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Recently, there has been growing interest in the impacts of phase shifts within the triple-Q spin
density wave (SDW) order parameters. Concurrently, it is widely recognized that incommensurate
triple-Q charge density waves (CDW) are also prevalent in low-dimensional materials, where the
phase degrees of freedom in the order parameters are generally allowed. In this study, we system-
atically investigate the pivotal effects arising from both triple-Q CDW and SDW order parameters,
with particular consideration given to possible phase shifts. We show that the phase shifts play a
crucial role in determining the real-space topology of triple-Q density waves. More importantly, we
show that the triple-Q CDW and SDW order parameters would influence the band geometry in the
momentum space, where multiband Dirac-like fermions are induced by the triple-Q density wave
order parameters near the Fermi energy. Furthermore, we explicitly establish that such nontrivial
band geometry, combined with symmetry-breaking induced by phase shifts, leads to a variety of
intriguing linear and nonlinear responses.

Introduction.— For the incommensurate density
waves, there exhibits possible phase shifts that can be
continuously changed without affecting the energy. As
a result, the incommensurate density waves exhibit an
exotic gapless collective excitation — phason. In the
presence of impurities, phasons are pinned and become
effectively gapped. But these phasons can be excited
with an electric field beyond the threshold, leading to the
so-called depinning phenomena. Such phenomena have
been observed in both charge density wave (CDW) and
spin density wave (SDW) systems [1–7]. Moreover, the
CDWs and SDWs often share similar physics with each
other. For example, the sliding dynamics of CDWs and
SDWs in the flow region are unified with the same the-
oretical framework recently [8], while Galilean relativity
physics has also been discussed in both moving CDW [9]
and moving SDW systems [10]. It is generally interesting
and profound in identifying the common physics shared
by various density wave systems.

The phase shifts are naturally expected to appear in
multi-Q incommensurate density waves as well. Espe-
cially, the incommensurate triple-Q CDW systems are
widely recognized in low-dimensional materials, such as
layered transition-metal dichalcogenides 1T TaS2, 1T
TiSe2, 2H TaSe2 [11], while triple-Q SDWs are commonly
found in noncolinear magnetic materials, such as skym-
rion crystals (SkX) [12–15]. Moreover, the important ef-
fects of phase shifts on the SkX were recently highlighted
[16–18], which play a crucial role in affecting the scalar
spin chirality and lowering the rotational symmetry in
SkX [17]. However, a theoretical work that simultane-
ously describes the effects of phase shifts in both incom-
mensurate triple-Q CDW and SDW systems is still lack-
ing.

In this work, we present a minimal theory to cap-
ture the phase shifts, band geometry, and their interplay
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on various responses in two-dimensional triple-Q density
wave systems. The theoretical framework is applied to
both triple-Q CDWs and SDWs in the same way, i.e., be-
ing treated on equal footing. We first provide a symmetry
classification of possible triple-Q density waves according
to the C3 point group, which would naturally generate
the triple-Q spiral spin textures as well as the triple-Q
CDW order. Next, we display the real-space landscape
and topology of triple-Q density waves. Importantly, by
tuning the phase shifts continuously, we show that the
meron-antimeron crystals are the transition boundaries
where the quantized skyrmion charge flips sign. Then,
we demonstrate that even with the most trivial single
quadratic band dispersion, the triple-Q density waves
would be able to influence its band geometry by creat-
ing multiband Dirac-like fermions near the Fermi energy.
Finally, we explicitly show that the nontrivial band geom-
etry together with possible inversion or rotational sym-
metry breaking induced by the phase shift would enable
rich linear and nonlinear responses in the incommensu-
rate triple-Q CDW and triple-Q SDW systems.

Symmetry classifications of triple-Q density waves.—
Let us first present the form of triple-Q density waves in
two dimensions from the symmetry point of view. With-
out loss of generality, the three Q vectors are defined

as Q1 = (1, 0)Q,Q2 = (− 1
2 ,

√
3
2 )Q,Q3 = (− 1

2 ,−
√
3
2 )Q,

where the angle with respect to each other are 120
◦. The phase shifts along Qν direction are defined as
θν . The structure of CDW/SDW is then determined by
Θ = 1√

3
(θ1 + θ2 + θ3), while the translational motion of

CDW/SDW are determined by θX = 1√
6
(2θ1 − θ2 − θ3),

θY = 1√
2
(θ2 − θ3) [19, 20], i.e. phasons. In this work,

to preserve C3z symmetry, we would set θ1 = θ2 = θ3.
But the coupling to the two phasons given by θX and θY
is an interesting problem for future study. As shown in
Table I, we can classify triple-Q density waves using the
irreducible representations of the C3 point group, where
the spin Pauli matrices are defined as σj , the phase shift
is defined as θ, and the position vector is r. In the spin-
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TABLE I. Classifications of triple-Q density waves using the
irreducible representations of the C3z point group. Here, ω =

ei2π/3, Q1 = (1, 0)Q,Q2 = (− 1
2
,
√
3
2
)Q,Q3 = (− 1

2
,−

√
3

2
)Q,

σj are spin Pauli matrices.

C3 basis functions spin matrices

1 fA(r) =
∑3

ν=1 cos(Qν · r + θ) σ0, σz

ω fE1(r) =
∑3

ν=1 ω
ν−1 sin(Qν · r + θ) σ+ = σx + iσy

ω∗ fE2(r) =
∑3

ν=1 ω
1−ν sin(Qν · r + θ) σ− = σx − iσy

less case, the C3z invariant triple-Q density wave order
parameter, i.e., CDW order parameter, is

∆CDW(r) = 2∆fA(r) = 2∆

3∑
ν=1

cos(Qν · r + θ). (1)

where ∆ denotes the CDW potential, and fA(r) is the
basis function of A irreducible representation of C3 point
group. In the spinful case, the C3z invariant triple-Q den-
sity wave order parameter, i.e., SDW order parameter, is
obtained as

∆SDW(r) =
∆

2
[fE1(r)σ− + fE2(r)σ+]−∆fA(r)σz. (2)

Here, fE1
(r) and fE2

(r) (see Table I) are the basis func-
tions of E1 and E2 irreducible representations of C3

group. We can rewrite the form of ∆SDW(r) as

∆SDW(r) =
∑
i

Sspiral
i · σ, (3)

and obtain the triple-Q spiral spin textures [17]

Sspiral
i = ∆

3∑
ν=1

(sinQν cosϕν , sinQν sinϕν ,− cosQν)

(4)
with Qν = Qν · ri + θ, ϕν = 2π

3 (ν − 1). Here, Qν is the
wave vector of ν-th spiral.
For the sake of simplicity, we neglect the spin-orbit

interaction in our model so that the direction of the spin-
rotating plane does not matter. We shall also focus on
the simplest case that the order parameter only exhibits
the spatial and spin degree of freedom.

Real space landscape and topology of triple-Q density
waves.— To visualize these order parameters and high-
light the effects of the phase shift θ on the triple-Q density
waves, we plot the real space landscape of triple-Q CDW
and triple-Q SDW with various θ in Fig. 1.
Figs. 1(a) and (b) display the CDW order parame-

ter ∆CDW(r) at θ = 0 and θ = π/6. Interestingly, it
can be seen that the presence of finite θ can break the
inversion symmetry. To show the real space feature of
SDW order ∆SDW(r), the spiral spin textures given by
Sspiral at θ = 0 is plotted in Fig. 1(c), which displays
as a skyrmion crystal. Then we study the topology of
the spiral spin textures more explicitly. The calculated
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FIG. 1. (a) and (b) The real-space dependence of triple-Q
CDW potential ∆CDW(r) at θ = 0 and θ = π/6, respectively.
(c) and (e) The triple-Q spiral spin textures at θ = 0 and
θ = π

6
, respectively. (d) The total skyrmion charge Nsk of

each unit cell versus the phase shift θ calculated from the
normalized spin vectors s. (f) The real-space spin chirality
χ = Si · (Sj × Sk), where the site indcies i, j, k are in coun-
terclockwise order.

skyrmion charge Nsk = 1
4π

∫ ∫
d2rs · (∂xs × ∂ys) as a

function of the phase shift θ with s being the unit vector
of spin normalized from S is shown in Fig. 1(d). Interest-
ingly, we find that the skyrmion charge Nsk is quantized

at ±1 except for flipping sign at θ = (2n+1)π
6 (n are in-

tegers). At these angles where Nsk changes sign, it can
be seen that the spiral spin textures Sspiral would dis-
play as a meron-antimeron crystal [Fig. 1(e)]. The spin
chirality of meron and antimeron is opposite and would
cancel with each other [Fig. 1(f)]. As a result, the spin

textures of Sspiral is topologically trivial at θ = (2n+1)π
6 .

It is worth mentioning that the skyrmion and meron-
antimeron spin textures using Sspiral were also reported
in ref. [17]. One particular interesting new finding here
is that the meron-antimeron crystals correspond to the
transition boundaries, where the skyrmion charge of the
spiral spin textures Sspiral flips sign.

Dirac physics induced by triple-Q density waves.— Be-
yond the real-space topology, next we show that the
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FIG. 2. (a) Illustration of the six ‘hot spots’ (red dots)
on the Fermi circle, which are connected through the triple-Q
vectors. Note that the dispersion of electrons is given by ξp =
p2

2m
− µ, and n̂i is simply the unit vector for the direction of

the hot-spot momentum pi, where the two density wave order
parameters interfere. (b) and (c) respectively, show the band
structures of triple-Q CDW and triple-Q SDW along (kx, 0)
direction given by the effective Hamiltonians, where the phase
shift is set to be θ = π/4. (d) and (f) show the Berry curvature
Ω(k) (in units of a2 and a is the lattice constant) of each
band in (b) and (c), respectively. We set vF = 100,∆ = 1 in
calculations. Note that (d) and (e) only show the distribution
near one set of hot spots.

triple-Q density wave order parameters can alter the ge-
ometry properties of Bloch bands using a weak-coupling
approach. Specifically, we point out that the triple-
Q density waves can spontaneously induce Dirac-like
physics near the Fermi energy. As the focus of this work
is the triple-Q order parameter, we shall set the band

dispersion to be the simplest one: ξp = p2

2m − µ, where
m is an effective mass, µ is the chemical potential. In
practice, the chemical potential µ should be located near
the Fermi energy where the CDW nesting happens. As
shown in Fig. 2(a), there are six ‘hot spots’ (labeled as
red dots) that the triple-Q order parameter would cou-
ple near Fermi energy. These hot spots can be classified
into two sets, i.e., 1,2,3 and 1′,2′,3′. The single-particle
dispersion near the hot spots can be approximated as

ϵk = vF n̂i · k, (5)

where vF is the Fermi velocity, and unit vectors n̂1 =

(−
√
3
2 ,− 1

2 ), n̂2 = (
√
3
2 ,− 1

2 ), n̂3 = (0, 1), and the momen-
tum k is measured with respect to the hot-spot momen-

tum pi with k = p− pi.
Next, we present the low-energy effective Hamiltonians

with the triple-Q order parameter, which would induce
the coupling between these hot spots. Here, we assume
the coupling is weak enough so that these hot spots do
not overlap with each other. We first focus on the triple-
Q CDW. The effective Hamiltonian of the CDW state

can be written as H =
∑

Φ†
kHCDW(k)Φk with Φk =

(c1k, c2k, c3k)
T and

HCDW(k) =

vFk · n̂1 ∆e−iθ ∆eiθ

∆eiθ vFk · n̂2 ∆e−iθ

∆e−iθ ∆eiθ vFk · n̂3

 , (6)

where k is measured with respect to the hot spots.
The effective Hamiltonian H ′

CDW(k) defined in the other
group (c1′k, c2′k, c3′k)

T can be obtained by replacing n̂i

and θ in HCDW(k) with n̂′
i = −n̂i and −θ.

To emphasize the nontrivial band geometry encoded
in the effective Hamiltonian, we show that HCDW(k) can
be actually mapped to a three-band Dirac Hamiltonian
[21]. As shown in Supplementary Material (SM) Sec. I
[22], the eigenstates of HCDW(k) at k = 0 can be la-
beled with the eigenvalue of C3z operation: C3z |EJ,m⟩ =
e−i 2mπ

3 |EJ,m⟩, where the total angular momentum J =
1, the magnetic angular momentum m = 0,±1. After
projecting the HCDW(k) into the ‘good’ basis spanned
by (|E1,0⟩ , |E1,−1⟩ , |E1,1⟩), the effective Hamiltonian is
represented as a three-band Dirac Hamiltonian:

HDirac(k) =

 E1,0 − i
2vF k− − i

2vF k+
i
2vF k+ E1,−1 − i

2vF k−
i
2vF k−

i
2vF k+ E1,1

 (7)

where k± = kx ± iky, EJ,m = 2∆cos(θ − 2mπ
3 ), and the

phase shift plays a significant role in affecting the Dirac
mass.
Similar physics can also be induced by the triple-Q

SDW order parameters. Specifically, we can first obtain
the effective Hamiltonian near the first set of hot spots
(1,2, and 3) as

HSDW(k) =

 vFk · n̂1 ∆S−Q1
· σ ∆SQ3

· σ
∆SQ1

· σ vFk · n̂2 ∆S−Q2
· σ

∆S−Q3 · σ ∆SQ2 · σ vFk · n̂3

 ,

(8)
where the basis is (c1k, c2k, c3k)

T ⊗ (↑, ↓)T , and S±Qν =
(∓ i

2 cosϕν ,∓ i
2 sinϕν ,∓ 1

2 )e
i±θ. By replacing S±Qν with

S∓Qν
and n̂i with n̂′

i, the low-energy Hamiltonian
H ′

SDW(k) near the other set of hot spots (1′, 2′, 3′) can
be obtained. Also, performing a unitary transform and
rewriting the Hamiltonian in the basis |E⟩J,m ⊗ {↑, ↓},
a six-band Dirac-like Hamiltonian can be obtained (see
SM. II for the detailed form).
One important property of the Dirac Hamiltonian is

to enable the Berry curvature, which has been associ-
ated with various topological materials. Here, we show
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TABLE II. Possible responses induced triple-Q density wave order parameters from symmetry principle. Here, AHE and SHG
label the anomalous Hall and second harmonic generation effects, respectively.

Phase shift key symmetries representative responses

Triple-Q CDW
θ = 2nπ

3
T , I, C3z, Mx, My

θ ̸= 2nπ
3

T ,�I, C3z,��Mx, My SHG, Valley Hall effect

Triple-Q SDW
θ = nπ

3 �T ,�I, C2z, C3z AHE, magnetoptical

θ ̸= nπ
3 �T ,�I,��C2z, C3z AHE, magnetoptical, magnetochiral, SHG

ω [∆]

θ 
[π

]

σ A
H

 (e
2 /h

A
)

ω [∆]

Re [σxxx ]

θ 
[π

]

Triple-Q CDW

ω [∆]

θ 
[π

]

Triple-Q SDW

Re [σxxx ]

σxy (ω)
Triple-Q SDW

(a) (b)

(c) (d)
θ [π]

FIG. 3. (a) The magnetoptical conductivity σxy(ω) as a func-
tion of the phase shift θ and the photon frequency ω, where

the colorbar is in unit of e2

h
. (b) The anomalous Hall conduc-

tivity as a function of photon frequency. (c) and (d), respec-
tively, show the real part of the second-harmonic response
tensor Re[σxxx(2ω;ω, ω)], which is in units of e3/(2ℏ2). The
chemical potential in this figure is fixed at the position of hot
spots, and the temperature is zero temperature limit with
T = 0.01∆.

that the triple-Q density wave order parameters can in-
duce Berry curvature on the simplest quadratic band.
The band structures given by HCDW(k) and HSDW(k)
are shown Figs. 2(b) and 2(c), respectively. The Berry
curvature of these bands can be easily calculated, as
shown in Fig. 2(d) for the triple-Q CDW and Fig. 2(e)
for the triple-Q SDW. Moreover, we find that the phase
shift would affect the Berry curvature significantly. For
example, the Berry curvature vanishes at θ = nπ

3 and

θ = (2n+1)π
6 for the HCDW(k) and HSDW(k) respectively,

while the latter exactly corresponds to the presence of
meron-antimron crystals in real space.

Linear and nonlinear responses in triple-Q density
wave systems.— It is known that the Dirac Hamiltonian
plays a critical role in giving rise to various linear and
nonlinear responses. According to the analysis in the
previous part, we would thus expect that triple-Q den-
sity wave order parameters would naturally result in some
interesting linear and nonlinear responses as well.

Let us identify the symmetries dedicated by the triple-
Q density wave order parameter first. Either from the
real-space landscape or the effective Hamiltonian (see
SM Sec. I), we can identify the triple-Q CDW order pa-
rameter ∆CDW(r) would preserve time-reversal and C3z

symmetry at generic θ but breaks inversion only when
θ ̸= 2nπ

3 . Consequently, a second harmonic generation
(SHG) solely induced by the triple-Q CDW would be
expected. Furthermore, if we consider the two sets of
hotspots within CDWs as distinct valleys within mo-
mentum space, the Berry curvature contrasts between
these valleys due to time-reversal symmetry. This con-
trast can induce valley Hall effects. The situation mir-
rors gapped graphene systems, where valley Hall effects
are observable through nonlocal transport phenomena
[23, 24] or via valley-selective Hall measurements induced
by circular-polarized light [25, 26].
On the other hand, it can be shown that the triple-Q

SDW order parameter ∆SDW(r) would break both time-
reversal and inversion symmetry regardless of the value of
θ (see SM Sec. II). The broken time-reversal symmetry al-
lows the anomalous Hall effect (AHE) and magnetoptical
responses, while the further broken inversion symmetry is
crucial for the nonreciprocal or nonlinear responses [27].
The resulting key point group symmetry generators in-
duced by the ∆SDW(r) are C2z and C3z at θ = nπ

3 , and
C2z would be broken when θ ̸= nπ

3 . Note that, unlike
triple-Q CDWs, the point group formed by the unitary
operations of triple-Q SDWs is chiral, where all mirror
symmetries are broken. The nonreciprocal nonlinear re-
sponses such as SHG can thus be induced by triple-Q
SDW order as well. To be clear, the above discussions
are explicitly summarized in Table II. To be consistent,
we still keep C3z here. Note that when the C3z sym-
metry is absent, such as broken by the external strain,
other interesting effects may further be allowed (see SM
Sec. III for a discussion of nonlinear Hall effects [28–30]
in strained SDW states).
To be more explicit, we calculate some representative

linear and nonlinear responses from the effective triple-Q
CDW and SDW Hamiltonians. The representative linear
responses: AHE and magnetoptical conductivity can be
obtained from the Kubo formula [31]. Using the triple-
Q effective Hamiltonian HSDW(k) and H ′

SDW(k) (these
two contributions need to be summed up), the calcu-
lated magnetoptical conductivity σxy(ω) as a function
the frequency ω and the phase shift θ, and the calculated
AHE conductivity σAH versus θ are shown in Fig. 3 (a)
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and (b), respectively. The finite AHE and magnetoptical
effect are expected due to the nontrivial band geome-
try near Fermi energy. It is worth noting that the AHE

vanishes at θ = (2n+1)π
6 , while remaining finite at other

phase shifts. Such observation is consistent with the real-
space topology discussed in Fig. 1: the meron-antimeron

crystal appears at θ = (2n+1)π
6 , while the skyrmion crys-

tals that possess topological Hall effects would appear at
other phase shifts.

Finally, we highlight the representative nonlinear re-
sponses enabled by the triple-Q density wave order pa-
rameters. As we mentioned, both the triple-Q CDW and
SDW order parameters can break the inversion symme-
try and also induce nontrivial geometric behavior on the
Bloch wave function. These behaviors fit the realization
of SHG responses well. As a demonstration, the second
harmonic generation response tensor σxxx(2ω;ω, ω) cal-
culated from the effective Hamiltonians of triple-Q CDW
and SDW are shown in Fig. 3(c) to (d) (see the ex-
plicit SHG formalism in refs. [32, 33] or in SM Sec. IV ).
Remarkably, the SHG keeps finite at a wide parameter

region. Some special phase shifts where the SHG van-
ishes also match with the expectations: (i) θ = 2nπ

3 for
triple-Q CDW due to the restoration of inversion sym-

metry, (ii) θ = nπ
3 and θ = (2n+1)π

6 for triple-Q CDW
and SDW, where the inversion symmetry is still bro-
ken but the Berry curvature vanishes. Furthermore, it is
worth noting that nonreciprocal nonlinear responses, par-
ticularly SHG and magnetochiral anisotropy, have been
experimentally studied in several triple-Q density wave
systems, such as 1T TiSe2 [34], kagome metal CsV3Sb5
[35] and SkX [36, 37]. We also checked the magnetochi-
ral anisotropy would be supported in tripe-Q SDW at
θ ̸= nπ

3 with C2z symmetry broken. Hence, our study
here would provide a possible way to explain the exper-
iments [34–37] from the perspective of triple-Q density
waves.
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RIKEN Special Postdoctoral Researcher (SPDR) Pro-
gram. N.N. is supported by JSTCREST Grants
No.JMPJCR1874.
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I. DETAILED ANALYSIS FOR THE TRIPLE-Q CDW STATE

As shown in Fig. S1 (a) and (b), there are six hot spots connected by the triple-Q vectors. These hot spots can be

classified into two groups, i.e., 1,2,3 and 1′,2′,3′. The dispersion ξk = ℏ2k2

2m −µ near the hot spots can be approximated
as

ξk = vF n̂i · k, (S1)

where vF is the Fermi velocity, and

n̂1 = (−
√
3

2
,−1

2
), n̂2 = (

√
3

2
,−1

2
), n̂3 = (0, 1). (S2)

In real space, the CDW order parameters can be written as

∆(ri) = 2∆
∑
ν

cos(Qν · ri + θν). (S3)

Here,

Q1 = (Q, 0),Q2 = (−Q/2,
√
3Q/2),Q3 = (−Q/2,−

√
3Q/2). (S4)

The effective Hamiltonian of the CDW state can be written as H =
∑

Φ†
kHCDW(k)Φk with Φk = (c1k, c2k, c3k)

T

and

HCDW(k) =

vFk · n̂1 ∆e−iθ1 ∆eiθ3

∆eiθ1 vFk · n̂2 ∆e−iθ2

∆e−iθ3 ∆eiθ2 vFk · n̂3

 , (S5)

where k is measured respected from Ki. Near the other group hot spots, the effective Hamiltonian becomes

H ′
CDW(k) =

vFk · n̂′
1 ∆eiθ1 ∆e−iθ3

∆e−iθ1 vFk · n̂′
2 ∆eiθ2

∆eiθ3 ∆e−iθ2 vFk · n̂′
3

 (S6)

Next, let us deduce the symmetry operations for the effective Hamiltonian. First of all, it is easy to show that the
system respects the spinless time-reversal symmetry T = K (K the conjugate)

T H ′
CDW(−k)T −1 = HCDW(k). (S7)

The representation of out-of-plane three-fold rotation can be written as

UC3 =

0 1 0

0 0 1

1 0 0

 . (S8)

Then it is straightforward to show that under the C3 operation,

UC3
HCDW(C3k)U

−1
C3

=

vFk · n̂1 ∆e−iθ2 ∆eiθ1

∆e−iθ3 vFk · n̂2 ∆e−iθ3

∆e−iθ1 ∆eiθ3 vFk · n̂3

 . (S9)
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FIG. S1. (a) Triple Q vectors: Q1, Q2, Q3. (b) Six hot spots in k-space, where the gap opening due to density waves overlap.
These six hot spots can be classified into two groups:(1,2,3) and (1′,2′,3′). (c) The energy EJ,m versus θ with J = 1, m = 0,±1.

We can see that the system preserves C3 symmetry UC3
HCDW(C3k)U

−1
C3

= HCDW(C3k) if θ1 = θ2 = θ3 = θ.

Similarly, UC3
H ′

CDW(C3k)U
−1
C3

= H ′
CDW(C3k) so that the full system respects C3 symmetry. Hence, we would fix the

θ1 = θ2 = θ3 in our discussion.
Furthermore, when θ = 2nπ

3 (n are integers), the system further respects the inversion symmetry and Mx:

IH ′
CDW(−k)I−1 = HCDW(k), (S10)

MxHCDW(−kx, ky)M
−1
x = HCDW(kx, ky), (S11)

Note that the effects of inversion and out-of-plane C2 are the same here. Finally, for all θ, the system exhibits My

symmetry:

MyHCDW(kx,−ky)M
−1
y = H ′

CDW(kx, ky). (S12)

In the main text, we have mapped HCDW(k) as a three-band massive Dirac Hamiltonian. Now we present the
details here. We can solve the eigenstates and eigenenergies of H(k) analytically at the hot spots (k = 0):

E1,0 = 2∆cos θ, |E1,0⟩ =
1√
3
(|κ1⟩+ |κ2⟩+ |κ3⟩), (S13)

E1,−1 = 2∆cos(
2π

3
+ θ), |E1,−1⟩ =

1√
3
(ei

π
3 |κ1⟩+ e−iπ

3 |κ2⟩+ eiπ |κ3⟩), (S14)

E1,1 = 2∆cos(
4π

3
+ θ), |E1,1⟩ =

1√
3
(ei

2π
3 |κ1⟩+ ei

4π
3 |κ2⟩+ |κ3⟩). (S15)

where we have labeled the eigenstates as EJ,m with J as the total angular momentum number, m as the magnetic

quantum number. It is easy to verify that C3 |EJ,m⟩ = e−i 2mπ
3 |EJ,m⟩ under the splinless C3 operation. Then we can

project the Hamiltonian in the basis spanned by (|E1,0⟩ , |E1,−1⟩ , |E1,1⟩):

U†
0HCDW(k)U0 = H0(k) =

 E1,0 − i
2vF (kx − iky) − i

2vF (kx + iky)
i
2vF (kx + iky) E1,−1 − i

2vF (kx − iky)
i
2vF (kx − iky)

i
2vF (kx + iky) E1,1

 , (S16)

where

U0 =
1√
3

1 ei
π
3 ei

2π
3

1 e−iπ
3 ei

4π
3

1 −1 1

 . (S17)

It can be seen that Eq. (S16) is equivalent to the main text Eq. (7).

II. DETAILED ANALYSIS FOR THE TRIPLE-Q SDW STATE CASE

As mentioned in the main text, we can express the SDW states with the superposition of spiral spin textures

Sspiral
i = ∆

3∑
ν=1

(sinQν cosϕν , sinQν sinϕν ,− cosQν). (S18)



3

where i is the site index, ϕν = 2
3π(ν − 1), Qν = Qν · ri + θν .

It is easy to verify that the Zeeman Hamiltonian caused by the SDW states is C3 invariant:

HZ =
∑
i

Sspiral
i · σ. (S19)

Then, we can obtain the effective Hamiltonian near the first group hot spots (1,2, and 3) as

HSDW(k) =

 vFk · n1 ∆S−Q1
· σ ∆SQ3

· σ
∆SQ1

· σ vFk · n2 ∆S−Q2
· σ

∆S−Q3 · σ ∆SQ2 · σ vFk · n3

 . (S20)

where the basis is (c1k,↑, c1k,↓, c2k,↑, c2k,↓, c3k,↑, c3k,↓)
T , and

SQν
= (− i

2
cosϕν ,−

i

2
sinϕν ,−

1

2
)eiθν , (S21)

S−Qν = (
i

2
cosϕν ,

i

2
sinϕν ,−

1

2
)e−iθν . (S22)

Near the second group hot spots (1′, 2′, and 3′), the effective Hamiltonian is

H ′
SDW(k) =

 vFk · n′
1 ∆SQ1

· σ ∆S−Q3
· σ

∆S−Q1
· σ vFk · n′

2 ∆SQ2
· σ

∆SQ3 · σ ∆S−Q2 · σ vFk · n′
3

 (S23)

Again, if θ = θ1 = θ2 = θ3, we can easily show that the system respects the out-of-plane C3z symmetry with

UC3zHSDW(C3k)U
−1
C3z

= HSDW(k), UC3z
H ′

SDW(C3k)U
−1
C3z

= H ′
SDW(k), (S24)

where the representation of C3 operation is

UC3
=

0 1 0

0 0 1

1 0 0

⊗ e−iπ
3 σz . (S25)

When θ = nπ with n as integers, we find there is an out-of-plan C2z symmetry. It can be seen that the system breaks
the time-reversal symmetry T̂ = iσyK, which can be seen from

T̂H ′
SDW(−k)T̂−1 ̸= HSDW(k). (S26)

The inversion symmetry is also broken in general:

ÎH ′
SDW(−k)Î−1 ̸= HSDW(k). (S27)

But there is an emergent ‘particle-hole’ symmetry:

HSDW(k) = −T̂H ′
SDW (k)T̂−1, (S28)

and it respects the combined symmetry M̂yT̂ for arbitrary θ with

UM̂yT̂
=

 0 −iσy 0

−iσy 0 0

0 0 −iσy

 iσyK =

 0 σ0 0

σ0 0 0

0 0 σ0

K (S29)

and

UM̂yT̂
HSDW(−kx, ky)U

−1

M̂yT̂
= HSDW(kx, ky). (S30)
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The full form of the Hamiltonian is

HSDW(k) =

 vF (−
√
3
2 kx − 1

2ky) ∆( i
2σx − 1

2σz)e
−iθ ∆( i

4σx +
√
3
4 iσy − 1

2σz)e
iθ

∆(− i
2σx − 1

2σz)e
iθ vF (

√
3
2 kx − 1

2ky) ∆(− i
4σx +

√
3
4 iσy − 1

2σz)e
−iθ

∆(− i
4σx −

√
3
4 iσy − 1

2σz)e
−iθ ∆( i

4σx −
√
3
4 iσy − 1

2σz)e
iθ vF ky

 . (S31)

H ′
SDW(k) =

 vF (
√
3
2 kx + 1

2ky) ∆(− i
2σx − 1

2σz)e
iθ ∆(− i

4σx −
√
3
4 iσy − 1

2σz)e
−iθ

∆( i
2σx − 1

2σz)e
−iθ vF (−

√
3
2 kx + 1

2ky) ∆( i
4σx −

√
3
4 iσy − 1

2σz)e
iθ

∆( i
4σx +

√
3
4 iσy − 1

2σz)e
iθ ∆(− i

4σx +
√
3
4 iσy − 1

2σz)e
−iθ −vF ky

 . (S32)

It is easy to see that

C2zHSDW(k, θ)C−1
2z = H ′

SDW,θ=0(−k,−θ). (S33)

Hnece, the C2z symmetry is here when θ = nπ, and due to C3Z symmetry, the system further would respect C2z

symmetry at θ = nπ
3 :

C2zHSDW(k, θ =
nπ

3
)C−1

2z = H ′
SDW,θ=nπ(−k, θ =

nπ

3
). (S34)

In other words, the point group of this triple-Q SDW is C6 at θ = nπ
3 and reduces to C3 at other angles.

We can perform a unitary transform and rewrite the Hamiltonian in the basis (|E1,0⟩ ⊗ |↑⟩ , |E1,1⟩ ⊗ |↓⟩ , |E1,−1⟩ ⊗
|↑⟩ , |E1,0⟩ ⊗ |↓⟩ , |E1,1⟩ ⊗ |↑⟩ , |E1,−1⟩ ⊗ |↓⟩)T , which carries the eigenvalues of (e−iπ

3 , e−iπ
3 , ei

π
3 , ei

π
3 , 1, 1) under C3

operation.

H(k) =

 H11 − i
2 (kx − iky)σz − i

2 (kx − iky)σz
i
2 (kx + iky)σz H22 − i

2 (kx − iky)σ0
i
2 (kx + iky)σz

i
2 (kx + iky)σ0 H33

 , (S35)

where the terms

H11 = −
√
3

2
∆ cos(θ +

π

6
)σ0 +∆cos(θ +

π

6
)σx − ∆

2
sin(θ +

π

6
)σz, (S36)

H22 =

√
3

2
∆ cos(θ − π

6
)σ0 +∆cos(θ − π

6
)σx +

∆

2
sin(θ − π

6
)σz, (S37)

H33 = −
√
3

2
∆ sin θσ0 −∆sin θσx +

∆

2
cos θσz. (S38)

III. NONRECIPROCAL TRANSPORTS IN TRIPLE-Q SDWS

A. Magnetochiral anisotropy in triple-Q SDWs

We consider a time-dependent drive

E(t) = E cos(ωt). (S39)

Without loss of generality, we set the electric field E along x-direction. In the experiment, it is convenient to
identify the magnetochiral anisotropy by measuring the second harmonic generation of longitudinal conductivity [36].
Following the previous works [38, 39], it can be deduced that the nonreciprocal longitudinal charge transport can be
given by

σ2ω
ααα = − e3

2ℏ3(2iω + τ−1)(iω + τ−1)

∫
dk

(2π)d

∑
n

f (0)
n

∂3ϵ
(0)
n

∂k3α
− 2e3

ℏ

∫
dk

(2π)d
f (0)
n ∂kαG

αα
n (2ω) (S40)

where f
(0)
n is the Fermi distribution for the n-th band ϵ

(0)
n , and the band-renormalized quantum metric is defined as

Gab
n (2ω) = −1

4

∑
l ̸=n

(
Aa

nlAb
ln

−ℏω + ϵln
+

Ab
nlAa

ln

ℏω + ϵln
). (S41)
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FIG. S2. The magnetochiral anisotropy represented by the strength of σ2ω
yyy (in units of e3

ℏ∆ ).(a) the phase shift dependence

and chemical potential dependence of σ2ω
yyy calculated from the SDW effective Hamiltonian. (b) A line-cut of (a) at a fixed

µ = 1.5∆. Here, the used parameters are vF = 100, ∆ = 1, T = 0.01∆, τ = 0.01∆/ℏ.

Here, Aa
mn = ⟨nk|∂aH|mk⟩

ϵnm
denotes the Berry connection between n−th and l−th band with ϵnm = ϵ

(0)
n − ϵ

(0)
m . In

the DC transport limit, we are interested in ω → 0. In this case, the additional antiunitary symmetry M̂yT̂ in
triple-Q SDW would enforce σ2ω

xxx = 0 by mapping kx to -kx. Instead, we would focus on σ2ω
yyy below. The results are

summarized in Fig. S2. It can be seen from (a) and (b) that σ2ω
yyy is generally finite expect for at θ = nπ

3 due to the
presence of C2z symmetry. Note that we also find that the quantum metric contribution in Eq. S40 is negligible.

B. Possible nonlinear Hall effects in strained triple-Q SDWs

TABLE S1. Symmetry classification of momentum, spin, and strain tensor according to the irreducible representations of C3

point group.

Irrep Time-reversal Even Time-reversal odd

A1 uxx + uyy σz

E (uxx − uyy,−2uxy) (kx, ky), (σx, σy)

In the main text, we mostly focus on the C3 invariant case. However, the C3 symmetry can be broken externally.
The question is whether any interesting effects are allowed in this case. In this Supplementary Material section, we
demonstrate that the nonlinear Hall effects are possible in strained triple-Q SDWs, such as strained SkX.

To the leading order terms, as shown in Table SI, the time-reversal invariant strain Hamiltonian is

Hstrain = vF
∑
αα

uαΓ0 ⊗ σ0 + vF [(uxx − uyy)kx − 2uxyky]Γ0 ⊗ σz, (S42)

where Γ0 is a three-by-three identify matrix in the hot spots space, the other group takes the same form. The first
term is to effectively shift the chemical potential so we can neglect it. The strain Hamiltonian is simplified as

Hstrain ≈ vF [(uxx − uyy)kx − 2uxyky]Γ0 ⊗ σz. (S43)

Without loss of generality, we can consider the uniaxial strain tensor to be(
uxx uxy

uyx uyy

)
= u′

(
cos2 φ− ν sin2 φ (1 + ν) cosφ sinφ

(1 + ν) cosφ sinφ −ν cos2 φ+ sin2 φ

)
(S44)

where φ is to label the strain direction, ν is the Poisson ratio.
For simplicity, we set φ = π/4, and u = (1 + ν)u′, the strain Hamiltonian becomes

Hstrain ≈ −vFukyΓ0 ⊗ σz, (S45)
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FIG. S3. Nonlinear Hall effects in strained SDW crystals. The Berry curvature dipole (BCD) versus the energy E, where E
is artificially tuned from [−10, 10]∆ and E = 0 is the Fermi energy. The strain strength is characterized by u = 0.05, 0.01, 0,
respectively. It can be seen that the BCD vanishes without strain due to the presence of C3 symmetry, while there appears
a sizable Berry curvature dipole when the SDW crystal is strained. Here, the used parameters in the triple-Q SDW effective
Hamiltonian are ∆ = 1, vF = 100∆, θ = 0, µ = 0.

where u characterizes the strain strength. Note that u ̸= 0, the three-fold symmetry is broken. Then we can add the
strain Hamiltonian into the total triple-Q Hamiltonian (note that we need to consider two sets of hot spots). The
Berry curvature dipole is given by [28]

Dβγ = −
∑
n

∫
dk

(2π)d
∂ϵnk
∂kβ

Ωnγ(k)
∂f(ϵnk)

∂ϵnk
. (S46)

The calculated strained induced finite Berry curvature dipole Dyz is shown in Fig. S3. It can be seen that there can
support finite Berry curvature dipole in strained triple-Q SDW systems.

IV. SECOND HARMONIC GENERATION RESPONSES FORMALISM

We reproduce the optical responses formula given by ref. [32, 33] here, which has been used in the main text to
calculate the SHG below. The linear optical conductivity is given by the bubble diagram [Fig. S3(a)],

σµα(ω;ω) =
ie2

ℏω1

∑
a ̸=b

∫
[dk]

∫
dω′Ga(ω

′)vαabGb(ω
′ + ω1)v

µ
ba

=
ie2

ℏω
∑
a ̸=b

∫
[dk]

fabv
α
abv

µ
ba

ω − ϵba
. (S47)

where [dk] =
∫

dk
(2π)d

, vαab = ⟨a|∂kα
H(k)|b⟩, H(k) is the Hamiltonian, the Fermi Dirac function difference between two

bands fab = fa − fb, ϵba = ϵb − ϵa.

As shown in Fig. S3, the second-order nonlinear optical conductivity is given by

σµαβ(ω1 + ω2;ω1, ω2) = − e3

2ℏ2ω1ω2

∑
a,b,c

∫
[dk]

∫
dω′[Ga(ω

′)vαabGb(ω
′ + ω1)v

µβ
ba +

1

2
Ga(ω

′)vαβab Gb(ω
′ + ω1 + ω2)v

µ
ba +

Ga(ω
′)vαabGb(ω

′ + ω1)v
β
bcGc(ω

′ + ω1 + ω2)v
µ
ca] + (ω1, α) ↔ (ω2, β),

= − e3

2ℏ2ω1ω2

∫
[dk][fab(

vαabv
µβ
ba

ω1 − ϵba
+

vβabv
µα
ba

ω2 − ϵba
) + fab

vαβab v
µ
ba

ω1 + ω2 − ϵab

+vαabv
β
bcv

µ
ca(

fab
(ω1 − ϵba)(ω1 + ω2 − ϵca)

+
fcb

(ω2 − ϵcb)(ω1 + ω2 − ϵca)
)

+vβabv
α
bcv

µ
ca(

fab
(ω2 − ϵba)(ω1 + ω2 − ϵca)

+
fcb

(ω1 − ϵcb)(ω1 + ω2 − ϵca)
)]. (S48)
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Linear-order
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FIG. S4. (a) The bubble diagram for the linear optical responses. (b) The vortex diagrams. (c) to (e) The Feynman diagrams
for the second-order nonlinear optical response.

Here, vαβab = ⟨a|∂kα
∂kβ

H(k)|b⟩. For the second-harmonic generation (ω1 = ω2 = ω),

σµαβ(2ω;ω, ω) = − e3

2ℏ2ω2

∑
a,b,c

∫
[dk][fab

vαabv
µβ
ba + vβabv

µα
ba

ω − ϵba
+ fab

vαβab v
µ
ba

2ω − ϵab

+(vαabv
β
bc + vβabv

α
bc)v

µ
ca(

fab
(ω − ϵba)(2ω − ϵca)

+
fcb

(ω − ϵcb)(2ω − ϵca)
)] (S49)

Using the identity:

fab
(ω − ϵba)(2ω − ϵca)

+
fcb

(ω − ϵcb)(2ω − ϵca)
=

1

ϵab + ϵcb
[

2fac
2ω − ϵca

+
fcb

ω − ϵcb
+

fba
ω − ϵba

]. (S50)

The optical conductivity for the second-harmonic generation can be rewritten as

σµαβ = σµαβ
I + σµαβ

II , (S51)

σµαβ
I = − e3

2ℏ2ω2

∑
a̸=b

∫
[dk]fab

vαabv
µβ
ba + vβabv

µα
ba

ω − ϵba
+ fab

vαβab v
µ
ba

2ω − ϵab
, (S52)

σµαβ
II = − e3

2ℏ2ω2

∑
a̸=b ̸=c

∫
[dk]

(vαabv
β
bc + vβabv

α
bc)v

µ
ca

ϵab + ϵcb
(

2fac
2ω − ϵca

+
fcb

ω − ϵcb
+

fba
ω − ϵba

), (S53)

where 2ω and ω characterize the contributions from two-photon and one-photon processes, respectively. The contri-

bution that involves two (three) different bands is labeled as σµαβ
I (σµαβ

II ), respectively.
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