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Abstract 

Magnon dynamics in skyrmion lattices have garnered significant interest due to their potential 

applications in topological magnonics. Existing theories often follow a single-momentum 

approach, assuming significant Dzyaloshinskii-Moriya Interaction (DMI) to minimize the 

skyrmion’s dimensions, which can lead to oversimplification in describing magnon behavior. This 

study introduces a multi-momentum operator theory for magnons in large 2D skyrmions, where 

each skyrmion encompasses several thousand spins. The proposed theory fully transforms the 

magnon Hamiltonian into momentum space, incorporating off-diagonal terms to capture umklapp 

scattering caused by the skyrmion wave vectors. Our results reveal deviations from single-

momentum theories, demonstrating that flat bands are not universal features of the skyrmionic 

magnon spectrum. Additionally, we find that manipulating the skyrmion size with an external 

magnetic field induces multiple topological phase transitions. At high magnetic fields, the low-

energy magnon spectrum becomes densely packed and entirely topological, resembling a 

topological band continuum. 

 

Introduction 

Skyrmion lattices are compelling platforms for probing unconventional magnon dynamics1–5, 

holding significant potential for advancements in topological magnonics6. Theories1,7–10 suggest 

that the topological winding of the skyrmion generates a fictitious magnetic field that acts upon 

magnons, thereby influencing their dynamical behavior. This emergent interaction between 

magnons and the underlying spin texture leads to topological magnon bands with finite Berry 

curvatures and nonzero Chern numbers. Recent experiments4,11 supported the theoretical 

predictions, presenting solid evidence of topological magnon bands and thermal magnon Hall 

effect in skyrmion lattices. 

Operator-based theories on skyrmionic magnons3,7–9,12–14 commonly treat the skyrmion lattice as 

a “cluster” (or a collection of sublattices), where each spin in the unit cell (representing a single 

skyrmion) introduces a sublattice magnon operator. In this framework, a large Dzyaloshinskii-

Moriya Interaction (DMI) is often assumed to minimize the dimensions of the skyrmion. By 



 

2 
 

maintaining a real-space cluster description, the resulting Hamiltonian becomes a single-

momentum operator that forces magnons to travel with uniform momenta, potentially 

oversimplifying the complex dynamics of magnons in skyrmion lattices.  

In most materials, the DMI stabilizing the skyrmion lattice is typically weak, leading to skyrmions 

encompassing several thousand spins. This large scale renders the cluster approach less practical 

for studying magnons and potentially insufficient for fully capturing the effects of the skyrmion 

spin texture on magnon dynamics. Large skyrmions effectively form a continuum that can be 

reconstructed via a set of characteristic wave vectors. The skyrmion wave vectors are pivotal in 

shaping the magnon dynamics, as they lead to umklapp scattering events that alter the magnon’s 

momentum. Capturing this complex interaction landscape and its effect on magnon dynamics is 

beyond the reach of single-momentum Hamiltonians, necessitating a theory that encodes the 

skyrmion wave vectors into the magnons’ operators.  

This work introduces a momentum-space theory to explore magnon dynamics in large 2D 

ferromagnetic skyrmions. Employing Fourier-space techniques, we construct a momentum-space 

representation of the skyrmion lattice, associating magnon operators with sites defined by the 

skyrmion lattice’s wave vectors. Utilizing these operators, we derive a multi-momentum magnon 

Hamiltonian, with diagonal and off-diagonal terms capturing ordinary and umklapp magnon 

scatterings, respectively. The magnon spectra obtained from this approach underscore the crucial 

role of skyrmion size, determined by the magnetic field for a given DMI, in shaping magnon 

dynamics. The magnetic field compacts the magnon spectrum, leaving small gaps between 

adjacent bands that enable valid definitions of the Berry curvatures and Chern numbers. The 

number of topological bands increases with higher magnetic fields, while flat bands are rarely 

observed, even at a minimal magnetic field. This suggests that the magnetic field induces multiple 

topological phase transitions, rather than a single transition at a critical magnetic field value9. 

Notably, at the maximal magnetic field, flat bands are absent, and the entire low-energy magnon 

spectrum becomes topological and densely packed, resembling a continuum of topological bands.  

 

Theory 

This section concisely presents our theory, while detailed derivations are provided in the 

Supplementary Notes. We start by considering a 2D triangular lattice of spins on the xy-plane, 

described by the real-space Hamiltonian: 

 

ℋ = −𝐽 ∑ 𝓢𝑖. 𝓢𝑗

𝑖,𝑗

− ∑ 𝑫𝑖𝑗. 𝓢𝑖 × 𝓢𝑗

𝑖,𝑗

− 𝐵 ∑ 𝒮𝒊
𝒛

𝑖

 

(1) 
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In Equation 1, 𝓢𝑖 denotes the spin operator at site 𝑖. The terms in order represent the nearest 

neighbor (NN) ferromagnetic exchange, chiral NN DMI15,16 compatible with interfacial inversion 

symmetry breaking17,18, and Zeeman coupling due to an external magnetic (𝑩) along the 𝑧-axis. 

The DMI vectors are given by 𝑫𝑖𝑗 = 𝐷�̂� × �̂�𝑖𝑗, where �̂� and �̂�𝑖𝑗 are unit vectors along the z-axis 

and the NN bond, respectively. The coefficients 𝐽 and 𝐷 quantify the strengths of the exchange 

and DMI, respectively. 

For suitable values of 𝐵, the classical ground state of the Hamiltonian forms a ferromagnetic 

skyrmion lattice3,4,7–9,19–23, which we simulate using the stochastic Landau-Lifshitz-Gilbert 

equations (sLLG) within the Vampire software24. We achieved large skyrmions by assuming a 

weak DMI (𝐷 = 0.1𝐽) in our sLLG simulations. The Vampire simulations were conducted on a 

system comprising 24,000 spins, initiating from random spin configurations at high temperatures 

and progressively cooling to temperatures approaching 0 𝐾. Multiple simulations with gradually 

increasing magnetic field strengths revealed the formation of Néel-type skyrmions within the 

magnetic field range of 0.12 𝑇 ≲ 𝐵 ≲ 0.225 𝑇. However, due to the random nucleation of DMI-

induced skyrmions25–28, achieving perfectly ordered skyrmion lattices proved challenging. 

Therefore, we employed suitable functions to model the skyrmion lattice precisely, after 

determining the unit cell size from the Vampire simulations (refer to Supplementary Note 1 for 

details on our approach). 

The real-space magnon Hamiltonian can be derived from Equation 1 by employing standard 

rotation techniques7–9,29. Specifically, Rodrigues’ rotation formula is utilized to define a rotated 

frame, aligning its z-axis with the local spin direction within the skyrmionic ground state. 

Therefore, the classical ground state manifests as a ferromagnetic configuration in the rotated 

frame. This allows for the representation of rotated spin operators in terms of magnon creation 

(𝑎𝑖
+) and annihilation (𝑎𝑖) operators through the Holstein-Primakoff transformation30. By 

incorporating the rotated spin operators and their Holstein-Primakoff representations into Equation 

1 (the detailed derivation is provided in Supplementary Notes 2 and 3), we determine the real-

space magnon Hamiltonian as follows, 

 

ℋ = ℋ𝑒𝑥 + ℋ𝐷 + ℋ𝑍𝑒𝑒 

(2a) 

with, 

 

ℋ𝑒𝑥 = 𝐽𝑆 ∑ [
1

2
𝑅𝑚𝑧,𝑖 𝑅𝑚𝑧,𝑗 𝑎𝑖

+𝑎𝑖 − 𝑅𝑚−,𝑖 𝑅𝑚+,𝑗 𝑎𝑖
+ 𝑎𝑗 − 𝑅𝑚−,𝑖 𝑅𝑚−,𝑗 𝑎𝑖

+ 𝑎𝑗
+]

𝑖,𝑗,𝑚

+ ℎ. 𝑐. 

(2b) 
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ℋ𝐷 = 𝑆 ∑ ∑ ∈𝑚𝑚1𝑚2
𝐷𝑗

𝑚 [
1

2
𝑅𝑚1𝑧,𝑖 𝑅𝑚2𝑧,𝑗  𝑎𝑖

+𝑎𝑖 − 𝑅𝑚1−,𝑖 𝑅𝑚2+,𝑗 𝑎𝑖
+ 𝑎𝑗

𝑚,𝑚1,𝑚2𝑖,𝑗

− 𝑅𝑚1−,𝑖 𝑅𝑚2−,𝑗 𝑎𝑖
+ 𝑎𝑗

+] + ℎ. 𝑐. 

(2c) 

 

ℋ𝑍𝑒𝑒 = 𝐵𝑆 ∑ 𝑅𝑧𝑧,𝑖𝑎𝑖
+𝑎𝑖

𝑖

+ ℎ. 𝑐. 

(2d) 

In Equation 2, the Hamiltonians ℋ𝑒𝑥, ℋ𝐷, and ℋ𝑍𝑒𝑒 account for the exchange, DMI, and Zeeman 

contributions, respectively. The term ’ℎ. 𝑐.’ denotes Hermitian conjugation. The indices 𝑚, 𝑚1, 

and 𝑚2 are summed over 𝑥, 𝑦, and 𝑧. 𝐷𝑗
𝑚 and ∈𝑚𝑚1𝑚2

 stand for the components of the DMI 

vectors and the Levi-Civita symbol, respectively. 

We aim to transform ℋ from the real space to the Fourier (or momentum) space, thereby removing 

its dependency on the real space sites (𝑖 and j in Equation 2). This transition entails Fourier 

expansions of the rotation matrix elements 𝑅𝑚𝑛, utilizing characteristic wave vectors defined by 

the skyrmion lattice. The optimal set of skyrmion wave vectors is derived from the Fourier 

expansion of the classical spin vectors that form the skyrmion lattice ground state.  

As depicted in Figure 1b, the skyrmions form a triangular Bravais lattice with large real-space 

lattice vectors 𝒂1 and 𝒂2, and a correspondingly tiny Brillouin Zone (BZ), defined by reciprocal 

lattice vectors 𝒃1 and 𝒃2. The classical spin vector varies over a length scale much larger than the 

lattice spacings 𝑎, necessitating a continuum approach. In this approach, the classical ground state 

is represented as a continuous vector field 𝓢(𝒓), which admits a Fourier series expansion in the 

form  

 

𝓢(𝒓) = ∑ [𝓢𝛾𝜎𝑒𝑖𝐆𝛾,𝜎.𝒓 + 𝓢𝛾𝜎∗𝑒−𝑖𝐆𝛾,𝜎.𝒓]

𝛾,𝜎𝜖ℎ

 

(3) 

 

Here, 𝐆𝛾,𝜎 = 𝛾𝒃1 + 𝜎𝒃2 (𝛾 and 𝜎 are integers) represent the skyrmion wave vectors. The 

functional form of the continuous field 𝓢(𝒓) is presented in Supplementary Note 1. The vector 

coefficients 𝓢𝛾𝜎 are calculated using the Fourier transform formula, 
1

𝐴
∬ 𝑑2𝑟 𝓢(𝒓)𝑒±𝑖𝐆𝛾,𝜎.𝒓, 

performed numerically over the unit cell (a single skyrmion) with area 𝐴.  
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Our numerical analysis demonstrates that the Fourier series in Equation 3 yields excellent 

convergence with 64 wave vectors 𝐆𝛾,𝜎, compiled in the set ℎ = {(0, 𝜎) ∣ 0 ≤ 𝜎 ≤ 6} ∪

{(𝛾, 𝜎) ∣ 1 ≤ 𝛾 ≤ 6 𝑎𝑛𝑑 𝛾 − 6 ≤ 𝜎 ≤ 6}. The vectors 𝓢𝛾𝜎 can be expressed as 𝓢𝛾𝜎 =

〈𝑖𝒮𝑥
𝛾𝜎

, 𝑖𝒮𝑦
𝛾𝜎

, 𝒮𝑧
𝛾𝜎〉, outlining a momentum-space spin texture (Figure 1c) comprising spins 

〈±𝒮𝑥
𝛾𝜎

, ±𝒮𝑦
𝛾𝜎

, 𝒮𝑧
𝛾𝜎〉 located at sites ±𝐆𝛾,𝜎, respectively. As expected, the magnitudes of the 

momentum-space spins 𝓢𝛾𝜎 diminish significantly beyond the second BZ, as demonstrated in 

Figure 1d. This behavior is crucial for ensuring the convergence of the Fourier series expansion in 

Equation 3. 

 

 

 
Figure 1. (a) A single Néel-type skyrmion with a DMI strength of 𝐷 = 0.1𝐽 and a magnetic field of 𝐵 = 0.12 𝑇, 

encompassing 6163 spins. (b) The skyrmion lattice under these parameters, with 𝒂1 and 𝒂2 representing the real-

space lattice vectors. (c) The momentum-space representation of the skyrmion lattice, with momentum-space spins 

located at positions (𝛾, 𝜎), defined by the skyrmion wave vectors 𝐆𝛾,𝜎 = 𝛾𝒃1 + 𝜎𝒃2, where 𝒃1 and 𝒃2 are the 

reciprocal-space lattice vectors. (d) The magnitudes of the momentum-space spins normalized with respect to the spin 

at the BZ center.  

 

Next, we utilize Rodrigues’ rotation formula to express the rotation matrix elements 𝑅𝑚𝑛 in terms 

of the components of the continuous field 𝓢(𝒓), as detailed in Supplementary Note 2. 
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Consequently, these elements are defined as continuous functions 𝑅𝑚𝑛(𝒓) and are expanded into 

Fourier series using the same set ℎ of skyrmion wave vectors, 

 

𝑅𝑚𝑛(𝒓) = ∑ [�̅�𝑚𝑛
𝛾𝜎

𝑒𝑖𝐆𝛾,𝜎.𝒓 + 𝑄𝑚𝑛
𝛾𝜎

𝑒−𝑖𝐆𝛾,𝜎.𝒓]

𝛾,𝜎𝜖ℎ

 

(4) 

 

The Fourier coefficients 𝑄𝑚𝑛
𝛾𝜎

 and �̅�𝑚𝑛
𝛾𝜎

, with 𝑚 ∈ {𝑥, 𝑦, 𝑧} and 𝑛 ∈ {+, −, 𝑧}, are computed 

numerically using the Fourier transform formula  
1

𝐴
∬ 𝑑2𝑟 𝑅𝑚𝑛(𝒓)𝑒±𝑖𝐆𝛾,𝜎.𝒓.  

In turn, the magnon operators are represented in the standard Fourier form, 𝑎𝑖
+ = 1

√𝑁
∑ 𝑒−𝑖𝒌.𝒓𝒊𝑎𝒌

+
𝒌  , 

where 𝑁 represents the total number of lattice sites and 𝒌 is a momentum within the first BZ. By 

substituting the Fourier expansions of 𝑅𝑚𝑛(𝒓) and the magnon operators into ℋ (Equation 2) and 

executing the summations over the real-space lattice sites, we successfully derive the magnon 

Hamiltonian in momentum space, as detailed in Supplementary Note 4. In the process, 𝒌 from the 

first BZ couples with the skyrmion lattice wave vectors 𝑮𝛾,𝜎, introducing multi-momentum 

bosonic operators (𝑎𝒌±𝑮𝛾,𝜎

+ and 𝑎𝒌±𝑮𝛾,𝜎
) into the magnon Hamiltonian. The emergence of such 

operators in the Hamiltonian is a manifestation of the umklapp scattering processes experienced 

by magnons while traveling the skyrmion lattice.  

The resulting momentum-space Hamiltonian can be written in compact form as follows, 

 

ℋ =
1

2
∑ ∑ [𝜒𝛾,𝜎;𝐼𝑎𝒌

+𝑎𝒌+𝐆𝛾,𝜎
+ �̃�𝛾,𝜎;𝐼𝑎−𝒌

+ 𝑎−𝒌−𝑮𝛾,𝜎
+ 𝜒𝛾,𝜎;𝐼𝐼𝑎𝒌

+ 𝑎−𝒌−𝑮𝛾,𝜎

+ + �̃�𝛾,𝜎;𝐼𝐼𝑎𝒌+𝑮𝛾,𝜎

+ 𝑎−𝒌
+ ]

𝛾,𝜎𝜖ℎ𝒌

+ ℎ. 𝑐. 

(5) 

 

The coefficients 𝜒𝛾,𝜎;𝐼, �̃�𝛾,𝜎;𝐼, 𝜒𝛾,𝜎;𝐼𝐼, and �̃�𝛾,𝜎;𝐼𝐼 are complex functions of 𝒌 and 𝑮𝛾,𝜎. For 

conciseness, the detailed derivation and the explicit expressions of these coefficients are provided 

in Supplementary Note 4.  

To further explore the structure of ℋ and its physical implications, we introduce the operator wave 

function  Ψ𝒌
† = [𝜙𝒌

† 𝜙−𝒌
† ], with 𝜙𝒌

† = [𝑎𝒌+𝑮𝛾1,𝜎1

+ … 𝑎𝒌+𝑮𝛾𝑛,𝜎𝑛

+ 𝑎𝒌−𝑮𝛾2,𝜎2

+ … 𝑎𝒌−𝑮𝛾𝑛,𝜎𝑛

+
], 

and 𝜙−𝒌
† = [𝑎−𝒌−𝑮𝛾1,𝜎1

+ … 𝑎−𝒌−𝑮𝛾𝑛,𝜎𝑛

+ 𝑎−𝒌+𝑮𝛾2,𝜎2

+ … 𝑎−𝒌+𝑮𝛾𝑛,𝜎𝑛

+
]. This allows Equation 5 

to be recast in a matrix form as, 

 



 

7 
 

ℋ =
1

2
∑ Ψ𝒌

†ℋ(𝒌, 𝑮𝛾,𝜎)Ψ𝒌

𝒌

 

(6) 

 

with ℋ(𝒌, 𝑮𝛾,𝜎) = [
𝐻(𝒌, 𝑮𝛾,𝜎) 𝛥(𝒌, 𝑮𝛾,𝜎)

𝛥†(𝒌, 𝑮𝛾,𝜎) �̃�(𝒌, 𝑮𝛾,𝜎)
].  

The block matrices within ℋ(𝒌, 𝑮𝛾,𝜎) are of dimensions 𝑛 × 𝑛, where 𝑛 = 64 represents the 

number of relevant sites in momentum space, as specified by the set ℎ. These blocks elucidate the 

permitted magnon umklapp scatterings in momentum space. For instance, an umklapp scattering 

event from 𝒌 + 𝑮𝛾𝑖,𝜎𝑖
 to 𝒌 + 𝑮𝛾𝑗,𝜎𝑗

 occurs if and only if there exists a pair (𝛾𝑙 , 𝜎𝑙) ∈ ℎ such that 

(𝛾𝑖, 𝜎𝑖) + (𝛾𝑙, 𝜎𝑙) = (𝛾𝑗 , 𝜎𝑗). Such scattering generates the matrix elements 𝐻𝑖𝑗 = 𝜒𝛾𝑙,𝜎𝑙;𝐼(𝒌 +

𝑮𝛾𝑖,𝜎𝑖
), 𝛥𝑖𝑗 = 𝜒𝛾𝑙,𝜎𝑙;𝐼𝐼(𝒌 + 𝑮𝛾𝑖,𝜎𝑖

), 𝛥𝑗𝑖 = �̃�𝛾𝑙,𝜎𝑙;𝐼𝐼(𝒌 + 𝑮𝛾𝑖,𝜎𝑖
), and �̃�𝑗𝑖 = �̃�𝛾𝑙,𝜎𝑙;𝐼(𝒌 + 𝑮𝛾𝑖,𝜎𝑖

 ).  

Conversely, the reverse umklapp scattering, (𝛾𝑗 , 𝜎𝑗) − (𝛾𝑙, 𝜎𝑙) = (𝛾𝑖, 𝜎𝑖), leads to the Hermitian 

conjugate matrix elements. By systematically accounting for all allowed umklapp scattering 

processes, we construct the matrix ℋ(𝒌, 𝑮𝛾,𝜎), which is inherently Hermitian. To determine the 

magnonic band structure, we apply the standard Bogoliubov transformation to diagonalize 

ℋ(𝒌, 𝑮𝛾,𝜎), utilizing the numerical approach developed by Colpa31. 

 

Skyrmionic magnon bands 

For the DMI strength 𝐷 = 0.1 𝐽 chosen in our study, the minimum magnetic field required to 

stabilize skyrmions is approximately 0.12 𝑇, as determined through the sLLG simulations 

described in the previous section. The skyrmion reaches its maximum size under this minimal 

magnetic field, comprising 6163 spins (Figures 1a, b). Due to their Bosonic nature, magnons tend 

to accumulate in the low-energy bands, which are therefore the primary focus of our calculations. 

Figure 2a displays the lowest 15 magnonic bands of this skyrmion ground state, calculated along 

the symmetry axes depicted in Figure 2b. Henceforth, we label these bands sequentially from 𝑛 =

1 to 𝑛 = 15, in order of increasing energy.  

Given the large size of the skyrmions and the correspondingly tiny BZ, the 15-band magnon 

spectrum is confined to low energies, not exceeding 0.2𝐽 (Figure 2a). The lowest-energy band 

(𝑛 = 1) remains nonzero at the Γ point (the BZ’s center), indicating the absence of Goldstone 

modes. We observe a global bandgap of approximately 0.016𝐽 between the first and second bands, 

with the latter appearing notably flat compared to all other bands. Despite its apparent flatness, a 

3D plot of this band reveals its dispersion within a narrow bandwidth, as depicted in Figure 2c. 

The second and third modes are separated by a sizeable global bandgap (~0.05𝐽), while a smaller 
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gap of about 0.017𝐽 separates the fourth and fifth modes. The low-energy bands 𝑛 = 1, … ,4 stand 

out as relatively isolated from the remaining bands, while the magnon spectrum becomes more 

compact beyond these bands. At higher energies, the bands exhibit several avoided crossing points 

where they approach each other at specific points in the BZ without actually closing the gaps. This 

phenomenon leads to the formation of numerous small bandgaps, examples of which are depicted 

in Figures 2d and 2e.  

 

 
Figure 2. (a) Dispersion curves for the lowest 15 magnon bands of the skyrmion ground state at 𝐷 = 0.1𝐽 and 𝐵 =

0.12 𝑇. The bands are plotted along the high-symmetry axes of the BZ shown in (b). (c) A 3D plot over the BZ of 𝐸2 

(the second energy band), revealing its dispersion within a narrow bandwidth. (d) A 3D plot over the BZ showing the 

tiny gaps between bands 𝐸9 and 𝐸10. (e) A similar plot to (d), but for bands 𝐸14 and 𝐸15. 

 

The gaped magnonic spectrum motivates the analysis of its topological features. Using the 

numerical method developed by Fukui et al.32, we calculated the bands’ Berry curvatures and 

Chern numbers. Details on the application of this numerical approach to multi-band spectra can be 

found elsewhere33–35. Our results for the Chern numbers (𝐶𝑛, 𝑛 = 1, … ,15) are summarized in 

Table 1, and the Berry curvatures for the topological bands are presented in Figure S3 of 

Supplementary Note 5.  For modes at higher energies, the tiny bandgaps lead to pronounced peaks 

in the Berry curvatures (Figure S3), which give rise to topological bands with various Chern 

numbers (Table 1). However, under the minimal magnetic field, the ground state may not be 

optimal for observing topological effects, as the lowest-energy bands are found to be topologically 

trivial (Table 1). 

In our theory, the Hamiltonian ℋ(𝒌, 𝑮𝛾,𝜎) is critically dependent on the reciprocal lattice vectors 

𝒃1 and 𝒃2, which are determined by the size of the skyrmion. Thus, within the magnetic field range 

that stabilizes the skyrmion lattice, 0.12 𝑇 ≲ 𝐵 ≲ 0.225 𝑇 at 𝐷 = 0.1 𝐽, an increase in the 

magnetic field results in a reduction of the skyrmion size, which significantly impacts the 
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magnonic band structure. Specifically, at 𝐵 = 0.175 𝑇, near the middle of the magnetic field 

range, the skyrmion size diminishes to 3661 spins, as illustrated in Figures 3a and 3b. The 

associated magnon band structure, shown in Figure 3c, differs markedly from that at the minimum 

magnetic field. The spectrum becomes more compact, reaching higher energies (~0.3 𝐽) because 

of the larger reciprocal lattice vectors 𝒃1 and 𝒃2. Furthermore, the shift of the lowest energy mode 

to higher energies demonstrates the impact of skyrmion size—and, consequently, the magnetic 

field—on the energy gap of this mode. Although the lowest-energy band appears flat, closer 

examination shows that it is dispersive within a narrow range (Figure 3d). The four lowest-energy 

bands remain separated from the rest, while the spectrum’s high-energy region is notably compact, 

featuring numerous tiny bandgaps at points of avoided crossing.  

 

 
Figure 3. The skyrmion lattice (a) and a single skyrmion (b) obtained for a DMI strength of 𝐷 = 0.1𝐽 and a magnetic 

field of 𝐵 = 0.175 𝑇. Each skyrmion comprises 3661 spins in this case. Figure (c) shows the dispersion curves for 

the lowest 15 magnon bands corresponding to the skyrmion lattice in (a). (d) A 3D plot over the BZ showing the first 

(𝐸1) and the second (𝐸2) energy bands, highlighting the narrow bandwidth dispersion of the first energy band and the 

gap between 𝐸1 and 𝐸2. 
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The size of the skyrmion, which correlates with the strength of the magnetic field, not only 

influences the profile of the magnon band structure but also significantly modifies its topology. 

Contrary to the minimal magnetic field case, at 𝐵 = 0.175 𝑇, the entire band structure becomes 

topological, except for the two lowest energy bands (Table 1). The Berry curvatures for the 

topological bands at 𝐵 = 0.175 𝑇 are depicted in Figure S4 of Supplementary Note 5. Notably, in 

the 15-band spectrum at 𝐵 = 0.175 𝑇, the (relatively) high-energy bands (𝑛 ≥ 5) are topological 

and densely packed, approaching the profile of a topological band continuum. 

 

 

 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑪𝟒 𝑪𝟓 𝑪𝟔 𝑪𝟕 𝑪𝟖 𝑪𝟗 𝑪𝟏𝟎 𝑪𝟏𝟏 𝑪𝟏𝟐 𝑪𝟏𝟑 𝑪𝟏𝟒 𝑪𝟏𝟓 

𝟎. 𝟏𝟐 𝑻 0 0 0 0 1 0 0 -1 0 0 5 -5 5 -2 2 

𝟎. 𝟏𝟕𝟓 𝑻 0 0 -1 2 2 1 3 -5 6 -5 6 -4 -1 -1 -3 

𝟎. 𝟐𝟐𝟓 𝑻 1 -1 3 1 -1 2 2 1 1 3 -1 1 -6 8 -4 

Table 1. Chern numbers (𝐶𝑛) for the lowest 15 magnon bands (𝑛 = 1 to 𝑛 = 15, in order of increasing energy) at 

different magnetic fields: 0.12 𝑇 (second row), 0.175 𝑇 (third row), and 0.225 𝑇 (fourth row). 

 

 

Our findings thus far have shown a profound dependence of the magnon band structure and its 

topology on the magnetic field (or skyrmion size). To further explore this dependence, we consider 

next the maximal magnetic field value of 0.225 𝑇. At this magnetic field, the skyrmion is formed 

of 2755 spins (Figure 4a, b). The 15-band spectrum for this case is presented in Figure 4c, 

showcasing a significantly different profile compared to the previous magnetic fields. The entire 

band structure shifts to higher energies, increasing the band gap for the lowest energy mode, while 

the highest energy band reaches a value near 0.38 𝐽. All bands are dispersive at the maximal 

magnetic field, showing that flat bands are not a universal feature of the skyrmionic magnon band 

structure. The entire low-energy band structure becomes densely packed, resembling a band 

continuum (Figure 4c). More importantly, the calculation of the Berry curvature and Chern 

numbers reveals that all bands are topological (Table 1), with some Chern numbers reaching 

significant magnitudes (e.g., 𝐶13 = −6 and 𝐶14 = 8). The Berry curvatures for all 15 bands are 

illustrated in Figure S5 of Supplementary Note 5.  

Finally, we have calculated the contributions of the 15 lowest energy bands to the density of states, 

which are depicted in Figures 4d-f for the magnetic fields of 0.125 T, 0.175 T, and 0.225 T, 

respectively. It is observed that higher magnetic fields promote the merging of peaks in the density 

of states due to the compaction effect previously discussed. However, the overall density of states 

decreases at higher magnetic fields (see Figure S6 of Supplementary Note 5), primarily due to the 

reduction in skyrmion size and the consequent increase in the BZ area. 
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Figure 4. The skyrmion lattice (a) and a single skyrmion with 2755 spins (b) obtained for a DMI strength of 𝐷 = 0.1𝐽 

and a magnetic field of 𝐵 = 0.225 𝑇. (c) The dispersion curves for the lowest 15 magnon bands corresponding to the 

skyrmion lattice in (a). (d)-(f) Contributions of the 15 lowest energy bands to the density of states (DOS) for magnetic 

fields of 0.125 T, 0.175 T, and 0.225 T, respectively. In these plots, the DOS is normalized with respect to its maximum 

value.  

 

Conclusion 

We developed a momentum-space theory to describe magnon dynamics in large 2D ferromagnetic 

skyrmions as an alternative to the cluster approach. Using Fourier-space techniques and a 

continuum treatment of the skyrmions, we derived the magnon Hamiltonian exclusively in terms 

of momentum-space operators. In this picture, umklapp scattering of magnons becomes inevitable, 

leading to a multi-momentum Hamiltonian. The profile and topology of the low-energy magnon 

spectrum obtained from our Hamiltonian depend crucially on the magnetic field (hence the 

skyrmion’s size), which can render the entire spectrum topological. Further, we found that flat 

bands are not universal features of the magnonic spectrum. Specifically, we observed a single 
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relatively flat band at low and moderate magnetic fields, which disappeared at a higher magnetic 

field.  

The lowest-energy band is gapped near the BZ’s center, indicating the absence of the Goldstone 

mode for the studied skyrmions. Nevertheless, the inverse relationship observed between the 

lowest-energy gap and the skyrmion size suggests that this mode could potentially be retrieved for 

extremely large skyrmions at very low DMI strengths. However, exploring this possibility at such 

extreme conditions is beyond the scope of this manuscript. 

Our work specifically addresses 2D magnets without generalizing our conclusions to 3D magnets 

or magnetic thin films. Topological spin textures have been reported in several 2D magnets36–48. 

However, observing their magnons remains experimentally challenging, mainly due to the 

limitations of current measurement techniques and the difficulty in achieving sufficiently ordered 

skyrmion lattices4,25–27,49. Our focus on 2D magnets justifies the exclusion of dipolar interactions, 

which are generally considered weak in such materials50–55.  

The proposed theory awaits significant future developments. This includes an extension to other 

types of spin lattices, such as the honeycomb lattice, which characterizes several 2D magnets48,56–

58. Additionally, it is crucial to integrate other fundamental interactions, such as intrinsic next-

nearest-neighbor DMI (IDMI), Kitaev interactions, and magnetic anisotropies.  Given that the 

IDMI and Kitaev interaction can induce 2D topological magnons even in a collinear ground state 

50–55,59–63, examining their effects in skyrmion ground states offers an exciting avenue for further 

research. Furthermore, applying this theory to other topological spin textures64, such as 

antiferromagnetic skyrmions, antiskyrmions, and bi-merons, would also be of considerable 

relevance. 

Finally, we stress that the proposed theory is designed for large skyrmions, potentially with a lower 

size limit of several hundred spins per skyrmion. Meanwhile, the particular class of quantum 

skyrmions17,65, which are smaller in size, indeed requires a cluster (or sublattice) approach to 

describe their magnon dynamics12,13 accurately. Conversely, for the large skyrmions, the cluster 

approach becomes less practical and potentially less accurate, as it may obscure significant effects 

of the topological spin textures, which we sought to uncover in this study.  
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