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Utilizing a series of Bott indices formulated through polynomials of position operators, we estab-
lish a comprehensive framework for characterizing topological zero-energy corner states in systems
with chiral symmetry. Our framework covers systems with arbitrary shape, including topological
phases that are not characterizable by previously proposed invariants such as multipole moments
or multipole chiral numbers. A key feature of our framework is its ability to capture the real-space
pattern of zero-energy corner states. We provide a rigorous analytical proof of its higher-order
correspondence. To demonstrate the effectiveness of our theory, we examine several model systems
with representative patterns of zero-energy corner states that previous frameworks fail to classify.

The exploration of higher-order topological phases
(HOTPs), encompassing insulators [1–12], semimet-
als [13–17], and superconductors [7, 8, 18–24], ex-
tends beyond the realm of first-order topological
phases [25], suggesting a generalized bulk-boundary cor-
respondence [26, 27]. Higher-order multipoles [1, 4, 6],
such as quadrupole qxy, have been introduced to charac-
terize the corner states in higher-order topological insu-
lators (HOTIs). A notable development is the introduc-
tion of the multipole chiral number [28], aimed at cap-
turing the higher-order topology of chiral-symmetric sys-
tems. However, limitations and inconsistencies in these
advancements have been identified, as detailed in recent
studies [29–34]. Specifically, studies [30, 31, 35] have re-
ported a breakdown in the correspondence between the
quadrupole moment (equivalently, the multipole chiral
number) and HOTPs in chiral symmetric systems, due
to the lack of an exact correspondence relationship. Fur-
thermore, a unified characterization of HOTPs in sys-
tems with arbitrary shape has not been provided. Addi-
tionally, a variety of patterns of higher-order topolog-
ical states can emerge. For instance, consider a sce-
nario where a topological Benalcazar-Bernevig-Hughes
model [1] is coupled with a chiral-symmetric system pos-
sessing zero-energy corner states (ZECSs) located diag-
onally in a sqaure system [8, 36] while preserving chiral
symmetry. The combined system exhibits varying num-
bers of ZECSs localized at different corners. We refer
to this variability in the distribution of corner states as
the ‘pattern of corner states’, as illustrated in Fig. 1.
However, unlike the well-established first-order topolog-
ical classification [25], these patterns of ZECSs still lack
a comprehensive theoretical framework for their charac-
terization.

In this Letter, we address all the questions mentioned
above and provide a framework to characterize all the
possible patterns of ZECSs with an exact relationship.
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Our approach involves a series of Bott indices defined by
polynomials of position operators. It provides a universal
characterization of chiral-symmetric n-th (n is the system
dimension) order topological phases for system shapes
with m corners (m > 1 is an arbitrary integer), including
the patterns of corner states. Thus, our work establishes
an exact correspondence between those Bott indices and
ZECSs.
Bott indices and polynomials of position operators.—

We consider a Hamiltonian H in an n-dimensional lat-
tice with chiral symmetry ΠHΠ−1 = −H, where Π is a
unitary matrix representing the chiral operator. We take
the eigenbasis of Π and rewrite the Hamiltonian,

H =

(
0 h
h† 0

)
. (1)

We denote q = UAU
†
B based on the singular value de-

composition of h with size N : h = UAΣU
†
B , where

Uα = [Ψα,1, . . . ,Ψα,N ] , α ∈ {A,B}, and A (B) la-
bels the eigenspaces of chiral operator Π with eigen-
value +1 (−1). Σ is a diagonal matrix with nonnega-
tive elements. The eigenstates of H can be written as
|Ψi⟩ = (1/

√
2)[ΨA,i,ΨB,i]

T . Our focus is on insulat-
ing states, meaning that the appearance of topological
ZECSs requires the existence of energy gaps for all states
except those that are localized at corners.
For n = 1, the problem returns to characterizing the

first-order topological phase in AIII class, which has been
extensively studied utilizing the winding number [25] and
the Bott index [37]. We focus on the Bott index [38, 39].

ν(1D) = Bott
(
e2πi

X
L , q

)
,

Bott
(
e2πi

X
L , q

)
:=

1

2πi
TrLog

(
e2πi

X
L qe−2πiX

L q†
)
,
(2)

whereX is the x-direction position operator, L is the sys-
tem length, Log is the principal logarithm, and q is de-
rived under periodic boundary conditions. Considering q
as a representation of the states andX/L as a polynomial
that functions as a topology-measuring ruler, a critical
question arises: Is it possible to formulate a measure-
ment polynomial in the Bott index to capture the n-th
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order topological phases for an arbitrary n-dimensional
Hamiltonian with chiral symmetry?

Here, we aim to answer this question by proposing a
general scheme to construct Bott indices that involves the
polynomial f of position operators and the polynomial g
of system length L,

M̂ = e2πi
f(X,Y,Z,... )

g(L) ,

ν = Bott
(
M̂, q

)
.

(3)

For simplicity, we assume that the system shape is regu-
lar.

In addition, to fully describe the n-th order topolog-
ical phases in chiral-symmetric systems, we define the
following configuration vector of corner states for system
shapes with m corners.

χm =
(
N

(B)
1 −N

(A)
1 , . . . , N (B)

m −N (A)
m

)T
, (4)

where N
(A)
i and N

(B)
i denote the number of corner states

localized in the i-th corner and with + and − chirality,
respectively. Given the zero trace of the chiral operator,

it follows that
∑m

i=1 χ
(i)
m = 0, where χ

(i)
m denotes the i-th

component of χm. The goal of our scheme is to find a
correspondence between the ZECSs patten χm and the
Bott index ν.
It should be emphasized that we now turn to consider

Hamiltonians with open boundary conditions, in contrast
to the periodic boundary conditions typically assumed.
This approach renders f(X,Y, Z, . . . )/g(L) well-defined,
circumventing the difficulties inherent in operator-based
formulations within periodic systems [40] and making it
possible to prove an exact correspondence between χm

and ν. Also, we emphasize that the Bott index that
we define captures the topology of bulk and edge states,
rather than directly counts corner states, which is demon-
strated in Eq. (12). However, adopting open boundary
conditions introduces certain challenges: the operator q
is not unique when zero-energy states are present. Nev-
ertheless, ν will remain unchanged, provided that f and
g are properly constructed (see details in Eq. (13)).

Bott index-ZECSs correspondence.— We begin by in-
troducing the following theorem.

Theorem 1. If no zero-energy corner states exist in a
system with chiral symmetry, finite coupling range, and
energy gap, then the following conclusion holds true in
the limit of large system size L → ∞.

− 1 /∈ σ(M̂qM̂†q†),

Bott
(
M̂, q

)
= 0,

(5)

where f and g in M̂ can be arbitrary polynomials with
deg(f) = deg(g), and σ denotes the set of eigenvalues of
a matrix.
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FIG. 1. Three patterns of corner states with linearly inde-
pendent configuration vectors in systems with square shape,
along with three Bott indices that satisfy detM ̸= 0. As de-
scribed by Eq. (18) and Eq. (19), all possible ZECS patterns
can be characterized by these three Bott indices.

The proof of this theorem is available in Supplemental
Material (SM) [41]. Based on Theorem 1, we conclude
that if the Bott index ν ̸= 0, then ZECSs exist. Further-
more, we establish an analytical exact correspondence
between the value of a Bott index ν and the configura-
tion vector of ZECSs χm in systems with m corners.

ν =

m∑
i=1

sign (f(xi)/g(L))χ
(i)
m /2 ∈ Z, (6)

where xi denotes the position vector of the i-th corner,
and polynomials f and g follow the rule below.

Rule 1. f(xc) = ±g(L)/2, where xc represents the posi-
tion vector of corners in which ZECSs may appear.

Equation (6) is proved as follows. First, we rewrite ν
as

ν =
1

2πi
TrLog

(
U†
AM̂UAU

†
BM̂

†UB

)
=

1

2π

∑
j

λj ,
(7)

where eiλj with λj ∈ (−π, π), is the eigenvalue of

U†
AM̂UAU

†
BM̂

†UB [39]. We now consider U†
αM̂Uα, where

α ∈ {A,B}. In the position basis, Uα can be written as:

Uα = [Ψα,bulk Ψα,edge Ψα,corner] , (8)

where Ψα,bulk (edge,corner) denotes the α component of
wavefunctions extended in the bulk (edge, corner) of the
system. Consequently, we obtain the following result.

⟨Ψα,β1
| M̂ | Ψα,β2

⟩ L→∞−→ 0, β1 ̸= β2, (9)

for β1, β2 ∈ {bulk, edge, corner}. Therefore, U†
αM̂Uα be-

comes a block diagonal matrix as L → ∞,

U†
αM̂Uα =

⊕
β∈{bulk,edge,corner}

U†
α,βM̂Uα,β , (10)
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where Uα,β are matrices composed of the α component of

eigenstates Ψβ reside in β. Similarly, U†
AM̂UAU

†
BM̂

†UB

also becomes a block diagonal matrix.
In the limit L → ∞, corner states Ψα,corner will

become the eigenstates of the position operator X
with eigenvalue xα,c, the position vector of the cor-

ner where it is localized. Therefore, M̂Ψα,corner =

e2πif(xα,c)/g(L)Ψα,corner = −Ψα,corner, according to the
Rule 1 in our strategy. Furthermore, it follows that

U†
α,cornerM̂Uα,corner = −U†

α,cornerUα,corner = −1

U†
A,cornerM̂UA,cornerU

†
B,cornerM̂

†UB,corner = 1.
(11)

From this result, we find that the contribution of corner
states to the Bott index equals zero, since

Bott
(
M̂, q

)
=

1

2πi

∑
β

TrLog
(
U†
A,βM̂UA,βU

†
B,βM̂

†UB,β

)
,

(12)
and TrLog (1) = 0. Thus, a non-zero Bott index comes
from the topology of edge states and bulk states.

Now we are able to demonstrate that the non-
uniqueness of the operator q does not alter the previously
defined Bott index. When eigenstates with zero energy
appear, the operator q is not unique due to arbitrary
unitary transformations, represented by WA on UA,corner

and WB on UB,corner. It follows that

W †
αU

†
α,cornerM̂Uα,cornerWα = −W †

αU
†
α,cornerUα,cornerWα

= −1.
(13)

This agrees with the result in Eq. (11), regardless of ar-
bitrary transformation.
Second, we define two functions of s for s ∈

[0, 1] with M̂(s) = exp[2πi f(X,Y,Z,... )×s
g(L) ] and ν(s) =

Bott
(
M̂(s), q

)
. Thus, we have ν(1) = ν and ν(s) =

1/2π
∑

j λj(s). For a specific pattern of ZECSs χm, we
have

det
(
U†
A,cornerM̂(s)UA,cornerU

†
B,cornerM̂(s)†UB,corner

)
= ei

∑
j∈corner λj(s)

= e−isπ
∑m

i sign(f(xi)/g(L))χ(i)
m .

(14)
In these equations, the ‘corner’ refers to the set of indices
j labeling eigenvalues of the corner block.

Given that det(M̂(s)q(M̂(s))†q†) = ei
∑

j λj(s) = 1, we
have

ei
∑

j /∈corner λj(s) = e−i
∑

j∈corner λj(s). (15)

We expect that in the limit L → ∞, λj /∈corner(s) does
not encounter the branch cut of logarithm for s ∈ [0, 1].
This conclusion can be reached by applying Theorem 1 to
the effective Hamiltonian H̃, which is composed of edge
and bulk states and features both a spectral gap and a

finite coupling range. The finite coupling range of H̃ is
inherited from the finite coupling of H, as evidenced by
the representation H =

∑
j /∈corner Ej |Ψj⟩⟨Ψj | and H̃ =

R ·H ·RT , where R is a rectangular matrix that projects
onto the Hilbert space of H̃. It follows that

∂s
∑

j /∈corner

λj(s) = π

m∑
i

sign (f(xi)/g(L))χ
(i)
m (16)

Since λj(0) = 0, we have
∑

j /∈corner λj(s) =

sπ
∑m

i sign (f(xi)/g(L))χ
(i)
m . When s = 1, we obtain

ν = ν(1) =
1

2π

∑
j

λj(1) =
1

2π

∑
j /∈corner

λj(1)

=

m∑
i

sign (f(xi)/g(L))χ
(i)
m /2,

(17)

where in the first row we use the result obtained in
Eq. (11), which states that λj(1) = 0 for all j ∈ corner.

Full characterization of systems with arbitrary
shape.— Having established the analytical relationship,
we can now characterize all possible ZECS patterns in
systems of arbitrary shape, without any prior informa-
tion on these patterns. This characterization for systems
with m corners is achieved by considering the Bott

index ν
(i)
m , derived from implementing m − 1 distinct

polynomials f
(i)
m that comply with Rule 1, where i is

the label of polynomials. By constructing an m × m

matrix M, with Mij = sign
(
f
(i)
m (xj)/g

(i)
m (L)

)
/2 for

1 ≤ i ≤ m − 1 and Mmj = 1/2 (where j labels the
corners), we establish a relation between the Bott index

ν
(i)
m and the configuration vector χm defined by Eq. (4)
according to Eq. (6).

χm = M−1 ·
(
ν(1)m , . . . , ν(m−1)

m , 0
)T

, (18)

where we choose a series of polynomials such that
detM ≠ 0. By implementing this equation, we char-
acterize all ZECS patterns for systems with m corners.

Taking systems with the square shape as an example,
we define three Bott indices ν2xy, νx, and νy correspond-
ing to f/g equaling 2XY/L2, X/L, and Y/L respectively,
where L is the side length of the square. As illustrated
in Fig. 1, we characterize patterns using Eq. (18), where

M =
1

2

1 −1 1 −1
1 −1 −1 1
1 1 −1 −1
1 1 1 1

 . (19)

For systems shaped as regular hexagons, we define Bott

indices (ν
(1)
6 , ν

(2)
6 , ν

(3)
6 , ν

(4)
6 , ν

(5)
6 ) with the corresponding
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f/g,

{(X3 − XY 2

3
+

8Y 3

3
√
3
)/2L3, (X2 − 4XY√

3
− Y 2

3
)/2L2,

(X2 +
4XY√

3
− Y 2

3
)/2L2, (X3 − 3XY 2)/2L3,

(X3 +
7XY 2

3
)/2L3},

(20)
where L is again the side length of the hexagon. As a
supplement, we provide a series of polynomials and asso-
ciated matrices M for systems shaped as l-sided regular
polygon (l ∈ {4, 5, 6, 8, 12}) in SM [41], where systems
with non-regular shapes are also discussed.

Lattice Models.— We now provide three concrete ex-
amples to demonstrate the application of our framework.
We note that all calculations of Bott indices are per-
formed in real space.

First, we examine a modified model, informed by two
recent papers [30, 31], which incorporates additional di-
agonal long-range hoppings. These hoppings break sep-
arability while maintaining momentum-glide reflection
symmetries and chiral symmetry, as depicted in the left
panel of Fig. 2(a). The corresponding Bloch Hamiltonian
at momentum k can be written in the form of Eq. (1) with

h(k) =

(
tx + t′xe

−ikx ty + t′ye
−iky

ty − t′ye
iky −tx + t′xe

ikx

)
+ wd

(
ie−ikx cos ky ie−iky cos kx
ieiky cos kx −ieikx cos ky

)
,

(21)

where tx(y), t
′
x(y), and wd are the nearest hoppings within

unit cells, between unit cells, and along the diagonal
directions, respectively. We set t′x = t′y = 1. This
system hosts one ZECS at each corner, which cannot
be accurately characterized by the quadrupole moment
qxy [4, 42–44] or the multipole chiral number Nxy pro-
posed in Ref. [28] (definitions provided in SM [41]), mir-
roring findings reported in the aforementioned two pa-
pers [30, 31]. However, the Bott index ν2xy is in precise
agreement with the existence of ZECSs, unlike qxy and
Nxy, as depicted by the density of states as a function of
tx in Fig. 2(a). In addition, calculation shows that Bott
indices νx and νy always equal zero, consistent with the
pattern of the ZECSs (see Fig. 1).

Second, we study another system with ZECSs located
only at two diagonal corners of a square. The corre-
sponding model has mirror-symmetry-protected corner
states, as reported by Refs. [8, 36], and we add a mirror-
symmetry-breaking δ term to it.

h(k) =(δ +m2 − i sin ky)1+ (− sin kx + im2)τz

+ (−m1 − cos kx − cos ky)τx,
(22)

where τi represents the Pauli matrix. When δ = 0,
this system possesses diagonal and anti-diagonal mir-
ror symmetries. The HOTPs in this system, which ap-
pear even without mirror symmetries (δ ̸= 0), can be
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FIG. 2. (a) Left panel: Schematic of the model in Eq. (21).
For clarity, we do not show all non-nearest-neighbor hoppings.
The dashed lines represent an additional phase factor of −1
such that the system possesses the staggered π flux. Right
panel: Density of states for this system and corresponding
ν2xy, qxy and Nxy as functions of tx with ty = 0.1, t′x = t′y,
wd = 0.8. The system length L = 50. (b) Phase diagram of ν
in the system described by Eq.(22) as a function of δ and m2

with m1 = 1. The right panel shows the patterns of ZECSs
corresponding to ν. (c) Left panel: Schematic of the model
in Eq. (23). Right panel: The upper part shows the density
of states for this system and the configuration vectors χ6 for
three higher-order topological phases. The lower part displays

the corresponding Bott indices ν
(1,...,5)
6 as functions of t′2. We

fix t1 = 1/10, t2 = 1/3, t3 = 1/4, t4 = 3/10, t5 = 1/4,
t6 = 1/2, t′1 = t′3 = 1 and the system length L = 30.

comprehensively characterized by the three Bott indices
ν = (ν2xy, νx, νy). The phase diagram of ν as a func-
tion of δ and m2 is shown in Fig. 2(b), illustrating that
two HOTPs, where two ZECSs are located at diagonal
or anti-diagonal corners, are separated by gapless edge
phases. The relationship between the Bott indices ν of
each phase and the ZECSs configuration vector χ4 is de-
scribed by Eq. (18) with M in Eq. (19), as illustrated in
the right panel of Fig. 2(b).

Finally, we study a lattice model with a regular
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hexagon shape, as shown in the left panel of Fig. 2(c):

h(k) =

 t1 t2 t′3e
i(kx−

√
3ky)

2

t′1e
−ikx t3 t4

t5 t′2e
i(kx+

√
3ky)

2 t6

 . (23)

When ti = t and t′j = t′ for i ∈ {1, . . . , 6}, j ∈ {1, 2, 3},
the system possesses C6 symmetry with its ZECSs char-
acterized by the C6 topological indices [9]. However, in
the absence of C6 and C2 symmetries, the ZECSs still
emerge, and HOTPs in this system exhibit a varying
number of ZECSs. This is illustrated by the density of
states as a function of t′2, as shown in the right panel
of Fig. 2(c). As t′2 increases from 0.3 to 1.8 (with other
parameters specified in Fig. 2), the system changes from
a HOTP with two ZECSs to a HOTP with four ZECSs,
and finally to a HOTP with six ZECSs, where the edge
gap closes at each transition. In Fig. 2(c), we also show

the Bott indices (ν
(1)
6 , ν

(2)
6 , ν

(3)
6 , ν

(4)
6 , ν

(5)
6 ) as functions

of t′2, which fully characterizes each phase according to
Eq. (18).

Conclusion.— In summary, we have established a com-

prehensive framework to universally characterize n-th
order topological phases in n-dimensional systems (see
SM [41] for demonstration using more lattice models).
Firstly, we establish an exact correspondence between
the Bott index and the HOTPs, successfully addressing
the anomalies reported in earlier studies [30, 31]. Sec-
ondly, by providing a general strategy to construct the
Bott index, our framework applies to n-dimensional sys-
tems of arbitrary shape. Furthermore, our framework
enables the characterization of all possible patterns of
topological ZECSs using a series of Bott indices. We
expect a wide variety of applications of our theory to
characterize HOTPs, including, for example, topological
superconductors with Majorana corner modes.
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Supplemental Material for
“Exact Universal Characterization of Chiral-Symmetric Higher-order Topological

phases”

I. MATHEMATICAL STRUCTURE OF BOTT INDEX

A. Notations

σ(·) denotes the set of eigenvalues of a matrix.
sup
S

P represents the supremum of the values taken by P over a set S.

∥ · ∥ denotes the spectral norm of a matrix (the largest singular value of a matrix). This norm is induced by the

Euclidean norm, | · |, for vectors and is given by ∥ A ∥= sup
x ̸=0

|Ax|
|x| , where x is a vector.

For the spectral norm, we have following two inequalities for two square matrices A and B,

∥ A+B ∥ ≤∥ A ∥ + ∥ B ∥ (S1)

∥ AB ∥ ≤∥ A ∥∥ B ∥ . (S2)

dist(n,m) represents the Euclidean distance function in position space.
O denotes the order of approximation.

B. Bott Index

Definition I.1. Given two unitary matrices U and V , such that −1 /∈ σ(UV U†V †) or equivalently such that ∥
[U, V ] ∥< 2, their Bott index is defined as:

Bott(U, V ) :=
1

2πi
TrLog

(
UV U†V †) . (S3)

Remark 1. From

∥ UV U†V † − 1 ∥=∥ (UV − V U)U†V † ∥=∥ [U, V ] ∥, (S4)

we deduce that −1 ∈ σ(UV U†V †) if and only if ∥ [U, V ] ∥= 2. Given the unitarity of U and V , we have ∥ [U, V ] ∥=∥
(UV − V U) ∥≤∥ UV ∥ + ∥ V U ∥= 2. Thus, since −1 /∈ σ(UV U†V †) is equivalent to ∥ [U, V ] ∦= 2, we deduce that
−1 /∈ σ(UV U†V †) is also equivalent to ∥ [U, V ] ∥< 2.

The Bott index in Definition I.1 is an Integer. This can be obtained by the following [39, 45, 46]. From

det(UV U†V †) = 1, we have 1 =
∏

j e
iθj = ei

∑
j θj , where eiθj with θj ∈ (−π, π), is the eigenvalue of UV U†V †.

It follows that Bott(U, V ) = 1
2πi

∑
j Log(e

iθj ) = 1
2π

∑
j θj ∈ Z.

Theorem I.1. Given two continuous maps V (s) : [0, 1] → U(N) and W (s) : [0, 1] → U(N), where U(N) represents
the unitary group, with V (0) = V , W (0) = W , such that ∥ [V (s),W (s)] ∥< 2,∀s ∈ [0, 1], then

Bott (V (s),W (s)) = Bott(V,W ). (S5)

Proof. The proof of this theorem can be found in Refs. [45, 46].

As demonstrated by this theorem, Bott index is a topological invariant. A continuous transformation that keeps it
well-defined cannot alter the Bott index. With this theorem, we have the following corollary.

Corollary I.1.1. Consider two unitary matrices V = eiA and W = eiB , where A and B are Hermitian matrices. If
Bott(V,W ) ̸= 0, then there exists s0 ∈ [0, 1] such that ∥ [eiAs0 , eiB ] ∥= 2.

Proof. Consider the case where ∥ [eiAs0 , eiB ] ∥< 2 for all s0 ∈ [0, 1]. Consequently, according to Theorem I.1,
Bott

(
eiA, eiB

)
= Bott

(
eiA0, eiB

)
= 0. However, since Bott

(
eiA, eiB

)
̸= 0, this indicates the existence of at least one

value s0 ∈ [0, 1] for which ∥ [eiAs0 , eiB ] ∥= 2.
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Consider an n-dimensional Hamiltonian H within a lattice of length L and coupling range R ≪ L, under open
boundary conditions. This implies Hn,m = 0 when dist(n,m) > R in the position basis. We construct position
operators X,Y, Z, . . . according to the dimension of this Hamiltonian. We have the following theorem for H under
open boundary conditions.

Theorem I.2. Consider two polynomials f(X,Y, Z, . . . ) and g(L) with deg(f) = deg(g). Then,

∥ [e2πi
f(X,Y,Z,... )

g(L) , H] ∥≤ O
(
R

L
∥ H ∥

)
, (S6)

for H under open boundary conditions.

Proof. The proof of this theorem follows the ideas of Ref. [46]. We use the Holmgren bound [46, 47] for the norm of
a bounded operator A.

∥ A ∥≤ max

(
sup

m∈Zn

∑
n∈Zn

|⟨m|A|n⟩|,m ↔ n

)
, (S7)

where |n⟩ and |m⟩ are eigenkets of position operator, and m ↔ n denotes the exchange of the index m and n in the
supremum and in the sum. A proof of this bound can be found in Ref. [47] and Ref. [46]. Thus, we have

∥ [e2πi
f(X,Y,Z,... )

g(L) , H] ∥

≤ max

(
sup

m∈Zn

∑
n∈Zn

|⟨m|[e2πi
f(X,Y,Z,... )

g(L) , H]|n⟩|,m ↔ n

)
.

(S8)

Notice that

⟨m|[e2πi
f(X,Y,Z,... )

g(L) , H]|n⟩ = (e2πi
f(xm)
g(L) − e2πi

f(xn)
g(L) )⟨m|H|n⟩, (S9)

where xm and xn are the coordinate of |m⟩ and |n⟩, respectively. Therefore,

∥
[
e2πi

f(X,Y,Z,... )
g(L) , H

]
∥

≤ max
m↔n

(
sup

m∈Zn

∑
dist(n,m)≤R

∣∣e2πi f(xm)
g(L) − e2πi

f(xn)
g(L)

∣∣|⟨m|H|n⟩|

)
.

Observe that for dist(n,m) ≤ R, the following relationship holds:

|e2πi
f(xm)
g(L) − e2πi

f(xn)
g(L) | = |e2πi

f(xm)
g(L) (1− e2πi

f(xn)−f(xm)
g(L) )|

≤ O(
R

L
),

(S10)

where we use f(xn)−f(xm)
g(L) ≤ O

(
R
L

)
. This is obtained by considering the Taylor expansion of f at xm

f(xn)

g(L)
=

f(xm) +∇f(x)|x=xm · (xn − xm) + · · ·
g(L)

≤ f(xm)

g(L)
+O(R/L) +O(R/L2) + · · · ,

(S11)

where we use deg(f) = deg(g). It follows that

∥ [e2πi
f(X,Y,Z,... )

g(L) , H] ∥≤ O
(
R

L
∥ H ∥

)
.
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Lemma 2. Given a Hamiltonian H, as defined above, with a spectral gap ∆E, the spectral projector P is called the
Fermi projection, defined as follows:

P =

Nocc∑
i=1

|Ψi⟩⟨Ψi|. (S12)

The summation is taken over all occupied states. The following relationship holds true,

∥ [e2πi
f(X,Y,Z,... )

g(L) , P ] ∥≤ O
(
R

L

∥ H ∥
∆E

)
, (S13)

for arbitrary polynomials f and g with deg(f) = deg(g).

Proof. The proof of this Lemma still follows the ideas of Ref. [46]. For z /∈ σ(H) and any matrix A with the size of
H, we have an equality [

A, (H − z)−1
]
= (H − z)−1 [(H − z), A] (H − z)−1

= (H − z)−1 [H,A] (H − z)−1.
(S14)

Now, we use the contour integral representation of the Fermi projection P , with the loop Γ in the complex plane
enclosing the eigenvalues below the Fermi level [46]

P =
1

2πi

∮
Γ

dz (z −H)
−1

. (S15)

The contour integral representation can be understood by considering P |Ψocc⟩ = |Ψocc⟩ 1
2πi

∮
Γ
dz (z − Eocc)

−1
= |Ψocc⟩

and P |Ψunocc⟩ = |Ψunocc⟩ 1
2πi

∮
Γ
dz (z − Eunocc)

−1
= 0.

Utilizing the contour integral representation and Eq. (S14), it is easy to obtain that

∥ [e2πi
f(X,Y,Z,... )

g(L) , P ] ∥

≤ 1

2π
∥ [e2πi

f(X,Y,Z,... )
g(L) , H] ∥

∮
Γ

∥ (H − z)
−1 ∥2 |dz|,

(S16)

with ∥ (H − z)
−1 ∥2= [dist (z, σ(H))]−2. dist (z, σ(H)) denotes the distance from a point z to the region σ(H). Taking

the radius of Γ to ∞, the loop-integral becomes∮
Γ

∥ (H − z)
−1 ∥2 |dz| =

∮
Γ

[dist (z, σ(H))]−2|dz| =
∫ ∞

−∞

1

(∆E
2 )2 + (y)2

dy =
2π

∆E
, (S17)

where y denotes Im z.
Combining Theorem I.2, Eqs. (S16) and (S17), we have

∥ [e2πi
f(X,Y,Z,... )

g(L) , P ] ∥≤ O
(
R

L

∥ H ∥
∆E

)
.

With this Lemma proved, we obtain the following corollary (Theorem 1 in the main text).

Corollary I.2.1. If no zero-energy corner states exist in a system with chiral symmetry, finite coupling range, and
energy gap, then the following conclusion holds true in the limit of large system size L → ∞.

Bott
(
e2πi

f(X,Y,Z,... )
g(L) , q

)
= 0, (S18)

for arbitrary polynomial f and g with deg(f) = deg(g). q = UAU
†
B .
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Proof. From Lemma 2 and projector P = (HFlat − 1)/2, which in the eigenbasis of the chiral operator can be written
as:

P =

(
−1

2
q
2

q†

2 −1

2

)
, (S19)

we have

∥ [e2πi
f(X,Y,Z,... )

g(L) , q] ∥≤ O
(
R

L

∥ H ∥
∆E

)
. (S20)

We note that in this equation the position operators are represented in the subspace of chiral operator.

Thus, when L → ∞, ∥ [e2πi
f(X,Y,Z,... )×t

g(L) , q] ∥< 2 for all t ∈ [0, 1]. From Corollary I.1.1, it follows that

Bott
(
e2πi

f(X,Y,Z,... )
g(L) , q

)
= 0.

Thus, we provide the proof of the corollary I.2.1, which is the Theorem 1 in the main text.
It should be noted that we always consider Hamiltonian under open boundary conditions in this section.

II. THE INVARIANCE OF THE BOTT INDEX UNDER OPEN BOUNDARY CONDITIONS

Under open boundary conditions, zero-energy corner states may appear in a system, meaning that deth =
0, rank (ker(h)) ̸= 0. ker(h) denotes the kernel of h, which is the vector space spanned by vectors satisfying h · v = 0,
defined as ker(h) = {v|h · v = 0}. Thus, the operator q is not unique due to arbitrary unitary transformations
applied to vectors of UA and UB that span the cokernel and kernel of h [50]. The cokernel of h equals ker(h†). These
transformations are represented by arbitrary unitary transformations WA on UA,corner and WB on UB,corner. It follows
that

W †
αU

†
α,cornerM̂Uα,cornerWα = −W †

αU
†
α,cornerUα,cornerWα

= −1,
(S21)

which we also show in the main text.

III. THE SERIES OF POLYNOMIALS AND ASSOCIATED MATRIX M FOR SYSTEMS WITH
{4, 5, 6, 8, 12}-SIDED REGULAR POLYGON SHAPES

In this section, we introduce a procedure to compute a series of polynomials, f
(i)
m and g

(i)
m , for m-sided polygon

shapes with detM ≠ 0. Following this procedure, we derive the series of polynomials for systems with {4, 5, 6, 8, 12}-
sided regular polygon shapes. The order of corners in the configuration vector is selected in a counterclockwise order,
starting from the x-axis. L represents the side length of the system.

A. Procedure

A procedure to obtain a series of polynomials for systems with m-sided polygon shapes, ensuring that detM ≠ 0,
is described as follows. The matrix M is defined (as detailed in the main text) by:

Mij =

{
sign

(
f
(i)
m (xj)/g

(i)
m (L)

)
/2, for 1 ≤ i ≤ m− 1

1/2, for i = m.
(S22)

1. Select an (m− 1)× (m− 1) matrix B, with entries Bij = ±1, such that

det

(
A B
1 D

)
̸= 0, (S23)
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where A = [1, 1, . . . , 1]T , D = [1, 1, . . . , 1].

It should be noted that B is not unique. One solution of B can be represented as:

B =
[
v,K{1,⌊m−1

2 ⌋+1} · v,K{2,⌊m−1
2 ⌋+1} · v, . . . ,K{⌊m−1

2 ⌋,⌊m−1
2 ⌋+1} · v,K{⌊m−1

2 ⌋,⌊m−1
2 ⌋+2} · v, . . . ,K{⌊m−1

2 ⌋,m−1} · v
]T

,

(S24)
where ⌊·⌋ denotes the floor function, K{i,j} denotes the (m− 1)× (m− 1) permutation matrix that swaps the
i-th and the j-the elements of a vector, and

v = [1, . . . , 1︸ ︷︷ ︸
⌊m−1

2 ⌋

,−1, . . . ,−1]T .

2. Define a polynomial of position operators p(l) as:

p(l) =
∑
i+j=l

ai,jX
iY j , (S25)

where ai,j ∈ R and l is a positive integer.

3. Initialize r to 1 and begin with l = 1. Solve the following equation for coefficients ai,j .

{p(l)(x2), . . . , p
(l)(xm)}/p(l)(x1) = {Br,1, . . . , Br,m−1}, (S26)

where xi is the position vector of i-th corner. If this equation has redundancy, assign specific values to some
ai,j to eliminate it.

4. If no solution is found for l, increment l by 1 and solve the equation again. Once a solution is obtained, let

f
(r)
m = p(l) and proceed to the next value of r by setting r = r + 1. Continue this process until solutions are
found for r = m− 1.

5. For each solution f
(r)
m , let g

(r)
m (L) = |f (r)

m (x1)|. The final output will be m − 1 polynomials f alongside their
corresponding g.

The equation in the first step ensures that detM ≠ 0, because each r-th (r ≤ m− 1) row in M can be expressed as:

1

2
{sign(f (r)

m (x1)/g(L)), sign(f
(r)
m (x2)/g(L)), . . . , sign(f

(r)
m (xm)/g(L))}

=
sign(f

(r)
m (x1)/g(L))

2
{1, sign(f

(r)
m (x2))

sign(f
(r)
m (x1))

, . . . ,
sign(f

(r)
m (xm))

sign(f
(r)
m (x1))

}

=
sign(f

(r)
m (x1)/g(L))

2
{1, Br,1, . . . , Br,m−1}.

(S27)

It follows that

M =
1

2
diag(sign(f (1)

m (x1)/g(L)), . . . , sign(f
(m−1)
m (x1)/g(L)), 1) ·

(
A B
1 D

)
. (S28)

Thus, det(M) ̸= 0 if and only if Eq. (S23) holds true. This conclusion ensures that det(M) ̸= 0 for the series of f
(i)
m

and g
(i)
m obtained by the above procedure.

B. Results

In this section, the coordinate origin is always placed at the geometric center of each system with regular polygon
shapes. We note that for simplicity, not all results are derived by implementing the general solution of B given by
Eq. (S24). Instead, the B of each result can be derived using Eq. (S28) with the M.
For systems with a square shape, we choose the x-axis pointing toward the midpoint between two corners and the

series of polynomials f/g as follows {
2XY/L2, X/L, Y/L

}
, (S29)
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with

M =
1

2


1 −1 1 −1
1 −1 −1 1
1 1 −1 −1
1 1 1 1

 . (S30)

For systems with 5-sided regular polygon shape, we choose the x-axis pointing to a corner and the series of
polynomials f/g as follows

{X4 − 4

√
1 +

2√
5
X3Y − 2X2Y 2 +

4

5

√
25 + 2

√
5XY 3 +

Y 4

5
,

X4 + 4

√
1− 2√

5
X3Y − 2X2Y 2 +

4

5

√
25− 2

√
5XY 3 +

Y 4

5
,

X4 − 2

5

(
5 + 6

√
5
)
X2Y 2 +

1

5

(
1 + 4

√
5
)
Y 4,

X4 +

(
12√
5
− 2

)
X2Y 2 +

1

5

(
1− 4

√
5
)
Y 4}/2( L

2 sinπ/5
)4

(S31)

with

M =
1

2


1 1 1 −1 −1
1 1 −1 1 −1
1 1 −1 −1 1
1 −1 1 1 −1
1 1 1 1 1

 . (S32)

For systems with a regular hexagon shape, we choose the x-axis pointing to a corner and the series of polynomials
f/g as follows

{(X3 − XY 2

3
+

8Y 3

3
√
3
)/2L3, (X2 − 4XY√

3
− Y 2

3
)/2L2,

(X2 +
4XY√

3
− Y 2

3
)/2L2, (X3 − 3XY 2)/2L3,

(X3 +
7XY 2

3
)/2L3},

(S33)

with

M =
1

2


1 1 1 −1 −1 −1
1 −1 1 1 −1 1
1 1 −1 1 1 −1
1 −1 1 −1 1 −1
1 1 −1 −1 −1 1
1 1 1 1 1 1

 . (S34)

For systems with 8-sided regular polygon shape, we choose the x-axis pointing to a corner and the series of polynomials
f as follows

{X3 −X2Y +
(
2
√
2− 1

)
XY 2 + Y 3,

−X3 −
(
1 + 2

√
2
)
X2Y +XY 2 + Y 3,

−X3 −X2Y +
(
1− 2

√
2
)
XY 2 + Y 3,

X3 −X2Y −
(
1 + 2

√
2
)
XY 2 + Y 3,

−X4 − 4X3Y + Y 4,

X4 − 6X2Y 2 + Y 4,

−X4 + 4X3Y + Y 4},

(S35)
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and g = 2( L
2 sinπ/8 )

deg(f), with

M =
1

2



1 1 1 −1 −1 −1 −1 1
−1 −1 1 −1 1 1 −1 1
−1 −1 1 1 1 1 −1 −1
1 −1 1 1 −1 1 −1 −1
−1 −1 1 1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
−1 1 1 −1 −1 1 1 −1
1 1 1 1 1 1 1 1


. (S36)

For systems with 12-sided regular polygon shape, we choose the x-axis toward the midpoint between two corners and
the series of polynomial f/g as:

{ (−6x5y + 20x3y3 − 6xy5)/2L6,

−(2/9)(
√
3x6 − 21x5y − 15

√
3x4y2 + 6x3y3 + 15

√
3x2y4 − 21xy5 −

√
3y6)/2L6,

1/3(3x6 − (8 + 4
√
3)x5y − (15 + 16

√
3)x4y2 + 16x3y3 + (−15 + 16

√
3)x2y4 + (−8 + 4

√
3)xy5 + 3y6)/2L6,

−(2/9)(2
√
3x6 − 3x5y + 18

√
3x4y2 + 42x3y3 − 18

√
3x2y4 − 3xy5 − 2

√
3y6)/2L6,

((9 +
√
3)x6 + (24 + 12

√
3)x5y − (45 + 63

√
3)x4y2 − 48x3y3 − (45− 63

√
3)x2y4 + (24− 12

√
3)xy5 + (9−

√
3)y6)/18L6,

−
√
2y((−1 + 6

√
3)x4 + 2(7− 4

√
3)x2y2 + (−1 + 2

√
3)y4)/6L5,

√
2((1 +

√
3)x5 + 3(−2 +

√
3)x4y − 4(−1 +

√
3)x3y2 + 2(9− 2

√
3)x2y3 + (−5 + 3

√
3)xy4 +

√
3y5)/6L5,

−
√
2(x5 − 6

√
3x4y − 14x3y2 + 8

√
3x2y3 + xy4 − 2

√
3y5)/6L5,

1/3
√
2((−1 +

√
3)x5 + (4 + 3

√
3)x4y − 4(1 +

√
3)x3y2 + 2(5− 2

√
3)x2y3 + (5 + 3

√
3)xy4 + (−2 +

√
3)y5)/2L5,

√
2((−1 +

√
3)x5 − (4 + 3

√
3)x4y − 4(1 +

√
3)x3y2 + 2(−5 + 2

√
3)x2y3 + (5 + 3

√
3)xy4 − (−2 +

√
3)y5)/6L5,

−(1/3)
√
2(x−

√
3y)(x4 + 7

√
3x3y + 7x2y2 −

√
3xy3 − 2y4)/2L5}, (S37)

with

M =
1

2



−1 1 −1 1 −1 1 −1 1 −1 1 −1 1
1 1 1 −1 −1 −1 1 1 1 −1 −1 −1
−1 −1 1 1 −1 1 −1 −1 1 1 −1 1
−1 −1 1 1 1 −1 −1 −1 1 1 1 −1
1 −1 1 1 −1 −1 1 −1 1 1 −1 −1
−1 −1 −1 −1 −1 −1 1 1 1 1 1 1
1 1 1 1 1 −1 −1 −1 −1 −1 −1 1
1 1 1 1 −1 1 −1 −1 −1 −1 1 −1
1 1 1 −1 1 1 −1 −1 −1 1 −1 −1
−1 −1 1 −1 −1 −1 1 1 −1 1 1 1
−1 1 −1 −1 −1 −1 1 −1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1



. (S38)

IV. DISCUSSION FOR SYSTEMS WITH NON-REGULAR SHAPES

For systems featuring a non-regular shape with m corners, we employ a mapping, F , that converts them into their
regular counterparts while preserving the corners [51]. We then define polynomials f and g as f ′ ◦ F and g′ ◦ F ,
respectively. Here, ◦ denotes function composition. f ′ and g′ are the corresponding polynomials for an m-cornered
regular shape. f ′ and g′ are derived and provided in the previous section.

V. MORE LATTICE MODELS

In this section, we introduce two systems, one with a pentagon shape and the other with a cubic shape, to demon-
strate our framework for arbitrary shapes and dimensions. First, we consider a system shaped as a regular pentagon,
with the corresponding Bloch Hamiltonian Hpenta, expressed as follows:

hpenta(k) =

(
−tx − t′xe

−ikx ty + t′ye
iky

ty + t′ye
−iky tx + t′xe

ikx

)
+ 2wd

(
e−ikx cos ky −eiky cos kx
−e−iky cos kx −eikx cos ky

)
. (S39)

This Bloch Hamiltonian is originally introduced in Ref. [28] and defined on rectangle lattices. However, by cutting the
boundary of this Hamiltonian, we obtain a system with a regular pentagon shape under open boundary conditions.
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FIG. S1. The two systems are shaped as a regular pentagon and a cube, respectively. The Bott indices ν and configuration
vectors χ of these systems adhere to the analytical relationship outlined in the main text. For Hpenta, the system size L is 30,
and for H3D, it is 15.

We characterize the pattern of ZECSs in this system by calculating Bott indices in the real space, using the following
f/g obtained in the previous section.

{X4 − 4

√
1 +

2√
5
X3Y − 2X2Y 2 +

4

5

√
25 + 2

√
5XY 3 +

Y 4

5
,

X4 + 4

√
1− 2√

5
X3Y − 2X2Y 2 +

4

5

√
25− 2

√
5XY 3 +

Y 4

5
,

X4 − 2

5

(
5 + 6

√
5
)
X2Y 2 +

1

5

(
1 + 4

√
5
)
Y 4,

X4 +

(
12√
5
− 2

)
X2Y 2 +

1

5

(
1− 4

√
5
)
Y 4}/2( L

2 sinπ/5
)4.

(S40)

The calculations show that the series of Bott indices equals (0, 2, 0, 0), and the configuration vector χ5 equals
(0, 1,−1, 1,−1)T for tx = ty = 1, t′x = t′y = 3, and wd = 1, as illustrated in the Fig. S1. They follows the ex-
act relationship

χ5 = M−1 ·
(
ν
(1)
5 , . . . , ν

(4)
5 , 0

)T
, (S41)

with M provided in the previous section.
Second, we examine a model with a cubic shape.

h3D(k) =(mx − iγx sin kx)1+ (tz + γz cos kz)τx ⊗ τ0 − γz sin kzτy ⊗ τ0

− (ty − γy cos ky)τz ⊗ τx + γy sin kyτx ⊗ τy + (tx + γx cos kx)τz ⊗ τz.
(S42)

All possible patterns of HOTPs in this system can be captured by Bott indices, defined by the following f/g,

{4XY Z

L3
,
2XY

L2
,
2XZ

L2
,
2Y Z

L2
,
X

L
,
Y

L
,
Z

L
} (S43)
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with

M =
1

2



−1 1 −1 1 1 −1 1 −1
1 −1 1 −1 1 −1 1 −1
−1 1 1 −1 1 −1 −1 1
−1 −1 1 1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 −1 −1 1 1 −1 −1
−1 −1 −1 −1 1 1 1 1
1 1 1 1 1 1 1 1


. (S44)

For example, when mx = 0.7, tx = 0.1, γx = 0.8, ty = tz = 0, γy = γz = 1, this system exhibits a HOTP
with the configuration vector χ8 = (−1, 1, 0, 0, 0, 0, 1,−1). As shown in Fig. S1, the series of Bott indices equals
(2, 0, 0, 0,−2, 0, 0), demonstrating that HOTPs can be fully characterized by

χ8 = M−1 ·
(
ν
(1)
8 , . . . , ν

(7)
8 , 0

)T
. (S45)

VI. QUADRUPOLE MOMENT qxy AND MULTIPOLE CHIRAL NUMBER Nxy IN REAL SPACE

A. Definitions

In this section, we provide the definitions of qxy and Nxy used in our calculations of Fig. 2(a) of the main text.
The quadrupole moment defined in the real space is given by [42–44]:

qxy =
1

2π
Im log

[
det
(
V †Q̂V

)√
det
(
Q̂†
)]

mod1. (S46)

V is a matrix composed of all the occupied eigenstates of H under periodic boundary conditions. Q̂ = e2πi
XY
L2 .

Multipole chiral number, defined in 2D systems, is given by [28]:

Nxy =
1

2πi
TrLog

(
V †
AQ̂

cVAV
†
BQ̂

c†VB

)
, (S47)

where VA and VB is determined by the singular value decomposition of h, h = VAΣV
†
B , under the periodic boundary

condition. Q̂c = e2πi
XY
L2 , with position operators represented in the subspace of chiral operator.

B. The relationship between qxy and Nxy

In this section, we prove the correspondence between qxy and Nxy in chiral-symmetric systems,

qxy =
Nxy

2
mod 1. (S48)

Since the following derivations do not contain the information of multipole operator, the conclusion can be gener-
alized to higher multipole situations.

Taking the eigenbasis of chiral operator, we rewrite V in qxy as:

V =
1√
2

(
VA

VB

)
, (S49)

and rewrite Q̂ in qxy as:

Q̂ =

(
Q̂c 0

0 Q̂c

)
. (S50)
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Therefore, we have:

qxy =
1

2π
Im log

[
det
(
V †Q̂V

)√
det
(
Q̂†
)]

mod1

=
1

2π
Im log

[
det
(
V †
AQ̂

cVA + V †
BQ̂

cVB

)√
det
(
Q̂†
)]

mod1

=
1

2π
Im log

[
det
(
V †
AQ̂

cVAV
†
BQ̂

c†VB + 1

)]
mod1,

(S51)

where in the last step we use det
(
Q̂c
)√

det
(
Q̂†
)
= 1.

Denoting the eigenvalues of V †
AQ̂

cVAV
†
BQ̂

c†VB as eiλi , we have

Nxy =
1

2πi
TrLog

(
V †
AQ̂

cVAV
†
BQ̂

c†VB

)
=

∑
i λi

2π
. (S52)

We express the qxy as follows:

qxy =
1

2π
Im log

[
det
(
V †
AQ̂

cVAV
†
BQ̂

c†VB + 1

)]
mod1

=
1

2π
Im log

[∏
i

(
eiλi + 1

)]
mod1

=
1

2π
Im
∑
i

log
(
eiλi + 1

)
mod1

=
1

2π
Im
∑
i

i
λi

2
mod 1

=

∑
i λi

4π
mod1

=
Nxy

2
mod 1.

(S53)

C. Discussions

Generally, both Nxy and qxy are defined in systems with rectangular shapes. The form of Nxy suggests a structural
similarity to the Bott index ν, as defined in the main text. As shown by the definition of Nxy, it can be rewritten in
the form of the Bott index,

Nxy = Bott
(
Q̂c, VAV

†
B

)
. (S54)

It should be noted that under periodic boundary conditions, the Bott index form of Nxy may be ill-defined according

to the Definition I.1, with ∥ [Q̂c, VAV
†
B ] ∥ equaling 2. This is because the hopping, required by periodic boundary

condition, is long-ranged, which renders Theorem I.2 inapplicable to Hamiltonians under such conditions. Let us
illustrate this by considering

e2πi
xmym−xnyn

L2 ,

which appears in the proof of Theorem I.2, Eq. (S10), when f/g = XY/L2. Choosing xm = 1, xn = L − R, and
ym = yn = L/2, we have

e2πi
xmym−xnyn

L2 = −1,

when R ≪ L. Thus, Eq. (S10) in the proof of Theorem I.2 is not satisfied. There is no lower bound for ∥ [Q̂c, VAV
†
B ] ∥,

even in the limit of large system size.
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