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Abstract—We consider an asynchronous decentralized learning
system, which consists of a network of connected devices trying
to learn a machine learning model without any centralized
parameter server. The users in the network have their own local
training data, which is used for learning across all the nodes
in the network. The learning method consists of two processes,
evolving simultaneously without any necessary synchronization.
The first process is the model update, where the users update
their local model via a fixed number of stochastic gradient
descent steps. The second process is model mixing, where the
users communicate with each other via randomized gossiping to
exchange their models and average them to reach consensus. In
this work, we investigate the staleness criteria for such a system,
which is a sufficient condition for convergence of individual user
models. We show that for network scaling, i.e., when the number
of user devices n is very large, if the gossip capacity of individual
users scales as (2(log n), we can guarantee the convergence of user
models in finite time. Furthermore, we show that the bounded
staleness can only be guaranteed by any distributed opportunistic
scheme by Q(n) scaling.

I. INTRODUCTION

Decentralized learning, also known as gossip-based learn-
ing, is a method for learning a machine learning (ML) model
with distributed data stored across different users [1], [2].
This method utilizes two processes: model update and model
mixing. The model update process is essentially the user
device performing stochastic gradient descent (SGD) with
the locally available data for a fixed number of steps. The
model mixing process is device-to-device communication, by
which the local models are exchanged and then averaged for
consensus, as shown in Fig.[T] Decentralized learning has been
analyzed in the literature as a viable alternative to federated
learning [3], [4], which is the current state-of-the-art dis-
tributed ML method. With the promise of hyper-connectivity
in the emergent sixth generation (6G) networks [5], such
gossip-based mechanisms provide cheap, reliable and privacy-
preserving learning with decentralized implementations.

Decentralized optimization mechanism was first proved for
distributed convex function optimization [6]. In subsequent
literature [7]-[9]], the convergence guarantee was shown with
various constraints. Similar techniques were used in the de-
centralized learning setting for optimizing ML models [/1]], [2]]
using SGD. The works in [10]-[12]] analyze compressed model
communication for decentralized learning. The works in [13]-
[17] showed that the process can be extended even when the
asynchronous communication and model update is involved.
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Fig. 1. An example of a small distributed learning network. Each device
is updating their local ML model via SGD and parallelly, asynchronously
gossiping and mixing models with their neighboring devices.

The communication efficiency of model communication under
channel delay and straggler effects in asynchronous learning
setting was further improved in the subsequent studies [/18]]—
[20]. The analysis in reference [|L7] shows that linear speedup
for convergence of the model can be achieved by completely
asynchronous model update and model mixing process. Such
asynchronous stochastic device-to-device communication pro-
cess is referred to as randomized gossip algorithms. Gossip
algorithms offer a low complexity mechanism to disseminate
information quickly in a network [21]]. Such mechanisms are
often useful in low latency network applications [22], where
timely information delivery and lower staleness is a sufficient
criterion. In the convergence analysis in [|17]], the authors
have assumed bounded staleness of the user models, i.e., the
maximum number of training steps a user model update can
lag behind the global model is bounded by a finite quan-
tity. This assumption, however, is not immediately obvious
when network scaling is considered. In large hyper-connected
networks, such as in the emergent 6G communication, the
network size increases and maintaining the staleness bounded,
i.e., O(1), requires carefully designing the communication
network parameters. We call such systems, which satisfy the
bounded staleness constraint, scale-robust.

Reference [22] compares a vast number of works in the
literature, which analyze average information staleness (also
referred to as age of gossip) in different network settings. The
most relevant works, in the context of this paper, are [23]-



[26]. [23] shows that for a uniform gossiping scheme with a
single source, the average staleness scales as O(logn). [24]-
[26] shows that this scaling can be as low as O(1) if the
nodes follow an opportunistic gossiping policy. To the best
of our knowledge, the only work, so far, that has considered
scale-robustness for bounded staleness is [27] in the context
of asynchronous hierarchical federated learning (AHFL) set-
ting. [27] considers a client-edge-cloud based AHFL system,
and shows that when the number of user devices grows
very large, the bounded staleness criterion is achieved if the
number of edge servers is O(1). The AHFL setting is used
for circumventing data heterogeneity, i.e., presence of non-
i.i.d. data distributions. This is achieved by clustering devices
with the same data distributions together under the same edge
devices. In our work, we extend the concept to decentralized
learning, where multiple user devices, with heterogeneous data
distributions, are in a fully connected network. We show that if
the gossip capacity of the individual users scales as Q(logn),
then the scale-robustness can be guaranteed.

II. SYSTEM MODEL

We consider a symmetric fully connected network with n
user devices performing decentralized learning. Each node i
updates its local model ;(t) by performing 7 gradient descent
steps on their locally available data D;. After calculating
the gradient V.£;(0;(t); D;) and updating the model with
deterministic delay c;, the user device remains unavailable
for a time duration. For the 7th user, this time is a shifted
exponential distribution with mean exponential time xT For
mixing models, the gossiping from the ¢th user is characterized
as an exponentially distributed unavailability time window of
shifted exponential distribution with deterministic delay of d;
and mean exponential time /\1 , as shown in Fig. [2 Since
in the fully connected network, each device is connected to

— 1 neighbors, the mean unavailability window of gossiping
between two devices is d; + ”T_l ~ ”T_l for large network
size n. Hence, for model mixing process, we ignore d;,
and essentially consider a Poisson arrival process with rate
. The asynchronous decentralized
learning procedure is given in Algorithm

III. STALENESS GUARANTEE

In this section, we derive the gossip capacity scaling for
bounded staleness guarantee. We denote the version process
for the ith user as N/ (t). Whenever user i updates its model
by SGD, N/(t) increases by 1. The model version at user j
corresponding to user ¢’s model is denoted as Nj(t), which
is the latest version of the model of user 7, mixed with user
j. When user k sends a gossip update to user j at time ¢, the
updated model becomes the latest version of the two. This is
expressed as

Ni(t%) = max{N;(t7),NL(t7)}, Vie[n]. (1)

The staleness of user j at time ¢ is defined as

Sj(0) = Ni() = Nj(1), Vi€ n, @

Algorithm 1 Asynchronous Decentralized Learning algorithm

1: Initialize model 6 at all the users.

2: for i € [n] do

3:  procedure MODELUPDATE(user 1)

Wait for availability time ~ Exp(u;).

Calculate gradient V.L;(0;(t); D;), taking time ¢;.
Update the model with learning rate «;(t) as

AN AN

7. procedure MODELMIXING(user %)

8: procedure MODELTRANSMISSION(from user ¢)
9: Wait for availability time ~ Exp(;).

10: Randomly select a user j from the set [n]\{i}.
11: Transmit model 6;(¢) to user j.

12: procedure MODELRECEIVAL(at user %)

13: Receive model 6,(t) from node j € [n]\{:}.
14: Choose a random value 3 € (0, 1), uniformly.
15: Mix with the local model as

0:(t) < BO;(t) + (1 — 5)6,(2).

which represents the number of versions user j is lagging
behind the source version at user i. Note that Si(t) = 0.
During a gossip communication from node k to node j, the
staleness, therefore, gets modified as follows

Si(t%) = min{S}(t7), Sp(t7)}, Vi€ [n]. (3)

To evaluate the convergence criterion, the expected staleness
in steady state needs to be finite [17]. Hence, in the context of
network scaling with large n, we expect the following criterion
for a model to converge

Jim E[S(t)] =0(1), Vien],jen]. €

In the following lemma, we derive an upper bound for the
staleness of the decentralized learning system.

Lemma 1 The expected staleness of a user is bounded as

s Ant.

lim E [S g

t—o0

where Apin = min{ Ay, g, - - -

Proof: We note that even though there are multiple sources in
the decentralized learning network, when a single ith user’s
model is considered, it essentially becomes a combination of
n different source tracking problems, as shown in Fig. 2(b)]
Now, since the inter-arrival times for user self-update process
is a shifted exponential distribution, it does not have the
memoryless property as an exponential distribution, making
it difficult to analyze for staleness calculations. Hence, we
calculate the staleness of the system considering exponential
distribution with mean - only. Since this reduces the arrival
times of the new self—updates, it makes all the increments in
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(a) System model of decentralized learning.

(b) Gossiping and tracking of user 1 model.

(c) Modified gossip network.

Fig. 2. Different representations of a decentralized learning system.

N;(t) faster, making the resulting staleness of the system an
upper bound for the original system. We denote the staleness
of this new system as 5’; (t). Furthermore, the different gossip
rates {A1, Ao, -+, \,} make the network asymmetric. To
derive the stated result, we replace all the rates with the
minimum value A,;, = min{A;, Ag, -+, A, }, as shown in
Fig. Due to the substitution by lower gossip rate, this
substitution yields a higher expected staleness value from the
result in [23) Thm. 2]. Thus, we obtain an upper bound for the
average age for this symmetric fully connected gossip network
as

F
M
w_\»-

lim E [5}(t)] <

t—o00

(6)

This concludes the proof of Lemma [I] W

Using the result of this lemma, we show a sufficient
condition for gossip capacity scaling of an individual user to
meet the scale-robustness condition.

Theorem 1 If the gossip capacity of individual users in a fully
connected network scales as Q(logn), the scale-robustness
condition is guaranteed.

Proof: We can write the sum of reciprocals in (3) as

n—1

1 1
;klog(n1)+”y+0(n>, (7

where «y is the Euler—-Mascheroni constant. Therefore, if A\; ~
Q(logn),Vi € [n], we can write

% <log(n - +y+0 (i)) =0(1). (8

Hence, we obtain

lim E [S}(t)] = O(1), )

t—o0

implying scale-robustness. W

Now, we show that this scale-robustness cannot be achieved
by any distributed opportunistic gossiping scheme by Q(log n)
gossip rate scaling for individual users. Consider the scheme
used in [24] for example, which allows only the freshest nodes
in the network to transmit with full capacity Z?:l Ai. Such
opportunistic scheme is achieved by transmitting some pilot
signal in the network whenever a user updates its model. This
alerts all the other users in the network to not transmit any
updates in the network, thus avoiding any possible collision
or interference in the gossip capacity utilization. The freshest
user keeps transmitting until it receives a signal from any other
fresh user. In Theorem 2] we show that this kind of scheme
does not yield any scaling gain for distributed learning setting.

Theorem 2 The gossip capacity scaling of individual users
that guarantees scale-robustness in a fully connected network
using opportunistic schemes is Q(n).

Proof: We prove this result by evaluating the expected stal-
eness of a user in the network, where the gossip rates are
replaced by Apar = max{A1,Aa, -, A\, }. Following the
average age formulation in [23, Thm. 2], this substitution
yields a lower bound for the expected staleness. The user
update rates are also replaced by the shifted exponential distri-
bution (¢maz, min ), Where ¢pa, = max{cy,ca, -+, ¢, } and
Mmin = min{uq, pa, -+, b }. The mean inter update time of
user ¢ 1S Cpaz + P We denote the gossiping time for the
ith user after the kth update as T"[k]. As there are n users in
the system, the mean gossiping time is
m

We denote the staleness of this modified system at the kth
update time as Sj [k]. If there is no gossip communication from

user i to j, in T%[k], Si[k+1] is just Si[k]+ 1. The probability
of this event is e *ma=T"[] Otherwise, with probability 1 —

E [T'[K] = % (cmaz + (10)
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(a) Loss vs. epochs for \; ~ ©O(1).

Fig. 3. Loss-epoch plots for

e AmaaT'[K] 5’; [k + 1] = 0. Thus, we obtain

E [SJ [k + 1]} =E [(Sj k] + 1) e—*mawTi[kq Can
Since, 5‘; [k] and T"[k] are independent, becomes
E[Sik+1)] = (E[$i[0)] + 1) E[e T W] (12)

Now, since e~ *mazT"[*] {5 a convex function of T* [k], using

Jensen’s inequality and substituting from (I0), we obtain
E[Silk+1)] > (E[Si[k] +1) e o=l 0]
= (E[Sik)] +1) e
Thus, from the initial condition S; [0] = 0, and using recursion
0] = :
1—

_ Amaz

e M™Hmin
Clearly, the right hand side of does not yield O(1) if
Amaz = O(logn). Only O(n) scaling of Anq, yields O(1)
lower bound for the expected staleness. Thus, the gossip rate
scaling for bounded expected staleness in the original network
must be O(n). W

IV. NUMERICAL RESULTS

13)

Amaz
n

(CmTer) (14)

lim E

t—o0

= lim E

k—o0

. (15)

[sz [k + 1]}

We show validity of the staleness bounds via numerical sim-
ulations. We consider a simple regression task that minimizes
a loss function over distributed users. The loss function is

1

£(6: D) = 57 Y (f(x;,0) —yy) (16)
jG[IDI]
|D|' Z |D‘ > (f(=),0) —y)* A7)
JE[IDil]

_ 1Dl
L;(0; D;) 18
=D Z (18)

We assume that the data is equally distributed among the
users, and thus, “%"‘I % We synthetically generate the
dataset as D = {(z;,y;)}, where =; € R In our case, the
data points are from the Gaussian mixture distribution x; ~

IN (G, 1) + 3 (-

L2w;, I;), where each component

(b) Loss vs. epochs for A; ~ ©(loglogn).
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(c) Loss vs. epochs for A\; ~ O(logn).

linear regression task; m = 1.

of w; € R? is chosen uniformly from the interval [0, 1]. The
corresponding output is y; = f(x;, w;). Furthermore, ¢ € [m]
corresponds to the index of unique distribution present in the
dataset. In our simulation m < n. Note that when only one
distribution is present in the data, i.e., m = 1, the loss function
achieves its minimum at 8 = wy.

Now, we note that this loss function satisfies the conver-
gence criteria in [[I7]. First, we consider a linear regression
problem, i.e., f(x,0) = x70, with d = 100. We observe
that is differentiable, and its gradient can be written as
VoLl(6;D) = ‘%‘XT(XO y). Since X is normalized data,
this shows that £ has L-Lipschitz gradient. The mixing matrix
W), is doubly stochastic with bounded spectral gap, by our
choice of formulation in Algorithm [} The gradient estimation
is unbiased because of the addition of zero-mean mixture of
Gaussian noise. The final criterion of bounded variance holds
true because all the individual distributions have bounded
variance, and hence the mixture of the distributions is also so.
Additionally, we consider a nonlinear regression with d = 2,
where f(m,@) = 0121 + 010912, where, x = [v1,22]7 and
0 = [01,02]T. Since the formulation in (T6) for this case is
dlfferentlable we obtain 2 W = 2(6121 + 016222 — y)x1 and
aa = 2(01x1 4610225 —1y)0, 1. Following similar arguments
as before, this formulation also satisfies the conditions in [[17].

We simulate the linear regression task and show the loss-
epoch plot in Fig. [3| We show the plot for \; ~ ©(1) scaling
in Fig. the plot for \; ~ ©(loglogn) = o(logn) in
Fig. and the plot for \; ~ O(logn) in Fig. We
observe that this change in scaling of the gossip capacity
does not change the loss-epoch profile of the decentralized
learning setting, as in all the three cases, the loss function
is deceasing with epochs and the individual models are con-
verging, although with different rates. This can be explained
by the linearity of the regression task. Since the gradient
of the loss function is additive, addition of new users, and
thereby increased staleness, in the system does not deviate the
individual loss functions much from the overall loss functions
and the users can still achieve sufficient model mixing. Hence,
we observe the speedup of model convergence for large
number of users, as in [[17]. We also observe that the linear
speedup of convergence trend appears for any choice of m.
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Next, we plot the loss-epoch profile for non-linear regres-
sion task in Fig. El We observe that, both for \; ~ O(1),
and \; ~ O(loglogn) = o(logn), the loss function does
not show any speedup of convergence trend for increasing
number of users in Fig. f(a)| and Fig. [A(b)] respectively. Rather,
for n = 50 and n = 100, it deviates from the convergence
trajectory by quite a lot. However, in this setting, we observe
that for A; ~ O(logn), the convergence for any number of
users almost follow the same trajectory in Fig. This
is consistent with the loss function, which yields non-linear
gradients, thus resulting in higher deviation of the individual
loss functions of the users from the global loss function.

V. CONCLUSION

We analyzed the scale-robustness criterion for asynchronous
decentralized learning systems. In particular, we showed that
for randomized gossip schemes, if the gossip capacity of the
individual nodes scale as any function that is Q(log n), then the
staleness at the users is guaranteed to be O(1). Additionally,
we proved that such scaling gain cannot be achieved by any
opportunistic gossip scheme, as in the case of single source in-
formation dissemination. The required gossip capacity scaling
for scale-robustness is §2(n) for such opportunistic schemes.
Furthermore, by numerical simulations, we observed that the
necessity of scale-robustness is much more prominent with
non-linear machine learning models.
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