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Abstract—Accurate estimation of Network Performance is
crucial for several tasks in telecom networks. Telecom networks
regularly serve a vast number of radio nodes. Each radio
node provides services to end-users in the associated coverage
areas. The task of predicting Network Performance for telecom
networks necessitates considering complex spatio-temporal inter-
actions and incorporating geospatial information where the radio
nodes are deployed. Instead of relying on historical data alone,
our approach augments network historical performance datasets
with satellite imagery data. Our comprehensive experiments,
using real-world data collected from multiple different regions
of an operational network, show that the model is robust and
can generalize across different scenarios. The results indicate
that the model, utilizing satellite imagery, performs very well
across the tested regions. Additionally, the model demonstrates a
robust approach to the cold-start problem, offering a promising
alternative for initial performance estimation in newly deployed
sites.

Index Terms—Satellite Imagery, Key Performance Indicators,
5G Network Optimization, Machine Learning in Telecommuni-
cation, Cold-Start Problem.

I. INTRODUCTION

Mobile operators across the globe are rolling out the fifth
generation (5G) of networks to unlock a wide range of
new services and meet high requirements for applications
like vehicle-to-vehicle communication. Before rolling out 5G
technologies, mobile operators assess the infrastructures and
the urban environment to study the feasibility of deploying
a new 5G site and upgrading an existing one. Therefore,
assisting network planners with a method that predicts network
performance while capturing the evolving urban infrastructure
is important.

In 5G-and-beyond networks, the process can be even more
challenging because of the use of high-frequency bands.
High signal frequencies undergo significant attenuation and
are distorted while interacting with various objects in the
environment. Consequently, it makes it hard to characterize
network performance without considering geospatial feature
attributes in coverage areas.

Additionally, the number of mobile and IoT devices con-
tinues to soar, which forces network operators to work on the
dual task of enhancing their existing 4G infrastructure and
transitioning to the cutting-edge 5G technologies. One of the
primary challenges in this evolution is network densification,

characterized by a surge in new cell sites. This transition,
though promising in terms of connectivity, brings with it the
task of network planning. Network planners need to meticu-
lously determine where to place base stations to optimize both
coverage and costs. The dynamics of rapidly growing cities
and expanding urban landscapes further complicate this task.

Historically, cellular network planning has been grounded in
network data [1], which often overlooks the intricate interplay
of various factors influencing network performance. Recog-
nizing this limitation, our research takes another approach;
harnessing the power of satellite imagery to estimate Radio
Access Network (RAN) performance. By analyzing satellite
imagery data, we aim to discern the infrastructure elements
and geographical attributes that can impact network perfor-
mance. Augmenting this information to the historical RAN
performance can provide a holistic understanding of network
behavior.

It is often said: ”We shape our buildings and afterward our
buildings shape us.” Our research is inspired by the idea that
spatial structure inherits how end-users use and interact with
telecom network. By leveraging satellite imagery, we present
an approach to predict network performance in specific areas
based on their structural attributes. This method relies on
profiling and segmenting geographic regions that share similar
underlying dynamics. These satellite images provide a unique
perspective on the geographical and environmental factors that
can affect network performance, such as topography, urban
density, and natural foliage, which in turn influence signal
coverage, capacity demands, and service quality. Furthermore,
this method not only reduces computational overhead and
streamlines processes but also paves the way for building
data-driven digital twins for networks [2]. In essence, we are
introducing a Remote Sensing-aided approach to predict RAN
performance.

The main contributions of this work are four folds:

1) A forecasting model integrating geospatial data from
satellite imagery to predict network KPIs effectively.

2) A network profiling method clustering network nodes
into groups by geospatial attributes, optimizing compu-
tational efficiency.

3) Benchmarking three state-of-the-art computer vision
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models using the EuroSAT dataset [3].
4) A demonstration of the model’s effectiveness in address-

ing the cold-start problem, thereby enhancing perfor-
mance estimations for new and planned network sites.

II. RELATED WORK

We outline several related works that either inspire the work
of predicting Network KPIs or sit more broadly in the space
of Remote Sensing for Telecom applications.

Diagnosing network performance is a problem that has
historically been studied under various technologies using
Network Key Performance Indicators [4]. Machine Learning
techniques have been employed to predict network perfor-
mance. Tran et al. [5] proposed an LSTM model to estimate
throughput in 5G and B5G networks. Nabi et al. [6] explore
model fusion techniques to combine different deep learning
algorithms, namely Long Short-Term Memory (LSTM), Bidi-
rectional LSTM (BiLSTM) and Gated Recurrent Unit (GRU),
for better collective performance. Yaqoob et al. [7] developed
a GNN-based model to predict network performance by lever-
aging the spatiotemporal setup of telecom networks, where the
network is modeled as a graph structure over which each node
maintains a time series. Moreover, KPI prediction has been
used for fault detection in mobile network [8] [9] where the
predicted performance is compared with real value to detect
anomalous data points.

In recent years, there have been a number of papers explor-
ing the interplay between remote sensing and telecom. Thrane
et al. [10] presented a model-aided deep learning approach for
path loss prediction. In their work, they augmented radio data
with rich and unconventional information about the site, e.g.
satellite photos, to provide more accurate and flexible models.
Similarly, Zhang et al. [11] used top-view geographical images
for Radio propagation modeling.

III. DATA

A. Key Performance Indicators (KPIs) data

Mobile operators monitor the network continuously to track
the behavior of the network using Performance Management
(PM) data to gauge network performance. PM data is captured
at regular intervals across Radio nodes, in different software
and hardware components.

Network performance is assessed using Key Performance
Indicators (KPIs) [1]. KPIs are a set of formulas to calculate
Performance Indicators using PM [1] and CM [1] data. KPIs
are standardized by 3GPP. There exist different categories of
KPIs, such as accessibility, mobility, integrity, utilization, and
energy performance. The behavior of these KPIs can vary
depending on service area characteristics.

KPIs possess a temporal dimension, reflecting the dynamic
and evolving nature of network performance over time. This
temporal aspect is crucial for understanding patterns, trends,
and anomalies in network behavior, as the performance in-
dicators captured at various radio nodes are not static but
fluctuate based on numerous factors such as network load,

user behavior, and environmental conditions. The temporal
variability makes KPIs data a perfect fit for time series analysis
techniques to model and predict network performance.
KPIs Data Pre-Processing: PM data was collected over 2
months for different regions of interest, for a total of over
2000 nodes from different cities and regions, using 80% of
the data for training, and 20% of the data for testing. PM
data is aggregated over 15 minutes. We normalize this data
using Min-Max normalization over the 2 months. 24 hours of
historical data points are used to forecast the future 8 hours,
resulting in a history size of 96 data points and a horizon size
of 32 data points.

B. Cellular coverage areas

Telecom networks consist of a set of interconnected nodes
located on physical sites, each cell in a site provides coverage
in a geographic area. Each cellular site or antenna is aimed at
a specific geographical region. This targeted region or sector
can be deduced using a combination of data points like Cell
Latitude, Cell Longitude, Cell Azimuth, Antenna Tilt, and
Cell Range. We approximate this sector shape as a rectangle,
effectively representing each coverage area. A sector area can
be estimated as described in this method [12].

C. Satellite Imagery

Satellite imagery plays a pivotal role in our approach,
offering unique insights into the geographical and environ-
mental contexts that influence network performance. Satellites
operated by both governmental and private sectors, address
numerous needs, such as agriculture, climate monitoring, mil-
itary reconnaissance, and urban landscape observation. One of
the available satellites, the Sentinel satellites series [13] are
frequently utilized in commercial and research settings due to
their easy accessibility, cost-effectiveness (being open source),
and extensive documentation. The Sentinel series offers up
to 10-meter spatial resolution for the RGB bands. Thus, for
each region of interest, we query satellite imagery and extract
the RGB bands to form our images for training the models.
Finally, we use the coverage areas defined in III-B to extract
the satellite imagery for those coverage areas for each cell
in the associated networks. An important note is that we
use data from the same season over the regions of interest
(Spring), since we assume that weather can affect the network
performance.

D. EuroSAT

EuroSAT dataset [3] provides a diverse collection of im-
ages sourced from the Sentinel-2 satellite. With a spectrum
spanning 13 bands, the dataset houses 27,000 labeled images,
each structured as a 64x64 pixel grid, and belongs to one of ten
different classes (Annual Crop, Forest, Herbaceous Vegetation,
Highway, Industrial, Pasture, Permanent Crop, Residential,
River, Sea and Lake). Each image in the dataset possesses a
resolution that ranges between 10m, 20m, and 60m, depending
on the specific band.



For our study, we use the RGB bands from the EuroSAT
dataset, aligning with the spectral characteristics of the satellite
images we gathered for the regions of interest. The EuroSAT
images are used to fine-tune the computer vision model to be
used later for representation embedding: 70% of the images
for training and 30% for testing.

IV. METHOD

A. Method Overview

In this section, we describe our solution. Our method stems
from the foundational idea that geospatial attributes of regions,
as represented by satellite imagery, can enhance the accuracy
and reliability of predicting or forecasting network KPIs. By
integrating satellite imagery into our analysis, we harness a
deeper layer of contextual information that traditional perfor-
mance metrics might overlook.

To this end, Figure 1 shows the high level of our proposed
solution.

B. Vision Models Benchmarking

We adapt and benchmark three state-of-the-art computer
vision models on EuroSAT. ResNet-50 [14], EfficientNet [15],
and Vision Transformer [16] are trained and evaluated on the
EuroSAT dataset train-test splits (70%-30%). Based on evalu-
ation results, the model that exhibits the highest performance
on the different metrics (accuracy, precision, recall, and F1-
scores) is selected for the next stage of the solution.

C. Coverage Areas Satellite Imagery Embedding and Cluster-
ing

The selected and trained vision model on EuroSAT is used
to generate embedding for the coverage areas for each cellular
coverage area and then clustering the embeddings. This is done
in 3 steps:

• Step 1: Using the bounding box coordinates (latitude and
longitude) calculated for each coverage area, the satellite
image is extracted for that node.

• Step 2: The extracted satellite image is passed through
the vision model, and the embeddings are extracted from
the penultimate layer of the network.

• Step 3: The set of embeddings for all the cellular coverage
areas are clustered using KMeans and Elbow method to
determine the optimal number of clusters. This results in
a set of clusters of nodes whose coverage areas share sim-
ilar embeddings, i.e., similar geographical infrastructure
as identified by the satellite images. Note that EuroSAT
was only used for generating embeddings for the satellite
coverage areas.

D. KPI Forecasting

We utilize LSTM (Long Short-Term Memory) model to
forecast the KPIs, with 24 hours of history to forecast the
future 8 hours and a moving window of 15 minutes at a time.
Two experiments are performed:

1) One LSTM forecasting model trained on the average
distribution of the KPIs per cluster and then evaluated.

2) Cold-start analysis: cold-start is a common problem in
machine learning, where historical data is not present
for future analysis and forecasting. In the context of our
work, we employ transfer learning per cluster, where we
mask 20% of the nodes per cluster and assume there is
no historical data for them, train on 80% of the nodes
of that cluster, and evaluate the resulting model on the
masked nodes. This way, we are tackling the cold-start
problem by assigning nodes with no historical data to
clusters whose nodes have similar coverage areas as
identified by the satellite imagery embeddings.

E. End-to-End Steps

To encapsulate the entire process, we illustrate the proposed
end-to-end steps in one flow diagram. The steps can be seen in
Figure 2. For network planning, all that is needed is a satellite
image of the coverage area intended the site or cell to be
deployed. In steps 1 and 2, the vision model is used to extract
vector embeddings for the coverage area. Then this embedding
gets assigned to a particular cluster of the existing clusters in
the network. Using the historical data and model trained on
the average distribution of the cluster KPI data, future KPI
can be forecasted for the node intended to be deployed in that
region identified by the satellite image.

V. EXPERIMENTS AND RESULTS

A. Vision Models Results

Table I summarizes the performance metrics of the three
models on the test set of EuroSAT. The evaluation of
model performance reveals closely matched metrics, with
EfficientNet-B0 and ViT slightly outperforming ResNet-50 in
terms of accuracy. Based on these findings, EfficientNet-B0
is selected for generating embeddings for the satellite images,
thanks to its superior balance of accuracy and efficiency, as
well as a relatively lower number of parameters compared to
ViT.

TABLE I: Model Performances on EuroSAT Dataset

Model Accuracy Precision Recall F1 Score Parameters

ResNet50 0.83 0.86 0.83 0.82 25,557,032
EfficientNet-B0 0.88 0.88 0.87 0.88 5,288,548
Vision Transformer (ViT) 0.88 0.88 0.88 0.88 86,567,656

The penultimate layer of EfficientNet-B0, chosen for em-
bedding extraction, features a dimensionality conducive to rep-
resenting the complex features of satellite imagery. Embedding
vectors for each satellite image within any coverage area will
therefore be derived from this layer, offering a sizeable yet
efficient 1280-dimensional representation for each image.

B. Coverage Area Embeddings and Clustering

EfficientNet is used to generate embeddings for each cellular
coverage area in our dataset. Using KMeans and the ELbow



Fig. 1: Workflow of the geospatial data-enhanced forecasting methodology. The process begins with the identification of RAN
node deployment scenarios, followed by the extraction of cell configuration and satellite imagery data. This data is then utilized
to train a neural network model, which informs the clustering of RAN nodes based on deployment characteristics. Each cluster
is then associated with a tailored traffic prediction model, allowing for efficient and targeted traffic forecasting across the
network.

curve, we cluster the nodes into 35 groups. This is visualized
in Figure 3.

C. KPI Predictions

Two experiments are done for KPI prediction:
1) LSTM model trained on average distribution of cells KPI

data per cluster and evaluated on individual cells per
corresponding cluster.

2) Cold-Start Problem: LSTM model trained on average
distribution of 80% of cells per cluster and evaluated on
the rest 20% masked cells (without historical data).

Figure 4 provides a visual example that demonstrates robust
performance of the proposed model for experiment 1 over a
multi-day period in the test set. The overlaid lines of actual
and predicted traffic volumes provide clear evidence that the
model captures the essential trends and fluctuations in the data.

The numerical results can be found in table II. The metrics
shown are the average over all the cells metrics per cluster.
For a more detailed analysis and visual comparison, Figure
5 shows the error plot of each metric (MSE and MAE) over
all the different nodes in a cluster. The figure indicates that
the cold-start results are comparable with training a model
on the average distribution per cluster. This indicates that our

method is scalable for new sites that are introduced to the
network, using assignment procedures from satellite imagery
embeddings.

TABLE II: Forecasting Performance Metric Averages

Metric Experiment 1: Experiment 2:
Model per Cluster Cold-Start Transfer Learning

MSE 0.0091± 0.0024 0.0085± 0.0034
MAE 0.0591± 0.0087 0.0580± 0.0105

VI. DISCUSSION

A. Reflecting on the Vision Model Results

The performance of the vision models on the EuroSAT
dataset was comparable. EfficientNet-B0 and ViT have demon-
strated a slight edge in accuracy over ResNet-50. This marginal
yet notable superiority underlines the effectiveness of scaling
model depth and width, and attention mechanisms in capturing
complex spatial hierarchies. Furthermore, EfficientNet-B0 has
the least number of parameters as compared to ViT and
ResNet50, yet it scored comparably high performance. This
emphasizes that model size is not the most important factor
for all problems.
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Fig. 2: Diagram illustrating the proposed end-to-end pipeline steps KPI prediction using satellite imagery.

Fig. 3: Elbow method visualization for determining the optimal
number of clusters in K-means clustering. The curve shows a
distinct bend at the point circled in red, indicating that 35
clusters result in a reasonable trade-off between within-cluster
variance and the number of clusters.

Fig. 4: Comparison of real vs. predicted normalized traffic
volume. The plot illustrates the close alignment between the
actual data (blue) and the predictions (red) from the model,
demonstrating how the average model can be used to forecast
traffic for individual nodes per cluster.

The clustering performed on the vision embeddings ex-
tracted from EfficientNet-B0 has unveiled a heterogeneous
distribution of nodes among the clusters. Some clusters are
densely populated, signifying areas with high feature similarity
among the images. In contrast, other clusters contain fewer
nodes, which may point to more unique, less frequently
occurring features within the dataset.

This disparity in cluster sizes is indicative of the diverse
nature of land use and cover as captured by satellite imagery.
Clusters with a higher number of nodes might represent
common or generic features across different regions, such
as widespread agricultural areas or urban settings. On the

other hand, clusters with fewer nodes could correspond to
unique or specific features that are less common or have
higher variability, such as rare vegetation types or particular
infrastructural elements.

B. Reflecting on the forecasting results

The implementation of the LSTM forecasting model, tai-
lored to average distributions per cluster, showcases important
results in our study. Particularly, the application of this model
on test datasets revealed low MSE and MAE values, under-
scoring the model’s robust predictive accuracy. This success
extends to the cold-start problem, where the performance of
the model on clusters without historical data was comparable
to those with rich historical records. Such findings illustrate
the method’s versatility and its capacity to generate reliable
forecasts when based on satellite imagery data.

A significant contribution as well is the computational effi-
ciency achieved through the clustering approach. Traditionally,
forecasting models in network systems tend to adopt a one-
model-per-cell strategy, leading to extensive computational
demands as the number of cells (N) increases. Our method,
however, consolidates this approach into a single model per
cluster of cells, transitioning the computational complexity
from O(N) to O(1). This reduction not only signifies efficient
computational resource management but also scalability, en-
abling the deployment of forecasting models in much larger
network systems without the linear increase in computational
burden, relying purely on the geo-spatial attributes of the
region of interest identified by satellite imagery.

C. Reflection on Satellite Imagery

Furthermore, this study introduces the proposition of inte-
grating satellite imagery as a pivotal component in forecast-
ing Network KPIs. The utilization of such imagery extends
the forecasting capabilities beyond conventional traffic KPIs,
incorporating a spatial dimension that offers a more nuanced
understanding of the factors influencing network performance.
This approach opens the door to exploring a broader array of
geospatial factors, including but not limited to, urban develop-
ment, environmental changes, and socio-economic activities,



(a) MSE comparison (b) MAE comparison

Fig. 5: Comparison of MSE and MAE with Standard Deviation per Cluster for Cold Start vs Non-Cold Start scenarios. Note
how cold-start values are comparable with the values with historical data.

all of which can influence network demand and performance.
By acknowledging the importance of satellite imagery and
geospatial data, we advocate for a more holistic approach
to forecasting that leverages the richness of spatial data to
enhance prediction accuracy and operational efficiency in
networked systems.

VII. CONCLUSION

In this study, we’ve demonstrated that forecasting network
traffic with the integration of geospatial data, particularly
through satellite imagery, yields positive results and good per-
formance. The strategic use of clustering based on geospatial
attributes has substantially reduced computational demands,
enabling a deeper understanding of network infrastructure
and the geographical context of different sites. Notably, this
approach has proven effective for newly deployed or sites
planned to be deployed, addressing the cold-start problem with
high-performance levels comparable to established sites. By
leveraging clusters informed by geospatial data, our model
offers a scalable solution for network forecasting that also
sets a promising foundation for further research in utilizing
geospatial data for KPI forecasting. This approach not only
enhances current forecasting methods but also opens the door
to innovative strategies in network management and planning.
Future research could explore the integration of real-time
geospatial data for more accurate and responsive forecasting,
and the application of advanced analytics to optimize network
deployment in rapidly changing environments. Such studies
would further our understanding of how geospatial insights can
be leveraged to improve network performance and planning.
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