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ARITHMETIC PROPERTIES OF AN ANALOGUE OF t-CORE

PARTITIONS

PRANJAL TALUKDAR

Abstract. An integer partition of a positive integer n is called to be t-core if none of
its hook lengths are divisible by t. Recently, Gireesh, Ray and Shivashankar [‘A new
analogue of t-core partitions’, Acta Arith. 199 (2021), 33-53] introduced an analogue
at(n) of the t-core partition function ct(n). They obtained certain multiplicative
formulas and arithmetic identities for at(n) where t ∈ {3, 4, 5, 8} and studied the

arithmetic density of at(n) modulo p
j

i where t = pa1

1
· · · pam

m and pi ≥ 5 are primes.
Very recently, Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs
of the 5-core partition function’, J. Integer Seq. 27 (2024), # 24.4.5] proved new
arithmetic identities satisfied by a5(n). In this article, we study the arithmetic den-
sities of at(n) modulo arbitrary powers of 2 and 3 for t = 3αm where gcd(m, 6)=1.
Also, employing a result of Ono and Taguchi on the nilpotency of Hecke operators,
we prove an infinite family of congruences for a3(n) modulo arbitrary powers of 2.

Key words: t-core partition, analogue of t-core partition, theta functions, modular forms, arithmetic

density
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1. Introduction and statement of results

A partition π = {π1, π2, · · · , πk} of a positive integer n is a non-increasing sequence

of natural numbers such that

k
∑

i=1

πi = n. The number of partitions of n is denoted by

p(n). The Ferrers–Young diagram of π is an array of nodes with πi nodes in the ith
row. The (i, j) hook is the set of nodes directly to the right of (i, j) node, together with
the set of nodes directly below it, as well as the (i, j) node itself. The hook number,
H(i, j), is the total number of nodes on the (i, j) hook. For a positive integer t ≥ 2, a
partition of n is said to be t-core if none of the hook numbers are divisible by t. We
illustrate the Ferrers-Young diagram of the partition 4+ 3+ 1 of 8 with hook numbers
as follows:

•6 •4 •3 •1

•4 •2 •1

•1

It is clear that for t ≥ 7, the partition 4 + 3 + 1 of 8 is a t-core partition.
1

http://arxiv.org/abs/2404.19731v1


2 P. TALUKDAR

Suppose that ct(n) counts the t-core partitions of n, then the generating function of
ct(n) is given by (see [6, Eq 2.1])

∞
∑

n=0

ct(n)q
n =

(qt; qt)t∞
(q; q)∞

=
f t
t

f1
, (1.1)

where here and throughout the paper, for |q| < 1, we define (a; q)∞ :=
∞
∏

k=0

(1 − aqk)

and for convenience, we set fk := (qk; qk)∞ for integers k ≥ 1.
In an existence result, Granville and Ono [9] proved that if t ≥ 4, then ct(n) > 0 for

every nonnegative integer n. A brief survey of t-core partitions can be found in [5].

Again, for an integral power series F (q) :=
∞
∑

n=0

a(n)qn and 0 ≤ r < M , we define the

arithmetic density δr(F,M ;X) as

δr(F,M ;X) :=
# {0 ≤ n ≤ X : a(n) ≡ r (mod M)}

X
.

An integral power series F is called lacunary modulo M if

lim
X→∞

δ0(F,M ;X) = 1,

that is, almost all of the coefficients of F are divisible by M .
Arithmetic densities of ct(n) modulo arbitrary powers of 2, 3 and primes greater

than or equal to 5 are recently studied by Jindal and Meher [11].
Recall that for |ab| < 1, Ramanujan’s general theta function f(a, b) is given by

f(a, b) =

∞
∑

n=−∞

an(n+1)/2bn(n−1)/2.

In Ramanujan’s notation, the Jacobi triple product identity [3, p. 35, Entry 19] takes
the shape

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞.

Consider the following two special cases of f(a, b):

ϕ(−q) := f(−q,−q) =

∞
∑

n=−∞

(−1)nqn
2

=
f 2
1

f2
, (1.2)

f(−q) := f(−q,−q2) =

∞
∑

n=−∞

(−1)nqn(3n−1)/2 = f1. (1.3)

In the notation of Ramanujan’s theta functions, the generating function of ct(n) may
be rewritten as

∞
∑

n=0

ct(n)q
n =

f t(−qt)

f(−q)
. (1.4)
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Recently, Gireesh, Ray and Shivashankar [7] considered a new function at(n) by
substituting ϕ(−q) in place of f(−q) in the generating function of ct(n) (in (1.4)),
namely

∞
∑

n=0

at(n)q
n =

ϕt(−qt)

ϕ(−q)
=

f2f
2t
t

f 2
1 f

t
2t

. (1.5)

They proved several multiplicative formulas and arithmetic identities for at(n) for t =
2, 3, 4 and 8 using Ramanujan’s theta functions and q-series techniques. Using the
theory of modular forms, they studied the divisibility of at(n) modulo arbitrary powers
of primes greater than 5. More precisely, they proved the following theorem.

Theorem 1.1. Let t = pa11 · · · pamm where pi’s are prime numbers greater than or equal
to 5. Then for every positive integer j, we have

lim
X→∞

#
{

0 ≤ n ≤ X : at(n) ≡ 0 (mod pji )
}

X
= 1.

They also deduced a Ramanujan type congruence for a5(n) modulo 5 by using an
algorithm developed by Radu and Sellers [15]. Bandyopadhyay and Baruah [2] proved
some new identities connecting a5(n) and c5(n). They also found a reccurence relation
for a5(n).

Recently, Cotron et. al. [4, Theorem 1.1] proved a strong result regarding lacunar-
ity of eta-quotients modulo arbitrary powers of primes under certain conditions. We
observe that the eta-quotients associated with at(n) do not satisfy these conditions,
which makes the problem of studying lacunarity of at(n) more interesting. In this
article, we study the arithmetic densities of at(n) modulo arbitrary powers of 2 and 3
where t = 3αm. To be specific, we prove the following theorems.

Theorem 1.2. Let k ≥ 1, α ≥ 0 and m ≥ 1 be integers with gcd(m, 6) = 1. Then the
set

{

n ∈ N : a3αm(n) ≡ 0 (mod 2k)
}

has arithmetic density 1.

Theorem 1.3. Let k ≥ 1, α ≥ 0 and m ≥ 1 be integers with gcd(m, 6) = 1. Then the
set

{

n ∈ N : a3αm(n) ≡ 0 (mod 3k)
}

has arithmetic density 1.

The fact that the action of Hecke algebras on spaces of modular forms of level 1
modulo 2 is locally nilpotent was first observed by Serre and proved by Tate (see [16],
[17], [18]). Later, this result was generalized to higher levels by Ono and Taguchi [14].
In this article, we observe that the eta-quotient associated to a3(n) is a modular form
whose level is in the list of Ono and Taguchi. Thus, we use a result of Ono and Taguchi
to prove the following congruences for a3(n).
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Theorem 1.4. Let n be a nonnegative integer. Then there exists an integer c ≥ 0 such
that for every d ≥ 1 and distinct primes p1, . . . , pc+d coprime to 6, we have

a3

(p1 · · · pc+d · n

24

)

≡ 0 (mod 2d)

whenever n is coprime to p1, . . . , pc+d.

The paper is organized as follows. In Section 2, we state some preliminaries of the
theory of modular forms. Then we prove Theorems 1.2-1.4 using the properties of
modular forms in Sections 3-5 respectively. And finally, we mention some directions
for future study in the concluding section.

2. Preliminaries

In this section, we recall some basic facts and definitions on modular forms. For
more details, one can see [12] and [13].

Firstly, we define the matrix groups

SL2(Z) :=

{[

a b
c d

]

: a, b, c, d ∈ Z, ad− bc = 1

}

,

Γ0(N) :=

{[

a b
c d

]

∈ SL2(Z) : c ≡ 0 (mod N)

}

,

Γ1(N) :=

{[

a b
c d

]

∈ Γ0(N) : a ≡ d ≡ 1 (mod N)

}

,

and

Γ(N) :=

{[

a b
c d

]

∈ SL2(Z) : a ≡ d ≡ 1 (mod N), and b ≡ c ≡ 0 (mod N)

}

,

where N is a positive integer. A subgroup Γ of SL2(Z) is called a congruence subgroup
if Γ(N) ⊆ Γ for some N and the smallest N with this property is called the level of Γ.
For instance, Γ0(N) and Γ1(N) are congruence subgroups of level N .

Let H denote the upper half of the complex plane. The group

GL+
2 (R) :=

{[

a b
c d

]

∈ SL2(Z) : a, b, c, d ∈ R and ad − bc > 0

}

acts on H by

[

a b
c d

]

z =
az + b

cz + d
. We identify ∞ with

1

0
and define

[

a b
c d

]

r

s
=

ar + bs

cr + ds
,

where
r

s
∈ Q∪{∞}. This gives an action of GL+

2 (R) on the extended upper half plane

H∗ = H ∪Q ∪ {∞}. Suppose that Γ is a congruence subgroup of SL2(Z). A cusp of Γ
is an equivalence class in P1 = Q ∪ {∞} under the action of Γ.

The group GL+
2 (R) also acts on functions f : H → C. In particular, suppose that

γ =

[

a b
c d

]

∈ GL+
2 (R). If f(z) is a meromorphic function on H and ℓ is an integer,
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then define the slash operator |ℓ by

(f |ℓγ)(z) := (det(γ))ℓ/2(cz + d)−ℓf(γz).

Definition 2.1. Let Γ be a congruence subgroup of level N . A holomorphic function
f : H → C is called a modular form with integer weight ℓ on Γ if the following hold:

(1) We have

f

(

az + b

cz + d

)

= (cz + d)ℓf(z)

for all z ∈ H and and all

[

a b
c d

]

∈ Γ.

(2) If γ ∈ SL2(Z), then (f |ℓγ)(z) has a Fourier expansion of the form

(f |ℓγ)(z) =
∑

n≥0

aγ(n)q
n
N ,

where q := e2πiz/N .

For a positive integer ℓ, the complex vector space of modular forms of weight ℓ with
respect to a congruence subgroup Γ is denoted by Mℓ(Γ).

Definition 2.2. [13, Definition 1.15] If χ is a Dirichlet character modulo N , then we
say that a modular form f ∈ Mℓ(Γ1(N)) has Nebentypus character χ if

f

(

az + b

cz + d

)

= χ(d)(cz + d)ℓf(z)

for all z ∈ H and all

[

a b
c d

]

∈ Γ0(N). The space of such modular forms is denoted by

Mℓ(Γ0(N), χ).

The relevant modular forms for the results of this paper arise from eta-quotients.
Recall that the Dedekind eta-function η(z) is defined by

η(z) := q1/24(q; q)∞ = q1/24
∞
∏

n=1

(1− qn),

where q := e2πiz and z ∈ H. A function f(z) is called an eta-quotient if it is of the
form

f(z) =
∏

δ|N

η(δz)rδ ,

where N is a positive integer and rδ is an integer. Now, we recall two important
theorems from [13, p. 18] which will be used later.
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Theorem 2.1. [13, Theorem 1.64] If f(z) =
∏

δ|N

η(δz)rδ is an eta-quotient such that

ℓ =
1

2

∑

δ|N

rδ ∈ Z,

∑

δ|N

δrδ ≡ 0 (mod 24) and
∑

δ|N

N

δ
rδ ≡ 0 (mod 24),

then f(z) satisfies

f

(

az + b

cz + d

)

= χ(d)(cz + d)ℓf(z)

for every

[

a b
c d

]

∈ Γ0(N). Here the character χ is defined by χ(d) :=

(

(−1)ℓs

d

)

,

where s :=
∏

δ|N

δrδ .

Consider f to be an eta-quotient which satisfies the conditions of Theorem 2.1 and
that the associated weight ℓ is a positive integer. If f(z) is holomorphic at all the cusps
of Γ0(N), then f(z) ∈ Mℓ (Γ0(N), χ). The necessary criterion for determining orders
of an eta-quotient at cusps is given by the following theorem.

Theorem 2.2. [13, Theorem 1.64] Let c, d and N be positive integers with d|N and
gcd(c, d)=1. If f is an eta-quotient satisfying the conditions of Theorem 2.1 for N ,
then the order of vanishing of f(z) at the cusp (c/d) is

N

24

∑

δ|N

gcd(d, δ)2rδ
gcd(d,N/d)dδ

.

We now recall a deep theorem of Serre [13, Page 43] which will be used in proving
Theorems 1.2 and 1.3.

Theorem 2.3. [13, p. 43] Let g(z) ∈ Mk(Γ0(N), χ) has Fourier expansion

g(z) =

∞
∑

n=0

b(n)qn ∈ Z[[q]].

Then for a positive integer r, there is a constant α > 0 such that

#{0 < n ≤ X : b(n) 6≡ 0 (mod r)} = O

(

X

(logX)α

)

.

Equivalently

lim
X→∞

#{0 < n ≤ X : b(n) 6≡ 0 (mod r)}

X
= 0.
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Finally, we recall the definition of Hecke operators. Let m be a positive integer and

f(z) =

∞
∑

n=0

a(n)qn ∈ Mℓ(Γ0(N), χ). Then the action of Hecke operator Tm on f(z) is

defined by

f(z)|Tm :=

∞
∑

n=0





∑

d|gcd(n,m)

χ(d)dℓ−1a
(nm

d2

)



 qn.

In particular, if m = p is prime, then we have

f(z)|Tp :=
∞
∑

n=0

(

a(pn) + χ(p)pℓ−1a

(

n

p

))

qn. (2.1)

We note that a(n) = 0 unless n is a nonnegative integer.

3. Proof of Theorem 1.2

Putting t = 3αm in (1.5), we have
∞
∑

n=0

a3αm(n)q
n =

f2f
2·3αm
3αm

f 2
1 f

3αm
2·3αm

. (3.1)

We define

Aα,m(z) :=
η2 (233α+1mz)

η (243α+1mz)
.

For any prime p and positive integer j, we have

(q; q)p
j

∞ ≡ (qp; qp)p
j−1

∞ (mod pj).

Using the above relation, for any integer k ≥ 1, we get

A2k

α,m(z) =
η2

k+1

(233α+1mz)

η2k (243α+1mz)
≡ 1 (mod 2k+1). (3.2)

Next we define

Bα,m,k(z) :=
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)
A2k

α,m(z)

=
η(48z)η2·3

αm+2k+1

(233α+1mz)

η2(24z)η3αm+2k (243α+1mz)
.

In view of (3.1) and (3.2), we have

Bα,m,k(z) ≡
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)

≡
f48f

2·3αm
233α+1m

f 2
24f

3αm
24·3α+1m

≡

∞
∑

n=0

a3αm(n)q
24n (mod 2k+1). (3.3)
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Next, we will show that Bα,m,k(z) is a modular form. Applying Theorem 2.1, we find
that the level of Bα,m,k(z) is N = 243α+1mM , where M is the smallest positive integer
such that

243α+1mM

(

−2

24
+

1

48
+

2 · 3αm+ 2k+1

233α+1m
+

−3αm− 2k

243α+1m

)

≡ 0 (mod 24),

which implies

3 · 2kM ≡ 0 (mod 24).

Therefore M = 4 and the level of Bα,m,k(z) is N = 263α+1m.
The representatives for the cusps of Γ0 (2

63α+1m) are given by fractions c/d where
d|263α+1m and gcd(c, 263α+1m) = 1 (see [4, Proposition 2.1]). By Theorem 2.2,
Bα,m,k(z) is holomorphic at a cusp c/d if and only if

−2
gcd(d, 24)2

24
+

gcd(d, 48)2

48
+
(

3αm+ 2k
)

(

2
gcd (d, 233α+1m)

2

233α+1m
−

gcd (d, 243α+1m)
2

243α+1m

)

≥ 0.

Equivalently, Bα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3αm(−4G1 +G2 + 4G3 − 1) + 2k(4G3 − 1) ≥ 0,

where G1 =
gcd(d, 24)2

gcd (d, 243α+1m)2
, G2 =

gcd(d, 48)2

gcd (d, 243α+1m)2
and G3 =

gcd(d, 233α+1m)2

gcd (d, 243α+1m)2
.

Let d be a divisor of 263α+1m. We can write d = 2r13r2t where 0 ≤ r1 ≤ 6,
0 ≤ r2 ≤ α + 1 and t|m. We now consider the following two cases depending on r1.

Case 1: Let 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ α+1. Then G1 = G2,
1

32αt2
≤ G1 ≤ 1 and G3 = 1.

Therefore L = 3α+1m(1−G1) + 3 · 2k ≥ 3 · 2k.

Case 2: Let 4 ≤ r1 ≤ 6, 0 ≤ r2 ≤ α + 1. Then G2 = 4G1,
1

4 · 32αt2
≤ G1 ≤

1

4
and

G3 =
1

4
which implies L = 0.

Hence, Bα,m,k(z) is holomorphic at every cusp c/d. The weight of Bα,m,k(z) is ℓ =
1

2

(

3αm+ 2k − 1
)

which is a positive integer and the associated character is given by

χ1(•) =

(

(−1)ℓ3(α+1)(3αm+2k)−1m3αm+2k

•

)

.

Thus, Bα,m,k(z) ∈ Mℓ (Γ0(N), χ) where ℓ, N and χ are as above. Therefore by
Theorem 2.3, the Fourier coefficients of Bα,m,k(z) are almost divisible by r = 2k. Due
to (3.3), this holds for a3αm(n) also. This completes the proof of Theorem 1.2.
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4. Proof of Theorem 1.3

We proceed along the same lines as in the proof of Theorem 1.2. Here we define

Cα,m(z) :=
η3 (243α+1mz)

η (243α+2mz)
.

Using the binomial theorem, for any integer k ≥ 1, we have

C3k

α,m(z) =
η3

k+1

(243α+1mz)

η3k (243α+2mz)
≡ 1 (mod 3k+1). (4.1)

Next we define

Dα,m,k(z) :=
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)
C3k

α,m(z)

=
η(48z)η2·3

αm (233α+1mz) η3
k+1−3αm (243α+1mz)

η2(24z)η3k (243α+2mz)
.

From (3.1) and (4.1), we have

Dα,m,k(z) ≡
η(48z)η2·3

αm (233α+1mz)

η2(24z)η3αm (243α+1mz)

≡
f48f

2·3αm
233α+1m

f 2
24f

3αm
24·3α+1m

≡
∞
∑

n=0

a3αm(n)q
24n (mod 3k+1). (4.2)

We now prove that Dα,m,k(z) is a modular form. Applying Theorem 2.1, we find
that the level of Dα,m,k(z) is N = 243α+2mM , where M is the smallest positive integer
such that

243α+2mM

(

−2

24
+

1

48
+

2 · 3αm

233α+1m
+

3k+1 − 3αm

243α+1m
+

−3k

243α+2m

)

≡ 0 (mod 24),

which gives

8 · 3kM ≡ 0 (mod 24).

Therefore M = 1 and the level of Dα,m,k(z) is N = 243α+2m.
The representatives for the cusps of Γ0 (2

43α+2m) are given by fractions c/d where
d|243α+2m and gcd(c, 243α+2m) = 1. By using Theorem 2.2, Dα,m,k(z) is holomorphic
at a cusp c/d if and only if

− 2
gcd(d, 24)2

24
+

gcd(d, 48)2

48
+ 2 · 3αm

gcd (d, 233α+1m)
2

233α+1m
+
(

3k+1 − 3αm
) gcd (d, 243α+1m)

2

243α+1m

− 3k
gcd (d, 243α+2m)

2

243α+2m
≥ 0.

Equivalently, Dα,m,k(z) is holomorphic at a cusp c/d if and only if

L := 3α+1m (−4G1 +G2 + 4G3 −G4) + 3k(9G4 − 1) ≥ 0,
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where G1 =
gcd(d, 24)2

gcd (d, 243α+2m)2
, G2 =

gcd(d, 48)2

gcd (d, 243α+2m)2
, G3 =

gcd(d, 233α+1m)2

gcd (d, 243α+2m)2

and G4 =
gcd(d, 243α+1m)2

gcd (d, 243α+2m)2
.

Let d be a divisor of 243α+2m. We write d = 2r13r2t where 0 ≤ r1 ≤ 4, 0 ≤ r2 ≤ α+2
and t|m. We now consider the following four cases depending on the values of r1 and
r2.

Case 1: Let 0 ≤ r1 ≤ 3, 0 ≤ r2 ≤ α + 1. Then G1 = G2,
1

32αt2
≤ G1 ≤ 1 and

G3 = G4 = 1. Hence, we have L = 3α+2m(1−G1) + 8 · 3k ≥ 8 · 3k.

Case 2: Let 0 ≤ r1 ≤ 3, r2 = α + 2. Then G1 = G2,
1

32(α+1)t2
≤ G1 ≤

1

32(α+1)
and

G3 = G4 =
1

9
. Therefore L = 3α+2m

(

1

9
−G1

)

≥ 0.

Case 3: Let r1 = 4, 0 ≤ r2 ≤ α + 1. Then G2 = 4G1,
1

4 · 3(α+1)t2
≤ G1 ≤

1

4
,

G4 = 4G3 and G3 =
1

4
. Hence, we have L = 8 · 3k.

Case 4: Let r1 = 4, r2 = α + 2. Then G2 = 4G1,
1

4 · 3(α+1)t2
≤ G1 ≤

1

4 · 32(α+1)
,

G4 = 4G3 and G3 =
1

36
. Therefore L = 0.

Therefore Dα,m,k(z) is holomorphic at every cusp c/d. The weight of Dα,m,k(z) is

ℓ =
3αm− 1

2
+ 3k which is a positive integer and the associated character is given by

χ2(•) =

(

(−1)ℓ32α3
k+3ααm+3αm+3k−1m3αm+2·3k

•

)

.

Thus, Dα,m,k(z) ∈ Mℓ (Γ0(N), χ) where ℓ, N and χ are as above. Therefore by
Theorem 2.3, the Fourier coefficients of Dα,m,k(z) are almost divisible by r = 3k. Due
to (4.2), this holds for a3αm(n) also. This completes the proof of Theorem 1.3.

5. Proof of Theorem 1.4

First we recall the following result of Ono and Taguchi [14] on the nilpotency of
Hecke operators.

Theorem 5.1. [14, Theorem 1.3 (3)] Let n be a nonnegative integer and k be a positive
integer. Let χ be a quadratic Dirichlet character of conductor 9 · 2a. Then there is an
integer c ≥ 0 such that for every f(z) ∈ Mk(Γ0(9 · 2

a), χ) ∩ Z[[q]] and every t ≥ 1,

f(z)|Tp1|Tp2| · · · |Tpc+t
≡ 0 (mod 2t)

whenever the primes p1, . . . , pc+t are coprime to 6.

Now, we apply the above theorem to the modular form B1,1,k(z) to prove Theorem
1.4.
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Putting α = 1 and m = 1 in (3.3), we find that

B1,1,k(z) ≡
∞
∑

n=0

a3(n)q
24n (mod 2k+1),

which yields

B1,1,k(z) :=

∞
∑

n=0

Fk (n) q
n ≡

∞
∑

n=0

a3

( n

24

)

qn (mod 2k+1). (5.1)

Now, B1,1,k(z) ∈ M2k−1+1 (Γ0(9 · 2
6), χ3) for k ≥ 1 where χ3 is the associated charac-

ter (which is χ1 evaluated at α = 1 and m = 1). In view of Theorem 5.1, we find that
there is an integer c ≥ 0 such that for any d ≥ 1,

B1,1,k(z) | Tp1 | Tp2 | · · · | Tpc+d
≡ 0 (mod 2d)

whenever p1, . . . , pc+d are coprime to 6. It follows from the definition of Hecke operators
that if p1, . . . , pc+d are distinct primes and if n is coprime to p1 · · · pc+d, then

Fk (p1 · · · pc+d · n) ≡ 0 (mod 2d). (5.2)

Combining (5.1) and (5.2), we complete the proof of the theorem.

6. Concluding Remarks

(1) Theorems 1.2 and 1.3 of this paper and Theorem 1.8 of [7] give us the arithmetic
densities of at(n) for odd t and similar techniques can not be used to obtain the
arithmetic density of at(n) when t is even. It would be interesting to study the
arithmetic density of at(n) for even values of t.

(2) Computational evidence suggests that there are Ramanujan type congruences
for at(n) modulo powers of 2, 3 and other primes ≥ 5 for various t which are
not covered by the results of [2] and [7]. We encourage the readers to find new
congruences for at(n).

(3) Asymptotic formulas for partition functions and other related functions have
been widely studied in the literature. For instance, the asymptotic formulas for
p(n) and ct(n) were obtained by Hardy and Ramanujan [10] and Anderson [1]
respectively. It will be desirable to find an asymptotic formula for at(n).

(4) Some relations connecting at(n) and ct(n) have been discussed in [2]. A com-
binatorial treatment to at(n) might reveal more interesting partition theoretic
connections of at(n).
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Théor. Nombres 16 (1974), 1–28.
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