
A CLASS OF NUMERICAL SEMIGROUPS DEFINED BY KUNZ AND
WALDI - THEIR PRINCIPAL MATRICES AND STRUCTURE

SRISHTI SINGH AND HEMA SRINIVASAN

Abstract. In this paper, we explore a class of numerical semigroups initiated by Kunz

and Waldi containing two coprime numbers p < q, which we call KW semigroups. We

characterize KW numerical semigroups by their principal matrices. We present a neces-

sary and sufficient criterion for a matrix to be the principal matrix of a KW semigroup.

An explicit description of the minimal resolutions of numerical semigroups in the same

class with small embedding dimensions 3 and 4 is given. We give a generalization of this

notion to three dimensions using lattice paths under a plane and present some prelimi-

nary results and questions.

1. Introduction

A numerical semigroup ⟨a⟩ is a submonoid of Nminimally generated by a = {a1, . . . an} ⊆
N where gcd(a1, . . . , an) = 1. Such a semigroup will contain all but finitely many positive

integers, called the gaps. The largest gap is called the Frobenius number, F (a).

This paper is inspired by recent remarkable works of Kunz and Waldi in [5] where they

build numerical semigroups of the same multiplicity p by filling in gaps. Any semigroup of

embedding dimension 2 is symmetric, i.e., the number of gaps is exactly half the number of

elements less than the Frobenius number. Thus, a semigroup generated by two relatively

prime positive integers p < q, is symmetric and of multiplicity p. Kunz and Waldi build

extensions of these semigroups by filling in gaps larger than p to create semigroups of

higher embedding dimensions with the same multiplicity p. All the gaps of ⟨p, q⟩ are of

the form pq−xp−yq for some positive integers x, y ∈ N, with pq−p−q being the largest,

the Frobenius number.

In [5], Kunz and Waldi study numerical semigroups of the form ⟨p, q, h1, . . . hn−2⟩ where
p < q are relatively prime positive integers. Further, they analyze a special class of
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2 S. SINGH AND H. SRINIVASAN

semigroups with embedding dimension n, which we denote by KW (p, q), by filling in

gaps where x ≤ p/2, y ≤ q/2. In particular, they prove a structure theorem for this class:

Theorem 1.1. (Corollary 3.1, Theorem (Appendix) [5]) Let A = ⟨p, q, h1, . . . hn−2⟩ with

hi = pq−xip−yiq, for some 0 < 2xi ≤ q, 0 < 2yi ≤ p, 1 ≤ i ≤ n−2. Then the semigroup

ring k[A] is of type n− 1 and its relation ideal is generated by
(
n
2

)
elements.

In this paper, we begin by studying the principal matrices of these semigroups. A

“principal matrix” is an n × n integer matrix associated with a numerical semigroup of

embedding dimension n. If a = {a1, . . . , an} minimally generates a numerical semigroup,

then its principal matrix P (a) = (aij) is an n×n matrix, aij ≥ 0, i ̸= j, where −aii is the

smallest positive integer such that aiixi +
∑

i ̸=j aijxj = 0. The diagonal entries of P (a)

are uniquely determined for a given a but the matrix itself need not be unique.

Indeed for a general numerical semigroup ⟨a⟩, the rank of P (a) ≤ n− 1 and when it is

n− 1, one can recover a from the n− 1 order minors of any of the n− 1 rows. Further,

the rank of P (a) ≥ n/2, ([2]). As such, this matrix holds vital information about the

semigroup itself.

For instance, a criterion is established for Gorenstein monomial curves using principal

matrices in [1] and [3]. Additionally, [2] presents a characterization for principal matrices

of numerical semigroups that are gluing of numerical semigroups.

In this paper, we study the principal matrices of the semigroups in KW (p, q). We

establish a necessary and sufficient criterion for a matrix to be the principal matrix of a

numerical semigroup within Kunz and Waldi’s class in Theorem 3.1. As a consequence,

we get

Corollary 1.2. Let 3 ≤ p < q be prime numbers. Then the principal matrix of a numer-

ical semigroup A = ⟨p, q, h1, . . . , hn−2⟩ ∈ KW ((p, q)) is of the form

P (A) = T (α, β) =



−
(
q+αn−2

2

)
p−βn−2

2
0 0 · · · 0 1

q−α1

2
−
(
p+β1

2

)
1 0 · · · 0 0

α1 β1 −2 0 · · · 0 0

α2 β2 0 −2 · · · 0 0
...

...
...

...
. . .

...
...

αn−2 βn−2 0 0 · · · 0 −2


,

for some odd positive integers αi, βi satisfying q > α1 ≥ . . . ≥ αn−2 ≥ 0 and 0 < β1 ≤
· · · ≤ βn−2 < p. Conversely, any n × n matrix of the form P (A) = T (α, β) above is a

principal matrix of a KW (p, q) numerical semigroup.
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As an interesting fact, we observe that the defining ideals of semigruop rings k[H] for

H ∈ KW (p, q) can be written as sums of 2× 2 minors of 2 +
(
n−2
2

)
matrices of size 2× 3.

The paper is organized as follows: In section 2, we define the notion of principal ma-

trices, the class KW (p, q) of numerical semigroups and some notation. The proof of our

main result (Theorem 3.1) is in section 3. In section 4, various auxiliary results pertaining

to the minimal resolutions and relation ideal of semigroup rings of KW (p, q) are given.

We end this paper by extending the class of KW-semigroups in section 5, and conclude

with some open questions.

2. Preliminaries

If a set of relatively prime positive integers a = {a1, ..., an} minimally generates a

semigroup ⟨a⟩, then, there are equations

ciai =
∑

j ̸=i,1≤j≤n

aijai, 1 ≤ i ≤ n.

In the associated semigroup ring k[a] = k[ta1 , . . . , tan ] = k[x1, . . . , xn]/Ia,

fi = xci −
∏

j ̸=i,1≤j≤n

x
aij
j

are among a set of minimal generators of Ia. Further,
√
(f1, . . . , fn) =

√
Ia. These fi are

therefore called critical binomials of the numerical semigroup ⟨a⟩ or the binomial toric

ideal Ia. This is also contained in the following n×n matrix, which is called the Principal

Matrix of the numerical semigroup.

Definition 2.1. (Definition 1, [2]) Let a = {a1, ..., an} be a set of positive integers min-

imally generating a semigroup ⟨a⟩. A =


−c1 a12 · · · a1n

a21 −c2 · · · a2n
...

...
. . . a2n

an1 an2 · · · −cn

 is called a principal

matrix of ⟨a⟩ if Aa = 0, and ci is the smallest positive integer such that ciai ∈ ⟨a− {ai}⟩
for all 1 ≤ i ≤ n.

Although the diagonal entries −ci are uniquely determined, aij are not always unique.

The sequence of positive integers a can be recovered from a given principal matrix A of

rank n − 1 by factoring out the greatest common divisor of the entries of any nonzero

column of the adjoint of A and taking its absolute value.
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Example 2.2. The principal matrix of the numerical semigroup a = ⟨5, 7, 11, 13⟩ is

P (a) =


−4 1 0 1

2 −3 1 0

3 1 −2 0

1 3 0 −2


We can recover a simply from the 3× 3 minors of the first three rows.

In this paper, we study the principal matrices of numerical semigroups in KW (p, q),

constructed in [4] as follows:

Definition 2.3. Let p, q ∈ N be relatively prime with 3 ≤ p < q. The set of Kunz-Waldi

Semigroups associated to p < q, denoted by KW (p, q), is the set of all numerical semi-

groups H with ⟨p, q⟩ ⊂ H ⊂ ⟨p, q, r⟩, where r =


p
2
, p even

q
2
, q even

p+q
2
, p and q odd.

All H ∈ KW (p, q) are in one-to-one correspondence to the lattice paths in the rectangle

R ⊆ R2 with the corners (0, 0), (0, p′ − 1), (q′ − 1, p′ − 1), and (q′ − 1, 0), where p′ =⌊
p
2

⌋
and q′ =

⌊
q
2

⌋
. The only H ∈ KW (p, q) with embedding dimension e(H) = 2 are

⟨p, q⟩, ⟨p/2, q⟩, and ⟨p, q/2⟩. For any other H ∈ KW (p, q), the minimal generating set is

{p, q, h1, ..., he(H)−2}, where hi = pq − xip − yiq, if (xi, yi) for 1 ≤ i ≤ e(H) − 2 are the

corners of the lattice path defining H. This gives a sufficient condition for H to be in

KW (p, q) and we incorporate it in the definition:

H ∈ KW (p, q) if

(1) 2xi ≤ q and 2yi ≤ p ∀ 1 ≤ i ≤ e(H)− 2

Remark 1. Thus, H = ⟨p, q, h1, . . . , hn−2⟩ ∈ KW (p, q) if and only if hi = pq − xip− yiq

satisfying

2xi ≤ q and 2yi ≤ p ∀ 1 ≤ i ≤ e(H)− 2,

0 < x1 < . . . < xn−2, and y1 > . . . > yn−2 > 0.

3. Principal Matrix of KW semigroups

In this section, we prove one of our main theorems (3.1), which provides an explicit

structure of the principal matrix for any H ∈ KW (p, q).
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Theorem 3.1. Let p < q be two relatively prime positive integers. Choose positive integers

q > α1 > α2 > ... > αn−2 ≥ 0, of the same parity and 0 ≤ β1 < β2 < ... < βn−2 < p of the

same parity. Let hi =
pαi+qβi

2
, 1 ≤ i ≤ n− 2.

Then the matrix

(2) T := T (α, β) =



−
(
q+αn−2

2

)
p−βn−2

2
0 0 · · · 1

q−α1

2
−
(
p+β1

2

)
1 0 · · · 0

α1 β1 −2 0 · · · 0

α2 β2 0 −2 · · · 0
...

...
...

...
. . .

...

αn−2 βn−2 0 0 · · · −2


is a principal matrix for the semigroup H = {p, q, h1, ..., hn−2} if and only if H ∈

KW (p, q) provided any of the following is true:

(i) p and q are both odd

(ii) p is even and 2h1 ̸= pα1

(iii) p is even, 2h1 = pα1 but q ≤ 2α1 − αn−2

(iv) q is even and 2hn−2 ̸= qβn−2

(v) q is even and p ≤ 2βn−2 − β1.

If none of the above conditions is true and if p is even, then the principal matrix of H

is 

−α1 0 2 0 · · · 0
q−α1

2
−
(
p+β1

2

)
1 0 · · · 0

α1 β1 −2 0 · · · 0

α2 β2 0 −2 · · · 0
...

...
...

...
. . .

...

αn−2 βn−2 0 0 · · · −2


and if q is even, it is 

−
(
q+αn−2

2

)
p−βn−2

2
0 0 · · · 1

0 −βn−2 0 0 · · · 2

α1 β1 −2 0 · · · 0

α2 β2 0 −2 · · · 0
...

...
...

...
. . .

...

αn−2 βn−2 0 0 · · · −2


.
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Proof. First, suppose that one of the conditions (i)-(v) are satisfied. Set h = {p, q, h1, ..., hn−2}.
By construction, hi is a minimal generator and 2hi = pαi + qβi. Next, we note that

(3) p

(
q + αn−2

2

)
=

pq

2
+ hn−2 −

qβn−2

2
= q

(
p− βn−2

2

)
+ hn−2 ∈ ⟨h\{q}⟩

since p and βn have the same parity, and

(4) q

(
p+ β1

2

)
=

pq

2
+ h1 −

pα1

2
= p

(
q − α1

2

)
+ h1 ∈ ⟨h\{p}⟩,

since q and α1 are of same parity.

It remains to show the that q+αn−2

2
and p+β1

2
are the smallest integers that make (3)

and (4) true, respectively.

Suppose δq = γp+ µ1h1 + ...+ µn−2hn−2, for some δ, γ, µi(1 ≤ i ≤ n− 2) ∈ N. Not all
µi are zero as p and q are coprime. Then

q

(
δ − µ1β1 + ...+ µn−2βn−2

2

)
= p

(
γ +

µ1α1 + ...+ µn−2αn−2

2

)
From the above equation, it follows that p divides 2δ − (µ1β1 + ...+ µn−2βn−2), so

(5) 0 ≤ px = 2δ − (µ1β1 + ...+ µn−2βn−2)

for some x ∈ N. Now, if q is odd, then none of the αi are zero and hence x > 0.

Observe that necessarily some µj ≥ 1, so in (5),

δ =
px

2
+

∑
i ̸=j,1≤i≤n

µiβi

2
+

p+ βj

2
− p+ βj

2

=
p+ βj

2
+

p

2
(x− 1) +

βj

2
(µj − 1) +

∑
i ̸=j

µiβi

≥ p+ βj

2

≥ p+ β1

2

We have shown that p+β1

2
is the smallest positive integer such that

(
p+β1

2

)
p ∈ ⟨h\{p}⟩.

Even if q is even, x > 0 unless αn−2 = 0 and 2hn−2 = pβn−2. In that case, T will still

be principal as long as p ≤ 2βn−2 − β1.

Similarly, suppose

δ′p = γ′q + ν1h1 + ...+ νn−2hn−2,
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for some δ′, γ′, νi(1 ≤ i ≤ n− 2) ∈ N, necessarily some νj ≥ 1. Isolating p and q as above,

we obtain that

qy = 2δ′ − (ν1α1 + ...+ νn−2αn−2)

for some y ≥ 1 if p is not even so that none of the βi are zero.

Then

δ′ =
qy

2
+

ν1α1 + ...+ νn−2αn−2

2
+

q + αj

2
− q + αj

2

≥ q + αj

2

≥ q + αn−2

2

Again, if p happens to be even, T will still be principal as long as one of the conditions

(i)-(v) is statisfied. Thus, T is a principal matrix of H. Moreover, each hi, 1 ≤ i ≤ n− 2

can expressed as follows:

(6) hi =
pαi + qβi

2
= pq −

(
q − αi

2

)
p−

(
p− βi

2

)
q

By hypotheses, αi > −1 and βi > −1, so that 2
(
q−αi

2

)
= q−αi < q+1, and 2

(
p−βi

2

)
<

p + 1. In view of the sufficient condition to be a KW-semigroup (1), it now follows that

H ∈ KW (p, q).

Finally, say p is even, and 2h1 = pα1 with q > 2α1 − αn−2. Then q is odd. And the

minimal relation on p is α1p = 2h1. Hence the principal matrix is

−α1 0 2 0 · · · 0
q−α1

2
−
(
p+β1

2

)
1 0 · · · 0

α1 β1 −2 0 · · · 0

α2 β2 0 −2 · · · 0
...

...
...

...
. . .

...

αn−2 βn−2 0 0 · · · −2


The case when q is even can be proved similarly. □

Consequently, we obtain a characterization of the principal matrix of anyH ∈ KW (p, q)

when 3 < p < q are prime. This is Corollary 1.2. Recall from the Introduction:
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Corollary (1.2). Let p be odd and q > p be relatively prime to p. Then the principal

matrix of a numerical semigroup A = (p, q, h1, . . . , hn−2) ∈ KW ((p, q)) is of the form

P (A) = T (α, β) =



−
(
q+αn−2

2

)
p−βn−2

2
0 0 · · · 0 1

q−α1

2
−
(
p+β1

2

)
1 0 · · · 0 0

α1 β1 −2 0 · · · 0 0

α2 β2 0 −2 · · · 0 0
...

...
...

...
. . .

...
...

αn−2 βn−2 0 0 · · · 0 −2


,

for some odd positive integers αi, βi satisfying q > α1 ≥ . . . ≥ αn−2 ≥ 0 and 0 < β1 ≤
· · · ≤ βn−2 < p. Conversely, any n × n matrix of the form P (A) = T (α, β) above is a

principal matrix of a KW (p, q) numerical semigroup.

Proof. Note that hi = pq− pxi − qyi, for all 1 ≤ i ≤ n− 2, with 0 < 2xi ≤ q, 0 < 2yi ≤ p.

Since H ∈ KW (p, q), it satisfies the hypotheses of Theorem 3.1. Next, since p ≥ 3 is

prime, it must be odd so necessarily y1 ̸= p/2. Thus, we get that the principal matrix of

H is of the form T (α, β) from equation (2).

The converse is a direct consequence of Theorem 3.1. □

Remark 2. The maximal embedding dimension for a numerical semigroup H in KW (p, q)

is precisely 2 + ⌊p
2
⌋. This maximum is achieved when the set of minimal generators of H

is a part of an arithmetic sequence (p, p+ d = q, . . . , q + (p− 1)d). However, the building

of this extremal semigroup is via the gaps hi = q+(p− 1)d = pq− p⌊ q
2
⌋− q and continue.

For example, with p = 7, q = 11 we see that h1 = 77 − 35 − 11 = 31, h2 = 27, h3 = 23

which is contained in (7, 11, 15, 19, 23, 27, 31).

4. Auxiliary Results

Let H ∈ KW (p, q) be a numerical semigroup of embedding dimension n ≥ 3. Thus,

H is minimally generated by the set {p, q, h1, ..., hn−2} for some relatively prime positive

integers p and q, and hi = pq − pxi − qyi, 1 ≤ i ≤ n − 2. Here, q > xn−2 > ... > x1 and

p > y1 > ... > yn−2 are positive integers with the same parity with p and q respectively.

Let k be a field. Set S = k[u, v, u1, ..., un−2] to be a polynomial ring and ϕ : S → k[t]

to be the map defined by u 7→ tp, v 7→ tq, ui 7→ thi , 1 ≤ i ≤ n − 2. Then the semigroup

ring k[H] = k[tp, tq, th1 , ..., thn−2 ] is the image of ϕ and it is isomorphic to S/IH where

IH = kerϕ, called the ideal of H, is the prime ideal defining the affine monomial curve

whose coordinate ring is k[H].
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4.1. A Classification of IH. Using results from the appendix in [5], we can express

the defining ideal of the semigroup ring k[H] where H ∈ KW (p, q) for any embedding

dimension n ≥ 3 as the sum of determinantal ideals.

Theorem 4.1. Let H = ⟨p, q, h1, ..., hn−2⟩ ∈ KW (p, q), so that hi = pq − xip − yiq,

1 ≤ i ≤ n − 2 with positive integers x1 < x2 < ... < xn−2, y1 > y2 > ... > yn−2, each

satisfying (1): 2xi ≤ q, 2yi ≤ p. Then the defining ideal IH of the semigroup ring k[H] is

the ideal of the 2× 2 minors of the following 2× 3 matrices:

Aij =

[
ui uq−2xjvp−yi−yj uj

uxj−xi uj vyi−yj

]
, 1 ≤ i < j ≤ n− 2

B =

[
vyn−2 uq−x1−xn−2 u1

ux1 un−2 vp−y1−yn−2

]

C =

[
uq−x1−xn−2vp−2y1 u1 un−2

u1 uxn−2−x1 vy1−yn−2

]
Proof. According to the theorem in Appendix A. of [5], the defining ideal of H consists

of the following binomials:

fij = uiuj − uq−xi−xjyp−yi−yj , 1 ≤ i ≤ j ≤ n− 2

gi = vyi−yi+1ui − uxi+1−xiui+1, 1 ≤ i ≤ n− 3

h1 = vp−y1 − ux1u1

h2 = vyn−2un−2 − uq−xn−2

Let M l denote column l of a matrix M . Observe that

fij = det
[
A1

ij A2
ij

]
, 1 ≤ i < j ≤ n− 2,

fjj = det
[
A2

ij A3
ij

]
, 2 ≤ j ≤ n− 2,

f11 = det
[
C1 C2

]
,

gi = det
[
A1

ij A3
ij

]
, 1 ≤ i ≤ n− 3, j = i+ 1,

h1 = det
[
B1 B3

]
,

h2 = det
[
B1 B2

]
□
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4.2. Minimal Free Resolutions. In this section, we explicitly describe minimal free

resolutions of the semigroup ring k[H] where H is a numerical semigroup of small embed-

ding dimension 3 or 4 in the class KW (p, q), and give their Betti numbers. We express

the maps in the resolution in terms of the xi, yi where pxi + qyi are the complements of

the gaps hi of ⟨p, q⟩, i.e., hi = pq − (pxi + qyi) for 1 ≤ i ≤ n− 2.

4.2.1. Embedding Dimension of H is 3. In this instance, we have n = 3, so

H = ⟨p, q, h1⟩ ∈ KW (p, q), h1 = pq−px1−qy1. Here, x1, y1 ∈ N with (x1, y1) ≤ (q/2, p/2).

Furthermore, k[H] = k[tp, tq, th1 ] is the semigroup ring associated to H, and ϕ : S → R is

the map defined by u 7→ tp, v 7→ tq, u1 7→ th1 . Following is the resolution of k[H]:

0 → S2


u1 −uq−2x1

−ux1 vy1

vp−2y1 −u1


−−−−−−−−−−−−−−→ S3

(
vp−y1 − ux1 uq−2x1vp−2y1 − u2

1 uq−x1 − vy1u1

)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ S1

4.2.2. Embedding Dimension of H is 4. In this setting, H = ⟨p, q, h1, h2⟩ ∈ KW (p, q),

hi = pq − pxi − qyi, i = 1, 2. Here, x1 < x2 ≤ q/2, y2 < y1 ≤ p/2 are in N. Furthermore,

k[H] = k[tp, tq, th1 , th2 ] is the semigroup ring associated to H. Following is the resolution

of R/I, where I is the relation ideal of k[H]:

0 → S3 A1−→ S8 A2−→ S6 A3−→ S1

The maps are given by matrices below.

A1 =



u2 −uq−x2vy1−y2 0

−u1 uq−x1−x2 0

ux1vp−2y1 −x1 0

0 vy2 ux2−x1

−vp−y1−y2 u2 0

−u2x1−x2 0 −vy1−y2

ux2−x2u1 0 u2

0 v2y2−y1u2 −u1


,

A2 =
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−ux1 −u2x1−x2vp−y1−y2 0 0 0 −u2 −vp−y1−y2 0

0 0 0 −u2 0 u1 ux2−x1 −v
y1−y2

2

0 0 vy2 u1 ux2−x1v2y2−y1 0 0 ux2−x1

−vp+y2−2y1 −u2x1−x2u1 uq+x1−2x2 −uq−2x2vp−y1−y2 −v2y2−y1u2 −uq−x1−x2vp−2y1 −u1 −u2

−ux2−x1vp−2y1 −vp−y1−y2 u2 0 u1 0 0 0

−u1 −u2 uq−2x2vy1−y2 0 uq−x1−x2 0 0 0



A3 =[
uq−2x1vp−2y1 − u2

1, uq−x1−x2vp−y1−y2 − u1u2, uq−2x2vp−2y2 − u2
2, vy1−y2u1 − ux2−x1u2, vy2u2 − uq−x2 , ux1u1 − vp−y1

]

5. Generalizing KW Type Monoids to Dimension Three

In this section, we will expand this class KW (p, q). Let p and q be two coprime

numbers with 1 < p < q. Let w = r1p + r2q for some r1, r2 ∈ N. Then the semigroup

S = ⟨sp, sq, r1p+ r2q⟩ with gcd(s, w) = 1, is again symmetric and with Frobenius number

s(pq − p − q) + w(s − 1). Consider the class R(p, q, r1, r2, s) of numerical semigroups

obtained by adding to S gaps corresponding to points (a, b, c) ∈ N3 falling on a lattice

path under the plane G0 : spx+ sqy + wz = s(pq + w)− sp− sq − w.

From here on, S is the numerical semigroup ⟨sp, sq, w⟩ where p < q are relatively prime

and s, w are relatively prime and w = r1p+ r2q, ri ≥ 1.

Proposition 5.1. Every gap of S can be written as s(pq+w)−sp(a+1)−sp(b+1)−w(c+1)

for some (a, b, c) ∈ N3. We may always take c ≤ s− 1. In particular, each gap of S is of

the form s(pq+w)− sp(a+1)− sp(b+1)−w(c+1) with (a, b, c) < (q, p, s) alphabetically,

and corresponds to a unique lattice point (a, b, c) below the hyperplane

G0 : spx+ sqy + wz = s(pq + w)− sp− sq − w.

Proof. Let t be a gap of S. Since S is symmetric, F (S) − t ∈ S so that F (S) − t =

spx+ sqy + wz for some (x, y, z) ∈ N3. In other words,

(7) t = s(pq + w)− sp(x+ 1)− sq(y + 1)− w(z + 1)

Now assume x < q, y < p, z < s. Suppose

t = s(pq + w)− sp(x+ 1)− sq(y + 1)− w(z + 1)

= s(pq + w)− sp(x′ + 1)− sq(y′ + 1)− w(z′ + 1)
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Figure 1. Gaps of ⟨15, 21, 17⟩ are in 1-1 correspondence with lattice points

under the plane 15x+ 21y + 17z = 103.

for some (x, y, z), (x′, y′, z′) ∈ N3. Then

s(px+ qy − px′ − qy′) = w(z′ − z)

Since (s, w) = 1, s | z′ − z, i.e., z′ = z +ms for some m ∈ Z. But 0 ≤ z, z′ ≤ s − 1 so

m = 0.

Therefore,

p(x− x′) = q(y′ − y).

Since p and q are relatively prime, we get x = x′+mq for somem ∈ Z. But 0 ≤ x, x′ ≤ q−1

so m = 0.

Thus, we must have x = x′, y = y′, and z = z′.

□

Definition 5.2. We denote by KW (p, q, r1, r2, s) the numerical semigroups H in R(p, q, r1, r2, s)

generated by {sp, sq, w = r1p+ r2q, h1, . . . , hn−3} where hi = s(pq+w)− (xi+1)sp− (yi+

1)sq − (zi + 1)w, where xi ≤ q−4
2
, yi ≤ p−4

2
and zi ≤ s− 2.

Set Γ(x, y, z) = F (S) − xsp − ysq − zw for (x, y, z) ∈ N3.The Apéry set of a numer-

ical semigroup a with respect to an element a ∈ a, named in honour of R. Apéry, is
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Figure 2. H obtained by adding 55, 51, 63 to S

Ap(a, a) = {b ∈ a | b− a ̸∈ a}. Let H = ⟨sp, sq, w, h2, ..., hn−2⟩ ∈ KW (p, q, r1, r2, s). We

give a characterization of the elements h2, ..., hn−2 in terms os the Apéry sets of H. To

understand the motivation, we go through the following geometric illustration.

Example 5.3. Let S = ⟨sp = 36, sq = 44, w = 29⟩. Obtain H by adding the gaps

corresponding to a lattice point within one of the cuboids in Figure 2. Here, H =

⟨36, 44, 29, 206, 221, 222⟩ ∈ KW (9, 11, 2, 1, 4), where h2 = 221, h3 = 222, h4 = 206 cor-

respond to the lattice points A = (1, 2, 2), B = (3, 1, 1) and E = (1, 3, 1), respectively.

First, we compute Ap(H, sp = 36). Fix z = c, with c ≤ z1, the maximum height of any

cuboid in the image. This plane passes through at least one of the three cuboids, say Ci

which is obtained from hi. For each b ≤ bi, there is a line y = b, z = c on the plane z = c

such that each point (aj, b, c), aj ≤ a2 is in H. Moreover, whenever i, j ≤ 2, we have

Γ(ai, b, c) ≡ Γ(aj, b, c) mod sp

Out of all these points on the line z = c, y = b, the one with the largest x−coordinate,

say Pl, corresponds to the smallest gap congruent to sw − sqb − wc modulo sp. The

equivalence classes are distinct for each distinct b and c, so Γ(Pl) ∈ Ap(H, sp). Visually,

Ap(H, sp)\S is contained in the set of gaps corresponding to the lattice points seen in

Figure 3.

Similarly, we can find elements in Ap(H, sq = 44) and Ap(H,w = 29). Ap(H, sq)\S
and Ap(H,w)\S can be visualized in Figures 4 and 5 respectively. One can see that the

only lattice points common to all three figures 3, 4 and 5 are exactly those corresponding

to h2, h3 and h4.
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Figure 3. Ap(H, sp)\S

Figure 4. Ap(H, sq)\S

Figure 5. Ap(H,w)\S

This gives rise to the following result:

Proposition 5.4. Let H ∈ KW (p, q, r1, r2, s). Then {minimal generators of H}\{sp, sq, w} =

Ap(H, sp) ∩ Ap(H, sq) ∩ Ap(H,w).

Proof. Denote by h the minimal generating set of H. Let hi ∈ h. If hi − sp ∈ H, then

hi =
∑

j rjhj + asp + bsq + cw. If ri = 0, hi is not a minimal generator. If ri ≥ 1,

then we have
∑

j ̸=i rjhj + (ri − 1)hi(a+ 1)sp+ bsq + cw = 0 which is impossible. Hence

hi − sp /∈ H and hence hi ∈ Ap(H, sp). Similarly, hi ∈ Ap(H, sq) and hi ∈ Ap(H,w).

Thus, h\{p, sq, w} ⊂ Ap(H, sp) ∩ Ap(H, sq) ∩ Ap(H,w) since x /∈ Ap(H, x) for any

x ∈ H.

If h ∈ Ap(H, sp)∩ Ap(H, sq)∩ Ap(H,w) then h =
∑n−2

i=1 tihi for h− sp, h− sq, h−w

cannot be inH. Further since 2hi ∈ ⟨sp, sq, w⟩ for all i, ti ≤ 1. If two of the ti are not zero,
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say, i = 1, 2, then we have h = 2h1−sp(x2−x1)−sq(y2−y1)−w(z2−z1)+
∑n−2

i=3 hi. By the

fact that hi ∈ H are minimal generators, we have that one of (x2−x1), (y2− y1), (z2− z1)

must be negative. So, one of h − sp, h − sq, h − w must be in H which is impossible.

so, only one of ti ̸= 0. Hence, h = hi for some i and so we get the other inclusion:

h\{sp, sq, w} = Ap(H, sp) ∩ Ap(H, sq) ∩ Ap(H,w). □

The proposition above establishes a close relationship between the lattice path of a

numerical semigroup H ∈ KW (p, q, r1, r2, s) and its Apéry set. In fact, the lattice path of

H can be exclusively determined by its Apéry sets Ap(H, sp), Ap(H, sq), and Ap(H,w).

Consequently, this observation could facilitate deriving an upper bound for the embedding

dimension of any H ∈ KW (p, q, r1, r2, s), as in Remark 2.

Kunz and Waldi show that for H ∈ KW (p, q), the type of the semigroup ring k[H]

equals e(H)− 1. Contrasting this with the dimension three, consider H ∈ R(5, 7, 2, 1, 3)

obtained by adding a gap h of ⟨15, 21, 17⟩. In the following table. the first column consists

of gaps h such that H = ⟨15, 21, 17, h⟩, with embedding dimension 4 has the correspond-

ing type in column 2.

Choice of h t(H)

50,56,65,67, 71,73,82,86,88,103 3

35, 52 4

However, we show that for a class of the h ∈ H in KW (p, q, r1, r2, s), we prove that the

type is always 3.

Example 5.5. Consider Figure 6 below. Take H = ⟨36, 44, 29, 221⟩ ∈ KW (9, 11, 2, 1, 4)

where 221 corresponds to the lattice point A = (1, 2, 2). Then PF (H) = {271, 316, 331}
where 331, 271, and 316 correspond to the points I = (2, 0, 0), J = (0, 3, 0), and K =

(0, 0, 3), respectively.

Theorem 5.6. Let H = ⟨sp, sq, w, h⟩ ∈ KW (p, q, r1, r2, s) with h = F (S)−spx−sqy−wz.

If pz := F (S)− (z + 1)w ̸∈ H, then t(H) = 3.

Proof. We will show that

PF (H) = {px := F (S)− (x+ 1)sp, py := F (S)− (y + 1)sq, pz}.
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Figure 6. PF (⟨36, 44, 29, 221⟩)

Claim 1. px, py ̸∈ H. Suppose first that px ∈ H. Then px = αsp+ βsq + γw + δh for some

α, β, γ, δ ∈ N . By the choice of h to be in Kunz-Waldi class, 2h ∈ S. pX is a gap

of S. So, δ = 1. So, we get (α+1)sp+(β−y)sq+(γ−z)w = 0. This means either

β < y or γ < z. If indeed γ < z, then (z − γ)w = (α + 1)sp + (β − y)sq. So, s

must divide z− γ but this is impossible since z < s. Now if γ ≥ z, 0 ≤ (c− z)w =

((y−β)q− (α+1)p)s. So, there exists u ∈ N such that (y−β)q− (α+1)p = wu =

r1pu+ r2qu =⇒ (y− β − r2u)q = (α+1+ r1u)p > 0 =⇒ y > p a contradiction.

So, px /∈ H. The argument for py ̸∈ H is similar.

Claim 2. pi + sp, pi + sq, pi + w, pi + h ∈ H for all 1 ≤ i ≤ 3.

To see that p1 + sp ∈ H, we have the following

p1 + sp = F (S)− (x+ 1)sp+ sp

= F (S)− xsp

= h+ ysq + zw ∈ H

Next, to see that p1 + sq ∈ H, we have

p1 + sq = F (S)− (x+ 1)sp+ sq

= spq + sw − sp− sq − w − (x+ 1)sp+ sq

= sp(q − x− 2) + w(s− 1) ∈ H
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since x ≤ ⌊q/2⌋ − 2 =⇒ q − x− 2 ≥ 0. Thirdly, for p1 + w ∈ H, we see

p1 + w = F (S)− (x+ 1)sp+ w

= spq + sw − sp− sq − w − (x+ 1)sp+ w

= sp(q − x− 2) + s(r1p+ r2q)− sq

= sp(q − x− 2 + r1) + sq(r2 − 1) ∈ H

since r2 ≥ 1.

Similarly, p2+sp = sq(p−y−2)+w(s−1) ∈ H since y ≤ ⌊p/2⌋−2 =⇒ p−y−
2 ≥ 0, p2+sq = h+xsp+zw ∈ H, and p2+w = sq(p−y−2+r2)+sp(r1−1) ∈ H

as r1 ≥ 1.

Next, p3 + sp = w(s − z − 2) + sq(p − 1) ∈ H as z ≤ s − 2, p3 + sq =

w(s− z − 2) + sp(q − 1) ∈ H, and p3 + w = h+ xsp+ ysq ∈ H.

It remains to show that pi + h ∈ H for all 1 ≤ i ≤ 3. Well, recall that

x ≤ q−4
2
, y ≤ p−4

2
, and z ≤ s− 2 so that

p1 + h = sp(q − 2x− 3) + sq(p− y − 2) + w(2s− z − 2) ∈ H,

p2 + h = sp(q − x− 2) + sq(p− 2y − 3) + w(2s− z − 2) ∈ H,

and

p3 + h = sp(q − x− 2) + sq(p− y − 2) + w(2s− 2z − 2) ∈ H.

Claim 3. No other gap of H is in PF (H). Any gap of H is of the form g = F (S) − spa −
sqb − wc for some (a, b, c) ∈ N3. Suppose g is different from p1, p2, p3. It is not

of the form F (S) − (x + 1 + i)sp for i > 0 because F (S) − (x + 1 + i)sp + sp =

p1 − (i− 1)sp ∈ H =⇒ p1 ∈ H, a contradiction to Claim 1. Similarly, g is not of

the form F (S) − (y + 1 + i)sq or F (S) − (z + 1 + i)w for i ≥ 0. Further, one of

the following must happen: a > x, b > y, c > w. Otherwise, if a ≤ x, b ≤ y, c ≤ z,

then g = h+ (x− a)sp+ (y − b)sq + (z − c)w ∈ H.

Suppose g = F (S)−spa−sqb−wc ∈ PF (H) with a = x+j for some j ∈ N\{0},
and one of b, c is non-zero. Then p1 = g + sp(j − 1) + sqb+ wc ∈ H. If b = y + j

for some j ≥ 1, then p2 = g + spa + sq(j − 1) + wc ∈ H. Finally, if c = z + j

for some j ≥ 1, then p3 = g + spa + sqb + w(j − 1) ∈ H. Each of these cases is a

contradiction since p1, p2, p3 ̸∈ H. So g cannot be different from p1, p2 or p3.

Thus, PF (H) = {p1, p2, p3} proving that the type of H is 3.

□
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The condition p3 ̸∈ H is necessary as seen in the example below.

Example 5.7. Take H = ⟨27, 33, 29, 152⟩ ∈ KW (9, 11, 2, 1, 3). Here, 152 = s(pq + w)−
(x + 1)sp − (y + 1)sqy − (z + 1)w for (x, y, z) = (3, 1, 1) but t(H) = 4. In this case,

p3 = 237 ∈ H and PF (H) = {p1, p2, 183, 204}.

Further, the theorem still may not hold if H ∈ R(p, q, r1, r2, s)\KW (p, q, r1, r2, s).

Example 5.8. Take H = ⟨15, 21, 17, 37⟩ ∈ R(5, 7, 2, 1, 3). Here, 37 = s(pq + w) − (x +

1)sp− (y+ 1)sqy− (z + 1)w for (x, y, z) = (3, 1, 0), so that 3 > 7−4
2

= 1.5, and t(H) = 4.

With this in mind, we ask the following questions:

Question 1. What are the conditions on the gaps hi that will yield an explicit formula

for the type of H?

Question 2. Let hi = spx + sqy + wz = s(pq + w) − spxi − sqyi − wzi, where xi <
q
2
, yi <

p
2
, z < s. In particular, what is the type of H = (sp, sq, w, hi, 1 ≤ i ≤ n − 2) ∈

KW (p, q, s, w) ?

Theorem 1.1 gives the number of generators for the relation ideal of any H ∈ KW (p, q).
Consider the following tables, In the left one, the first column consists of gaps h such that
H = ⟨15, 21, 17, h⟩, with embedding dimension 4, and the second column has the corre-
sponding number of minimal generators for its relation ideal. In the next table, the first
column consists of h′ such that H ′ = ⟨15, 21, 17, 73, h′⟩, and the second column is µ(IH′),
the number of minimal generators of IH′ .

Choice of h µ(IH)

35, 50, 52, 56, 65, 67, 71, 73, 82, 86, 88 6

103 7

Choice of h′ µ(IH)

67 9

50, 71, 82, 86 10

65 11

This prompts the question:

Question 3. What is the number of minimal generators for the relation ideal of H ∈
KW (p, q, r1, r2, s)?

Even when the embedding dimension of H is 4, we may have many different numbers

of generators for its ideal as seen in the table above.
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