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Like electrons, Cooper pairs can carry a monopole charge if the pairing electrons come from two
or more Fermi surfaces with different Chern numbers. In such an instance, a superconductor is
necessarily nodal due to an inherent topological pairing obstruction. In this work, we show that
a similar obstruction is also possible when there is only one Fermi surface involved in the pairing
process. By developing a Chern-vorticity theorem, we have identified a class of Fermi surfaces with
a quantized dipolar Berry flux pattern, where all intra-Fermi-surface Cooper pairings are “dipole-
obstructed” and nodal. As a real-world application, we find that the dipole obstruction plays a
crucial role in stabilizing the superconducting nodal structure for j = 3/2 half-Heusler compounds.

Introduction.— Superconductors (SCs) are generally
classified by the symmetry pattern of their Cooper pairs.
By definition, electron pairing in a conventional s-wave
SC is spatially isotropic, generating a uniform energy gap
of the normal-state Fermi surface (FS) [1]. Meanwhile,
an unconventional SC such as the cuprates can feature a
gapless spectrum when its anisotropic pairing order ∆(k)
has symmetry-enforced zeros in the momentum space [2–
4]. In experiments, the SC gap structure can be feasibly
probed by angle-resolved photoemission spectroscopy [5],
scanning tunneling spectroscopy [6], penetration depth
measurements [7], etc. Such gap information often offers
valuable insights into unraveling the nature of Cooper
pairs for a new SC candidate.

The pairing symmetry, however, does not fully account
for the gap structure of SCs. For example, a SC is
found to be necessarily nodal, once the electrons forming
a Cooper pair come from two FSs with opposite Berry
monopole charges [8–11]. Such an inability to develop a
full energy gap is intrinsic to the topological texture of
the FS, which holds even when ∆(k) is constant. This
striking phenomenon has sparked a growing research in-
terest in uncovering similar mechanisms of topologically
obstructed nodal pairing orders for FSs carrying an Euler
index [12–14] or a Z2 index [15]. Notably, most existing
theories have assumed the obstructed pairings to involve
multiple FSs, while generalizations to intra-FS electron
pairings are less explored.

In this work, we have identified a new class of FSs
where all intra-FS Cooper pairings exhibit topology-
enforced zeros. The FS of our interest encloses a quan-
tized dipole of the Berry curvature [16], i.e., there exists a
Berry flux of ±2π through either half of the FS, while the
net Berry flux vanishes. As a proof of concept, we con-
sider a minimal model with such a Berry-dipole FS and
find all intra-FS Cooper pairings are dipole-obstructed
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from fully gapping out the FS. Specifically, the resulting
SC state always exhibits zero-energy Weyl nodes and/or
nodal loops in the Bogoliubov-de Gennes (BdG) spec-
trum. Finally, we revisit the half-Heusler SCs such as
YPtBi [4, 17] and LuPdBi [18–20], which are believed to
feature a mixed-parity singlet-septet pairing [21]. We find
that the dipole obstruction naturally exists in the septet
pairing channel and further clarify its contribution to the
BdG line nodes observed in experiments.
Chern-Vorticity Theorem and Pairing Zeros.— We

start by presenting a Chern-vorticity theorem that will
guide us to the target FSs. As shown in Fig. 1(a), we
consider two 2D closed or effectively closed manifolds
M1 and M2 in k-space, as well as two Bloch states
|ψ1(k1)⟩ and |ψ2(k2)⟩ with ki ∈ Mi. Here, we define
an open manifold to be effectively closed if the Bloch
states over each of its boundaries are identical. Gener-
ally, M1 and M2 are related by a k-space transforma-
tion {g|t} with k2 = gk1 + t. Here g denotes a point-
group operation (e.g., rotation and mirror) that satisfies
g−1 = gT ∈ R and t is a translation in k-space. We now
consider the matrix element of a general two-particle op-
erator Ô bridging electrons on M1 and M2:

O(k1) = ⟨ψ1(k1)|Ô|ψ2(k2)⟩ = |O(k1)|eiφ(k1). (1)

When φ displays a vortex pattern around k1 = kvi , the
value of O(kvi) necessarily vanishes and is thus topo-
logically obstructed. Such a vortex vi is captured by a
vorticity index around kvi , defined as νi = 1/(2π)

∮
dk1 ·

∂k1
φ(k1) ∈ Z. The Chern-vorticity theorem proven in

the Supplemental Material (SM) [22] dictates that the
net vorticity on M1, ν =

∑
i νi ∈ Z, is determined by

ν = C1 − (det g)C2 + Iφ,

Iφ =
∑

∂M1

∮

∂M1

dk1

2π
· ∂k1

φ(k1), (2)

where Cα is the single-particle Chern number of
|uα(kα)⟩ ≡ e−ikα·rα |ψ2(kα)⟩ on Mα. The loop integral
Iφ is summed over all possible boundaries of M1, which,
by default, vanishes for a closed M1.
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FIG. 1. (a) The Chern-vorticity theorem informs the phase

vortex of Ô when projecting onto two closed or effectively
closed manifolds M1,2. (b) Berry-dipole FSs for h0, where
the arrows denote the Berry curvature vectors on the FS.
A change of µ or Σ can modify the FS topology, while the
quantization of Berry dipole always remains robust.

Focusing on SCs, we choose |ψ1(k1)⟩ = |ξ(e)1 (k1)⟩ and
|ψ2(k2)⟩ = |ξ(e)⋆2 (k2)⟩ in order to properly project the

pairing operator Ô, since Ô physically describes hoppings

between electrons and holes. Here, |ξ(e)α (kα)⟩ is the Bloch
state of electrons on the Fermi surface Mα. It is crucial
to note that C2, the Chern number for |ψ2(k2)⟩, is ex-

actly opposite to C(e)
2 , the electronic Chern number for

|ξ(e)2 (k2)⟩ on M2 [22]. As a concrete example, we imme-
diately arrive at ν = 2 when (i) M1,2 are both closed FSs
with C1 = C2 = +1 and (ii) g is the spatial inversion with
det g = −1, which exactly corresponds to the obstructed
nodal pairing for monopole SCs in Ref. [9]. Therefore,
the Chern-vorticity theorem manifests as a natural gen-
eralization of Ref. [9], but its application transcends the
realm of SC systems with inter-FS pairings [23–25].

Berry-Dipole Fermi Surface.— The above Chern-
vorticity theorem suggests that for a single Fermi sur-
face M ≡ M+ ∪M−, the intra-FS pairing between two
patchesM± can be topologically obstructed if each patch
is effectively closed and carries a nonzero quantized Berry
flux. Further requiring the net Berry flux to be zero, we
are thus looking for a FS with a quantized dipolar texture
of Berry curvature, i.e., a Berry-dipole FS [16, 26–29].

As discussed in Refs. [16, 26] and reviewed in the
SM [22], quantization of a Berry-dipole can be achieved
by enforcing a mirror symmetry along the dipole axis. As
a concrete example, we consider a minimal model with
Berry-dipole physics proposed in Ref. [16],

h0 = 2kz(kxσx + kyσy) + (k2x + k2y − k2z +Σ)σz. (3)

Besides mirror symmetry along z-direction Mz = iσz, h0

respects a continuous rotation symmetry around z with
Cθ = exp[−iJzθ], where Jz = diag(3/2, 1/2) is a diagonal
matrix. Regularizing h0 will reduce the symmetry group
to C4h, which will be exploited for later pairing analysis.
When Σ > 0, h0 describes a 3D minimal Weyl semimetal
(WSM) with two Weyl nodes at kz = ±

√
Σ, respectively.

At Σ = 0, the Weyl nodes merge at Γ to form a quadratic
band touching. The annihilation of Weyl nodes, however,
does not lead to a mass generation for the low-energy
electrons. Instead, we note that h0 with Σ < 0 features
a 1D doubly degenerate nodal loop in the kz = 0 plane,
i.e., a nodal-loop semimetal (NLSM). This unexpected
robustness of Weyl nodes arises from the Berry-dipole
delicate topological charges [16, 26].
Let us generally denote the FS patch with kz > 0

(kz < 0) as M+ (M−). For |µ| > |Σ|, we always find a
single spherical-like FS M regardless of the value of Σ,
where M+ and M− are hence the north and south hemi-
spheres, respectively. Undergoing the Lifshitz transition
with |µ| < |Σ|, the WSM with Σ > 0 comprises a pair of
closed spherical FSs (i.e., M±), while a single torus-like
FS is found for the NLSM (Σ < 0) with M± now be-
ing both open and of an annulus shape. Evidently, the
boundaries of M+ and M−, if present, are always sitting
in the kz = 0 plane regardless of Σ. Consequently, the
eigenstates of h0 along each boundary can always be uni-
form, owing to the Mz symmetry. Hence, we conclude
that M+ and M− must be either closed or effectively
closed for all choices of µ and Σ. This guarantees the
FS(s) of h0 to always feature a quantized Berry dipole,
as explicitly confirmed in Fig. 1(b).
Dipole-Obstructed Pairing.— We are now ready to ex-

plore Cooper pairing physics on the above Berry-dipole
FS by updating h0 to a BdG Hamiltonian,

H(k) =

(
h0(k)− µ ∆(k)
∆†(k) µ− hT0 (−k)

)
. (4)

The pairing matrix generally takes the form ∆(k) =
d0(k)σ0 + d(k) · σ and the Fermi statistics requires
∆(k) = −∆T (−k). For our purpose, we consider ex-
panding di(k) up to O(k2) and classify all pairing chan-
nels based on the irreducible representations (irreps) of
C4h group in Table. I [22]. For |µ| > |Σ|, ∆(k) describes
the intra-FS pairings (as there is only one FS). Following
Eq. 1, the projected Cooper pairing onto M± is given by

∆eff = ⟨ξ(e)+ (k)|∆(k)|ξ(e)⋆− (−k)⟩, where |ξ(e)± ⟩ are normal
states over M±.
We first note that a general pairing with Iφ = 0 must

be topologically obstructed since ν = C1+C2 = 2sgn(µ),
which directly applies to all σx,y pairings. To see this,

note that |ξ(e)± (kz = 0)⟩ must be eigenstates of σz, since
h0|kz=0 ∼ σz. As a result, any ∆(k) ∼ σx,y will vanish on
the equator upon projection, further leading to Iφ = 0.
Meanwhile, the σ± component of ∆(k) can contribute to
Iφ by the winding phase of d+ (d−) around the equator
for µ > 0 (µ < 0), so long as d±(kz = 0) ̸= 0. Here,
we have defined σ± = (σ0 ± σz)/2 and d±(k) = d0(k)±
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Ag Bg
1Eg

2Eg Au Bu
1Eu

2Eu

(k2
x − k2

y)σy ∆0σy kzk−σy kzk+σy k±σ± k∓σ± kzσ− kzσ+

kxkyσy kzσx k−σx k+σx

TABLE I. Pairing classification for Berry-dipole FS following
the C4h irreps. For Bg-pairing, dy = ∆0 is a constant.

dz(k). Based on Table. I, it is straightforward to see that
Au and Bu pairings are the only two pairing channels
that can contribute to Iφ. Since d±(k) must be an odd
function of k± = kx± iky for both Au and Bu irreps, the
corresponding phase winding of d± around the equator
must be (4m+1)π withm ∈ Z [22]. This necessarily leads
to a non-zero odd-integer-valued ν for all relevant Au and
Bu pairings. Since all other pairings feature Iφ = 0 and
ν = 2, we conclude that all intra-FS pairing channels for
the Berry-dipole FS are obstructed and nodal.

As a concrete example, let us focus on ∆ = dx(k)σx
to explicitly illustrate the dipole-induced obstruction and
relegate the discussions on other pairing channels in the
SM [22]. Without loss of generality, we set Σ = 0 and the

FS at µ ̸= 0 is a sphere of radius
√

|µ|, which can be pa-
rameterized by a polar angle θ ∈ [0, π] and an azimuthal
angle ϕ ∈ [0, 2π). For µ < 0, we find the electron wave-
function to be |ξ(e,I)(k)⟩ = (− cos θe−iϕ, sin θ)T , which is
a constant spinor (0, 1)T at the equator. Under this gauge
choice, M± are both effectively closed, while |ξ(e,I)(k)⟩
becomes singular at the north pole (θ = 0). This implies
an obstruction to define a globally smooth gauge, thanks
to the non-zero Chern number on each hemisphere.

To ensure the wavefunction is merely locally singu-
lar, we consider |ξ(e,I)(k)⟩ for θ ∈ [π4 ,

3π
4 ], and choose

a different gauge choice for θ ∈ [0, π4 ] ∪ [ 3π4 , π] with

|ξ(e,II)(k)⟩ = (− cos θ, sin θeiϕ)T . Straightforward cal-
culations lead to:

∆
(I)
eff = dxe

iϕ sin 2θ, ∆
(II)
eff = dxe

−iϕ sin 2θ. (5)

Apparently, ∆eff features two zeros on M+, one at the
north pole and another at the equator. Based on the

form of ∆
(II)
eff , it is easy to see that the vorticity of the

north-pole zero is ν0 = −1. Meanwhile, the vorticity for
the equator zero is also −1, which can be achieved by

performing a clockwise loop integral of the phase of ∆
(I)
eff

at θ = π
2 − ϵ [22]. Together, we find the net vorticity

ν = −2 for M+, which is consistent with the prediction
of the Chern-vorticity theorem.

We now make a few remarks. First of all, the vorticity-
induced pairing zeros always exist, regardless of the de-
tailed form of dx(k). The zeros of dx(k) itself may lead
to additional zeros of ∆eff, beyond the topologically ob-
structed ones. Second, we highlight that the counting
of ν for intra-FS pairing does depend on a special gauge
choice with which M± are effectively closed. Crucially,
Mz symmetry guarantees the existence of such a gauge
in our case [22], ensuring the ν counting is always pos-
sible. Apparently, the nodal structure of ∆eff must be
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FIG. 2. Superconducting gap on the FS. (a)-(c) shows the
projected pairing gap for NLSM (Σ = −0.1) with µ =
−0.2,−0.1,−0.05, respectively. (d)-(f) shows the projected
pairing gap for WSM (Σ = 0.1) with µ = −0.2,−0.1,−0.05,
respectively. Note that a Lifshitz transition occurs at |µ| =
|Σ| where the number of FSs changes.

gauge-invariant. Therefore, applying the Chern-vorticity
theorem under a proper gauge thoroughly informs the
obstructed pairing zeros that are gauge-independent.
Finally, let us take the 2Eu pairing dx(k) = k+ as an

example to numerically explore the nodal nature of the
obstructed SC phases. In Fig. 2, we plot the pairing gap
function on the corresponding FS and track its evolution
as a function of Σ and µ, where the BdG Weyl nodes and
nodal loops are highlighted in black. When |µ| > |Σ|,
we find a single sphere-like FS for both NLSM (Σ < 0)
and WSM (Σ > 0), which exhibits both a BdG nodal
loop at the equator and a pair of BdG Weyl nodes at
the poles. This directly follows our analysis of vorticity
counting. Further reducing |µ| triggers a Lifshitz transi-
tion for NLSM, which makes the point nodes merge. Sur-
prisingly, the merging of these oppositely charged Weyl
nodes leads to a second nodal loop at kz = 0. This is in
contrast with the expected pair annihilation process in
conventional Weyl SCs, as shown in the SM [22]. Mean-
while, a similar Lifshitz transition for WSM shrinks the
BdG nodal loop to a point, which further splits into a
pair of Weyl nodes. This robust conversion between Weyl
nodes and nodal loops for the BdG bands directly arises
from the effective closedness of M± [22], which is remi-
niscent of similar behaviors in its normal state h0 [26].
Application to j = 3/2 SCs. — As a real-world exam-

ple, we now demonstrate that the BdG line nodes of half-
Heusler-based j = 3/2 SCs such as YPtBi and LuPdBi
are deeply rooted in the mechanism of dipole obstruction.

We start with a generalized Luttinger-Kohn Hamilto-
nian as a normal state of interest [30, 31],

h
(α)
L (k) = −

√
3α(k2x − k2y)γ1 − 2

√
3αkxkyγ2

− 2
√
3kzkxγ3 − 2

√
3kzkyγ4 +M(k)γ5, (6)

where γ1 = τxσ0, γ2 = τyσ0, γ3 = τzσx, γ4 = τzσy,
γ5 = τzσz, and M(k) = k2x + k2y − 2k2z . When α = 1,
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h
(1)
L recovers the standard isotropic Luttinger semimetal,

which nicely captures the low-energy normal state of gen-
eral j = 3/2 half-Heusler SCs. While several candidate
pairing channels have been theoretically proposed [32–
36], a recent experiment reports a doping-dependent
nodeless-to-nodal transition in LuPdBi [20]. This obser-
vation strongly supports the mixed-parity singlet-septet
pairing ∆̃(k) = ∆̃s + ∆̃p [21], with ∆̃s = i∆sτxσy and

∆̃p = ∆p

(
3

4
k−τzσ+ +

3

4
k+τzσ− +

√
3

2
kzτ0σx

+

√
3

4
k+τxσ+ −

√
3

4
k−τxσ−

)
, (7)

which belongs to the A1 irrep of Td group. Specifically,

with just ∆̃p, the BdG spectrum of h
(1)
L displays point

nodes at kx,y,z axes [c.f. Fig. 3(b)]. Turning on ∆̃s fur-
ther inflates the point nodes into nodal loops, eventually
leading to a full gap when ∆̃s dominates. However, why
the p-wave pairing can lead to point nodes can be quite
puzzling. For example, let us set ∆s = 0 and focus on the
BdG physics along the kz axis. While ∆̃p ∼ kzτ0σx ̸= 0
for kz ̸= 0, the existence of point nodes implies that the
projection of ∆̃p(0, 0, kz) onto the FS must vanish.

To trace the origin of these point nodes, we note that

when α = 0, h
(0)
L (k) ∼ τz ⊗ h0(k) exactly describes a

Dirac-dipole semimetal [37] that comprises two decou-
pled copies of the Berry-dipole Hamiltonian at Σ = 0,
up to some parameter rescaling. The block-diagonal

nature of h
(0)
L (k) suggests an emergent spin conserva-

tion symmetry U(1)s generated by Sz = τzσ0, with
which the two Berry-dipole blocks are carrying oppo-
site spins. Note that an α ̸= 0 generally reduces U(1)s
to the time-reversal symmetry T = iτxσyK, with K the

complex conjugation. Besides, h
(0)
L (k) fully inherits the

C4h symmetry of h0 with an updated rotation generator
Jz = diag( 32 ,

1
2 ,− 1

2 ,− 3
2 ) and Mz = iτ0σz. For a finite µ,

the Dirac-dipole semimetal features a pair of decoupled
FSs, one for each spin sector. Hence, all intra-FS pairings
are intra-spin pairings, and vice versa.

Notably, the first three terms of ∆̃p(k) describe the
intra-spin pairing process. Within each spin sector, these
pairings correspond to the Bu pairings in Table I, all of

which are hence dipole-obstructed for h
(0)
L (k). Applying

the Chern-vorticity theorem in Eq. 2, we find this set
of intra-spin pairing terms to carry a nontrivial pairing
vorticity of ν = −1 [22], which strictly enforces pairing
zeros (or equivalently point nodes) on both the north and
south poles of the FS. Meanwhile, the remaining pairing
terms of ∆̃p(k) are inter-spin and exhibit no obvious vor-
tex pattern. Nonetheless, both inter-spin pairings vanish
on the kz axis and their existence is thus invisible to
the dipole-obstructed pairing zeros. In Fig. 3(a), we nu-

merically confirm the predicted pairing zeros of ∆̃p(k)
by mapping out the pairing gap on the FS of the Dirac-
dipole semimetal.

We now revisit the isotropic limit (α = 1) that the
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FIG. 3. Superconducting gap over the FS of (a) a Dirac-
dipole semimetal; (b) a Luttinger semimetal with (∆s,∆p) =
(0, 0.05); and (c) a Luttinger semimetal with (∆s,∆p) =
(0.01, 0.05), at µ = −0.2. (d) Spectrum along a path on FS
indicated by the green arrow in (c). The purple dots highlight
the band degeneracies induced by the dipole obstruction.

j = 3/2 SCs follow. Since all α-relevant terms in h
(α)
L

vanish on the kz axis, turning on α will not disrupt the
obstructed pairing zeros in the Dirac-dipole limit. More-

over, h
(1)
L (k) respects a larger symmetry group (e.g., Td)

than that of h
(0)
L (k), which features a three-fold rotation

C3,111 that permutes kx, ky, and kz. Hence, BdG point
nodes should also emerge at both kx and ky axes, which
is explicitly confirmed in Fig. 3(b). In other words, C3,111

enables us to designate any of the kx,y,z-axes as the C4-
rotation axis for the previous Dirac-dipole discussion. In
this case, all of the six p-wave-induced point nodes for
j = 3/2 SCs have a dipole-obstructed origin.

Finally, let us turn on a subdominant ∆̃s to achieve
the BdG line nodes, as shown in Fig. 3(c). Specifically,

∆̃s lifts the spin-degeneracy of FSs by breaking the inver-
sion symmetry, which leads to accidental inter-FS band
crossings that manifest as line nodes. While the dipole-
obstructed pairing nodes [purple dots in Fig. 3(d)] now

show up at a finite energy E = ±∆̃s, their existence en-
sures the BdG line nodes to necessarily show up even
for an arbitrarily small ∆̃s. Note that we have omitted
a small asymmetric spin-orbit coupling (ASOC) term in
Eq. 6, which is intrinsic to zinc-blende materials. While
the ASOC is key to mixing s and p-wave pairings, its ef-
fect on the BdG band spectrum is similar to that of the
s-wave pairing. A detailed discussion on the ASOC term
can be found in the SM [22].

Discussions.— To summarize, we have established a
general theoretical framework for comprehending topo-
logically obstructed nodal pairing over a single FS. This
leads us to uncover a class of Berry-dipole FSs where the



5

SC state induced by any intra-FS pairing will be dipole-
obstructed and nodal. The hidden Berry-dipole physics
in the Luttinger-Kohn model further motivates us to ex-
plore the j = 3/2 pairings in half-Heusler SCs. Focusing
on the singlet-septet pairing channel, we find that the
dipole obstruction contributes significantly to the BdG
line nodes observed in experiments. Notably, Berry and
Dirac dipoles, as well as Luttinger semimetals, have been
recently established as critical points for delicate topolog-
ical phases [16, 31, 37]. Therefore, our dipole-obstructed
pairing offers the first example of how delicate topologi-
cal bands can decisively impact the correlated electronic
orders in real-world quantum materials.

We emphasize that our Chern-vorticity theorem goes
beyond SCs and applies to general electronic orders such
as charge-density waves, excitons, magnetism, etc. It
would be interesting to explore possible dipole-obstructed
phenomena in other non-superconducting Luttinger
semimetals such as HgTe [38] and Pr2Ir2O7 [39]. Be-
sides, we find many inter-spin pairings for the j = 3/2
system to feature emergent nodal structures in the BdG
spectrum, despite carrying no vortex structure. As elab-
orated in the SM [22] for the Dirac-dipole model, these
“unobstructed” pairing zeros arise from the geometric
textures of the Bloch states on the FSs, which are be-
yond the scope of the Chern-vorticity theorem. How to
interpret these geometry-relevant nodal pairings is an ab-
solutely intriguing question for future research.
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[11] E. Muñoz, R. Soto-Garrido, and V. Juričić, Monopole
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Shubnikov-de haas oscillations, weak antilocalization ef-
fect and large linear magnetoresistance in the putative
topological superconductor lupdbi, Scientific reports 5,
9158 (2015).

[20] K. Ishihara, T. Takenaka, Y. Miao, Y. Mizukami,
K. Hashimoto, M. Yamashita, M. Konczykowski, R. Ma-
suki, M. Hirayama, T. Nomoto, R. Arita, O. Pavlosiuk,
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S1. PROOF OF CHERN-VORTICITY THEOREM

We prove the Chern-vorticity theorem for

O(k1) = ⟨ψ1(k1)|Ô|ψ2(k2)⟩ = |O(k1)|eiφ(k1). (S1)

by constructing a vector:

S = ∂k1
φ(k1)−A1(k1) + gTA2(k2), (S2)

where

Aa(ka) = i⟨ψa(ka)|∂kaψa(ka)⟩, a = 1, 2, (S3)

is the Berry connection. Importantly, vector S is invariant under the U(1) gauge transformation |ψa(ka)⟩ →
eiαa(ka)|ψa(ka)⟩ with a = 1, 2. If there is a nonzero Chern-number of |ψ1(k1)⟩ (|ψ2(k2)⟩) on effectively closed
M1 (M2), then A1(k1) (A2(k2)) cannot be globally smooth over the entire manifold. Without loss of generality, one
can have two locally smooth gauge patches over the manifold as illustrated for an annulus geometry in Fig. S1(a).

∗ zhu.3711@osu.edu
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Then, across the boundary (i.e., L0 in Fig. S1(a)) of the two patches, there are singularities of A1(k1) and A2(k2)
such that

lim
δ→0

(∫

L0+δ

−
∫

L0−δ

)
A1(k1) · dk1 = 2πC1,

lim
δ→0

(∫

g(L0+δ)+t

−
∫

g(L0−δ)+t

)
A2(k2) · dk2 = 2π(det g)C2.

(S4)

Here, det g shows up in the second equation above because we have defined C1 and C2 over M1 and M2 under the
same orientation-choice, e.g., for a 2D closed surface in 3D, we choose the normal vectors of M1 and M2 both to
point outward from their enclosed region. If g is an improper transformation such as inversion, det g = −1 and the

path integral limδ→0

(∫
g(L0+δ)+t

−
∫
g(L0−δ)+t

)
A2(k2) ·dk2 will correspond to the Chern number defined with respect

to normal vectors pointing inwards the enclosed region as illustrated in Fig. S1(b), which is opposite to C2.

Patch II

Patch I

𝑏!
𝑏"

𝜓

𝜓𝑒#$!%

Patch II

Patch I

𝑏!
𝑏"

L0

𝜕vortex

M1 M2

𝒌 = (0,0,0)
𝑔=spatial in

version

(a)

(b)

L0 � �

L0 + �

g(L0 � �)

g(L0 + �)

FIG. S1. (a) Illustration of the two gauge patches over an annulus geometry, and the paths for the line integrals. The purple
crosses represent vortex of O(k1). The inner (outer) blue dashed circle represents L0 + δ (L0 − δ). (b) Illustration of the
orientation of the Berry flux over M2 associated with the path integral in Eq. (S4) when g is an spatial inversion symmetry.
The red and blue arrows denote the positive direction of the Berry flux.

In contrast to the Berry connection, S is gauge invariant, and thus is continuous across the gauge patch boundary,

i.e., limδ→0

(∫
L0+δ

−
∫
L0−δ

)
S · dk1 = 0. Consequently, ∂k1φ(k1) must have its own singularities (i.e., vortices) to

cancel or balance those from the Berry connection, which leads to

lim
δ→0

(∫

L0+δ

−
∫

L0−δ

)
∂k1φ · dk1 = lim

δ→0

(∫

L0+δ

−
∫

L0−δ

)
[A1(k1)− gTA2(k2)] · dk1

= lim
δ→0

(∫

L0+δ

−
∫

L0−δ

)
A1(k1) · dk1 − lim

δ→0

(∫

g(L0+δ)+t

−
∫

g(L0−δ)+t

)
A2(k2) · dk2

= 2π(C1 − (det g)C2).

(S5)

As illustrated in Fig. S1(a), the net vorticity of O(k1), defined as ν =
∑

vortex

∮
∂vortex

∂k1
φ · dk1, can be calculated
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through line integrals over L0 ± δ and b1,2:

ν =
1

2π

(∮

b2

−
∮

b1

)
∂k1

φ · dk1 +
1

2π
lim
δ→0

(∫

L0+δ

−
∫

L0−δ

)
∂k1

φ · dk1

= C1 − (det g)C2 +
1

2π

(∮

b2

−
∮

b1

)
∂k1

φ · dk1

(S6)

Rewriting 1/(2π)
(∮

b2
+
∮
b1

)
∂k1

φ · dk1 formally as 1/(2π)
∑

b

∮
b
∂k1

φ · dk1 results in the Chern-vorticity theorem

depicted in Eq. (2) in the main text.

For SC systems where |ψ2(k2)⟩ = |ξ(e)⋆2 (k2)⟩,

A2(k2) = i⟨ξ(e)⋆2 (k2)|∂k2ξ
(e)⋆
2 (k2)⟩ = −i⟨ξ(e)2 (k2)|∂k2ξ

(e)
2 (k2)⟩,

and thus

C2 ≡ lim
δ→0

(∫

−L0+δ

−
∫

−L0−δ

)[
−i⟨ξ(e)2 (k2)|∂k2

ξ
(e)
2 (k2)⟩

]
· dk2,

which is opposite to the Chern number of electronic Bloch states |ξ(e)2 (k2)⟩.

S2. MIRROR SYMMETRY AND QUANTIZED BERRY-DIPOLE FLUX IN TWO-BAND
TIGHT-BINDING MODELS

In this part, we prove that the mirror symmetry can quantize Berry-dipole flux over the FS [1, 2] for general
two-band models. Let us consider a general two-band Hamiltonian with H(k) = h(k) ·σ that respects a ẑ-directional
mirror symmetry Mz = iσz. Here σ = (σx, σy, σz) are Pauli matrices. Crucially, Mz requires hx,y(−kz) = −hx,y(kz)
and hz(−kz) = hz(kz). For a spherical-like FS M enclosing Γ = (0, 0, 0), we denote M0 as the 1D “equator” at
kz = 0 [i.e., the black loop in Fig. (1))(b) in the main text] and M± as the FS patches with kz > 0 and kz < 0,
respectively. Since Mz requires H(kz = 0) to be diagonal, either valence or conduction states along M0 shall be
identical, up to an unimportant U(1) phase. In other words, by choosing a proper gauge to eliminate this U(1) phase,
the 1D equator M0 is topologically equivalent to a 0D point, and both M± are then effectively closed 2D manifolds,
over which the Berry flux must be quantized. Please note that this quantization condition does not generally apply
to N -band models with N > 2, which may require additional symmetry protection.

S3. COOPER PAIRINGS OF BERRY-DIPOLE FERMI SURFACE

The general pairing matrix for a Berry-dipole system is given by

∆(k) = dx(k)σx + dy(k)σy + d+σ+ + d−σ−, (S7)

where σ± = (σz ± σ0)/2. The Fermi statistics requires ∆(k) = −∆T (−k), and thus dx,±(k) (dy(k)) are (is) odd
(even) in k.

Note that when Σ = 0 in Eq. (3) of the main text, M± are hemispheres and the only boundary for both of them
is the equator. This corresponds to the case where b1 in Fig. S1(a) shrinks into a point.

A. Projection onto FS

Utilizing the gauge patterns and the wavefunction specified in the main text, we can derive a simple formula for

∆eff = ⟨ξ(e)⋆− (−k)|∆(k)|ξ(e)+ (k)⟩ in the two gauge patches:

∆eff,I = dxe
iϕ sin 2θ − (d+e

2iϕ cos2 θ + d− sin2 θ),

∆eff,II = dxe
−iϕ sin 2θ − (d+ cos2 θ + d−e

−2iϕ sin2 θ).
(S8)

The consequence of each pairing channel is summarized as follows:
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• dx channel has zeros at θ = 0, π/2, π. If we count the vorticity on M+ following Eq. (S6), we will find a net
vorticity −2: Phase winding 2π of ∆eff,I indicates a vorticity −1 in patch I, and the −2π of ∆eff,II indicates a
vorticity −1 in patch II. This is because there is a sign difference between the integrals over L0 + δ and L0 − δ
in the definition of the vorticity [c.f. Eq. (S6)]. Please note that the above counting of ν = 2 has NOT taken
into account the explicit expression of dx(k), which can update ν via the boundary integral Iφ.

• dy channel vanishes uniformly when projecting onto the Fermi surface.

• d+ and d− channels both manifest zeros at θ = π/2 (equator) and θ = 0, π (poles), of which the vorticity can
be counted in the same way as that of dx pairing.

For a general ∆(k) that consists of non-zero dx and d± components, the pairing zeros can appear at arbitrary
positions. As an example, we study dx = kz and d± = k∓, where k± = kx ± iky. Substituting these into Eq. (S8), we
solve

∆eff,I = 0 = eiϕ cos θ sin 2θ − eiϕ sin θ cos2 θ − eiϕ sin3 θ, (S9)

which gives us zeros at θ = 0, π/4, 3π/4, π. This can be understood in the following way: (1) When dx is the only
nonzero term, there are zeros at the poles and the equator; (2) When d± are turned on, the zeros at the equator are
separated into two loops at general latitude. In this case, the boundary term in Eq.(2) is determined by the phase
winding of d− over the equator, which contributes +1 to ν according to Eq. (S6). Since the C1 − (det g)C2 = −2 for
µ < 0, the net vorticity in this case is −1. Importantly, the nodal points observed at poles in this example are the
origin of those observed in LSM, as discussed in the main text.

B. Symmetry analysis and robust nodal points under certain channels

Here, we first examine the C4h point symmetry group as specified in the main text and discuss the constraints
imposed on pairings (i.e. dx,y,± in Eq. (S7)). The character table for C4h is shown in Table. I. In SC systems, we call
pairing ∆(k) is an irreducible representation (irrep)/symmetric channel of C4h group if

G̊∆(k)G̊T = αG∆(Ǧk), ∀G ∈ C4h, (S10)

where G̊ (Ǧ) is the representation of G in the Hilbert space of electrons (momentum space), and αG is the character
of G given by the body of Table. I. Different irreps/symmetric channels correspond to different representations of

symmetry operators (denoted as Ǵ) for the BdG Hamiltonian, i.e.,

Ǵ =

(
G̊
αG G̊⋆

)
(S11)

First, for irreps/symmetric channels Ag, Bg,
1Eg,

2Eg (Au, Bu,
1Eu,

2Eu), dx,y,± are enforced to be even (odd) in
k because Pσx,y,±PT = σx,y,±. Combining with the requirements of Fermi statistics, we conclude that dx,± (dy)
vanish(es) for irreps/symmetric channels Ag, Bg,

1Eg,
2Eg (Au, Bu,

1Eu,
2Eu). Since the dy term vanishes uniformly

when projecting onto the FS, we should next focus on irreps/symmetric channels Au, Bu,
1Eu,

2Eu and consider the
constraints from C4. In our case, C4 acts on Pauli matrices as

C4σ±C
T
4 = ±iσ±, C4σx,yC

T
4 = −σx,y. (S12)

Consequently, dx/±(k) = βx/±dx/±(C4k), here βx/± is determined by the character of C4: βx = −αC4 , β± = ∓iαC4 .
Importantly, (i)in irreps/symmetric channels where βx,± ̸= 1, dx,± must vanish at the poles of the FS which are C4

fixed points; and (ii) in irreps/symmetric channels where βx,± = ±1, dx,± are even in (kx, ky) and thus must be odd
in kz. Consequently, dx,± vanish at the equator where kz=0. Following points (i-ii), we can conclude that for irreps
Au and Bu, dx vanishes when kz = 0, and d± vanish at the poles (kx = ky = 0) of the FS. In contrast, for irreps
1,2Eu, dx vanishes at poles, and d± vanish when kz = 0 plane.
For |µ| > |Σ| where the FS of h0 is always singly connected and sphere-like, the normal states are identically

(1, 0)T ((0, 1)T ) for µ > 0 (µ < 0) over the equator of the FS at kz = 0 plane. Hence, ∆eff = d+(d−) for µ > 0
(µ < 0). Consequently, the irreps 1,2Eu with vanishing d± corresponds guarantees the boundary term in Eq. (2) of
the main text to be zero. However, the irrep Au (Bu) can have nonzero d± with β± = ∓i(±i). Considering the
constraints imposed by C4 rotation symmetry, a smooth pairing factor, d±, in irrep Au (Bu) will generally takes the
form d± =

∑
m,n fm,nk

m
+ k

n
− with m − n = 4p ± 1 (m − n = 4p ∓ 1) and m,n, p to be integers. Assuming kx and ky
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Ag Bg
1Eg

2Eg Au Bu
1Eu

2Eu

C4 1 −1 −i +i 1 −1 −i +i

P 1 1 1 1 −1 −1 −1 −1

TABLE I. Character Table for C4h.

𝑘! 𝑘"

𝑘#

0 10.80.60.40.2

gap/max	(gap)

𝜇0

FIG. S2. Superconducting gap over the FS for Σ = −0.1 and pairing kzσx+k−σ++k+σ− belongs to the Bu irrep, with various
chemical potentials µ = −0.25,−0.15,−0.1,−0.05.

are small, which is automatically valid for our discussion on k ·p models, the phase winding of d± will be determined
by the leading term with smallest m + n, and generally takes the value 4p ± 1 ( 4p ∓ 1 ) times of 2π where p is an
integer. Therefore, the boundary term in Eq. (2) of the main text either has no contribution or contributes an odd
number to ν.

For |µ| < |Σ|, the WSM case (Σ > 0) has two spherical FSs with no boundaries. Therefore, the inter-FS pairings
are always nodal due to the Chern-vorticity theorem. However,the NLSM case (Σ < 0) has its FS to be a torus, where
each of M+ and M− has two boundaries. Following the discussion in last paragraph, in Au and Bu irreps, each
boundary of M+ (M−) can contribute an odd number to the net vorticity ν. Therefore, the net vorticity can be zero
and the pairings are not necessarily nodal. Indeed, as shown in Fig. S2, when we have pairing kzσx + k−σ+ + k+σ−,
the BdG Hamiltonian is totally gapped when Σ < 0 and |µ| < |Σ|. In conclusion, the Σ < 0 and |µ| < |Σ| case
with pairing channels Au and/or Bu irreps of C4h is the only case where the SC pairing over a singly-connected
Berry-dipole FS is not topologically obstructed.

S4. ANNIHILATION OF NODAL POINTS UPON VARYING FERMI LEVEL IN NORMAL WEYL
SEMIMETALS

Here, we study a minimal, inversion symmetric model for the Weyl semimetal:

hwsm(k) = kxσx + kyσy + (m− 1/2(k2x + k2y + k2z))σz, (S13)

and the corresponding BdG Hamiltonian:

Hwsm(k) =

(
hwsm(k) ∆(k)

∆†(k) −hTwsm(−k)

)
. (S14)

To make a direct comparison with the Berry-dipole WSM discussed in the main text, we focus on the same pairing
∆(k) = (kx + iky)σx, and calculate the SC gap over the FS for various chemical potentials. As shown in Fig. S3, the
two nodal points merge and annihilate each other upon decreasing µ (µ < 0). This is fundamentally distinct from the
node-loop conversion found for the Berry-dipole FS in the main text.
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𝑘! 𝑘"

𝑘#

0 10.80.60.40.2

gap/max	(gap)

𝜇0

FIG. S3. Superconducting gap over the FS for Hwsm(k) with m = 0.1 and various chemical potentials µ = −0.2,−0.1,−0.05.
In this case, the annihilation of BdG Weyl nodes by decreasing µ leads to a full energy gap.

S5. PROJECTION OF INTER-SECTOR PAIRING ONTO FS AND SYMMETRY ANALYSIS

In this section, we analyze the nodal behaviors of inter-sector pairings in Dirac dipole semimetals, consisting of two
copies of Berry-dipole semimetals (h0 in the main text) in opposite orbital sectors (l = ±1):

hDD(k) =

(
h0(k) 0

0 −h0(k)

)
. (S15)

hDD has the C4h × T symmetry as mentioned in the main text. To simplify the analysis, we focus on Σ = 0 and
µ < 0 in the following.

Now the pairing matrix is a 4× 4 matrix, which can be formally described by

∆ = ∆intra +∆inter =

(
∆++ 0

0 ∆−−

)
+

(
0 ∆+−

∆−+ 0

)
. (S16)

The nodal structures of ∆intra trivially duplicate those of Berry-dipole semimetals, and here we focus on ∆inter that
generally takes the form

∆inter(k) = di,j(k)τiσj , i = x, y and j = 0, x, y, z, (S17)

where σx,y,z (τx,y,z) represent Pauli matrices for spin (orbital).

A. Projection onto FS

Under the same gauge used for Berry-dipole semimetals, the eigenstate wavefunctions of hDD in two gauge patches
are

|ξ(e)l=+1,I⟩ = (− cos θe−iϕ, sin θ, 0, 0)T , |ξ(e)l=−1,I⟩ = −(0, 0, sin θ, cos θeiϕ)T ,

|ξ(e)l=+1,II⟩ = (− cos θ, sin θeiϕ, 0, 0)T , |ξ(e)l=−1,II⟩ = (0, 0, sin θe−iϕ, cos θ)T . (S18)

A direct calculation of ∆inter
eff = ⟨ξ(e)l=+1(k)|∆inter|ξ(e)⋆l=−1(−k)⟩ in the two gauge patches gives

∆inter
eff,I = ∆inter

eff,II = [−dy,y + cos 2θdx,x + sin 2θ(dx,z cosϕ+ dy,0 sinϕ)]σx

+ [dx,y + cos 2θdy,x + sin 2θ(dy,z cosϕ− dx,0 sinϕ)]σy.
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Let us first consider each channel independently, and reveal the nodal structures:

• dx,0 and/or dy,0: The pairing vanishes at sin 2θ = 0 or sinϕ = 0. This leads to two intersected nodal loops, one
at kz = 0 (θ = π

2 ) and the other at kx = 0 (ϕ = 0, π).

• dx,z and/or dy,z: Two intersected nodal loops, one at kz = 0 and the other at ky = 0.

• dx,x and/or dy,x: Two parallel nodal loops at θ = π
4 and θ = 3π

4 .

• dx,y and dy,y: No apparent nodal structure.

Since these nodal structures are completely determined by the information of wavefunctions of normal states and
independent of the detials of di,j , we generally refer to them as geometry obstructed nodal pairing. The topologically
obstructed nodal pairing is a special case of the geometry obstructed nodal pairing, where the existence of nodal points
can be attributed to some well-defined topological invariants of the normal states. Importantly, for Dirac semimetals,
dx/y,0, dx/y,z channels are always geometrically-obstructed nodal at poles (θ = 0, π) and the equator (θ = π/2).

B. Symmetry analysis

Next, let us analyze constraints imposed by symmetries on dij . Following Eq. (S10), we identify different pairing
channels as different irreps of C4h × T group. For simplicity, we label each irrep by (Xg/u, αT ), where Xg/u specify
the irrep of C4h. The symmetry operators act on τiσj as

C4τx/yσx,yC
T
4 = sx/yσx,y, C4τx/yσ±C

T
4 = ∓isx/yσ±

UT (τx/yσ0)
⋆UT

T = sx/yσ0, UT (τx/yσx,y,z)
⋆UT

T = −τx/yσx,y,z,
(S19)

where UT = iτxσy is the unitary part of the T . Let us now concentrate on the nodal structures at the poles and the
equator of the FS, which are most relevant to the discussion in the main text. Since dx/y,0/z are already guaranteed
to be nodal at poles and equators by the geometry of normal states, here we list the symmetry constraints for dx/y,x/y
in different irreps:

• (Xg,+1) with X = A,B,1E,2E: First, dx,x and dy,y are ruled out, because Fermi statistics requires them to be
odd in k but spatial inversion symmetry requires them to be even in k. Next, dx,y and dy,x are purely imaginary
because of T . Finally, if X =1 E,2E, dx,y and dy,x are nontrivial irrep of C4 with characters ±i, and thus are
odd in both (kx, ky) and kz. This indicates that dx,y and dy,x vanish both at poles and the equator. For X = B,
dx,y and dy,x are nontrivial irrep of C4 with characters ±i, and thus must vanish at the poles that are C4 fixed
point. For X = A, there is no further constraints, and the system can be gapped out by a s-wave pairing.

• (Xg,-1) with X = A,B,1E,2E: Similar to the first case, except that dx,y and dy,x are enforced to be purely
real by T in this case.

• (Xu,+1) with X = A,B,1E,2E: All anti-symmetric τiσjs are ruled out by the spatial inversion symmetry, and
the only available terms are dx,x and dy,y, which are enforced to be purely real by T . For X =1 E,2E, dx,x and
dy,y are odd in (kx, ky) but even in kz, and thus will vanish at poles. For X = B, dx,x and dy,y are odd in kz
and form nontrivial irrep of C4, and thus they vanish at both the poles and the equator. For X = A, dx,x and
dy,y are odd in kz and thus vanish at the equator.

• (Xu,-1) with X = A,B,1E,2E: Similar to the third case, except that dx,y and dy,x are enforced to be purely
imaginary by T .

The s-wave and p-wave pairing in Eq. (9) of the main text correspond to (Ag,+1) and (Bu,+1), but they fall in the
same A1 irrep of Td group.

S6. PERTURBATIONS FROM ASYMMETRIC SPIN-ORBIT COUPLING

In real materials, the spatial inversion symmetry breaking spin-3/2 pairing happens because of the asymmetric
spin-orbit coupling (ASOC) [3–5]. Here, we consider the perturbative effect of the ASOC on the dipole-obstructed
nodal points. Specifically, we consider the linear Dresselhaus term

hSOC = t(kx(JyJxJy − JzJxJz) + ky(JzJyJz − JxJyJz) + kz(JxJzJx − JyJzJx), (S20)
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FIG. S4. (a-b) Superconducting gap over the FS for a Dirac-dipole semimetal with the p-wave pairing and a Luttinger semimetal
with both s-wave and p-wave pairings, respectively. (c-d) Energy spectra along the green-arrow paths in (a-b). The calculations
are done for µ = −0.2, t = 0.2, ∆s = 0.01, and ∆p = 0.05. The red circles highlight the degeneracy rooted in the dipole-
obstructed intra-sector pairing. Note that the surfaces in (a-b) are FSs with an approximately (but not exactly) constant
energy, which are specifically chosen to better illustrate the nodal structures of projected pairings.

where Jx,y,z are the rotation generators for j = 3/2:

Jx =
1

2




0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0


 , Jy =

1

2




0 −
√
3i 0 0√

3i 0 −2i 0

0 2i 0 −
√
3i

0 0
√
3i 0


 , Jz =

1

2




3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3


 . (S21)

We add hSOC to the Luttinger-Khon model and study its effect on the dipole-obstructed intra-sector pairing, which
manifests as degeneracy highlighted by the purple points in Fig. 3(f) of the main text. We first look at the Dirac-dipole
semimetal with p-wave pairing. As shown in Fig. S4(a) and (c), the nodal points due to the dipole-obstructed intra-FS
pairing at two poles are deformed into nodal loops. Therefore, the effect of the ASOC resembles that of the s-wave
pairing term, which couples the nodal points in different FSs and partially lifts the four-fold degeneracy guaranteed
by the dipole-obstructed intra-pairing. By turning on both α and ∆s, we find that the nodal loop is still robust with
only a slight change to its location on the FS, as shown in Fig. S4(b) and (d).

S7. BERRY-DIPOLE SUPERCONDUCTOR

In this part, we discuss a case where the dipole-obstructed BdG nodal points themselves carry a Berry-dipole
charge. This case is a BdG analog of the Berry-dipole semimetals [1, 2], and thus is referred to as a Berry-dipole
superconductor.

Consider the BdG Hamiltonain in Eq. (4) in the main text, and choose Σ = 0.1 and ∆(k) = kzσx. The normal
states exhibit Weyl points, and thus when |µ| < |Σ|, the FSs are two spheres as shown in Fig. S5(c). Focusing on nodal
points 2 and 3, numerical calculations of Berry phases along the azimuthal direction over Green and Gray Gaussian
surfaces shown in Fig. S5(d) reveal that (i) points 2 and 3 are BdG Weyl nodes [c.f. Fig, S5(e)]; and (ii) they carry
a Berry-dipole charge [c.f. Fig, S5(f)], i.e., on a Gaussian surface surrounding both of the nodes, there is a 2π (−2π)
quantized Berry flux over the upper (lower) hemi-sphere. This Berry-dipole charge clearly puts constraints on pair
annihilation, and thus when nodal points 2 and 3 meet each as we vary the chemical potential, they will become a
nodal loop in kz = 0 plane instead of being gapped out. The Berry dipole charge presents here because ∆(k) = 0 at
kz = 0, and hence all eigenstates of the BdG Hamiltonian are identical on the kz = 0 plane and thus over the equator
of the Gaussian surface surrounding both nodes. Then, the equator of this Gaussian surface can always be viewed as
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FIG. S5. (a)-(c) Superconducting gap over FS for Berry-dipole WSM (Σ = 0.1) at various µ = −0.2,−0.1,−0.05. The numbers
in (c) label the nodal points. (d) Illustration of Gaussian surfaces enclosing nodal points 2 (blue) and 3 (red). (e) Berry phase
versus polar angle over the green spheres in (c), where the blue (red) circles are calculated for the blue (red) nodal point in
(c). (f) Berry phase versus polar angle over the gray ellipsoid in (c).

a point, and each half of this Gaussian surface is effectively closed. Consequently, the Berry flux will be quantized
over each half of the Gaussian surface.

We note that this Berry-dipole superconductor is not a symmetry-protected crystalline superconducting phase,
because we can include symmetric d±σ± pairings to make the eigenstates over the equator momentum-dependent.
The C4h symmetry considered in our work cannot isolate kzσx pairing and rule out all others. Thus, it could
be an interesting direction to search for symmetry-protected Berry-dipole superconductors and conduct relevant
classification studies.
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