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Abstract

Designing policies for a network of agents is typically done by formulating an optimization

problem where each agent has access to state measurements of all the other agents in the net-

work. Such policy designs with centralized information exchange result in optimization problems

that are typically hard to solve, require establishing substantial communication links, and do

not promote privacy since all information is shared among the agents. Designing policies based

on arbitrary communication structures can lead to non-convex optimization problems which

are typically NP-hard. In this work, we propose an optimization framework for decentralized

policy designs. In contrast to the centralized information exchange, our approach requires only

local communication exchange among the neighboring agents matching the physical coupling of

the network. Thus, each agent only requires information from its direct neighbors, minimiz-

ing the need for excessive communication and promoting privacy amongst the agents. Using

robust optimization techniques, we formulate a convex optimization problem with a loosely cou-

pled structure that can be solved efficiently. We numerically demonstrate the efficacy of the

proposed approach in energy management and supply chain applications. We show that the

proposed approach leads to solutions that closely approximate those obtained by the centralized

formulation only at a fraction of the computational effort.

Keywords: robust optimization; network control; decentralized policy design; local information;

state forecast sets; decision rules.
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1 Introduction

Controlling physical networks of interconnected systems remains an active field of research due to its

high impact on real-world applications, e.g., regulation of power networks [71], energy management

of building districts, [16] and supply chains [68]. For large-scale systems, designing and deploying

policies that have a centralized communication structure can be challenging. In the design phase,

computational limitations can restrict the size of the problem that can be tackled, while in the

deployment phase, the centralized nature of the policy requires excessive communication which

does not promote privacy between the interconnected systems. In such cases, it is desirable to

design policies with local information exchange that ideally rely on local computational resources

to compute their policies.

Synthesizing policies based on an arbitrary communication structure can lead to non-convex

infinite-dimensional optimization problems which are typically NP-hard [69]. For that reason,

several studies have been devoted to identifying specific communication structures under which the

designing policies can be cast as a convex problem [39, 45]. For instance, if the communication

network admits a partially nested structure [30], then affine policies are known to be optimal for

decentralized linear systems with quadratic costs and additive Gaussian noise [30, 55, 56]. Similar

results exist for communication structures that are spatially invariant [2, 2, 48], including delays in

information sharing [34, 49, 50].

Recent advances shifted research interest in identifying information communication structures

that allow for the optimal distributed controllers synthesis problem to be formulated as a con-

vex optimization problem [1, 17, 20, 46, 54]. These structures usually possess properties such as

quadratic invariance [58, 65] and funnel causality [1] which essentially eliminates the incentive of

signaling among the interconnected systems. For general network structures, the usual practice is

to resort to linear matrix inequality relaxations [35, 72] or semidefinite programming relaxations

[37, 22] to obtain a suboptimal design with performance guarantees.

A downside of the aforementioned design approaches is the inability to cope with state and

input constraints in the systems. Optimization based approaches, often referred to as Model Pre-

dictive Control, are well-suited for the control of constrained systems [47]. In this setting, control

designs are usually categorized into cooperative or non-cooperative [59] referring to the level of

information exchange amongst the interconnected systems. As before, cooperative approaches
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require substantial communication infrastructure and computation resources in the design phase

since a system-wide optimization problem is formulated and solved [71, 62, 25]. On the other

hand, non-cooperative approaches, though computationally simple and effective in practice, can be

conservative in presence of strong coupling [57, 32, 66]. In addition, non-cooperative schemes typ-

ically require a centralized offline design phase, thus suffering from similar complexity and privacy

concerns as the centralized designs.

There is a stream of literature that tries to address these issues by developing schemes that rely

on local computational resources and information structures [12, 19, 21, 43, 67]. This is commonly

achieved by each system individually considering the worst-case effect of its neighbors as a bounded

exogenous uncertainty to its own system. Nevertheless, this can lead to conservative designs as the

sets of bounded exogenous uncertainties are calculated off-line, thus disregarding the possibility of

adapting their size based on the dynamical evolution of the system.

Recent advances in robust optimization techniques deal with exogenous uncertainties in a com-

putationally efficient way, allowing to address both static and multistage problems [8, 18, 27]. In

contrast, problems with endogenous uncertainties usually referred to as problems with decision-

dependent uncertainty sets, are typically computationally intractable [52]. However, by exploiting

structural characteristics of the problem such as right-hand side uncertainty in the constraints, the

work of [31, 73, 9] proposed approximations that restrict the space of admissible uncertainty sets

to those that exhibit an affine dependence on fixed sets. By doing so, the resulting approximate

problems can be equivalently cast as robust optimization problems with exogenous uncertainties,

and hence they can be efficiently solved using existing methods. In this paper, we leverage simi-

lar techniques to design control policies with local information structure, by designing on-line the

bounded sets of exogenous uncertainties which model the worst-case effect of the neighbors for a

given system.

In this paper, we address communication and computation issues of policy designs for physical

networks of interconnected systems. The contributions of this paper are:

˛ We propose a new modeling paradigm for designing policies with local communication ex-

changes which exactly match the physical coupling of the network. In contrast to centralized

and partially nested models where the states are explicitly communicated amongst the neigh-

boring agents as functions of the uncertain parameters, the proposed approach communicates
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compact sets which we refer to as the state forecast set, implicitly encompassing the states of

neighboring systems. As the agents are only coupled through the forecast sets, the proposed

structure addresses privacy concerns in the information exchange and allows for a natural

interpretation of the resulting policy. The framework generalizes the proof-of-concept con-

ference paper [15] in which a simple version of the idea was applied for the efficient energy

management of building districts.

˛ We show that the proposed paradigm directly relates to centralized and partially nested

information exchange policy designs. In particular, we show that the optimal local commu-

nication policy constitutes a conservative approximation to the partially nested information

design problem, while the optimal partially nested information policy constitutes a conser-

vative approximation to the centralized information design problem. In addition, we identify

network structures for which the optimal values of these problems coincide. Hence, the pro-

posed approach fits well within the established modeling paradigms.

˛ We propose a tractable approximation that restricts the functional form of the state forecast

sets to an affine transformation of a fixed set, in a similar spirit as [31, 73, 9]. Under this

restriction, we show that the problem can be cast as a multistage robust optimization prob-

lem, which is a well studied class of problems and multiple solution methods exist to either

approximate or solve the problem explicitly. By construction, the resulting problem has a

decoupled structure making the problem highly scalable with respect to the number of inter-

connected systems in the network. The efficacy of the proposed approach is demonstrated in

three numerical experiments where we study the quality of the solution with respect to the

state forecast sets approximation, the scalability properties of the approach, as well as how

the problem can be solved in an almost decentralized manner using the alternating direction

method of multipliers algorithm.

The remainder of this paper is organized as follows. Section 2 provides the problem formulation

and briefly reviews the centralized and partially nested information exchange policies. Section 3

presents the new modeling paradigm and discusses the relationship between the centralized and

partially nested policy designs. In Section 4 we derive tractable approximations and show how the

problem can be cast as a multistage robust optimization problem. In Section 5 we present two
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numerical examples: (i) an illustrative example that showcases the proposed method and discusses

the effect of the state forecast sets approximation, and (ii) a cooperative energy management

system. All proofs are found in the Appendix A. We also provide an additional numerical examples

in Appendix B that examines a contract design problem for a supply chain.

Notation: The calligraphic letters M,P, T are reserved for finite index sets with cardinalities

M,P, T , that is, M “ t1, . . . ,Mu etc. The subscript ` in T` indicates that the index set T

additionally includes T ` 1, that is, T` “ T
Ť

tT ` 1u. Concatenated vectors are represented in

boldface. Dimensions of matrices and concatenated vectors are assumed clear from the context.

For given vectors vi P Rki with ki P N, i P M, we define vM “ rvisiPM “ rvJ
1 . . . v

J
M sJ P Rk with

k “
řM

i“1 ki as their vector concatenation. Given time dependent vectors νi,t P Rℓi with i P M,

t P T and ℓi P N, we define νM,t “ rνi,tsiPM as the concatenated vector at time t, νti “ rνJ
i,1 . . . ν

J
i,ts

J

as the history of the i-th vector up to time t, and νtM “ rνti siPM as the history of the concatenated

vector up to time t. We denote by extpΞq the set of extreme points of set Ξ. An extended notation

section summarizing the major notation can be found in Appendix C.

2 Problem formulation

We consider a physical network comprising M interconnected systems, henceforth referred to as

agents. We assume that the agents are coupled through the dynamics. We describe these inter-

actions through a directed graph in which an arc connecting agent j to agent i, with i, j P M,

indicates that the states of the j-th agent affect the dynamics of the i-th agent. We refer agent j as

the preceding neighbor to agent i, henceforth neighbor, and we define the set Ni Ă M to include all

the neighbors of the i-th agent. Figure 1 illustrates a system of M “ 5 agents where the neighbors

of agent 3 are given by N3 “ t2, 5u. In the sequel, we refer to the physical network depicted in

Figure 1 as the “working example” and use it to streamline the presentation of key ideas in the

paper.
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Figure 1. Working example: Physical coupling graph of 5 agents. Solid line arrows
represented the direction of the interaction.

2.1 System dynamics, constraints, and objective function

In this paper, we study finite horizon problems with T stages. We use linear dynamics to model

the state evolution of the agent i at time instant t P T , as

xi,t`1 “ Ai,txi,t `Bi,txNi,t `Di,tui,t ` Ei,tξi,t. (1)

Here xi,t P Rnx,i denotes the states, with the initial state xi,1 known. The interaction of agent i

and its neighbors is captured through the term Bi,txNi,t. Vector ui,t P Rnu,i models the inputs and

ξi,t P Rnξ,i captures the exogenous uncertainties affecting the system dynamics. The time-varying

system matrices Ai,t, Bi,t, Di,t and Ei,t are assumed known with proper dimensions and of full

column rank. To economize on notation, we now compactly rewrite (1) as

xi “ fipxNi
,ui, ξiq :“ Aixi,1 `BixNi

`Diui ` Eiξi,

where xi :“ rxi,tstPT`
, ui :“ rui,tstPT , ξi :“ rξi,tstPT and xNi

:“ rxNi,tstPT . The system matrices Ai,

Bi, Di and Ei used to define the function fip¨q are directly constructed by the problem data given

in (1) (see, e.g., [28] for such a derivation). The i-th agent is subject to linear constraints

Oi “
␣

pxi,uiq : Hx,ixi `Hu,iui ď hi
(

, (2)

where the matrices Hx,i, Hu,i and hi are assumed known and of proper dimensions. Note that

this compact constraint formulation allows the consideration of time-varying linear operational

constraints with time-stage coupling. In addition, constraints involving neighboring states or ex-

ogenous uncertainties can always be included by appropriately extending the state space of the i-th
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system. The objective associated with i-th agent is given by

Jipxi,uiq “

T
ÿ

t“1

p}Qixi,t}q ` }Riui,t}qq , (3)

where q P t8, 1u allows for different objective formulation. The penalization matrices Qi, Ri are

assumed known and of proper dimensions.

In the following, we assume that the exogenous uncertainties affecting agent i reside in the

nonempty, convex and compact polyhedral uncertainty set Ξi “ tξi : Wξi ě wu where matrix W

and vector w are known and of proper dimensions. We will be making the simplifying assumption

that the joint uncertainty set of all agents in the system has a decoupled structure, i.e., ξM P ΞM “

Ś

iPM Ξi, which essentially precludes the existence of coupled uncertainties amongst the agents.

This assumption can be relaxed at the expense of further case distinctions in what follows.

2.2 Designing policies with centralized information exchange

A common assumption in designing policies is to assume that at time t, each agent has access

to the states from all the other agents in the network up to and including period t [28, 29]. We

will refer to this communication as the centralized information exchange, depicted in Figure 2 for

the working example. In this context, we denote the causal state feedback policies for agent i at

time t P T as πi,t : Rnt
x Ñ Rnu,i where ntx “ t

´

ř

jPM nx,j

¯

, such that its input at time t is given

as ui,t “ πi,tpx
t
Mq. We write πipxMq “ rπi,tpx

t
MqstPT to denote the policy concatenation over the

horizon.
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Figure 2. Working example: Centralized information exchange. Dotted line arrows
represent the communication links between the agents, with M “ t1, 2, 3, 4, 5u.

The optimization problem for designing policies with centralized information exchange which
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minimize the sum of worst-case individual objectives is formulated as

minimize
M
ÿ

i“1

max
ξMPΞM

Jipxi,uiq

subject to ui “ πipxMq :“ rπi,tpx
t
MqstPT

xi “ fi
`

xNi
,ui, ξi

˘

pxi,uiq P Oi

,

/

/

/

.

/

/

/

-

@ξM P ΞM, @i P M,

(4a)

where the optimization variables are the policies πip¨q for all i P M. As shown in [28, 29], the

state feedback structure of the policies induces a non-convex feasible region. To deal with this,

they propose the design of strictly causal uncertainty feedback policies Πi,t : Rnt
ξ Ñ Rnu,i where

ntξ “ pt´ 1q
ř

iPM nξ,i, such that the input at each time step is given by ui,t “ Πi,tpξ
t´1
M q. We write

ΠipξMq “ rΠi,tprξt´1
M stPT q to denote the policy concatenation over the horizon. This formulation

leads to the infinite dimensional linear optimization

minimize
M
ÿ

i“1

max
ξMPΞM

Jipxi,uiq

subject to ui “ ΠipξMq :“ rΠi,tpξ
t´1
M qstPT

xi “ fi
`

xNi
,ui, ξi

˘

pxi,uiq P Oi

,

/

/

/

.

/

/

/

-

@ξM P ΞM, @i P M.

(4b)

Using the fact that matrices Ai,t, Bi,t and Ei,t are full column rank, there is a one-to-one relationship

between state and uncertainty feedback policies in terms of feasibility and optimality. Restricting

the admissible policies to have an affine structure and reformulating using robust optimization

techniques reduces the problem to a finite-dimensional linear optimization problem which can be

solved with off-the-shelf optimization solvers. Furthermore, due to the one-to-one relationship

between state and uncertainty feedback policies, there is also a unique mapping that translates the

resulting affine uncertainty policies to an equivalent affine state feedback policy which allows being

implemented locally by each agent using the centralized communication network.

Although theoretically appealing, policies based on centralized information exchange are hard

to design and implemented in practice for large-scale systems. This is partially the case since for

large networks piq solving the linear optimization problem resulting from the affine policy approxi-

mation can be computationally challenging due to its monolithic structure; while piiq the excessive
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communication and the centralized physical network required to allow each agent to evaluate its

policy, does not promote privacy since the exact policy/constraints of individual agents are even-

tually revealed to the rest of the network. We will demonstrate the former through numerical

experiments in Section 5.

2.3 Designing policies with partially nested information exchange

In an attempt to address the computational and privacy issues, researchers have proposed a number

of policy designs that consider only partial communication among the agents. For an arbitrary

information exchange network the design phase typically results in a non-convex problem that

is computationally intractable. A notable exception is the work of [40] which assumes a partially

nested information exchange, leading to convex formulations. Roughly speaking this communication

exchange implies that agent i has access to information coming from all of its precedent agents in

a non-anticipative manner. In this setting, agent j is named a precedent to agent i, if the input of

agent j at time t1 can affect the local information available to agent i at some time t ą t1 in the

future [40, Definition 1]. The partially nested information exchange associated with the working

example is depicted in Figure 3, where we see that although agent 1 is not a physical neighbor of

agents 3 and 4, its actions can affect the future states of both these agents, thus it is a precedent

agent.
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Figure 3. Working example: Partially nested information exchange. Dotted line
arrows represent the established communication links between local controllers, with
N 1 “ t1u, N 2 “ t1, 2u, N 3 “ t1, 2, 3, 5u, N 4 “ t1, 2, 3, 4, 5u and N 5 “ t5u.

In a partially nested communication, the policy is designed as follows. We denote by N i Ď M

the set that includes agent i and all its precedent agents. At time t, the i-th agent measures its own

states and the states of its precedent agents, denoted by xN i,t “ rxj,tsjPN i
. Using all measurements

from stage 1 up to time t, it designs a causal partial state feedback policy ϕi,t : Rnt
x,i Ñ Rnu,i , where

ntx,i “ t
´

ř

jPN i
njx

¯

. The input is now given as ui,t “ ϕi,tpx
t
N i

q. We write ϕipxN i
q “ rϕi,tpx

t
N i

qstPT

9



to denote the policy concatenation over the time horizon.

The optimization problem to design policies with partially nested information exchange that

minimize the sum of worst-case individual objectives is formulated as

minimize
M
ÿ

i“1

max
ξN i

PΞN i

Jipxi,uiq

subject to ui “ ϕipxN i
q :“ rϕi,tpx

t
N i

qstPT

xi “ fi
`

xNi
,ui, ξi

˘

pxi,uiq P Oi

,

/

/

/

.

/

/

/

-

@ξN i
P ΞN i

, @i P M,

(5a)

where ΞN i
“

Ś

jPN i
Ξj and the optimization variables are the policies ϕip¨q for all i P M. Prob-

lem (5a) is typically non-convex due to the state feedback structure of the policies. Similar to the

centralized case, [40] proposes the use of strictly causal partial nested uncertainty feedback policies

Φi,t : Rnt
ξ,i Ñ Rnu,i where ntξ,i “ pt´ 1q

´

ř

jPN i
njξ

¯

, such that the input at each time step is given

by ui,t “ Φi,tpξ
t´1
N i

q. We write ΦipξN i
q “ rΦi,tpξ

t´1
N i

qstPT to denote the policy concatenation, leading

to the infinite dimensional linear optimization

minimize
M
ÿ

i“1

max
ξN i

PΞN i

Jipxi,uiq

subject to ui “ ΦipξN i
q :“ rΦi,tpξ

t´1
N i

qstPT

xi “ fi
`

xNi
,ui, ξi

˘

pxi,uiq P Oi

,

/

/

/

.

/

/

/

-

@ξN i
P ΞN i

, @i P M.

(5b)

If these uncertainty feedback policies are restricted to admit an affine structure and using robust

optimization to reformulate the resulting semi-infinite constraints, then Problem (5b) becomes a

finite-dimensional linear optimization problem. As with the centralized case, there is a one-to-one

relationship between the state and uncertainty feedback policies, both for the infinite-dimensional

and affine restriction. This allows the agents in the network to evaluate their policies based on the

established partially nested communication.

The following theorem establishes the connection between centralized and partially nested in-

formation design problems and will be used in the following section to demonstrate the relationship

between the proposed approach to the centralized and partially nested policy structures.
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Theorem 1. Problem (5b) is a conservative approximation of Problem (4b) in the following sense:

every feasible solution of Problem (5b) is feasible in Problem (4b), and the optimal value of Prob-

lem (5b) is larger or equal to the optimal value of Problem (4b).

Partially nested information exchange slightly reduces the communication requirements com-

pared to the centralized problem (see Figures 2 and 3 of the working example). This has a positive

impact on the solution time needed to design affine feedback policies, however, the resulting linear

program inherits in large part the monolithic structure of the centralized problem due to the absence

of a non-sparse structure. Most importantly, even in the simple model of our working example,

the partially nested communication requires three additional links compared to the physical links.

In strongly connected physical networks, i.e., in networks where there is a directed path from any

node to every other node in the network, the minimum number of communications links needed

to ensure partially nested information coincides with the centralized information exchange, see the

example presented in Section 5.2 with Figures 12 and 13. Therefore, the synthesis of policies with

partially nested information inherits, to a large extent, the drawbacks of the centralized problem,

both from a computational and privacy standpoint.

3 Designing policies with local information exchange

In this paper, we propose a decentralized policy structure that relies on local information exchange

among the agents. The proposed policy aims to address both the computational and privacy

concerns discussed so far. While in the previous section the information flow had to be sufficiently

complex to capture a partially nested structure, in this section we will assume that the information

flow can be as simple as the physical network, as this is illustrated in Figure 4 for the working

example.

In contrast to the previous section where agent j P Ni communicates to agent i explicitly

communicates its states which are functions of the uncertain parameters, in the proposed framework

agent j communicates a compact set Xj Ď RNx,i where Nx,i “
ř

tPT`
nx,i, henceforth referred as the

state forecast set, that contains possible evolution of its states, i.e., xj P Xj . In this framework, the

shape of Xj is a decision quantity for agent j. Upon receiving these state forecast sets from all of

its neighbors, agent i treats these states as uncertain quantities that affect its dynamics in a similar

way as exogenous uncertainties. To emphasize this, we denote by ζj,t P Rnx,j the belief of agent

11
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Figure 4. Working example: Local information exchange. Dotted line arrows
represent the established communication links between agents, N1 “ H, N2 “ t1u,
N3 “ t2, 5u, N4 “ t3u and N5 “ H

i about the states of agent j at time t, such that ζj “ rζj,tstPT`
P Xj . In this context, the policy

of agent i at time t is based on the information from its own states xi,t and on the belief states

ζNi,t, from stage 1 up to t. This leads us to design causal local state/uncertainty feedback policies

ψi,t : Rn̂t
x,i Ñ Rni

u where n̂tx,i “ t
´

nx,i `
ř

jPNi
nx,j

¯

, such that the input of agent i at time t is

given by ui,t “ ψi,tpx
t
i, ζ

t
Ni

q. We denote by ψipxi, ζNi
q “ rψi,tpx

t
i, ζ

t
Ni

qstPT the policy concatenation

over the time horizon.

In this decentralized setting, the robust optimization problem to design policies with local

information exchange which minimize the sum of worst-case individual objectives is formulated as

minimize
M
ÿ

i“1

max
ξiPΞi,ζNi

PXNi

Jipxi,uiq

subject to ui “ ψipxi, ζNi
q :“ rψi,tpx

t
i, ζ

t
Ni

qstPT

xi “ fi
`

ζNi
,ui, ξi

˘

pxi,uiq P Oi

xi P Xi, Xi P FpSiq

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

@ζNi
P XNi

@ξi P Ξi

@i P M,

(6a)

where XNi
“
Ś

jPNi
Xj , FpSiq denotes the field of sets generated by all the subsets of the power set

of Si, where Si Ď RNx,i . The optimization variables are the policies ψip¨q and sets Xi for all i P M.

Since agent i treads the beliefs ζNi
as exogenous uncertainties, its decisions are taken in view of the

worst-case both with respect to ξi P Ξi and ζNi
P XNi

. This is also reflected in the construction of

the objective function. Notice that agent i is not directly affected by the uncertainties ξj P Ξj of

its neighbors. Rather, the effect of ξj P Ξj of agent j P Ni is been translated into set Xj , which in

turn affects agent i.

Problem (6a) can be interpreted as a method for finding a compromise between the agents as
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this is represented through sets Xi. If we focus attention on two agents, agents i and j with j P Ni,

on the one hand, agent j will benefit the most if the set Xj is as large as possible. By doing

so, set Xj will not impose any additional constraints on its states, thus agent j will individually

achieve the lowest objective value contribution. On the other hand, agent i will benefit the most

if it receives from agent j the smallest possible set Xj (preferable Xj is a singleton) which will

reduce the uncertainty on its dynamics, and will have a positive effect in individually achieving the

lowest objective value contribution. Since the objective of Problem (6a) is to minimize the equally

weighted sum of individual worst-case costs, the resulting policy/set pair finds the trade-off among

the agents, achieving the lowest network-wide objective value, while being robustly feasible with

respect to all ξM P ΞM.

Problem (6a) diminishes the privacy concerns in the following ways. First, the local communi-

cation network ensures that the information exchange is the minimum among the agents as it is the

same as the physical network. Second, focusing again on agents i and j with j P Ni, agent j does

not directly reveal its states which are functions of the uncertain parameters to agent i, which is

the case in both the centralized and partially nested information exchange. Rather, the future state

trajectories, are “masks” by set Xj , thus reducing exposure to agent i who might want to leverage

the knowledge gained about the constraints and dynamics of agent j. If additionally, the set Xj

has a simple structure, e.g., Xj is rectangular, agent j will reveal the bare minimum information

to its neighbor. This will be studied further in the next section.

The state feedback nature of policies induces a non-convex optimization problem. As in

[29, 40], we now focus on purely uncertain feedback policies Ψi,t : Rn̂t
ξ,i Ñ Rnu,i where n̂tξ,i “

pt´1qnξ,i`t
ř

jPNi
nx,j , such that the input at time t is ui,t “ Ψi,tpξ

t´1
i , ζtNi

q. We writeΨipξi, ζNi
q “

rΨi,tpξ
t´1
i , ζtNi

qstPT to denote the policy concatenation over time. Note that the policy is “strictly

causal” to the uncertain vector ξt´1
i which the policy is allowed to depend up to stage t´ 1, while

the policy is “causal” in state beliefs ζtNi
and is allowed to depend up to stage t. The following the-

orem, establishes the equivalence between the proposed state/uncertainty and uncertainty feedback
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policies and the corresponding optimization problems.

minimize
M
ÿ

i“1

max
ξiPΞi,ζNi

PXNi

Jipxi,uiq

subject to ui “ Ψipξi, ζNi
q :“ rΨi,tpξ

t´1
i , ζtNi

qstPT

xi “ fi
`

ζNi
,ui, ξi

˘

pxi,uiq P Oi

xi P Xi, Xi P FpSiq

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

@ζNi
P XNi

@ξi P Ξi

@i P M,

(6b)

Theorem 2. Problem (6a) is a equivalent to Problem (6b) in the following sense: Given a feasible

state/uncertainty feedback policy ψip¨q for Problem (6a), a feasible uncertainty feedback policy Ψip¨q

for Problem (6b) can be constructed that achieves the same objective value, and vice versa.

The key difference between the partially nested information Problem (5a) and the local infor-

mation Problem (6a) is that the synthesis phase of the latter requires that each agent communicates

only with its direct neighbors rather than with all its precedent agents in the network (compare

Figure 3 to Figure 4 for the working example). This minimum communication exchange is suffi-

cient to address Problem (6a) since the coupling among agents in the network only appears through

sets Xi. This however introduces a level of conservativeness which is formalized in the following

theorem.

Theorem 3. Problem (6b) is a conservative approximation of Problem (5b) in the following sense:

every feasible solution of Problem (6b) is feasible in Problem (5b), and the optimal value of Prob-

lem (6b) is equal or larger than the optimal value of Problem (5b).

Theorem 3 indicates that for a general network topology, Problem (6b) is a conservative ap-

proximation of Problem (5b). Nonetheless, there are specific topologies where the optimal values of

these two problems coincide. This occurs when the local and partially nested information networks

are the same. Such a scenario is realized when the underlying physical network is a directed acyclic

graph with depth 1. By definition, this implies that it is a directed acyclic bipartite network, as

illustrated in Figure 5. The result is formalized in Proposition 1.

Proposition 1. If the physical network is a directed acyclic bipartite graph, then Problem (6b)

coincides with problem Problem (5b) in the following sense: feasible solutions in Problem (6b) are

mapped to feasible solutions in Problem (5b), and their optimal values are equal.

14



1

2

3

4

5

Figure 5. Directed acyclic bipartite graph: An example of a directed acyclic
bipartite graph where N 1 “ t1u, N 2 “ t2u, N 3 “ t3u, N 4 “ t1, 4u and N 5 “ t1, 2, 3, 5u.

In contrast to Problems (4) and (5) in which the structure of the problem is a multistage

robust optimization with exogenous uncertainty, Problem (6a) falls in the category of multistage

robust problem with endogenous uncertainty also referred to as problems with decision-dependent

uncertainty sets [51, 52, 61]. Although sets XNi
do not model exogenous uncertainty, they affect the

dynamics of the corresponding agent in an adversarial manner. Problem (6b) is computationally

intractable because piq the optimization of the policies is performed over the infinite space of strictly

causal functions; piiq the optimization of the state forecast sets Xi is performed over arbitrary

sets, and piiiq the constraints must be satisfied robustly for every uncertain realization. In the

next section, we propose tractable approximations making the problem amenable to off-the-shelf

optimization algorithms.

We conclude this section by discussing how the optimal policies will be implemented in practice,

highlighting the main differences between centralized, partially nested, and local information ex-

change problems. Assume that we have solved Problems (4a), (5a) and (6a), and we have obtained

the optimal policies π‹
i pxMq, ϕ‹

i pxN i
q and ψ‹

i pxi, ζNi
q for all agents i P M, respectively. Consider

first the centralized information problem. At time t, all states xt
M “ pxM,1, . . . ,xM,tq have been

realized and communicated to all agents M in the system. Consequently, the input ui,t “ π‹
i,tpx

t
Mq

can be evaluated deterministically by each agent. Next, we examine the partially nested informa-

tion problem. At time t, all states xt
M “ pxM,1, . . . , xM,tq have been realized. In contrast to the

centralized information problem, however, each agent i receives just the states xt
N i

from its prece-

dent agents N i. As such, each agent i can deterministically calculate the input ui,t “ π‹
i,tpx

t
N i

q.

Finally, we study the local information problem. Similar to the previous cases, at time t, all states

xt
M “ pxM,1, . . . ,xM,tq have been realized. In this case, however, each agent i receives just the

states xt
Ni

from its neighboring agents N i. Using this information, each agent i can deterministi-
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cally calculate the input ui,t “ ψ‹
i,tpx

t
i,x

t
Ni

q. Notice that agent i substitutes the uncertain vector

ζtNi
with the realized vector xt

Ni
when calculating the input ui,t. Recall that Ni Ď N i Ď M for

all i P M. This indicates that each agent in the local information exchange problem requires

less communication to implement and calculate its input compared to the centralized and partially

nested information exchange problems. An alternative implementation procedure typically referred

to as rolling horizon, only evaluates the policy at t “ 1 and applies the input. After each agent

observes the realization of its uncertain vector ξi,1, the states of the period t “ 2 are determin-

istically determined, i.e., xi,2, and communicated to the neighbors. The optimization problem is

subsequently re-optimized and the process is repeated. The rolling horizon is typically used when

the Problems (4a), (5a) and (6a) are solved approximately as re-optimization has been observed to

improve the solution quality.

4 State forecast set and policy approximation

In this section, we discuss appropriate restrictions to Problem (6b) that allow obtaining a computa-

tionally tractable approximation. We start with the state forecast sets. For agent i P M, a natural

choice is to restrict Xi to admit convex conic structure. However, for arbitrary conic structures

the problem is NP-hard even if we restrict the policies to be static (or open loop as denoted in the

control literature). This is the case as the optimization problem reduces the class of problems with

decision-depend uncertainty as discussed in [52, Theorem 3.2].

A simpler approximation is to restrict Xi to sets that can be represented through an affine

transformation of a fixed set, in a similar spirit as [9, 31, 73]. Considering agent i. For a given

convex conic compact set Si Ď RNx,i , Xi is restricted to

XipYi, ziq “

!

xi P RNx,i : Dsi P Si s.t. xi “ Yisi ` zi

)

(7a)

where the decision variables that define the shape of the state forecast set is the positive semi-definite

matrix Yi P SNx,i

` and vector zi P RNx,i . Si is expressed through given matrices Gi P RℓiˆNx,i , vectors

gi P Rℓk and convex cones Ki, as follows

Si “

!

si P RNx,i : Gisi ĺKi gi

)

. (7b)
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Matrix Yi allows scaling and rotation of set Si, while vector zi is responsible for translating Si.

In the following, we denote by FAT pSiq the field of bounded convex conic sets that can be

represented through an affine transformation of a fixed set Si given in equation (7). Restricting

FpSiq to FAT pSiq in Problem (6b) gives rise to the following optimization problem:

minimize
M
ÿ

i“1

max
ξiPΞi,ζNi

PXNi
pYi,ziq

Jipxi,uiq

subject to ui “ Ψipξi, ζNi
q :“ rΨi,tpξ

t´1
i , ζtNi

qstPT

Yi P SNx,i

` , zi P RNx,i

xi “ fi
`

ζNi
,ui, ξi

˘

pxi,uiq P Oi

xi P XipYi, ziq, Xip¨q P FAT pSiq

,

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

-

@ζNi
P XNi

pYNi
, zNi

q

@ξi P Ξi

@i P M,

(8a)

where for each i P M we define XNi
pYNi

, zNi
q “

Ś

jPNi
XjpYj , zjq. The optimization variables are

policies Ψip¨q, matrices Yi and vectors zi for all i P M. Notice that by construction Problem (8a)

belongs in the class of problems with a decision-dependent uncertainty set, thus is in general hard

to solve [52]. The affine restriction FAT pSiq provides a conservative approximation of Problem (6a)

which is stated without proof in the following corollary.

Corollary 1. Problem (8a) is a conservative approximation of Problem (6a) in the following sense:

every feasible solution of Problem (8a) is feasible in Problem (6a), and the optimal value of Prob-

lem (8a) is equal or larger than the optimal value of Problem (6a).

By taking advantage of the simple structure of (7) we can reformulate the problem as a mul-

tistage robust optimization problem with decision-independent uncertainty sets. In the spirit of

[9, 31, 73], we design strictly causal feedback policies Γi,t : Rn̂t
i Ñ Rnu,i such that the control input

at each time step is given by ui,t “ Γi,tpξ
t´1
i , stNi

q. We write Γipξi, sNi
q “ rΓi,tpξ

t´1
i , stNi

qstPT to

denote the policy concatenation over time. In this context, the counterpart of Problem (8a) is
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given as

minimize
M
ÿ

i“1

max
ξiPΞi,sNi

PSNi

Jipxi,uiq

subject to ui “ Γipξi, sNi
q :“ rΓi,tpξ

t´1
i , stNi

qstPT

Yi P SNx,i

` , zi P RNx,i

ζNi
“ YNi

sNi
` zNi

xi “ fi
`

ζNi
,ui, ξi

˘

pxi,uiq P Oi

xi P XipYi, ziq, Xip¨q P FAT pSiq

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

@sNi
P SNi

@ξi P Ξi

@i P M,

(8b)

where SNi
“
Ś

jPNi
Sj , and with a slight abuse of notation YNi

sNi
` zNi

“ rYisj ` zjsjPNi
for each

i P M. The decision variables are Γip¨q, Yi and zi for all i P M. Problem (8b) can be classified as

a multistage robust optimization problem with exogenous uncertainty [4].

In the following, we investigate the relationship between Problem (8a) and Problem (8b). To

do so, we first define the linear mapping Ri,t : Rnx,i Ñ Rnx,i , si,t ÞÑ xi,t, as,

Ri,tpsi,tq “ Yi,tsi,t ` zi,t, (9a)

and the linear mapping, Li,t : Rnx,i Ñ Rnx,i , xi,t ÞÑ si,t, as,

Li,tpxi,tq “ Y `
i,tpxi,t ´ zi,tq (9b)

where Y `
i,t :“ pY J

i,tYi,tq
´1Y J

i,t is the pseudo-inverse of the positive semi-definite matrix Yi,t. Note

that the Li,t may not be unique because of the pseudo-inverse Y `
i,t . Moreover, Ri,t can be viewed as

a “left inverse” of the operator Li,t, i.e., it satisfies Ri,t

`

Li,tpxi,tq
˘

“ xi,t. Using (9), the following

theorem establishes equivalence between the two optimization problems.

Theorem 4. Problem (8a) is equivalent to Problem (8b) in the following sense: feasible solutions

in Problem (8a) are mapped to feasible solutions in Problem (8b), and their optimal values are

equal.

Policies Γipξi, sNi
q are designed using (8b), however, in practice agent i will require policies

Ψipξi, ζNi
q since ζNi

will be the observed states of its neighbors, while sNi
is in some sense the

mathematical construct that allows us to convexify the problem. Theorem (4) allows us to construct
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a mapping between the two policies. For agent i, given ui,t “ Γi,tp¨q as the optimal policy of (8b),

then ui,t “ Ψi,tpξ
t´1
i , ζtNi

q “ Γi,tpξ
t´1
i , rRt

jpζ
t
jqsjPNiq for all ζNi

P XNi
, ξi P Ξi is an optimal policy in

problem (8a). One can go a step further and construct the optimal state feedback policy ψipxi, ζNi
q

in a similar spirit as in [29, 28], however, we omit this derivation in the interest of space.

Despite the exogenous uncertainty structure of Problem (8b), the problem is in general hard to

solve due to the non-convex constraint (7a) as both Yi and si are optimization variables resulting

in bilinear terms. The problem can be efficiently approximated in practice by performing block-

coordinate descent [6] on Yi and si in a sequential manner until the parameters converge. In the

following, we present an additional restriction that results in a linear formulation of the problem.

Consider the case where Yi “ yi where yi P R`, thus (7a) takes the form

Xipyi, ziq “
␣

xi P RNx,i : Dsi P Si s.t. xi “ yisi ` zi
(

(10a)

This restriction allows for the scaling of Si but does not allow for the rotating of the set. By taking

advantage of the fact that Si is compact, Xipyi, ziq can be expressed as the following convex set.

pXipyi, ziq “
␣

xi : Dνi P RNx,i s.t. xi “ νi,k ` zi, Giνi ĺKi yigi
(

(10b)

where νi are auxiliary variables. By replacing constraint xi P X pyi, ziq in Problem (8b) with

xi P pX pyi, ziq the optimization problem reduces to a multistage linear optimization problem with

exogenous uncertainty. The relationship between sets (10a) and (10b) is summarized in the following

proposition.

Proposition 2. Set XFS “ tpxi, yi, ziq : xi P Xipyi, ziqu is equivalent to pXFS “ tpxi, yi, ziq :

xi P pXipyi, ziqu in the following sense: there exist a unique mapping between feasible points in

XFS and pXFS.

Remark 1. Approximation (10) can be very restrictive as it controls the scaling of Xi through a

single parameter, namely yi. Regardless, the idea can be further extended to allow for the scaling

of each (or groups) of the coordinate of Xi independently from the rest. Consider the case in which

Xi can be represent as Xi “ Xi,1 ˆ ¨ ¨ ¨ ˆ Xi,Ki for some Ki ď Nx,i. Then, for each j P t1, . . . ,Kiu,

we restrict each Xi,j to admit a representation as in (10). For example, if Ki “ Nx,i, and setting
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Si,j “ ts P R : |s| ď 1u then we have

Xi,jpyi,j , zi,jq “ txi,j P R : Ds P Si,j s.t. xi,j “ yi,js` zi,ju

“ txi,j P R : zi,j ´ yi,j ď xi,j ď zi,j ` yi,ju

thus allowing to control the width and position of the communication set for each of the components

of xi. This approximation is natural in many applications like the contract design example discuss

in Section B, in which this modeling choice is prescribed by the problem itself and does not constitute

an additional approximation to the problem.

As previously stated, problem (8b) can be classified as a multistage robust optimization problem.

There is a plethora of schemes that try to solve this class of problems either exactly using dynamic

programming techniques [24], or approximately by restricting the functional form of the admissible

policies to admit prescribed structures, see [18, 23] for a thorough survey on the topic. To simplify

exposition, in the remainder of the paper we restrict the policies to admit an affine structure.

This will also allow for direct comparisons with the work in [28] and [40], which we discussed in

Sections 2.2 and 2.3, respectively.

Problem (8b) retains the decoupled structure of Problem (6a) since agent i only needs to com-

municate to its direct neighbors pYi, ziq that control the shape of its state forecast set. This loosely

coupled structure allows employing distributed computation algorithms such as the alternating di-

rection method of multipliers (ADMM) algorithm [10, § 7]. Such schemes will allow the agents to

solve Problem (8b) in an almost decentralized manner, i.e., each agent solves the subproblem of

Problem (8b) involving its own objective and constraints while seeking to achieve consensus for the

variables yi and zi with its neighbors. In Appendix B we illustrate how the ADMM algorithm can

be implemented in a supply chain example.

We next demonstrate that if the physical network forms an arborescence, it is possible to

explicitly establish an upper bound on the complexity of the approximation required for the optimal

values of Problem (8b) and Problem (6b) to coincide. For reference, an arborescence, sometimes

referred to as a directed rooted tree, is a directed network in which there is a unique directed path

from a root node to any other node. To achieve this, we can adjust the approximation (7) to include

not only scaling and rotation of Si but also projections. This adjustment involves selecting a higher

dimensional set Si Ď R rNx,i with rNx,i ě Nx,i and allowing for rectangular matrix Yi P RNx,iˆ rNx,i .
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Thus the affine mapping xi “ Yisi ` zi where si P Si projects the high dimensional set Si to the

lower dimension of the state xi. A practical choice of Si is the simplex set since by increasing its

dimension, one can systematically increase the complexity of the projected set. We note that other

choices are also possible. The result is summarized in the following corollary.

Corollary 2. If the physical network is an arborescence, then the optimal value of Problems (6b)

and (8b) coincide if approximation (7) is constructed such that for each i P M the set Si is chosen

to be the simplex of dimension
ś

jPN i
|extpΞjq|.

We end this section with Figure 6 which summarizes the relationship between the different

problems discussed in the paper so far.

Figure 6. Illustration of the relationships among the various problems discussed in
the paper. The optimal values of these problems are non-decreasing in the directions
of the arcs. Dashed arcs indicate special cases of networks, while solid arcs represent
inequalities that hold under general network topologies.

5 Numerical experiments

We now investigate the efficacy of the proposed approach in two examples: an illustrative which

allows us to understand numerically and graphically the connection between the shape of the

primitive sets Si and the solution quality and a stylized contract design for supply chains that are

typically operated in a distributed fashion. All optimization problems were solved with Gurobi

in MATLAB using the RSOME [13] and YALMIP [41] interfaces on a computer equipped with

8 GB RAM and 2.4 GHz quad-core Intel processor.

5.1 Illustrative example

We consider a single stage problem composed by two agents with states x1, x2 P R2, inputs u1, u2 P R

and uncertainties ξ1, ξ2 P Ξ “ tξ P R2 : }ξ}8 ď 1u, respectively. The network structure along with
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J1(x1) = c�x1J2(x2) = c�x2

x1 = Du1 + E⇠1
O1 = {(x1, u1) : kx1k1  8,

ku1k1  4 }.
<latexit sha1_base64="ziVdMRtoBAdFV3eIZeCjYJFck1Q="></latexit>

x2 = Bx1 +Du2 + E⇠2
O2 = {(x2, u2) : kx2k1  8,

ku2k1  4 }.
<latexit sha1_base64="7Ql39SO2DmfSxtv3N950zb7wlaE="></latexit>

Figure 7. Physical and information structure of the two agents in the system.

the objective functions and constraint sets of each agent are shown in Figure 7. The system matrices

are given by

c “

»

–

1

´1

fi

fl , B “

»

–

1 0

0 ´2

fi

fl , D “

»

–

1

0.8

fi

fl and E “

»

–

1 ´1

´1 1

fi

fl . (11)

We start by computing the optimal affine policy associated for the centralized communication

and the partially nested communication, which are reminiscent of Problem (4a) and Problem (5a),

respectively. In the centralized communication both agents observe the uncertain variables ξ1 and

ξ2, while in the partially nested communication agent 1 only observes ξ1 whereas agent 2 observes

both ξ1 and ξ2 as dictated by the structure of the network. In other words, the second agent’s policy

is of the form u2pξ1, ξ2q “ Γ2,1ξ1 ` Γ2,2ξ2 ` γ2 in both cases, and the first agent’s policy is of the

form u1pξ1, ξ2q “ Γ1,1ξ1 `Γ1,2ξ2 ` γ1 in the centralized communication and u1pξ1, ξ2q “ Γ1,1ξ1 ` γ1

in the partially nested communication. Figure 8 illustrates information about the states of agent 1.

With red we depict the feasible region of x1, while blue depicts region x1pξ1, ξ2q “ Du‹
1pξ1, ξ2q`Eξ1

for all ξ1 P Ξ1, ξ2 P Ξ2, where u
‹
1 is the optimal affine policy of the agent 1. Figure 8(a) and (b)

illustrate these regions in the case of centralized and partially nested communications, respectively.

In addition, we report the resulting objective values in the title of the respective figure as “obj.

= J1px1q ` J2px2q”. We observe that the information restriction imposed on the partially nested

policies results in a larger objective value compared to the centralized solution.

Next, we compute affine policies with local information exchange, which is reminiscence of

Problem (8b). In the local information exchange, the agents’ policies are of the form u1pξ1, ξ2q “

Γ1,1ξ1 `γ1 and u2ps1, ξ2q “ Γ2,1s1 `Γ2,2ξ2 `γ2, respectively, where s1 P S1 represents the auxiliary

uncertainty introduced in Section 4. We start with investigating how the shape of set S1 together

with the restriction of X1 affects the quality of the solution in terms of objective value for three
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(a) (b)

Figure 8. Illustrating information for the state of agent 1 for the (a) centralized and
(b) partially nested communication exchange. The red region represents the feasible set
for x1 and the blue region represents all possible values for x1 under the optimal policy.

cases. In the first case (flexible), we choose S1 “ ts P R2 : }s}8 ď 1u and restrict X1 as in

equation (7a). In the second case (rectangle), we choose S1,1 “ S1,2 “ ts P R : |s| ď 1u and restrict

X1 “ X1,1 ˆ X1,2 as in Remark 1, and in the third case (circle), we choose S1 “ ts P R2 : }s}2 ď 1u

and set X1 “ tx1 P R2 : Ds P S1 s.t. x1 “ sy1 ` z1u.

The robust counterpart in the first case results in a bilinear optimization problem which we

solve using block-coordinate descent, the second case results in a linear program, while the third

case results in a semidefinite program due to the use of the celebrated S-Lemma [3, § 3.5] for

reformulating the robust constraints. The flexible approximation exactly recovers the optimal

solution of partially nested communication exchange, i.e., Figure 8 (b). The result coincides with

Corollary 2 and Proposition 1 as the physical network is both and arborescence and a directeed

acyclic bipartite graph, and additionally the approximation has enough degrees of freedom to

adequately represent the optimal state forecast set. This is not the case for the rectangular and

circular approximation, whose performance is depicted in Figure 9.

As in the first experiment, red area represents the feasible region of x1, while the blue region

depicts x1pξ1q “ Du‹
1pξ1q ` Eξ1 for all ξ1 P Ξ1. Additionally, the green area denotes the optimal

forecast set X1 communicated to agent 2. Finally, the black stars depict the binding scenarios for

agent 2 in the state forecast set X1. We observe that the optimal region of agent 1 changes with

the different primitive sets in an attempt to cooperate with agent 2. This cooperative behavior is

also identified in the objective values as agent 1 “sacrifices” some of its optimality for the good of

agent 2. Interestingly, part of the state forecast set X1 may lie outside the feasible region of the
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(a) (b)

Figure 9. Illustrating information for the state of agent 1 using S1 as (a) box, and (b)
circle. The green region represents the feasible set for x1, the yellow represents x1pξ1q

under the optimal policy, while red denotes X1. Black stars depict the binding scenarios
for agent 2 in the state forecast set X1.

problem which adds conservativeness to the system as can be verified by inspecting the position

of the binding scenarios. Moreover, since the binding scenarios are not necessarily placed at the

corner points defined by the optimal region, agent 1 retains some of its privacy since the behavior

of its optimal policy is not revealed to agent 2.

To quantify the importance of the primitive set orientation in space, in the following experiment

we use as primitive sets piq a rotated rectangular set whose major and minor axis can be scaled

independently, i.e., using the same notation as before and with slide abuse of notation we have

X1 “ ApX1,1 ˆ X1,2q where A P R2ˆ2 is a fixed rotation matrix, and piiq a rotated ellipsoid for

which the major axis is forced to be 1.5 times larger than its minor axis, i.e, we set X1 “ tx1 P

R2 : Ds P S1 s.t. x1 “ Apsy1 ` z1qu where again A P R2ˆ2 is a fixed rotation matrix. Figure 10

illustrates information for the state of agent 1, where we use the same color code as in Figure 9.

Comparing the solutions from Figure 9 and Figure 10, we can conclude that both the shape and

orientation heavily affect the optimal policies as well as the optimal value of the problems.

To clarify this finding, we repeated the experiment for all possible rotations in the range r0, 180s

degrees of the rectangular and scaled ellipsoid sets by appropriately choosing matrix A. The results

are reported in Figure 11. We observe that if the rotation of the communicated sets is aligned

with the set generated by the optimal affine policy, then the solution resulting from the proposed

distributed method closely approximates the partially nested and centralized solutions. If, however,

this is not the case, then the cost considerably deviates and even leads to infeasibility.
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(a) (b)

Figure 10. Illustrating information for the state of agent 1 using S1 as (a) rectangle
rotated by 15 degrees and (b) ellipsoid rotated by 15 degrees for which the major axis is
forced to be 1.5 times larger than its minor axis. The graphs have the same interpretation
as in Figure 9.

Figure 11. Comparing the objective value achieved by affine policies using the cen-
tralized (C), partially nested (PN), and local information exchange (L). For the local
information we set S1 to be a rotated rectangle (L-Rect.), and a rotated ellipsoid (L-El.)
for which the major axis is forced to be 1.5, 3 and 10 times larger than its minor axis.
The graph reports the objective values for all possible rotations in the range r0, 180s.

5.2 Cooperative energy management system

Buildings account for approximately 40% of the world’s energy consumption, with a significant por-

tion dedicated to enhancing living conditions through heating, ventilation, and air conditioning to

promote healthier and more comfortable environments [36]. Motivated by these substantial energy

demands, researchers have invested considerable efforts into developing complex control schemes
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Figure 12. An example of a serial (left) and complete (right) energy hub topologies
with different consumers.

that can reduce energy usage while keeping room temperatures within predefined ranges. Among

such schemes, cooperative control systems have been instrumental for achieving energy savings by

coordinating aggregated demands across multiple users. Most existing cooperative methods assume

the existence of a central operator that is capable of controlling both the buildings actuation systems

and the energy hub devices [53, 64]. This assumption, however, becomes restrictive for large-scale

implementations due to heavy computational burden. Additionally, privacy concerns around re-

vealing sensitive building information, such as occupancy patterns and comfort preferences, arise.

Consequently, a new wave of research has focused on developing decentralized or distributed control

schemes to address the limitations associated with centralized approaches [33, 60, 63].

In this section we examine the scalability and efficiency of our proposed method using an energy

hub system with aggregated consumers. Figure 12 is an illustration of a serial and a complete (fully-

connected) energy hub consisting of four different consumers. In this setup agent i at time t can

buy G`
i,t units of electricity from the grid at a cost of c`

t and can return G´
i,t units at the cost of c

´
t .

The agents also have the ability to share excess electricity amongst themselves, with Uij,t denoting

the amount of electricity agent i takes from agent j at time t. This transfer of electricity is done at a

cost of cut per unit since the agents need to use the existing grid infrastructure. The state of charge

of the battery of agent i at time t is denoted by Ii,t. We assume that the output of the photovoltaic

system is uncertain and denoted by Ri,tp1` ξRi,tq where Ri,t denotes the average production and ξRi,t

denotes the uncertain percentage deviation from the average production. Similarly, the uncertain

demand for electricity of agent i at time t is denoted by Di,tp1 ` ξDi,tq where Di,t is the average

demand and ξDi,t denotes the uncertain percentage deviation from the average demand. Finally we

26



Figure 13. Communication links need to achieve (a) centralized and partially nested
information exchange and (b) local information exchange for the serial energy hub system.

define ξi,t “ pξDi,t, ξ
R
i,tq. We express the battery dynamics of agent i through

Ii,t`1 “ Ii,t `G`
i,t ´G´

i,t `
ÿ

jPNi

Uij,t ´
ÿ

jPNi

Uji,t `Ri,tp1 ` ξpi,tq ´Di,tp1 ` ξdi,tq @ξi P Ξi,@t P T ,

where for the illustrative example of the serial energy hub in Figure 12, we have N1 “ t2u, N2 “

t1, 3u, N3 “ t2, 4u, N4 “ t3u, and for the complete energy hub we have N1 “ t2, 3, 4u, N2 “

t1, 3, 4u, N3 “ t1, 2, 4u, N4 “ t1, 2, 3u. In addition, at any t P T`, we want to ensure that constraint

0 ď Ii,t ď Bi is robustly satisfied for some Bi ą 0 that represents the capacity of the battery.

The communication links needed to formulate the serial energy hub in Figure 12 are depicted in

Figure 13(a). Since the serial network is a strongly connected network, as discussed in Section 2.3,

the number of links required to formulate the partially nested Problem (5a) is the same as in

the centralized Problems (4a), effectively leading to the same problem. On the other hand, the

links needed by the local information exchange matches the physical coupling of the network thus

establishing communication only between adjacent agents in the system, see Figure 13(b). This

demonstrates the modeling benefits of the proposed approach and highlights the limitations of the

partially nested information exchange on certain network topologies.

In the centralized information exchange problem, the agents communicate the state of their bat-

teries to all agents in the grid. We formulate the centralized problem as an instance of Problem (4b)
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as follows, where the objective minimizes the total cost incurred by all agents.

minimize
M
ÿ

i“1

max
ξMPΞM

T
ÿ

t“1

c`
t G

`
i,t `

T
ÿ

t“1

c´
t G

´
i,t `

ÿ

jPNi

T
ÿ

t“1

cut Uij,t

subject to G`
i “ Π`

i pξMq, G´
i “ Π´

i pξMq

Uij P ΠijpξMq, Uji P ΠjipξMq @j P Ni

G`
i,t ě 0, G´

i,t ě 0, Uij,t ě 0, Uji,t ě 0 @j P Ni,@t P T

Ii,t`1 “ Ii,t `G`
i,t ´G´

i,t `
ÿ

jPNi

Uij,t ´
ÿ

jPNi

Uji,t

@t P T
`Ri,tp1 ` ξpi,tq `Di,tp1 ` ξdi,tq

0 ď Ii,t ď Bi @t P T`

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

@i P M

@ξM P ΞM

(12)

Consider now the case in which instead of communicating the state of their batteries to all

agents in the grid, agents are restricted to communicate an interval that represents the amount of

electricity they can supply their neighbors at each time period. The interval rbji,t, bji,ts denotes the

amount of electricity agent i commits to supply agent j at time t. Of course, agent i does not have

to use all the electricity available from agent j hence Uij,t P rbij,t, bij,ts. In this case, the battery

dynamics of agent i at time t is expressed as

Ii,t`1 “ Ii,t `G`
i,t ´G´

i,t `
ÿ

jPNi

Uij,t ´
ÿ

jPNi

ζji,t `Ri,tp1` ξpi,tq ´Di,tp1` ξdi,tq @ζNi,i,t P ˆ
jPN⟩

rbji,t, bji,ts

where ζNi,i,t denotes all the electricity that can potentially be drawn from agent i by its neighbors

Ni at time t. This problem gives rise to a local information exchange problem which is an instance
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of Problem (6a) and can be written as follows.

minimize
M
ÿ

i“1

max
ξiPΞi,ζNi,i

PUNi,i

T
ÿ

t“1

c`
t G

`
i,t `

T
ÿ

t“1

c´
t G

´
i,t `

ÿ

jPNi

T
ÿ

t“1

cut Uij,t

subject to G`
i “ ψ`

i pIi, ζNi,iq, G
´
i “ ψ´

i pIi, ζNi,iq

Uij P ψijpIi, ζNi,iq, bij , bij P RTˆP
` @j P Ni

Uij P Ui,j “ rbij,1, bij,1s ˆ ¨ ¨ ¨ ˆ rbij,T , bij,T s @j P Ni

G`
i,t ě 0, G´

i,t ě 0, Uij,t ě 0 @j P Ni,@t P T

Ii,t`1 “ Ii,t `G`
i,t ´G´

i,t `
ÿ

jPNi

Uij,t ´
ÿ

jPNi

ζj,i,t

@t P T
`Ri,tp1 ` ξpi,tq `Di,tp1 ` ξdi,tq

0 ď Ii,t ď Bi @t P T`

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

@ξi P Ξi

@ζNi,i P UNi,i

@i P M,

(13)

By construction of Problem (13), each set Ui,j “ Ui,j,1 ˆ ¨ ¨ ¨ ˆUi,j,T is a hyper-rectangles which can

be controlled coordinate wise. Hence, it can be exactly represented by the primitive sets Si,j,t “

ts P R : |s| ď 1u and Ui,j,tpyi,j,t, zi,j,tq “ tUij,t P R : Dsi,j,t P Si,j,t s.t. Uij,t “ si,j,tyi,j,t ` zi,j,tu , as

discussed in Remark 1. Applying Theorem 4, Problem (13) can thus be reformulated as

minimize
M
ÿ

i“1

max
ξiPΞi,sNi,i

PSNi,i

T
ÿ

t“1

c`
t G

`
i,t `

T
ÿ

t“1

c´
t G

´
i,t `

ÿ

jPNi

T
ÿ

t“1

cut Uij,t

subject to G`
i “ Γ`

i pξi, sNi,iq, G
´
i “ Γ´

i pξi, sNi,iq

Ui,j P Γi,jpξi, sNi,iq, bi,j , bi,j , yi,j , zi,j P RTˆP
` @j P Ni

bi,j “ zi,j ´ yi,j , bi,j “ zi,j ` yi,j @j P Ni

Ui,j P Ui,j “ rbi,j,1, bi,j,1s ˆ ¨ ¨ ¨ ˆ rbi,j,T , bi,j,T s @j P Ni

G`
i,t ě 0, G´

i,t ě 0, Ui,j,t ě 0 @j P Ni,@t P T

ζj,i,t “ yj,i,tsj,i,t ` zj,i,t @j P Ni,@t P T

Ii,t`1 “ Ii,t `G`
i,t ´G´

i,t `
ÿ

jPNi

Ui,j,t ´
ÿ

jPNi

ζj,i,t

@t P T
`Ri,tp1 ` ξpi,tq `Di,tp1 ` ξdi,tq

0 ď Ii,t ď Bi @t P T`

,
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@ξi P Ξi

@sNi,i P SNi,i

@i P M.

(14)

In the sequel we use the open-source dataset from [5] comprising residential power and battery

data at minute resolution. This anonymized dataset contains real-world prosumer information on
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Figure 14. Illustration of power consumption, photovoltaic power generation, and
electricity price for the first prosumer.

energy usage, photovoltaic power generation, and battery characteristics. Figure 14 depicts the

hourly power consumption and generation of the first prosumer in this dataset from July 1, 2021,

to October 1, 2021, using lines with low opacity. Additionally, the solid lines represent the average

data, while the dashed lines represent observations that are one standard deviation away from the

mean. These intervals are used to calibrate the uncertainty set for each prosumer. We assume

that the initial charge of all batteries is zero. The capacity of batteries for each prosumer is also

available in the dataset. For example, the capacity is B1 “ 13 for the first prosumer. Since the data

is anonymized and we lack access to the price data, we set the average hourly electricity price as

ct “ 18 ´ tanhptq ` tanhpt´ 4q ´ 2 tanhpt´ 6q ` 4 tanhpt´ 17q ´ 4 tanhpt´ 24q,

following the typical electricity price pattern, where prices are higher at the beginning and end of

the day [70]. Problems (12) and (14) are multistage robust linear programs which we approximate

with affine decision rules.

We conduct 10 independent simulation. For each simulation, we pick uniformly at random

εt P r´0.1, 0.1s and we set the market hourly price to c`
t “ p1 ` εtqct for all t P T , i.e., the market

prices are allowed to differ by up to 10% from the average price, see Figure 14 (right). We also

set c´
t “ 0.5c`

t and cut “ 0.2c`
t . We consider bi-hourly time steps, meaning that every prosumer

is allowed to request or provide electricity to others every 2 hours. The electricity price for each

2-hour interval is determined by the average price, while the power consumption and generation

are the sum of their respective values. In other words, we represent a day with a horizon length

of T “ 12. As baseline, we also examine a system in which all prosumers try to minimize their

worst-case electricity costs individually, and we refer to it as the decoupled problem. This can be
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Figure 15. Comparison of the cost and optimization time needed to solve the central-
ized, local, and decoupled information problems for serial and complete network. The
result is based on 10 independent simulations. (CC) Centralized Complete, (CS) Cen-
tralized Serial, (LC) Local Complete, (LS) Local Serial, (D) Decoupled.

obtained by including the constraint Uij,t “ 0 for all t P T , j P Ni, i P M in (12). We conduct

simulations on serial and complete networks with an increasing number of M prosumers, using the

data of the first prosumers in [5] which have both demand and photovoltaic data available.1

The first experiment investigates the impact of the number of prosumerM in the system on the

worst-case cost for centralized and local information, and decoupled problems. Figure 15 presents

the results for the serial and complete networks across 10 independent simulation runs. Observe

that the optimal worst-case cost for the decoupled problem is significantly higher than that of the

centralized and local information exchange problems. This is expected because in the decoupled

setting, agents do not benefit from sharing electricity among themselves. Furthermore, the optimal

worst-case cost for the local information exchange is higher than that for the centralized approach,

as indicated by Theorems 1, 3, and Corollary 1. Additionally, the structure of a complete network

positively influences the worst-case cost outcomes when compared to a serial network configuration.

1In particular, we use the prosumers with identification numbers 1, 2, 3, 9, 10, 11.
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Furthermore, our findings suggest that the restrictive nature of our proposed local information

exchange has only a minimal impact on the performance of the control policy, as demonstrated

in Figure 15 (top). Specifically, the performance gap in terms of the worst-case cost between the

local and central controllers is approximately 2% on average. Additionally, when compared to the

decoupled problems, the centralized controller reduces costs by 15%, while the localized controller

achieves a cost reduction of 13% on average.

We also observe that the time required to solve the local information exchange problem is

less than the time needed for the centralized optimization problem, and the computational gains

are more pronounced as the number of residential prosumers increase, as illustrated in Figure 15

(bottom). From a computational standpoint, the optimization times for the complete network are

considerably longer than those for the serial network. This is expected due to the quadratic increase

in the number of communication links with respect to the prosumers in the complete network

compared to the linear increase in the serial network. Specifically, optimization problems for the

local controller are solved approximately 2.5 times faster in the largest instances of the complete

network structure, while in the serial network, this ratio is about 3 times faster. Moreover, the

optimization time required for the local information problem is approximately 5 times faster for

the largest instance in the serial network compared to the complete network. As anticipated, the

computational effort increases with the increasing number of building units.

We conclude our numerical experiment by comparing the average performance of the centralized

and local information problems using a rolling horizon scheme when εt “ 0 for all t and the network

structure is serial. In this experiment, we fix all parameters as in the first experiment. We then

generate a random realization of the uncertainty ξ P Ξ. Next, we solve the centralized, local, and

decoupled information for the horizon length T “ 12 and update the battery levels according to

the realization ξ1 and the first stage decisions. We repeat the process until we reach the end of

the horizon. Specifically, at any time t “ 2, . . . , T , we resolve each problem for the shorter horizon

length T ´ t and the initial battery level Ii,t´1 for every i P M. We then update the battery

levels according to realization ξt and corresponding first stage decisions. Figure 16 summarizes our

results for 10 randomly generated realization of uncertainty for a serial network, where the worst-

case cost of corresponding problem with horizon T “ 12 is denoted by the marker ˚. We observe

that the average performances of the local and centralized information problems are significantly
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Figure 16. Comparison of the rolling horizon cost of the centralized and local informa-
tion problems for a serial network. The result is based on 10 independent simulations.
(CS) Centralized Serial, (LS) Local Serial, (D) Decoupled.

improved compared to their worst-case performance. The improvement is approximately around

half (2 times smaller). This is extremely valuable as in reality this problem will be repeatedly

solved as time progresses. Moreover, the performance of both the local and centralized information

controllers remains superior to that of the decoupled controller. We exclude the result for the

complete network structure as it exhibits the same behavior.
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decentralized control. In IEEE Conference on Decision and Control, pages 1291–1306, 2012.

[46] N. Matni and J. C. Doyle. A dual problem in H2 decentralized control subject to delays. In

IEEE American Control Conference, pages 5772–5777, 2013.

[47] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert. Constrained model predictive

control: Stability and optimality. Automatica, 36(6):789–814, 2000.

[48] N. Motee and A. Jadbabaie. Optimal control of spatially distributed systems. IEEE Transac-

tions on Automatic Control, 53(7):1616–1629, 2008.

[49] A. Nayyar, A. Mahajan, and D. Teneketzis. Optimal control strategies in delayed sharing

information structures. IEEE Transactions on Automatic Control, 56(7):1606–1620, 2010.

[50] A. Nayyar, A. Mahajan, and D. Teneketzis. Decentralized stochastic control with partial

history sharing: A common information approach. IEEE Transactions on Automatic Control,

58(7):1644–1658, 2013.

[51] O. Nohadani and A. Roy. Robust optimization with time-dependent uncertainty in radiation

therapy. IISE Transactions on Healthcare Systems Engineering, 7(2):81–92, 2017.

[52] O. Nohadani and K. Sharma. Optimization under decision-dependent uncertainty. SIAM

Journal on Optimization, 28(2):1773–1795, 2018.

37



[53] F. Oldewurtel, A. Parisio, C. N. Jones, D. Gyalistras, M. Gwerder, V. Stauch, B. Lehmann,

and M. Morari. Use of model predictive control and weather forecasts for energy efficient

building climate control. Energy and buildings, 45:15–27, 2012.

[54] X. Qi, M. V. Salapaka, P. G. Voulgaris, and M. Khammash. Structured optimal and robust

control with multiple criteria: A convex solution. IEEE Transactions on Automatic Control,

49(10):1623–1640, 2004.

[55] A. Rantzer. Linear quadratic team theory revisited. In IEEE American Control Conference,

pages 1637–1641, 2006.

[56] A. Rantzer. A separation principle for distributed control. In IEEE Conference on Decision

and Control, pages 3609–3613, 2006.

[57] A. Richards and J. How. A decentralized algorithm for robust constrained model predictive

control. In IEEE American Control Conference, volume 5, pages 4261–4266, 2004.

[58] M. Rotkowitz and S. Lall. A characterization of convex problems in decentralized control.

IEEE Transactions on Automatic Control, 50(12):1984–1996, 2005.

[59] R. Scattolini. Architectures for distributed and hierarchical model predictive control–A review.

Journal of Process Control, 19(5):723–731, 2009.

[60] R. Scattolini. Architectures for distributed and hierarchical model predictive control–a review.

Journal of Process Control, 19(5):723–731, 2009.

[61] S. A. Spacey, W. Wiesemann, D. Kuhn, and W. Luk. Robust software partitioning with

multiple instantiation. INFORMS Journal on Computing, 24(3):500–515, 2012.

[62] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannocchia. Cooperative

distributed model predictive control. Systems & Control Letters, 59(8):460–469, 2010.

[63] B. T. Stewart, A. N. Venkat, J. B. Rawlings, S. J. Wright, and G. Pannocchia. Cooperative

distributed model predictive control. Systems & Control Letters, 59(8):460–469, 2010.

[64] D. Sturzenegger, D. Gyalistras, M. Morari, and R. S. Smith. Model predictive climate control of

a swiss office building: Implementation, results, and cost–benefit analysis. IEEE Transactions

on Control Systems Technology, 24(1):1–12, 2015.

38



[65] J. Swigart and S. Lall. Optimal controller synthesis for decentralized systems over graphs via

spectral factorization. IEEE Transactions on Automatic Control, 59(9):2311–2323, 2014.

[66] P. Trodden and A. Richards. Distributed model predictive control of linear systems with

persistent disturbances. International Journal of Control, 83(8):1653–1663, 2010.

[67] P. A. Trodden and J. M. Maestre. Distributed predictive control with minimization of mutual

disturbances. Automatica, 77:31–43, 2017.

[68] A. A. Tsay and W. S. Lovejoy. Quantity flexibility contracts and supply chain performance.

Manufacturing & Service Operations Management, 1(2):89–111, 1999.

[69] J. Tsitsiklis and M. Athans. On the complexity of decentralized decision making and detection

problems. IEEE Transactions on Automatic Control, 30(5):440–446, 1985.

[70] US Energy Information Adminstration. California wholesale electricity prices are higher at

the beginning and end of the day. https: // www. eia. gov/ todayinenergy/ detail. php?

id= 32172 , 2017. Accessed 2022-06-01.

[71] A. N. Venkat, I. A. Hiskens, J. B. Rawlings, and S. J. Wright. Distributed mpc strategies with

application to power system automatic generation control. IEEE Transactions on Control

Systems Technology, 16(6):1192–1206, 2008.

[72] A. Zecevic and D. D. Siljak. Control of Complex Systems: Structural Constraints and Uncer-

tainty. Springer, 2010.

[73] X. Zhang, M. Kamgarpour, A. Georghiou, P. Goulart, and J. Lygeros. Robust optimal control

with adjustable uncertainty sets. Automatica, 75:249–259, 2017.

39

https://www.eia.gov/todayinenergy/detail.php?id=32172
https://www.eia.gov/todayinenergy/detail.php?id=32172


A Proofs

Proof of Theorem 1. We show that every feasible solution of Problem (5b) is a feasible solution

to Problem (4b). Let Φi for all i P M be any feasible policy in Problem (5b). Starting with

χi,1 “ xi,1, the state of agent i at time t are given as

xi,t “ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τ rχj,τ pξτ´1

Nj
qsjPNi `At

i,τ`1Di,τΦi,τ pξτ´1
N i

q `At
i,τ`1Ei,τξi,τ

¯

“: χi,tpξ
t´1
N i

q

(A.1)

where At
i,τ “ Ai,τAi,τ`1 . . . Ai,t´1 for τ ă t and At

i,t “ I. The last implication follows from the fact

that N i Ě N j for all j P Ni since the network admits a partially nested structure. Given (A.1),

it is easy to verify that for each agent i its dynamics and constraints in Problem (5b) only depend

on ξN i
. Hence, any feasible solution to Problem (5b) is also feasible to the following optimization

problem:

minimize
M
ÿ

i“1

max
ξMPΞ

Jipxi,uiq

subject to ui “ ΦipξN i
q :“ rΦi,tpξ

t´1
N i

qstPT

xi “ fi
`

xNi
,ui, ξi

˘

pxi,uiq P Oi

,

/

/

/

.

/

/

/

-

@ξM P ΞM, @i P M
(A.2)

Additionally, they achieve the same objective value since they share the same objective function.

This shows equivalence of Problem (5b) and Problem (A.2). The relation between Problem (4b)

and Problem (5b) stated in the theorem now follows immediately since the two problems share the

same constraints and objective function, and the policies in Problem (5b) are restricted compared

to Problem (4b) as they are functions of ξN i
while the policies in Problem (4b) are functions

of ξM. ■

Proof of Theorem 2. The statement is proved by induction using similar theoretical tools to

[29, Prop. 2.1]. The statement holds for t “ 1 since the initial state, xi,1, is known for every i P M;

therefore, functions ψi,1pxi,1, ζNi,1q and Ψi,1pζNi,1q can always be constructed such

ψi,1pxi,1, ζNi,1q “ Ψi,1pζNi,1q (A.3)
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Assume now that the statement holds for all 1 ă τ ď t ´ 1, i.e., there exist policies ψip¨q and

Ψip¨q such that ψi,τ pxτ
i , ζ

τ
Ni

q “ Ψi,τ pξτ´1
i , ζτNi

q. In the sequel, we show that the statement also holds

for τ “ t. From (1), we have that

xi,t“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τζNi,τ `At

i,τ`1Di,τΨi,τ pξτ´1
i , ζτNi

q `At
i,τ`1Ei,τξi,τ

¯

“: χi,tpξ
t´1
i , ζt´1

Ni
q,

(A.4)

where At
i,τ “ Ai,τAi,τ`1 . . . Ai,t´1 for τ ă t and At

i,t “ I. Moreover, it holds that

ξi,t´1“ E`
i,t´1

`

xi,t ´Ai,t´1xi,t´1 `Bj,t´1ζNi,t´1 `Di,t´1ψi,t´1pxt´1
i , ζt´1

Ni
q
˘

“: ρi,tpx
t
i, ζ

t´1
Ni

q,
(A.5)

where E`
i,t :“ pEJ

i,tEi,tq
´1EJ

i,t is the left inverse of Ei,t since it is full rank.

The relation (A.4) implies that given a feasible policy ψi,tp¨q for Problem (6a), we can construct

a feasible policy for Problem (6b) as

ψi,tpx
t
i, ζ

t
Ni

q “ ψi,tpχ
t
ipξ

t´1
i , ζtNi

q, ζtNi
q :“ Ψi,tpξ

t´1
i , ζtNi

q. (A.6)

The claim follows from the fact that the composition of continuous differentiable functions is a

continuous differentiable function. Hence, the policy ψi,tp¨q will also be feasible in Problem (6b)

since the two problems have the same pointwise constraints. Additionally, they achieve the same

objective value since they share the same objective function.

Similarly, the relation (A.5) implies that given a feasible policy Ψip¨q for Problem (6b), we can

construct a feasible policy for Problem (6a) as

Ψi,tpξ
t´1
i , ζtNi

q “ Ψi,tpρ
t
ipx

t
i, ζ

t´1
Ni

q, ζtNi
q :“ ψi,tpx

t
i, ζ

t
Ni

q. (A.7)

The claim follows from the fact that the composition of continuous differentiable functions is a

continuous differentiable function. Hence, the policy Ψi,tp¨q is also feasible in Problem (6a) since

the two problems have the same pointwise constraints. Additionally, they achieve the same objective

value since they share the same objective function. ■
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Proof of Theorem 3. We show that every feasible solution of Problem (6b) is feasible in Prob-

lem (5b). Let pΨi,Xiq for all i P M be feasible in Problem (6b). Since the state of agent i evolve

according to (1), we can conclude that at time t we have

xi,t“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τζNi,τ `At

i,τ`1Di,τΨi,τ pξτ´1
i , ζτNi

q `At
i,τ`1Ei,τξi,τ

¯

“: χi,tpξ
t´1
i , ζt´1

Ni
q,

(A.8)

where where At
i,τ “ Ai,τAi,τ`1 . . . Ai,t´1 for τ ă t and At

i,t “ I.

We note that χipξi, ζNi
q “ rχi,tpξ

t´1
i , ζt´1

Ni
qstPT`

P Xi for all ξi P Ξi and ζNi
P XNi

due to the

feasibility of Problem (6b). To show that Ψi is feasible in Problem (5b), we first construct the

state of agent i which evolves according to xi “ fi
`

xNi
,Ψipξi, ζNi

q, ξi
˘

. Starting with χ̂i,1 “ xi,1,

we have that

xi,t “ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τ rpχj,τ pξτ´1

Nj
sjPNi `At

i,τ`1Di,τΨi,τ pξτ´1
i , ζτNi

q `At
i,τ`1Ei,τξi,τ

¯

“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τ rpχj,τ pξτ´1

Nj
sjPNi `At

i,τ`1Di,τΨi,τ pξτ´1
i , rpχτ

j pξτ´1
Nj

sjPNiq `At
i,τ`1Ei,τξi,τ

¯

“ χi,tpξ
t´1
i , rpχt´1

j pξt´2
Nj

qsjPNiq

“: pχi,tpξ
t´1
N i

q.

(A.9)

where the implication follows because pχiprξt´1
j sjPN i

q “ rpχi,tpξ
t´1
N i

qstPT`
P Xi for all ξN i

P ΞN i
and

i P M. For each i P M, we consider the decision Φ̂ipξN i
q defined through

pΦi,tpξ
t´1
N i

q :“ Ψi,tpξ
t´1
i , rpχt

jpξ
t´1
Nj

qsjPNiq (A.10)

Notice that (A.10) defines a valid policy construction since pχiprξt´1
j sjPN i

q P Xi for all ξN i
P ΞN i

.

It remains to show that Ψi is feasible also for the constraints of Problem (5b). We do so using

deduction, as follows:

`

χipξi, ζNi
q,Ψipξi, ζNi

q
˘

P Oi, @ξi P Ξi,@ζNi
P XNi

,

ùñ
`

χipξi, rpχjpξNj
qsjPNiq,Ψipξi, rpχjpξNj

qsjPNiq
˘

P Oi, @ξN i
P ΞN i

,

ùñ
`

pχipξN i
q, pΦipξN i

q
˘

P Oi, @ξN i
P ΞN i

,

(A.11)
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The first implication follows from (A.9) and the fact that pχipξN i
q Ď Xi for all ξN i

P ΞN i
, while

the second implication follows from (A.9) and (A.10). Finally, this feasible solution attains a value

for the objective function of Problem (6b) which is equal or larger than the value attained for the

objective function of Problem (5b), that is

M
ř

i“1
max

ξiPΞi,ζNi
PXNi

Ji
`

χipξi, ζNi
q,Ψipξi, ζNi

q
˘

ě
M
ř

i“1
max

ξN i
PΞN i

Ji
`

χipξi, rpχjpξNj
qsjPNiq,Ψipξi, rpχjpξNj

qsjPNiq
˘

“
M
ř

i“1
max

ξN i
PΞN i

Ji
`

pχipξN i
q, pΦipξN i

q
˘

,

where again the first implication follows from (A.9) and the fact that pχipξN i
q Ď Xi for all ξN i

P ΞN i
,

while the second implication follows from (A.9) and (A.10). ■

Proof of Proposition 1. Theorem 3 already established that a feasible solution of Problem (6b)

is feasible in Problem (5b). We will now show that a feasible solution in Problem (5a) is feasible

in Problem (6a). The result will then follow due to the relation between Problems (5a) and (5b),

see [40], and Problems (6a) to (6b), see Theorem 2.

In a directed acyclic bipartite network, the agents can be split in two groups, the first layer

agents where N i “ tiu and the second layer agents where N i “ tNi, iu. Sets FL and SL denote

the first and second layer agents, respectively. Problem (6a) can then be explicitly written as

minimize
ÿ

iPFL
max
ξiPΞi

Jipxi,uiq `
ÿ

iPSL
max

ξiPΞi,ζNi
PXNi

Jipxi,uiq

subject to ui “ ψipxiq :“ rψi,tpx
t
iqstPT

xi “ fi
`

ui, ξi
˘

pxi,uiq P Oi

xi P Xi, Xi P FpSiq

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

@ξi P Ξi, @i P FL,

ui “ ψipxi, ζNi
q :“ rψi,tpx

t
i, ζ

t
Ni

qstPT

xi “ fi
`

ζNi
,ui, ξi

˘

pxi,uiq P Oi

,

/

/

/

.

/

/

/

-

@ζNi
P XNi

@ξM P ΞM
@i P SL,

(A.12)

where the constraints distinguish between first and second layer agents. Notice that agents in the

first layer are the ones communicating their state forecast sets Xi to their neighbors (constraint
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xi P Xi), while the agents on the second layer only receive these sets (xi “ fi
`

ζNi
,ui, ξi

˘

, @ζNi
P

XNi
).

Let ϕi for all i P M be a feasible policy for Problem (5a). It is easy to see that policy is feasible

in pfi
`

ϕipxiq, ξi
˘

,uiq P Oi @ξi P Ξi, i P FL as Problems (5a) and (6a) share the same constraints.

We set

Xi :“ txi P RNx,i : xi “ fi
`

ϕipxiq, ξi
˘

@ξi P Ξiu @i P FL, (A.13)

which satisfies Xi P FpSiq where Si “ RNx,i for all i P FL. By the feasibility of ϕi in Problem (5a),

we have

xj “ fj
`

ϕjpxjq, ξj
˘

, @ j P Ni

pfipxNi , ϕipxi,xNiq, ξiq, ϕipxi,xNiqq P Oi

,

.

-

@ξN i
P ΞN i

, @i P SL,

ðñ pfipxNi , ϕipxi,xNiq, ξiq, ϕipxi,xNiqq P Oi

) @rxjsjPNi “ rfj
`

ϕjpxjq, ξj
˘

sjPNi

@ξN i
P ΞN i

, @i P SL,

ðñ pfipζNi , ϕipxi, ζNiq, ξiq, ϕipxi, ζNiqq P Oi

) @ζNi
P XNi

@ξM P ΞM
, @i P SL,

where the first equivalence hold since for fixed policy ϕi the dynamics of all agents in the first layer

are uniquely determined by the uncertain parameters ξi P Ξi, i P FL, while the second equivalence

holds by the definition of Xi in (A.13). Thus, ϕi is feasible in Problem (6a).

We next show that ϕi achieves the same optimal value in both problems.

M
ÿ

i“1

max
ξiPΞN i

Jipxi,ϕipxN i
qq

“
ÿ

iPFL
max
ξiPΞi

Jipxi,ϕipxiqq `
ÿ

iPSL
max

ξN i
PΞN i

Jipxi,ϕipxi,xNiqq

“
ÿ

iPFL
max
ξiPΞi

Jipxi,ϕipxiqq `
ÿ

iPSL
max

ξN i
PΞN i

, rxjsjPNi
“rfj

`

ϕjpxjq,ξj

˘

sjPNi

Jipxi,ϕipxi,xNiqq

“
ÿ

iPFL
max
ξiPΞi

Jipxi,ϕipxiqq `
ÿ

iPSL
max

ξiPΞi, ζNi
PXNi

Jipxi,ϕipxi, ζNiqq

(A.14)

Starting from the objective of Problem (5a), the first equivalence rewrites the objective function

it in terms of the first and second layer agents. Since for fixed ϕi the dynamics of the first layer

agents are uniquely determined by the uncertain parameters ξi P Ξi, i P FL, the second equality

re-expresses the dynamics of xNi in terms of ξi P Ξi, i P FL. Finally, in the third equality we
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substitute the definition of Xi in (A.13). Notice that the uncertain parameters governing Xi are

those affective first layer agents, thus making XFL and ΞSL rectangular. The last expression in

(A.14) coincides with the objective of Problem (6a). ■

Proof of Proposition 2. The recession cone of the set Si is defined as reccpSiq “ tνi P Rni
x :

si ` λνi P Si,@si P Si, λ ě 0u. The fact that Si is bounded implies that the recession cone of Si is

empty, i.e., reccpSiq “ t0u. We now show that,

XFS “

!

pxi, yi, ziq : Dsi P RNx,i s.t. xi “

Ki
ÿ

k“1

yi,kPi,ksi ` zi, Gi,kPi,ksi ĺKi,k
gi,k, k “ 1, . . . ,Ki

)

is equivalent to

pXFS “

!

pxi, yi, ziq : Dνi,k P RNx,i s.t. xi “

Ki
ÿ

k“1

Pi,kνi,k`zi, Gi,kPi,kνi,k ĺKi,k
yi,kgi,k, k “ 1, . . . ,Ki

)

It is easy to verify that this in the case where yi,k are positive scalar by using the substitution

νi,k “ yi,ksi. In the case that any yi,k “ 0 then it remains to show that the only feasible solution

is νi,k “ 0 so that the equality νi,k “ yi,ksi holds. Assume that this is not the case, i.e., there exist

νi,k ‰ 0. Then, νi,k P reccpSiq which means that the Si recedes in the direction of νi,k. However,

this is a contradicts the boundedness of Si. The substitution νi,k “ yi,ksi was first proposed by

George Dantzig in [14], and a similar proof also appear in [26]. ■

Preliminaries for the proof of Theorem 4

The following lemma establishes constraint satisfaction between Problem (8a) and Problem (8b).

Lemma 1. Given vectors yi and zi such that pXipyi, ziq, then for any two functions fi,t and gi,t, it

holds:

fi,tpζ
t
Ni
, ξtiq ď 0, @ζNi

P pXNi
pyNi

, zNi
q, @ξi P Ξi,

ñ fi,t
`

rRt
jps

t
jqsjPNiq, ξ

t
i

˘

ď 0, @sNi
P SNi

, @ξi P Ξi,
(A.15)

and

gi,tps
t
Ni
, ξtq ď 0, @sNi

P SNi
, @ξi P Ξi,

ñ gi,t
`

rLt
jpζ

t
jqsjPNi , ξ

t
i

˘

ď 0, @ζNi
P pXNi

pyNi
, zNi

q, @ξi P Ξi.
(A.16)

Proof. We prove (A.15) by contradiction. Assume that fi,tpζ
t
Ni
, ξtiq ď 0,@ζNi

P pXNi
pyNi

, zNi
q, @ξi P
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Ξi, and there exist sNi
P SNi

such that fi,t
`

rRt
jps

t
jqsjPNiq, ξ

t
i

˘

ą 0. Considering that rRt
jps

t
jqsjPNi P

pX pyNi
, zNi

q for all sNi
P SNi

by construction, this leads to a contradiction. The proof of (A.16)

follows similar arguments. ■

Proof of Theorem 4. We show that every feasible solution of Problem (8b) is feasible in Prob-

lem (8a). Let ppΓi, pXiq for all i P M be a feasible solution in Problem (8b). Since the state of agent

i evolve according to (1), we can conclude that at time t we have

xi,t“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τζNi,τ `At

i,τ`1Di,τ
pΓi,τ pξτ´1

i , sτNi
q `At

i,τ`1Ei,τξi,τ

¯

“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τ pYNi,τsNi,τ ` zNi,τ q `At

i,τ`1Di,τ
pΓi,τ pξτ´1

i , sτNi
q `At

i,τ`1Ei,τξi,τ

¯

“: pχi,tpξ
t´1
i , st´1

Ni
q,

where At
i,τ “ Ai,τAi,τ`1 . . . Ai,t´1 for τ ă t and At

i,t “ I. To show that pΓi is feasible in Problem (8a),

we first construct the state of agent i which evolves according to xi “ fi
`

ζNi
, pΓipξi, sNi

q, ξi
˘

.

Starting with rχi,1 “ xi,1, we have that

xi,t“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τζNi,τ `At

i,τ`1Di,τ
pΓi,τ pξτ´1

i , sτNi
q `At

i,τ`1Ei,τξi,τ

¯

“ At
i,t´1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τζNi

`At
i,τ`1Di,τ

pΓi,τ pξτ´1
i , rLτ

j pζτj qsjPNiq `At
i,τ`1Ei,τξi,τ

¯

“ pχi,t

´

ξt´1
i , rLt´1

j pζt´1
j qsjPNi

¯

“: rχi,t

´

ξt´1
i , ζt´1

Ni

¯

,

(A.17)

where the implications follow due to the mapping (9b). For each i P M, we consider the decision

rΨipξi, ζNi
q defined through

rΨi,t

´

ξt´1
i , ζtNi

¯

“ pΓi,t

`

ξt´1
i , rLt

jpζ
t
jqsjPNi

˘

. (A.18)

Notice that (A.18) defines a valid policy construction due to the mapping (9b). It remains to show
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that pΓi is feasible also for the constraints of Problem (8a). We do so using deduction, as follows:

`

pχipξi, sNi
q, pΓipξi, sNi

q
˘

P Oi, @ξi P Ξi,@sNi
P SNi

,

ùñ
`

pχipξi, rLjpζjqsjPNiq,
pΓipξi, rLjpζjqsjPNiq

˘

P Oi, @ξi P Ξi,@ζNi
P pXNi

,

ùñ
`

rχipξi, ζNi
q, rΨipξi, ζNi

q
˘

P Oi, @ξi P Ξi,@ζNi
P pXNi

,

(A.19)

where the implications directly follow from (A.17) and (A.18), and Lemma 1. Same reasoning

applies to all constraints in the problem formulation. This feasible solution attains the same value,

ℓ, for the objective functions of Problem (8b) and Problem (8a), that is:

ℓ “
M
ř

i“1
max

ξiPΞ,sNi
PSNi

Ji
`

pχipξi, sNi
q, pΓipξi, sNi

q
˘

“

$

&

%

Ji
`

pχipξi, sNi
q, pΓipξi, sNi

q
˘

ď ℓi, @ξi P Ξi,@sNi
P SNi

řM
i“1 ℓi “ ℓ,

,

.

-

“

$

&

%

Ji
`

pχipξi, rLjpζjqsjPNiq,
pΓipξi, rLjpζjqsjPNiq

˘

ď ℓi, @ξi P Ξi,@ζNi
P pXNi

řM
i“1 ℓi “ ℓ,

,

.

-

“
M
ř

i“1
max

ξiPΞi,ζNi
P pXNi

Ji
`

rχipξi, ζNi
q, rΨipξi, ζNi

q
˘

“ ℓ.

(A.20)

The implications directly follow from (A.17) and (A.18), and Lemma 1.

Similarly, we now show that every feasible solution of Problem (8a) is feasible in Problem (8b).

Let p rΨi, pXiq for all i P M be feasible in Problem (8a). Since the state of agent i evolve according

to (1), we can conclude that at time t we have

xi,t“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τζNi,τ `At

i,τ`1Di,τ
rΨi,τ pξτ´1

i , ζτNi
q `At

i,τ`1Ei,τξi,τ

¯

“: rχi,tpξ
t´1
i , ζt´1

Ni
q

(A.21)

To show that rΨi is feasible in Problem (8b), we first construct the state of agent i which evolves
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according to xi “ fi
`

YNi
sNi

` zNi
, rΨipξi, ζNi

q, ξi
˘

. Starting with pχi,1 “ xi,1, we have that

xi,t“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τ pYNi,τsNi,τ ` zNi,τ q `At

i,τ`1Di,τ
rΨi,tpξ

τ´1
i , ζτNi

q `At
i,τ`1Ei,τξi,τ

¯

“ At
i,1xi,1 `

t´1
ÿ

τ“1

´

At
i,τ`1Bi,τ rRj,τ psj,τ qsjPNi `At

i,τ`1Di,τ
rΨi,tpξ

τ´1
i , rRτ

j psτj qsjPNiq `At
i,τ`1Ei,τξi,τ

¯

“ rχi,t

´

ξt´1
i , rRt´1

j pst´1
j qsjPNi

¯

“: pχi,t

´

ξt´1
i , st´1

Ni

¯

.

(A.22)

where the implications follow due to the mapping (9a). For each i P M, we consider the decision

pΓipξi, sNi
q defined through

pΓi,t

´

ξt´1
i , stNi

¯

“ rΨi,t

`

ξt´1
i , rRt

jps
t
jqsjPNi

˘

. (A.23)

Notice that (A.23) defines a valid policy construction due to the mapping (9a). It remains to show

that pΓi is feasible also for the constraints of Problem (8b). We do so using deduction, as follows:

`

rχipξi, ζNi
q, rΨipξi, ζNi

q
˘

P Oi, @ξi P Ξi,@ζNi
P pXNi

,

ùñ
`

rχipξi, rRjpsjqsjPNiq,
rΨipξi, rRjpsjqsjPNiq

˘

P Oi, @ξi P Ξi,@sNi
P SNi

,

ùñ
`

pχipξi, sNi
q, pΓipξi, sNi

q
˘

P Oi, @ξi P Ξi,@sNi
P SNi

,

(A.24)

where the implications directly follow from (A.22) and (A.23), and Lemma 1. Same reasoning

applies to all constraints in the problem formulation. This feasible solution attains the same value,

ℓ, for the objective functions of Problem (8a) and Problem (8b), that is:

ℓ “
M
ř

i“1
max

ξiPΞi,ζNi
P pXNi

Ji
`

rχipξi, ζNi
q, rΨipξi, ζNi

q
˘

“

$

&

%

Ji
`

rχipξi, ζNi
q, rΨipξi, ζNi

q
˘

ď ℓi, @ξi P Ξi,@ζNi
P pXNi

,
řM

i“1 ℓi “ ℓ,

,

.

-

“

$

&

%

Ji
`

rχipξi, rRjpsjqsjPNiq,
rΨipξi, rRjpsjqsjPNiq

˘

ď ℓi, @ξi P Ξi,@sNi
P SNi

,
řM

i“1 ℓi “ ℓ,

,

.

-

“
M
ř

i“1
max

ξiPΞi,sNi
PSNi

Ji
`

pχipξi, sNi
q, pΓipξi, sNi

q
˘

“ ℓ.

(A.25)

The implications directly follow from (A.22) and (A.23), and Lemma 1. ■
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Proof of Corollary 2. To demonstrate the result, it is sufficient to show that approximation

(7) has sufficient degrees of freedom to represent the optimal state forecast set Xi.

We first need to determine the complexity of Xi in Problem (6b). For fixed Xi and an appropriate

linearization of the piecewise objective function Jipxi,uiq using epigraph variables, Problem (6b)

falls into the class of linear multistage robust optimization problem with right-hand-side uncertainty.

This implies that we can replace the for all ξi P Ξi and ζNi
P XNi

, with for all extreme points

ξi P extpΞiq and ζNi
P extpXNiq, without affecting the optimal value of the problem, see [24].

Since the choice of Xi at the beginning of the argument was arbitrary, we can conclude that we

can always make this replacement without loss of generality. Moreover, due to the arborescence

network structure and the linearity of the dynamics, the state xroot of the root node can take at

most |extpΞrootq| unique values. Hence, due to the convexity of the objective function, the smallest

state forecast set Xroot can be described with a convex combination of at most |extpΞrootq| points.

Using a recursive construction, the states xi all agents in the tree can take at most
ś

jPN i
|extpΞjq|

unique values, hence the state forecast set Xi can be described with a convex combination of at

most
ś

jPN i
|extpΞjq| points.

The above arguments shows that the maximum degrees of freedom needed to describe Xi is
ś

jPN i
|extpΞjq|. Hence, by setting Si to be a simplex of dimension

ś

jPN i
|extpΞiq|, then for each

i P M the affine mapping in (7) can project Si to a set of at most
ś

jPN i
|extpΞiq|. Hence the result

follows. ■

B Supply chain with quantity flexibility contracts

In this section, we evaluate the performance of the proposed method in a contract design mechanism

for supply chains with decentralized operations. The proposed contract design is based on the

structure of quantity flexibility (QF) contracts described in [68]. Decentralized supply chains are

the norm in modern businesses since agents around the world cooperate to deliver multiple products.

Due to this decentralized structure, each manufacturer (supplier) knows only what its immediate

retailer (manufacturer) has requested, and is only concerned with its own performance cost. This,

however, leads to “mutual deception” situations in which, for instance, some buyers inflate demand

only to later disavow any undesired product [38], which increases uncertainty and operational costs

in decentralized supply change networks [44, 42].
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Part Supplier
(P)

Manufacturer
(M)

Retailer
(R)

QF Contract QF Contract Market
demand

Demand boundsFlexibility boundsFlexibility bounds

M’s replenishment bounds
becomes P’s release uncertainty

R’s replenishment bounds
becomes M’s release uncertainty

forecast of bounds
on market’s demand

materials flow
information flow

Figure 17. Supply chain design with quantitative flexibility contracts [68]

To address this problem, QF contracts are used in the industry to coordinate the flow of

materials and information in distributed supply chains over a fixed period of time. In this setting,

for a given product p P P the QF contract between the pair manufacturer-retailer is parametrized

by lower and upper bounds bp “ rbp1, . . . , b
p
T s and b

p
“ rb

p
1, . . . , b

p
T s, respectively. Every period

t P T , the retailer has the right to request delivery of any quantity of product p P P within the

agreed bounds rbpt , b
p
t s, and the manufacturer has the obligation to deliver it. QF contracts exist

between suppliers and manufacturers as well. In this way, the contract provides some flexibility

for the retailer, helping to mitigate the uncertainties of future demand, as well as provide strong

indications to the manufacturer about how to schedule the production line. In practice, as time

passes and the actual demand faced by the retailer is revealed, the two parties are allowed to revise

their contracts within pre-agreed percentage changes of the lower and upper bounds. Figure 17

shows graphically how a serial supply chain with a supplier, a manufacturer and a retailer operates

using QF contracts to move a single product.

The design of QF contracts fits perfectly within the proposed framework where the forecast

sets are in fact the upper and lower bounds that define the QF contracts. The seminal work of

[38] first proposes the use of optimization techniques for designing QF contracts in a so-called

open-loop feedback control system, in which uncertain exogenous values are assumed to be known.

Our proposed framework, however, truthfully models the uncertainty and incorporates it within

the optimization framework. In the following, we discuss the design of such QF contracts.
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B.1 Problem Formulation

First consider a supply chain with M “ 3 agents as depicted in Figure 17. In this simple example,

the supplier is i “ 1, the manufacturer is i “ 2 and the retailer is i “ 3, with N1 “ t2u, N2 “ t3u

and N3 “ H. We next partition the index set M into three disjoint sets Ms “ t1u, Mm “ t2u,

and Mr “ t3u to represent the indices associated with the supplier, the manufacturer, and the

supplier, respectively. The inventory dynamics for product p P P “ t1, . . . , P u and for every t P T

and i P M are expressed through

$

’

’

’

’

’

&

’

’

’

’

’

%

Ip1,t`1 “ Ip1,t `Rp
1,t ´ Up

2,t (supplier),

Ip2,t`1 “ Ip2,t `Rp
2,t ´ Up

3,t (manufacturer),

Ip3,t`1 “ Ip3,t `Rp
3,t ´Dp

t (retailer),

(B.26)

where Ipi,t denotes the inventory stock of product p P P held by agent i P M at time t. Furthermore,

Rp
i,t is the replenishment decision defined as

Rp
i,t “

P
ÿ

p“1

Bp
i U

p
i,t ` ξpi,production,t,

where Bp
i is the blending coefficients, Up

i,t P rbpi,t, b
p
i,ts denotes the quantity of product p that agent i

will request from its neighbor at time t with bpi,t and b
p
i,t being the lower bound and upper bound of

QF contracts, and ξpi,production,t is an uncertain vector capturing materials loss. Finally, Dp
t denotes

the product demand for item p at time t originating from the market, and it is assumed to be

periodic and governed by a factor model with K factors of the form

Dp
t “

$

’

’

’

&

’

’

’

%

2 ` sin

ˆ

2π
t

T ´ 1

˙

`
1

K

K
ř

k“1

F p
k ξk,t,demand for p even

2 ` cos

ˆ

2π
t

T ´ 1

˙

`
1

K

K
ř

k“1

F p
k ξk,t,demand for p odd,

(B.27)

where F k
p captures correlations amongst the products and ξk,demand,t captures uncertainty in the

factor k, similar to [24].

Since the market demand and material loss are uncertain, we seek to design QF contracts that

minimize the worst-case sum of backlog and inventory holding costs across all agents. Moreover,
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we assume that agents do not wish to disclose their actual demands from their neighbors due to

privacy concerns. However, they are willing to share lower and upper limits of what they need

from each other. In this case, the inventory dynamic (B.26) translates to the following compact

representation

Ipi,t`1 “ Ipi,t `Rp
i,t ´Dp

i,t,

where Dp
i,t “ ζpNi,t

for every i P Ms
Ť

Mm with ζpi,t P Up
i,t “ rbpi,t, b

p
i,ts being the introduced auxiliary

uncertainty to represent the unknown demand from the neighbor and Dp
i,t “ Dp

t for i P Mr. The

objective of agent i P M is to determine an ordering policy Ui,t for every t P T based on his

inventory level up to time t, namely rIi,1, . . . , Ii,ts, and the uncertain demand from his neighbor

up to time t, namely rζi`1,1, . . . , ζi`1,ts, if additionally i P Ms
Ť

Mm. The overall optimization

problem for designing the QF contracts is an instance of Problem (6a) and is formulated as

minimize
M
ÿ

i“1

max
ξiPΞi,ζNi

PUNi

T`1
ÿ

t“1

P
ÿ

p“1

cH
“

Ipi,t
‰

`
` cB

“

´ Ipi,t
‰

`

subject to Ui “ ψipIi, ζNi
q @ξi P Ξi,@ζNi P UNi ,@i P M

bi “ rb1i , . . . , b
P
i s P RTˆP @i P Mm

Ť

Mr

bi “ rb
1
i , . . . , b

P
i s P RTˆP @i P Mm

Ť

Mr

Ui P Ui “ rb1i , b
1
i s ˆ ¨ ¨ ¨ ˆ rbPi , b

P
i s @ξi P Ξi,@ζNi P UNi ,@i P Mm

Ť

Mr

Rp
i,t “

P
ÿ

p“1

Bp
i U

p
i,t ` ξpi,production,t @t P T ,@p P P,@ξi P Ξi,@ζNi P UNi ,@i P M

Ipi,t`1 “ Ipi,t `Rp
i,t ´Dp

i,t @t P T ,@p P P,@ξi P Ξi,@ζNi P UNi ,@i P M
(B.28)

where r¨s` “ maxt0, ¨u and the coefficients cB, cH denote the backlogging and inventory holding

costs, respectively. By construction of Problem (B.28), for each agent i and product p we have

Up
i “ Up

i,1 ˆ ¨ ¨ ¨ ˆ Up
i,T and Ui “ U1

i ˆ ¨ ¨ ¨ ˆ UP
i . Thus Ui is a hyper-rectangles which is controlled

coordinate wise. Hence, it can be exactly represented by the primitive sets Sp
i,t “ r´1, 1s and

Up
i,tpy

p
i,t, z

p
i,tq “

!

Up
i,t P R : Dspi,t P Sp

i,t s.t. U
p
i,t “ ypi,ts

p
i,t ` zpi,t

)

,
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as discussed in Remark 1. Applying Theorem 4, Problem (B.28) can thus be reformulated as an

instance of Problem (8b) where sets Si “
śP

p“1r´1, 1sT .

minimize
M
ÿ

i“1

max
ξiPΞi,sNi

PSNi

T`1
ÿ

t“1

P
ÿ

p“1

cH
“

Ipi,t
‰

`
` cB

“

´ Ipi,t
‰

`

subject to Ui “ Γipξi, sNi
q @ξi P Ξi,@sNi P SNi ,@i P M

bi, bi, zi P RTˆP , yi P RTˆP
` @i P Mm

Ť

Mr

bi “ zi ´ yi, bi “ zi ` yi @i P Mm
Ť

Mr

Ui P Ui “ rb1i , b
1
i s ˆ ¨ ¨ ¨ ˆ rbPi , b

P
i s @ξi P Ξi,@sNi P SNi ,@i P Mm

Ť

Mr

ζpi,t “ ypi,ts
p
i,t ` zpi,t @t P T ,@p P P,@si P Si,@i P Mm

Ť

Mr

Rp
i,t “

P
ÿ

p“1

Bp
i U

p
i,t ` ξpi,production,t @t P T ,@p P P,@ξi P Ξi,@sNi P SNi ,@i P M

Ipi,t`1 “ Ipi,t `Rp
i,t ´Dp

i,t @t P T ,@p P P,@ξi P Ξi,@sNi P SNi ,@i P M

(B.29)

The corresponding centralized supply chain problem that does not involve the quantity flexibility

contracts can be written as an instance of Problem (4a) in which all agents have access to the

inventory levels of all other agents. This results in the following optimization problem

minimize
M
ÿ

i“1

max
ξMPΞM

T`1
ÿ

t“1

P
ÿ

p“1

cH
“

Ipi,t
‰

`
` cB

“

´ Ipi,t
‰

`

subject to Ui “ πipIMq @ξM P ΞM,@i P M

Rp
i,t “

P
ÿ

p“1

Bp
i U

p
i,t ` ξpi,production,t @t P T ,@p P P,@ξM P ΞM,@i P M

Ipi,t`1 “ Ipi,t `Rp
i,t ´Dp

i,t @t P T ,@p P P,@ξM P ΞM,@i P M,

(B.30)

where, with slight abuse of nation, Dp
i,t “ Up

Ni,t
for every i P Ms

Ť

Mm and Dp
i,t “ Dp

t for i P Mr.

Problem (B.30) is in turn can be reformulated as an instance of Problem (4b).

In the following numerical experiments, we assume that the initial inventory levels are zero, the

uncertain demand (B.27) are produced by K “ 4 factors. We generate random instance of Prob-

lem (B.29) by uniformly generating the coefficients F k
p from the interval r´1, 1s, the backlogging and

holding coefficients, cB and cH respectively, are randomly generated from r0, 1s, and the blending

coefficients Bp
i are uniformly generated from r0.5, 1sP for all i P M and p P P. We also assume that

the production and demand uncertainties and the optimization belong to ξpi,production,t P r´0.1, 0s

53



and ξk,demand,t P r´θ, θs with θ denoting the level of uncertainty, respectively. In this way, the

uncertainty is characterized by the set Ξi “
śT

t“1r´0.1, 0sP for agents i P Ms
Ť

Mm and by the

set Ξi “
śT

t“1r´0.1, 0sP ˆ r´θ, θsK for agents i P Mr. Finally, we approximate Problems (B.29)

and (B.30) using affine policies, while the maximum operator r¨s` is linearized using epigraphical

variables similar to [7, Section 5.1].

B.2 Decentralized Optimization via ADMM

We demonstrate how an ADMM algorithm can be applied to solve the Problem (B.29), which

promotes decentralized computation and provides significant privacy to all agents. For illustration,

we consider the system depicted in Figure 17 with M “ 3 agents, T “ 20 horizon length, P “ 1

product, and the market demand parameter θ “ 1. Notice that the decision variables bi, bi in the

optimization problem (B.29) are auxiliary. Removing these auxiliary variables yields the following

reformulation

min
y2,y3PRT

` ,z2,z3PRT
J1py2, z2q ` J2py2, z2,y3, z3q ` J3py3, z3q,

where the implicit functions Ji are defined as

J1py2, z2q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize max
ξ1PΞ1,s2PS2

T`1
ÿ

t“1

P
ÿ

p“1

cH
“

Ip1,t
‰

`
` cB

“

´ Ip1,t
‰

`

subject to U1 “ Γ1pξ1, s2q @ξ1 P Ξ1,@s2 P S2

ζp2,t “ yp2,t s
p
2,t ` zp2,t @t P T ,@p P P,@s2 P S2

Rp
1,t “

P
ÿ

p“1

Bp
1U

p
1,t ` ξp1,production,t @t P T ,@p P P,@ξ1 P Ξ1,@s2 P S2

Ip1,t`1 “ Ip1,t `Rp
1,t ´ ζp2,t @t P T ,@p P P,@ξ1 P Ξ1,@s2 P S2,
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J2py2, z2,y3, z3q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize max
ξ2PΞ2,s3PS3

T`1
ÿ

t“1

P
ÿ

p“1

cH
“

Ip2,t
‰

`
` cB

“

´ Ip2,t
‰

`

subject to U2 “ Γ2pξ2, s3q @ξ2 P Ξ2,@s3 P S3

ζp3,t “ yp3,t s
p
3,t ` zp3,t @t P T ,@p P P,@s3 P S3

Up
2,t P

”

zp2,t ´ yp2,t, z
p
2,t ` yp2,t

ı

@t P T ,@p P P,@ξ2 P Ξ2,@s3 P S3

Rp
2,t “

P
ÿ

p“1

Bp
2U

p
2,t ` ξp2,production,t @t P T ,@p P P,@ξ2 P Ξ2,@s3 P S3

Ip2,t`1 “ Ip2,t `Rp
2,t ´ ζp3,t @t P T ,@p P P,@ξ2 P Ξ2,@s3 P S3,

J3py2, z2q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

minimize max
ξ3PΞi

T`1
ÿ

t“1

P
ÿ

p“1

cH
“

Ip3,t
‰

`
` cB

“

´ Ip3,t
‰

`

subject to U3 “ Γ3pξ3q @ξ3 P Ξ3

Up
3,t P

”

zp3,t ´ yp3,t, z
p
3,t ` yp3,t

ı

@t P T ,@p P P,@ξ3 P Ξ3

Rp
3,t “

P
ÿ

p“1

Bp
3U

p
3,t ` ξp3,production,t @t P T ,@p P P,@ξ3 P Ξ3

Ip3,t`1 “ Ip3,t `Rp
3,t ´Dp

3,t @t P T ,@p P P,@ξ3 P Ξ3.

Define next the global decision variable α “ ryJ
2 , z

J
2 ,y

J
3 ,y

J
4 sJ. With slight abuse of notation, we

can now reformulate the above optimization problem as the following optimization problem

min
β1,β2,β3,α

#

ÿ

iPM
Jipβiq : βi “ rαi @i P M

+

, (B.31)

where given a global decision variable α “ ryJ
2 , z

J
2 ,y

J
3 ,y

J
4 sJ, we split α to the (overlapping) chunks

rα1 “ ryJ
2 , z

J
2 sJ, rα2 “ ryJ

2 , z
J
2 ,y

J
3 ,y

J
4 sJ, and rα3 “ ryJ

3 , z
J
3 sJ. Figure 18 (a) depicts the underlying

graph structure of Problem (B.31), whose augmented Lagrangian is of the form

Lpβ1,β2,β3,α,γ1,γ2,γ3q “
ÿ

iPM
Jipβiq ` γJ

i pβi ´ rαiq `
ρ

2
}βi ´ rαi}

2,

with γi being the dual variable associated with the constraint βi “ rαi, and ρ being a positive

constant. Then, the ADMM update at iteration k follows the form

β
pk`1q

i Ð argmin
βi

"

Jipβiq `

´

γ
pkq

i

¯J

βi `
ρ

2

›

›

›
βi ´ rα

pkq

i

›

›

›

2
*

55



<latexit sha1_base64="t6VscfUSzBo653aYSZxHTKjfKdw="></latexit>

J1

<latexit sha1_base64="7Eo0MPNnbOF6Hk8SXiMdImFSeek="></latexit>

J2

<latexit sha1_base64="wmNHdYK3J8ZMvSZ4F3FJ+l+xlyo="></latexit>

J3

<latexit sha1_base64="IqhsOGR5xOcmNnnpwjJ76C6hDPs="></latexit>y2

<latexit sha1_base64="3OL9I22GoOUP1XfpYCPqxC/gU0U="></latexit>y3
<latexit sha1_base64="ulXokTJWTdfJiqbpWkACt+P/Ubk="></latexit>z3

<latexit sha1_base64="176e0Eub0BuYp+19EIMqgXJsrK0="></latexit>z2
<latexit sha1_base64="+3caDokNX1ojJ//yTprVg5ONNfE="></latexit>↵

<latexit sha1_base64="2gcWnyfUJ6BTHtyzmr00h3cIDl0="></latexit>

�1

<latexit sha1_base64="QwkE9oPM/9TOh8ITHEzfCbpGrzg="></latexit>

�3

<latexit sha1_base64="Kd9J9UbU2OtGZQkaJqaNjhe19yg="></latexit>

�2

(a)
(b)

Figure 18. (a) Illustration of the graph structure with 3 agents. Local objective func-
tions are on the left; global variable components are on the right. The bipartite graph
can be viewed as a consistency constraint that links local variables and global variables.
(b) Convergence behavior of the ADMM algorithm.

αpk`1q Ð argmin
α

#

ÿ

iPM
´

´

γ
pkq

i

¯J

rαi `
ρ

2

›

›

›
β

pk`1q

i ´ rαi

›

›

›

2
+

γ
pk`1q

i Ð γ
pkq

i ` ρ
´

β
pk`1q

i ´ rα
pk`1q

i

¯

.

Notice that the updates of decision variables βi and γi can be carried out locally for every agent

i P M, which implies that the structure of Ji is only known to agent i. This salient feature promotes

privacy amongst the agents. In addition, the update of the decision variable α involves solving an

unconstrained quadratic minimization problem that can be solved analytically; see [11, § 7.2]. The

analytic expression constitutes local averaging rather than global averaging, and therefore, it can

be accomplished by local information exchange. This indicates that all ADMM updates can be

performed locally up to the information exchange rαi between neighbors. Figure 18 (b) reports the

convergence behavior of the average performance of the ADMM algorithm for solving 10 random

instances of the Problem (B.29) where the functions Ji are approximated via affine decision rules.

In the experiments we set set ρ “ 0.1 and decision variables rα
p0q

i , γ
p0q

i ,β
p0q

i are initialized at zero

for all i P M. We observe that the algorithm converges to an optimal solution and achieves the

machine precision in 10 iterations.
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Figure 19. Effect of uncertainty on (a) retailer-manufacturer and (b) manufacturer-
supplier QF contracts over a T “ 24 horizon length.

B.3 Numerical Results

In the first experiment, we investigate how the degree of uncertainty in the market demand affects

the QF bounds. We consider the system depicted in Figure 17 with M “ 3 agents and P “ 1

product. We solve the optimization problem (B.29) with θ “ t0.25, 0.5, 1u for a horizon length

of T “ 24. The QF contracts between retailer/manufacturer and manufacturer/supplier pairs are

depicted in Figure 19 when we set F k
p “ p´1qk{2, cB “ cH “ 1 and Bp

1 “ Bp
2 “ Bp

3 “ 1. We observe

that the size of the QF contrasts increases as the uncertainty in the market demand increases.

However, due to the adaptive nature of the recourse decisions, the size of the QF bounds does not

substantially increase over time. Moreover, we observe that the QF bounds between manufacturers

and suppliers are wider than those between manufacturers and retailers. This observation is con-

sistent with the bullwhip effect in [38], a theory that describes how small fluctuations in demand at

the retail level can cause progressively larger fluctuations at the manufacturer and supplier levels.

In the second experiment, we investigate the effects of horizon length and number of agents

in the network with a single supplier, N intermediate manufacturers, and a single retailer. We

compare our proposed local information exchange policy design to the centralized one over 10

randomly generated instances. Throughout the experiment, we fix the number of products at

P “ 2 and the market demand parameter constant at θ “ 1. First, we compare the optimal values

of the local problem (B.29) and the centralized problem (B.30). Denoting by objL the objective
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value of (B.29) and by objC the objective of the centralized (B.30), we define the (percentage)

suboptimality as 100 ˆ pobjL ´ objCq{objC . We evaluate the effect of the horizon length and the

number of manufacturers on the quality of the solution in terms of the suboptimality metric. In

addition, we examine the impact of demand-side delays on the solution of the local and centralized

policy designs, which occur when agents report their demands to their preceding agents at the end

of the time interval rather than submitting their requests at the beginning. Specifically, we assume

that the inventory dynamic is of the form

Ipi,t`1 “ Ipi,t`1 `Rp
i,t ´Dp

i,t´1

for every i P M, where the demand term Dp
i,t´1 is modified to incorporate the demand-side de-

lay. The introduction of the delay yields policies of the form Ui,t “ Ψpξt´1
i , st´1

Ni
q and Ui,t “

Πpξt´1
i , ξt´1

Mztiuq for every t P T and i P M in the decentralized and centralized settings, respec-

tively, and in turn approximated by affine decision rules. We consider two different cases. In the

first case, we consider N “ 1 intermediate manufacturer and increase the time horizon T up to the

horizon length 10. In the second case, we fix the time horizon to T “ 5, while changing the number

of manufacturers N from 1 to 10. Figure 20 summarizes the results. In the absence of a time delay

in the system, we observe that the suboptimality is zero. Interestingly, the introduction of QF

contracts between agents not only preserves their privacy but also does not impact performance.

In contrast, time delay has a significant impact on the quality of the solutions. Specifically, we

observe that an increase in horizon length can have an adverse effect on the quality of the local

information problem. This is to be expected, as the uncertainty faced by each agent increases with

increasing the horizon length in the local information problem. However, as the horizon length

increases, the suboptimality becomes saturated, and the decentralized policy absorbs the effect of

delay, as agents begin mitigating uncertainty through the use of local information exchanges. In

addition, as the number of agents increases beyond 4, there is essentially no difference in terms of

suboptimality as the function of the number of manufacturers.

Next, we use a rolling horizon scheme to compare the average performance of the centralized

and local information problems. In this experiment, we fix all parameters as in the first experiment.

We then generate a random realization of the uncertainty ξ P Ξ. Next, we solve the centralized

and local information for the horizon length T “ 10 and update the inventory levels according
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Figure 20. Suboptimality of local vs centralized problem as a function of the horizon
length (left) and number of agents (right). Solid lines (shaded regions) represent averages
(ranges) across 10 independent simulations.

Figure 21. Effect of the rolling horizon in a system with no delay (left) and with delay
(right). The graphs report the worst-case cost computed by solving Problems (B.29)
and (B.30), and the cost from the rolling horizon scheme. Solid lines (shaded regions)
represent averages (ranges) across 10 independent simulations.

to the realization ξ1 and the first stage decisions Up
i,1. We repeat the process until we reach the

end of the horizon. Specifically, at any time t “ 2, . . . , T , we resolve each problem for the shorter

horizon length T ´ t and the initial inventory stocks Ipi,t´1 for every i P M. We then update the

inventory levels according to realization ξt and corresponding first stage decisions Up
i,t. Figure 21

summarizes our results for 10 randomly generated realization of uncertainty. We observe that the

average performances of the local and centralized information problems are significantly improved

compared to their worst-case performance obtained by solving (B.29) and (B.30), respectively. The

improvement is more significant when there is a delay in the system.

Finally, we compare the optimization time required to solve the local and centralized problems.

Figure 22 reports the execution times required by Gurobi to solve 10 randomly generated instances

of the centralized and local information exchange designs. Figure 22 (left) the number of manu-

facturers is fixed to N “ 5, whereas in Figure 22 (right) the horizon length is fixed to T “ 5. In

both cases, the time required to solve the local information problem (B.29) is nearly half the time

required to solve the centralized optimization problem (B.30). This can be attributed to the nearly

decoupled structure of the problem, in which only the QF bounds link dynamics and constraints.
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Figure 22. Comparison of the runtime of the centralized and local information problems.
Solid lines (shaded regions) represent averages (ranges) across 10 randomly generate
instances.

C Summary of major notation

Index sets: We use M to denote the set of all agents (Section 2), Ni to denote the set of neighbors

of agent i (Section 2), and N i the set that includes agent i and all its precedent agents (Section 2.3).

Vectors concatenation: For given vectors vi P Rki with ki P N, i P M, we define vM “ rvisiPM “

rvJ
1 . . . v

J
M sJ P Rk with k “

řM
i“1 ki as their vector concatenation. Given time dependent vectors

νi,t P Rℓi with i P M, t P T and ℓi P N, we define νM,t “ rνi,tsiPM as the concatenated vector at

time t, νti “ rνJ
i,1 . . . ν

J
i,ts

J as the history of the i-th vector up to time t, and νtM “ rνti siPM as the

history of the concatenated vector up to time t.

Concatenated Vectors: The linear dynamics of the agent i is written in the compact form

xi “ fipxNi
,ui, ξiq, where xi :“ rxi,tstPt0uYT , ui :“ rui,tstPT , ξi :“ rξi,tstPT and xNi

:“ rxNi,tstPT .

Here, xi, ui, ξi and xNi denote the state, input, exogenous uncertainty, and the state of neighbors

affecting agents i, respectively (Section 2.1). Vector ζj denote belief states of the neighbor agent

j P Ni, i.e., the dynamic of agent i are affected by its belief ζj P Xj of what values the states of

agent j will take (Section 3). Vector sj P Sj is used in the construction of the approximation (7)

(Section 4).

Optimization variables: The paper analyzes four pairs of problems. A major distinction between

problems is the information available to the policies and the present of sets as decision variables.

Below we summarize this information.

• Centralized information exchange (Section 2.2): Problem (4a) has optimization vari-

ables the state feedback policies denoted with lower case πipxMq :“ rπi,tpx
t
MqstPT , and Prob-

lem (4b) has the uncertainty feedback policies denoted by upper caseΠipξMq :“ rΠi,tpξ
t´1
M qstPT .

• Partially nested information exchange (Section 2.3): Problem (5a) has optimization
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variables the state feedback policies denoted with lower case ϕipxN i
q :“ rϕi,tpx

t
N i

qstPT , and

Problem (5b) has the uncertainty feedback policies denoted with upper case ΦipξN i
q :“

rΦi,tpξ
t´1
N i

qstPT .

• Local information exchange (Section 3): Problem (6a) has optimization variables the

state feedback policies denoted with lower case ψipxi, ζNi
q :“ rψi,tpx

t
i, ζ

t
Ni

qstPT and the state

forecast sets Xi. Besides, Problem (6b) has optimization variables the uncertainty feedback

policies denoted with upper case Ψipξi, ζNi
q :“ rΨi,tpξ

t´1
i , ζtNi

qstPT and the state forecast

sets Xi.

• Approximation of Problem (6b) (Section 4): Problem (8a) has optimization variables

the uncertainty feedback policies Ψipξi, ζNi
q and the state forecast sets Xi which are pa-

rameterized by approximation (7) through matrices Yi and vector zi and a given set Si.

Problem (8b) has optimization variables the policy Γipξi, sNi
q :“ rΓi,tpξ

t´1
i , stNi

qstPT and the

state forecast sets Xi which are also parameterized by approximation (7) through matrices Yi

and vector zi and a given set Si.
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