, noticing that by (2.4) we have Ss(kr/q,kp/q) = 7s(k), it follows

sup nwms(k) 1] = sup nwrs(k) 1‘
ker(x) | "Bs(kr/q, kB /q) keT(n)| n75(K)

[0~ 5500)
keT(x) n7g (k)

< sup nWﬂS(k)A_ s ) ’ o
KET(k) n7s(k) n

< sup 2P F LT,
ker(x) | 75 (k) n

where the latter limit follows since infycr(.) Ts (k) is bounded away from 0.

ks+as

Proof of Part (iii), for p~! < g < n. We start noticing that e

(ks+as+ksc +(lsc)qp
2

> 1, and so,

setting x :=

ws(k) :=P(Bin(ks + ag,p) — Bin(kse + age,p) > 1) =1 — P(Bin(ks + ag,p) — Bin(kge + age,p) < r)
>1—[[P(Bin(ks + as,p) < x +7) + P(Bin(kse + ase,p) > x)] = 1,

, we have
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where the latter limit can be checked using the concentration inequalities reported in Ap-
pendix I to bound the last two terms. Similarly one can check that 7g. (k) — 0.

Proof of Lemma E.5. By the definition of g, we have

)™ roo(ap)
nw (kse /g + ase)(ks/q+ as)" = — = (kse/q + ase)qp(ks/q + as) qpnw =

(L.23) ~r L= e ks /g 4 ase) (ks /q + as) ¢?p.
Along similar lines as in the proof of Step 1 for (L.15) (see the proof of Lemma E.4), one has

(gp)"*!

(L.24) nwﬁ's(k) ~ nw(k‘g/q + Ozgc)(ks/q + Oég)r .

Arguing as in the proof of Step 2 for (L.15) (again, see the proof of Lemma E.4), one has that
the convergences (L.23) and (L.24) are indeed uniform on T(x), and the claim follows.

Proof of Lemma E.6. For ¢ € (0, 1), define the events

e EfL
Béz)/4 ::{‘Xn_,uln|§Z}v CE(Z}4 ::{‘X;Z_IU’MSZ}: n€N.
Note that
e ep
o=~ S Xa@) S+ =, VweBL),
and
Ep ep (n)
0<,u;L—Z§XT’L(w)§,u;L+Z,, Vwel, ),
Therefore, Céz)/ , S {X,, #0} and, for any w € Béz)/ na CE(Z} 4» We have

Apr, +ep ~ Xp(w) ~ App, —ep
We shall check later on that this inequality implies

X
(L.26) 7(‘*’) — Ml <
X (w) oy,
Therefore,
() Xn _ fin / Xn _ fin
sncine [ -l semrop el - =<}
and so

Xn Hn n c n c
IP’(‘X - >g> <P ((BY) )7 U(CE))%) SP(Xn— pnl > o1/ 4) +B(X, — ] > ep1/4).

It remains to check that (L.25) implies (L.26). Indeed

Apn +ep _ Apntep <4un+w<1 2€M>:Mn Lep Leppn  1(ep)® _pin
Ap, —ep A, (1= ) dpy, dpn ) g Apn o 2(pn)? 0 8(un)?

where the first inequality holds since 72— < 1+ 2z, z € (0,1/2). Similarly,

Ao —p _ A —ep A —ep (1 _ep ) _fn lep leppn |1 (ep)?  pn
Ay +ep A, (14 £5) Ap, dp, ) o Apg, A(pp)? 16 (un)? T pg

where the first inequality holds since 14%90 >1—z,2€(0,1).



60

APPENDIX M: THE STOPPED PROCESS

Formal definition. N ;mp is the point process on [0,00) x Vi constructed by thinning
{(T}, V) }ken in the following manner: for k& € N with T}, < Z.p, we retain those couples
(T, V}}) for which, at time (7},)~, the node V}/ is white and satisfies the “threshold condition

with respect to S”; for k € N with T, ,; > Zsop, We keep, exclusively in the process N P those
couples (77, V) for which, at time (7},)~, the node V/}/ is still white and satisfies “threshold

condition with respect to B”. Note that the process N;mp is indistinguishable from Ng, up
to time Zg,,. Furthermore, the process N}SztOp does not evolve after Zp, while the process

N]?Op evolves beyond Zgp,. Formally, for A € B([0,00)) and L C Vyy, we define the Tytop-
stopped R activation process as

1% Vi
NRPAx L) = 3 1T (VOUDR Y (1}) - DEF(17) = )
keN: T <Zop

(M.1)

and the t4op-stopped B activation process as

NEPAx L= > 1T v, apnn(VOUDEH (1)) = DR (1)) = 7}
keN: T < Zgop
v W
+ ) 1A(Té)lvw,mp(T,;)ﬂL(Vk,)1{D1(9,st)op(Tk) Dy st)OP(T’i’) =}
KEN: T/ > Zaop

We call the point process NP := N3P + N7°P R-stopped activation process, and de-

note by {(73"P, V*°P) }xen its points. Setting
APSIOP = ATSIOP 4 ATSOP  where  AGMP = NP ([0,00) x Viy') + as,
and
Kop :=min{k € N: TP 8p(THP) NV (T3P = 0},

it turns out
A*StOp Ks*top—l-aR—l-aB—l.
Note that by construction
AEStOp = NStOp([O Zstop) X Vw) +agr = NR([O Zstop) X Vw) +ar < AR P-a.s.

Extending the stopped process beyond its natural termination. Note that the stopped
process naturally terminates at T wp . The above construction is used also to extend the

stop stop

R-stopped process beyond 17, . In partlcular we define Np beyond T _, as follows:
the points (7}, V}) are defined by thlnnlng the point process { (7}, V})) }x: 7 >TK* _, retaining
stop
only those points for which the corresponding node V// is still W, i.e. defined ¢}, and ¢, as
in (3.7) we set
(Tk+17 Vk+1) = (Ték+1 ? W/k+1)‘
Then we assign to Vi1 color B (regardless of the fact that Vj; is B-susceptible or not).
Le., we define the processes N beyond T} | as
stop

<TJ€B [k]+1> V]\Z [k]+1) = (Thr1, Vay1)-

Of course the extension of the processes Ng and N described above has no effect on the

evolution of the nodes’ activation process up to time TStOp iy
top
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APPENDIX N: PROOFS OF THEOREMS 5.1, 5.2 AND 5.3- COMPLEMENTARY
MATERIAL

N.1. Proof of Lemma 8.2. We prove the lemma reasoning by contradiction. Assume
that there exists a > 0 such that P(limsup{X,, > afn}) =P(",,U,sn{Xm > afm}) =
(> 0. Then -

lim inf > P(X > afm) > Tim IP( U {Xm>afad) =P J {Xm>afa}) =5
m>n m>n n m>n

Therefore, we necessarily have

ZIP)(Xn > afy) = oc.
n=0

By the hypothesis about the stochastic ordering, it follows
oo o
> PV >afy) =Y P(Xn>af,)=o0.
n=0 n=0

By the Borel-Cantelli lemma, this implies P(lim sup{Y;, > a.f,,}) = 1, which contradicts the
assumption Y,,/ f,, — 0 a.s., as n — oo.

N.2. Proof of Theoreom 5.1: Proof of ) > 7. Rewriting (J.2), we have:

9gs(x)
Bs(gs(x))

Therefore, for every x >0, z € Dy, N Dy,,, we have

T gh(y) [T 9By .
/0 BR@R(y))dy‘/ Bolanm) Y ="

By a change of variables it follows

/gR(x) 1 d /QR(@ 1 d /QB (z) 1 J /HB (=) 1 4
v = V= V= v=2
gr(0) Br(2) 0 Br(z) gs(0) BB(2) 0 Bp(z)

Recalling the definition of kg and its properties stated in Proposition A.2(74) (or Proposition
A.3), we have

=1, VzeD,.,S={R B}

> do
o Br(2)

and gr(x) 1 oo for x 1 kg and gp(kg) < 0o, which implies Dy, N Dy, = [0, kg). Therefore

for any ry < kg
gr(rg) 1 gs(rg)
dz = / dv =K/
/gR(O) Br(2) 0 B(2) &

and so letting r, T rg We have

© 1 ge(ke) 1
/0 /BR(Z)dv_/o TB(Z)dv—/ig.

The claim follows noticing that by the positiveness of 3g(-) we have

To 1 To 1] gs(ke) 1 gs(kg)te  q
= 5.1 = d = d dv = 1.
' /o s Bs(2) Z</o Br() " /0 B5(2) ”</o B Y

g = < 00,
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N.3. Proof of (8.35). For i < ¢, we have
2 hg < 4'kg < 81| en, for all n large enough.
Therefore by (8.36) we have
N(Ziy1) = Nr(Zit1) + Np(Ziv1) < 4™ ko < [en].
This proves the lower bound in (8.35). For the upper bound, note that for i > i, we have
N(Ziy1) = |cn| , which follows by (8.33), and the fact that 4+1kg > |cn| and 2¢F1hg >
len].
APPENDIX O: PROOF OF PROPOSITIONS 3.4 AND 3.5

0O.1. Proof of Proposition 3.4. Note that by construction

(0.1) {U =u} = Uiex (X =i} » P(Uy =u) = Y P(X;=1i)
iex,

Now, if |8,,| = 1, the claim follows immediately from markovianity. Otherwise, first observe
from Proposition 3.3 we immediately get:

(0.2) P(ME=1|X,=i)=u VieX,
Now, for j € {0,1} we have:

P(ME =1, Ml =i U =)
PME L, =1, ME=j|Uf =u)= —FH bk
(M5 n=71U=u) (U,ff:u)
_Z +1_1M}?:j7U]5:u7Xk_l (G)Z k+1_1Mh _J’Xk_l)
i€, PU =) i€, P(U =)
_Z +1—1M§:j|Xk:i)P(Xk=i>
= P(UF =u)
b)z =1 Xy = )P(MT = [ Xy, =)P(Xg = i)
ieX, P(U’f:u)
c P(ME=j| X, =1)P(X; =i P(ME =4, X, =i
(:)uz (M, ]‘ll; i)P(X, l):uz (h}g»k i)
. P(U; = u) . P(U; = u)
P(ME=34,Uf=u) @ ,
M =0T =) Do U =My = 7| UF = )
(U =u)
where equation (a) holds because from (O.1) we have {X; =i} C {UF =u} Vi€ X, (b)
from markovianity, while equations (¢) and (d) from (O.2). O

0.2. Proof of Proposition 3.5. The proof of Proposition 3.5 is omitted as it is a rather
immediate consequence of (3.5) and the identity

) (XX, } = U M {Xn=xu}.

Osh<k x1€X s, oo Xk EXn, 05
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