
ar
X

iv
:2

40
4.

19
72

4v
1

 [
cs

.L
O

]
 3

0
A

pr
 2

02
4

Sound and Complete Proof Rules for Probabilistic
Termination

RUPAK MAJUMDAR,Max Planck Institute for Software Systems (MPI-SWS), Germany

V. R. SATHIYANARAYANA, Max Planck Institute for Software Systems (MPI-SWS), Germany

Termination is a fundamental question in the analysis of probabilistic imperative programs. We consider the
qualitative and quantitative probabilistic termination problems for an imperative programming model with
discrete probabilistic choice and demonic bounded nondeterminism. The qualitative question asks if the pro-
gram terminates almost surely, no matter how nondeterminism is resolved; the quantitative question asks
for a bound on the probability of termination. Despite a long and rich literature on the topic, no sound and
relatively complete proof systems were known for this problem. We provide the first sound and relatively
complete proof rules for proving qualitative and quantitative termination in the assertion language of arith-
metic. Our proof rules use supermartingales as estimates of likelihood of the prgroam’s evolution—the key
insight is to use appropriately defined finite-state sub-instances. Our completeness result shows how to con-
struct a suitable supermartingales from an almost-surely terminating program. We also show that proofs of
termination in many existing proof systems can be transformed to proofs in our system, pointing to its appli-
cability in practice. As an application of our proof rule, we show a proof of almost sure termination for the
two-dimensional random walker.

ACM Reference Format:

Rupak Majumdar and V. R. Sathiyanarayana. 2024. Sound and Complete Proof Rules for Probabilistic Termi-
nation. 1, 1 (May 2024), 26 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Probabilistic programming languages extend the syntax of usual deterministic computation with
primitives for random choice. Thus, probabilistic programs express randomized computation and
have found applications in many domains where randomization is essential.
We study the termination problem for probabilistic programswith discrete probabilistic and non-

deterministic choice. Termination is a fundamental property of programs and formal reasoning
about (deterministic) program termination goes back to Turing [45]. Its extension to the proba-
bilistic setting can be either qualitative or quantitative. Qualitative termination, or Almost-Sure
Termination (AST) asks if the program terminates almost-surely, no matter how the nondetermin-
ism is resolved. Quantitative termination, on the other hand, relates to finding upper and lower
bounds on the probability of termination that hold across all resolutions of nondeterminism.
For finite-state probabilistic programs, both qualitative and quantitative termination problems

are well understood: there are sound and complete algorithmic procedures for termination that
operate by analyzing the underlying finite-state Markov decision processes. Intuitively, every run

Authors’ addresses: Rupak Majumdar, Max Planck Institute for Software Systems (MPI-SWS), Paul-Ehrlich-Straße, Build-

ing G26, Kaiserslautern, 67663, Germany, rupak@mpi-sws.org; V. R. Sathiyanarayana, Max Planck Institute for Software

Systems (MPI-SWS), Paul-Ehrlich-Straße, Building G26, Kaiserslautern, 67663, Germany, sramesh@mpi-sws.org.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM XXXX-XXXX/2024/5-ART

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: May 2024.

http://arxiv.org/abs/2404.19724v1
HTTPS://ORCID.ORG/0000-0003-2136-0542
HTTPS://ORCID.ORG/0009-0006-5187-5415
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://orcid.org/0000-0003-2136-0542
https://orcid.org/0009-0006-5187-5415
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Rupak Majumdar and V. R. Sathiyanarayana

of the system eventually arrives in an end component and thus, computing the termination prob-
abilities reduces to computing the reachability probabilities for the appropriate end components
[7, 13–15, 28, 46].
The story is different for infinite state spaces. Existing techniques for deducing termination

typically take the form of sound proof rules over a program logic [9–11, 15, 28, 36, 37]. These rules
ask for certificates consisting of a variety of mathematical entities that satisfy locally-checkable
properties. None of them, however, are known to be complete; that is, we do not know if certificates
can always be found for terminating programs. The search for relatively complete proof rules has
been a long-standing open problem. Note that, since the termination problem is undecidable, one
can only hope for completeness relative to an underlying logic.
In this paper, we describe the first sound and relatively complete proof rules for qualitative

and quantitative termination of probabilistic programs. We present our rules in a simple proof
system in the style of Floyd [22] that applies naturally to our program model. This proof system
uses arithmetic as its assertion language, interpreted over the standard model of rational numbers.
Soundness means that if our proof rule applies, then indeed the system satisfies the (qualitative
or quantitative) termination criterion. Completeness of our rules is relative to the completeness
of a proof system for the underlying assertion language, i.e., arithmetic. Accordingly, we show an
effective reduction from the validity of our program logic to the validity of a finite number of as-
sertions in arithmetic. Whenever the original program terminates (qualitatively or quantitatively),
one can construct a proof in our program logic in such a way that all relevant certificates can
be expressed in the assertion language. This is important: merely knowing that certain semantic
certificates exist may not be sufficient for a proof system, e.g., if these certificates are provided
non-constructively or require terms that cannot be expressed in the assertion language.
Let us be more precise. We work in an imperative programming model with variables ranging

over rationals. Our model fixes a finite set of program locations, and defines a guarded transition
relation between the locations representing computational steps. At marked locations, the model
contains primitives for probability distributions over available transitions. This allows for the ex-
pression of bounded nondeterministic and probabilistic choice; we assume the nondeterminism is
resolved demonically. We fix the language of arithmetic as our expression and assertion language,
and interpret formulas over the standard model of the rational numbers.1 The semantics of our
programming language is given by a Markov decision process on countably many states, where
a demonic scheduler resolves the nondeterminism. Since the language has bounded nondetermin-
ism, we note that each state has a finite number of immedicate successor states and so, for every
scheduler, the number of states reached in a bounded number of steps is finite.
Given a program and a terminal state, the qualitative termination question asks if the infimum

over all schedulers resolving nondeterminism of the probability of reaching the terminal state is
one, that is, if the program almost surely terminates under all possible schedulers. The quantitative
termination question asks if the probability of reaching the terminal state is bounded above or
below by a given probability ? .
For the special case of programs without probabilistic choice, sound and relatively complete

proof systems for termination are known [1, 26, 35]: they involve finding a variant function from
(reachable) program states to a well-founded domain that decreases on every step of the program,
and which maps the terminal state to a minimal element.
A natural generalization of variant functions is a ranking supermartingale: a function from states

to reals that reduces in expectation by some amount on each step of the program. Ranking super-
martingales of various flavors are the workhorse of existing proof rules for qualitative termination.

1One can generalize our result to arithmetical structures [27], but we stick to the simpler setting for clarity.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 3

Unfortunately, an example from [34] shows that a proof rule based only on a ranking supermartin-
gale is incomplete: there may not exist a ranking supermartingale that decreases in expectation
on each step and one may require transfinite ordinals in proofs.

Basic Ingredients. We take a different perspective. Instead of looking for a mapping that represents
the distance to a terminal state that goes down in each step, as in previous approaches, we con-
sider modeling the relative likelihood of the program’s evolution instead. We provide two different
proof rules. In the first, we certify almost sure termination using a function that is unbounded and
non-increasing in expectation on “most” states. In the second, we certify almost sure termination
using a family of functions, one for each reachable state, each non-increasing in expectation. Both
certificates track the execution’s relative likelihood in subtly different ways, and both require ad-
ditional side conditions.
We prove an unrolling lemma that is a central tool for our completeness results. It states that if

the infimum over all schedulers of the probability of reaching a terminal state is at least ? , then for
every n , there is a finite upper bound : such that the infimum over all schedulers of the probability
mass of reaching the terminal state within : steps is at least ? − n . In particular, the set of states
reachable in : steps defines a finite state space. The unrolling lemma appears as a basic ingredient
in characterizing the complexity of almost sure termination [31, 33]. We show that it provides a
surprisingly powerful tool in proving completeness of proof systems by “carving out” finite state
systems out of infinite-state termination problems.

Our Proof Rules for�alitative Termination. I. Our first rule asks for a supermartingale [18]+ that
is non-increasing in expectation on all states except for some set containing the terminal state. In
addition, our rule asks for a variant function * that certifies that every reachable state has some
finite path to the terminal state. We also require a few compatibility conditions on* from+ to let
us conclude the almost-sure escape from sets of states within which + is bounded.
We show the rule is sound by partitioning the collection of all runs and strategically employing

variant arguments and/or martingale theory within each partition. The completeness of the rule
uses the following observation. Fix an enumeration of the reachable states B1, B2, . . . of an almost-
surely terminating program. Let PrB [^1>=] denote the probability that a run starting from state B
reaches some state in {B=, B=+1, . . .} in the enumeration. For a fixed B , we first show that PrB [^1>=]

goes to zero as = → ∞. Following a diagonal-like construction from the theory of countable
Markov chains [39], we next define a sequence =1, =2, . . . such that Pr9 [^1B=:] ≤

1
2:

for all 9 ≤ :

(this is possible since the limit goes to zero and by the unrolling lemma). This lets us define a
supermartingale defined over the states B as

∑

:∈N

Pr B [^1>=:]

This supermartingale satisfies the requirements of our rule. Moreover, we show that this super-
martingale can be expressed in arithmetic, granting the rule relative completeness.
II.We provide a second dual proof rule that takes a more local view. Our first rule required cer-

tificates inferred from the global behaviour of the program. Our second rule, by contrast, requires
proofs of near termination, i.e., termination with some non-zero probability, from every reachable
state. If these proofs together indicate a non-zero lower bound of termination across all states, a
zero-one law indicates almost-sure termination. Therefore, our rule asks for a proof of termination
with probability at least 1 − n , for some n > 0.

How does our rule certify termination from a given state with probability 1−n? It incorporates a
proof rule for quantitative termination by Chatterjee et al. [10] that builds finite supermartingales
that take on non-trivial values for only finitely many states. This rule employs stochastic invariants

, Vol. 1, No. 1, Article . Publication date: May 2024.

4 Rupak Majumdar and V. R. Sathiyanarayana

[11]: pairs (SI, ?) such that the probability with which executions leave the set of states SI is
bounded above by ? . Our proof rule needs a family of stochastic invariants, one for each reachable
state.
The completeness of this rule uses the unrolling lemma in a crucial way. The unrolling lemma

implies a finite state space around every state that accumulates a termination probability mass of
1−n . We use this fact to show that the proof rule of Chatterjee et al. [10] is complete for finite-state
systems. This completeness in turn induces the finite nature of these supermartingales describing
the stochastic invariants around each state.

�antitative Termination. All our rules for quantitative termination again use the stochastic invari-
ants of Chatterjee et al. [11]. A stochastic invariant easily implies an upper bound rule: if there
is a stochastic invariant (SI, ?) that avoids terminal states, the probability of termination is up-
per bounded by ? . For lower bounds, our starting point is the proof rule proposed by Chatterjee
et al. [10] using stochastic invariants: if there is a stochastic invariant (SI, ?) such that runs almost
surely terminate within SI or leave SI, then the probability of termination is at least 1 − ? . While
they claimed soundness and completeness for their rule, there were two issues. First, their rule was
paramterized by a certificate for qualitative termination. In the absence of a relatively complete
proof rule for qualitative termination, one could not achieve relative completeness. Second, we
show in Section 5.3 an explicit example where their rule cannot apply.
We show a sound and complete rule that is a modification of their rule: we require that for each

= ∈ N, there is a stochastic invariant (SI=, ? +
1
=
) such that all runs almost surely terminate within

SI= or leave SI=. Sound and relatively complete certificates for almost sure termination are now
given using our previous technique for qualitative termination.
In summary, we provide the first sound and relatively complete proof rules for qualitative and

quantitative termination, culminating the substantial body of work on probabilistic termination
in the last four decades.

Other Related Work. Our proof rules use supermartingales that are closely related to Lyapunov
functions in stability of dynamical systems. Lyapunov functions have been used to characterize
recurrence and transience in infinite-state Markov chains, going back to the work of Foster [23, 24].
Completeness of Lyapunov functions was shown in general by Mertens et al. [39]. Our proof of
soundness and completeness uses insights from Mertens et al. [39], but we have to overcome sev-
eral technical issues. First, we have demonic nondeterminism and therefore require the unrolling
lemma to deal with infimums over all schedulers. Second, we do not have irreducibility. Finally,
whereas a Markov chain is either recurrent or transient, we cannot assume that a program that
is not almost sure terminating has a strong transience property. Thus, we have to prove these
properties ab initio.
In the literature, there exist sound proof rules for AST that use supermartingales. One rule by

Huang et al. [30] uses supermartingales that exhibit a lower bound on their variation in each step.
A much more closely related work is the excellent AST proof rule by McIver et al. [37]. Their work
shows that a proof rule consisting of a supermartingale function that also acts as a distance variant
is sound for almost-sure termination. While the former is believed to be incomplete [37], it is not
known if the latter rule is complete. Our work indicates that one can achieve completeness by
separating the roles of the distance variant and the supermartingale into two functions.
The issue of an appropriate assertion language for proof rules for termination have been mostly

elided in the literature, and most rules are presented in an informal language of “sufficiently ex-
pressive” mathematical constructs. Important exceptions are the assertion languages of Batz et al.
[6] and den Hartog and de Vink [16]. Their work shows that the language of arithmetic extended
with suprema and infima of functions over the state space is relatively complete (in the sense of

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 5

Cook [12]) for weakest-preexpectation style reasoning of probabilistic programs without nonde-
terminism. That is, given a function 5 definable in their language and a program % , they show that
their language is expressive enough to represent the weakest pre-expectation of 5 with respect to
% . The need for suprema and infima is motivated by demonstrating simple probabilistic programs
whose termination probabilities involve transcendental numbers. We note that arithmetic is suf-
ficient for relative completeness because suprema and infima arising in probabilistic termination
can be encoded (through quantifiers). We believe that presenting the rules directly in the language
of arithmetic allows greater focus on the nature of the certificates required by the rules. Note that
for extensions of the programming model, such as with unbounded nondeterministic choice, arith-
metic is no longer sufficient for relative completeness, and this holds already without probabilistic
choice in the language [2, 3, 29].
While we focus on almost sure termination, there are related qualitative termination problems:

positive almost sure termination (PAST) and bounded almost sure termination (BAST). These prob-
lems strengthen almost sure termination by requiring that the expected time to termination is
finite. (Note that a program may be almost surely terminating but the expected run time may
be infinite: consider a one-dimensional symmetric random walk where 0 is an absorbing state.)
The difference is that PAST allows the expected run time to depend on the scheduler that resolves
nondeterminism, andBAST requires a global bound that holds for every scheduler. Sound and com-
plete proof rules for BAST have been studied extensively [4, 8, 20, 25]. More recently, a sound and
complete proof rule for PAST was given [34]. Completeness in these papers are semantic, and rel-
ative completeness in the sense of Cook was not studied. Our techniques would provide a relative
completeness result for BAST. In contrast, Majumdar and Sathiyanarayana [34] show that PAST
is Π1

1-complete (AST and BAST are arithmetical, in comparison); thus Peano arithmetic would be
insufficient as a (relatively complete) assertion language (see [3] for similar issues and appropriate
assertion languages for nondeterministic programs with countable nondeterminism).
Our results apply to discrete probabilistic choice. While discrete choice and computation cap-

tures many randomized algorithms, our proofs of completeness do not apply to programs with,
e.g., sampling from continuous probaility distributions. The use of real values introduce measure-
theoretic complexities in the semantics [44]. These can be overcome, but whether there is a sound
and relatively complete proof rule for an appropriate assertion language remains open.
While we focus on the theoretical aspects here, there is a large body of work on synthesizing

certificates automatically and tools for probabilistic verification [9, 10, 19, 37]. We show a “com-
pilation” of many existing rules into our rules, thus, such tools continue to work in our proof
system.

2 PROBABILISTIC PROGRAMS

2.1 Syntax and Semantics

Syntax. We work with probabilistic control flow graphs, a program model used by Chatterjee et al.
[10] to detail proof rules for quantitative termination. Variables in this model range over the ra-
tionals. Assignment statements and loop guards are terms and boolean combinations of atomic
formulae expressible in the language of arithmetic. This is standard in program logics [1], and
facilitates the use of the language of rational arithmetic with addition, multiplication, and order
to make assertions about desirable program properties. For sake of conciseness, we augment this
assertion language with additional computable predicates as “syntactic sugar” in our proofs. We
interpret assertions over the standard model of rationals.

Definition 2.1 (Control Flow Graphs). A Control Flow Graph (CFG) G is a tuple
(!,+ , ;8=8C, x8=8C, ↦→,�, Pr,Upd), where

, Vol. 1, No. 1, Article . Publication date: May 2024.

6 Rupak Majumdar and V. R. Sathiyanarayana

• ! is a finite set of program locations, partitioned into assignment, nondeterministic, and
probabilistic locations !�, !# , and !% , respectively.

• + = {G1, G2, . . . G=} is a finite set of program variables.
• ;8=8C ∈ ! is the initial program location, and x8=8C ∈ Q

+ is the initial variable valuation.
• ↦→ ⊆ ! × ! is a finite set of transitions. If g = (;, ; ′) ∈ ↦→, then ; and ; ′ are respectively
referred to as the source and target locations of g .

• � is a function mapping each g ∈ ↦→ to a Boolean expression over + ∪ !.
• Pr is a function assigning each (;, ; ′) ∈ ↦→ with ; ∈ !% a fractional expression ? over the
variables + representing a rational probability value.

• Upd is a map assigning each (;, ; ′) ∈ ↦→ with ; ∈ !� an update pair (9 ,D) where 9 ∈

{1, . . . , |+ |} is the target variable index and D is an arithmetic expression over the variables
+ .

• At assignment locations, there is at most one outgoing transition.
• At probabilistic locations ; , it must be that Pr(;, _) [x] > 0 and

∑

� (;, _) [(;, x)] ×

Pr((;, _)) [x] = 1 over all transitions (;, _) ∈ ↦→ for all x ∈ Q+ .

We use the boldface notation x for variable assignments and write 0 for the assignment that
maps every variable to zero. Pr(;, ; ′) [x],� (;, ; ′) [x], and Upd(;, ; ′) [x] refer to the output of the ex-
pressions Pr(;, ; ′),� (;, ; ′), and Upd(;, ; ′) on the assignment x. Note that the finiteness of ! implies
that the branching at both nondeterministic and probabilistic locations is bounded. Without loss
of generality, we assume simple structural conditions that ensures that every state has a successor.
This follows similar assumptions made in prior work [10]. Observe that, while the probabilistic
choice is simple, it is sufficient to model probabilistic Turing machines and some quite sophisti-
cated probabilistic phenomena [21]. However, we explicitly forbid unbounded nondeterministic
choice or sampling from continuous distributions.

Remark 2.2. While we use CFGs as our formal model of programs, we could have equivalently
used probabilistic guarded command language (pGCL). pGCL is the probabilistic extension of the
Guarded Command Language of Dijkstra [17], and is a convenient language for specifying proba-
bilistic computation. There is a large body of work [6, 19, 31, 36, 37] that uses pGCL syntax. Our
choice of CFGs follows the same choice made by Chatterjee et al. [10] to describe quantitative
termination. It is standard to compile pGCL programs into CFGs and vice versa. For readability,
we employ the syntax of pGCL in some of our examples.

States, Runs, and Reachable States. Fix a CFG G = (!,+ , ;8=8C, G8=8C, ↦→,�, Pr,Upd). A state is a tu-
ple (;, x), where ; ∈ ! and x ∈ Q+ . A state (;, x) is termed assignment (resp., nondeterministic,
or probabilistic) if the location ; is assignment (resp., nondeterministic, or probabilistic). We will
refer to assignment locations ; where the updates of all transitions sourced at ; don’t change the
variable values as deterministic locations. Accordingly, states (;, x) are termed deterministic when
; is deterministic. A transition (;, ; ′) ∈ ↦→ is enabled at a state (;, x) if the guard � (;, ; ′) evaluates
to true under (;, x). The vector x′ is the result of the update pair (9 ,D) from the state (;, x) if (a) for
all 8 ≠ 9 , x′ [8] = x[8], and (b) x′ [9] = D (x). A state (; ′, x′) is a successor to (;, x) if the transition
(;, ; ′) ∈ ↦→ is enabled at (;, x) and x

′ is the result of Upd(;, ; ′) on x. A finite path is a sequence of
states (;1, x1), (;2, x2), . . . , (;=, x=) with (;:+1, x:+1) being a successor to (;: , x:). A run (or execution)
of G is a sequence of states that (a) begins with the initial state (;8=8C, x8=8C), and (b) only induces
finite paths as prefixes.
A state (; ′, x′) is said to be reachable from a state (;, x) if there exists a finite path beginning at

(;, x) and ending at (; ′, x′). We write Reach(G, (;, x)) for the set of states reachable from (;, x); we
simply write Reach(G) when the initial state is (;init, xinit). An CFG is said to be finite state if the
set of states reachable from its initial state is finite.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 7

Probability Theory. Wenow introduce some basic probability theoretic notions. The tuple (-,F ,P)

is called a probability space where- is the sample space, F is a f-algebra over - , and P is the prob-
ability measure over F . The sequence (F=), where = ranges over N, is a filtration of the probability
space (-,F ,P) if each F= is a sub f-algebra of F and F8 ⊆ F9 for all 8 ≤ 9 .
A random variable is a measurable function from - to R+, the set of positive real numbers.

The expected value of the random variable - is denoted by E[-]. A stochastic process over the
filtered probability space is a sequence of random variables (-=) such that each -= is measurable
over F=. A supermartingale is a stochastic process (-=) that does not increase in expectation, i.e.,
E[-=+1] ≤ E[-=] for each = ∈ N. We will abuse notation slightly and refer to any function
over the state space of a CFG that doesn’t increase in expectation at each execution step as a
supermartingale function.
We shall make use of the following version of Doob’s Martingale Convergence Theorem.

Theorem 2.3 ([18]). If a supermartingale (-=) is bounded below, then there almost-surely exists a
random variable -∞ such that

P

(

-∞ = lim
=→∞

-=

)

= 1 and E[-∞] ≤ E[-0]

Schedulers and Probabilistic Semantics. Now, we introduce the operational semantics of our pro-
grams. These are standard operational semantics that can be found in many other places [5, 10]. A
scheduler is a mapping from finite paths ending at nondeterministic states to successors from these
states. Note that, since the state space for any CFG is countable, we do not require measurability
conditions on the scheduler.
The semantics of G is understood through a probability space over the runs of G. Formally, let

RunsG be the collection of all executions of G. Further, for a finite path c , denote by CylG (c) the
cylinder set containing all runs d ∈ RunsG such that c is a prefix of d . Now, call FG the smallest
f-algebra on RunsG containing all cylinder sets of finite paths of G.

A scheduler s induces a probability space over the collection of all runs of the CFG G. A finite
path (or run) c is said to be consistent with s if for every prefix c ′ of c ending at a nondeterministic
state, the finite path (or run) obtained by appending the successor state s(c ′) to c ′ is a prefix of c . A
scheduler is said to induce a finite path (or run) if the path (or run) is consistent with the scheduler.
The semantics of the CFG G under the scheduler s is captured by the probability space (RunsG,

FG,Ps), where for every consistent finite path c = ((;1, x1), (;2, x2), . . . (;=, x=)) with probabilistic
locations at indices 81, 82, . . . 8=,

Ps (c) = Pr(;81 , ;81+1) [x81] × · · · Pr(;8= , ;8=+1) [x8=]

We analogously define a probability space (RunsG(;,x) , FG(;,x) ,Ps) to refer to the probability space
induced by the scheduler s on the CFG obtained from G by setting the initial state to (;, x).
For a scheduler s, the canonical filtration of G is the sequence (F=)=∈N such that F= is the

smallest sub-f-algebra of FG(f) that contains the cylinder sets CylG(f) (c≤=) of all finite paths
c≤= of length at most =. Under this filtration, the semantics of G under s can also be viewed as a
stochastic process (-s

=)=∈N measurable against (F=)=∈N such that -s
= takes on an encoding of the

state of the execution after = steps. When convenient, we will use this view as well.

2.2 The Termination Problem

Fix an CFG G and a scheduler s. Let ;out be a distinguished location we refer to as terminal. Denote
by ^(;out , 0) the set of all runs that reach (;out, 0); we call these the terminating runs. Observe that
^(;out , 0) is measurable. The CFG G is said to terminate with probability ? under the scheduler s
if Ps [^(;out , 0)] = ? .

, Vol. 1, No. 1, Article . Publication date: May 2024.

8 Rupak Majumdar and V. R. Sathiyanarayana

1 x, y ≔ 1, 1

2 while (x ≠ 0 ∨ y ≠ 0):

3 { x ≔ x + 1 ⊕ 1
2

x ≔ x - 1 } ⊕ 1
2

4 { y ≔ y + 1 ⊕ 1
2

y ≔ y - 1 }

Prg. 1. The 2D symmetric random walker. The symbol ⊕ is a probabilistic choice operator.

Definition 2.4 (Termination Probability). Let G be an CFG and for a scheduler s, let
(RunsG,FG, Ps) be the probability space induced by s on the executions of G. The termination
probability of G, denoted by Prterm(G), is the infimum of Ps [^(;out , 0)] over all schedulers s.
We also use the notation Prterm(G(f)) to refer to the termination probability of G if its initial

state were changed to f .

AnCFG is said to be almost surely terminating (AST) if its termination probability is 1. Our work
is on sound and complete proof rules for deciding, for anCFG G, (a) the AST problem, i.e., whether
G is almost surely terminating. (b) the Lower Bound problem, i.e., whether Prterm(G) exceeds some
? < 1, (c) the Upper Bound problem, i.e., whether Prterm(G) is bounded above by some ? > 0. We
remark that, for the lower and upper bound problems, the proof rules we describe are applicable to
any number ? that is representable in our program logic. This means that ? can take on irrational
and transcendental values; this is important, as termination probabilities can often take on such
values [6, 21]. We will elaborate in Section 2.4.

Note that, while we define termination for a specific state (;out , 0), more general termination
conditions can be reduced to this case by a syntactic modification.

Example 2.5 (Symmetric RandomWalk). A 3-dimensional symmetric random walk has 3 integer
variables G1, . . . , G3 . Initially, all variables are 1. In each step, the program updates the variables to
move to a “nearest neighbor” in the 3-dimensional lattice Q3 ; that is, the program picks uniformly
at random one of the variables and an element in {−1,+1}, and adds the element to the chosen
variable. Program 1 shows the code for 3 = 2. It is well known [40] that the symmetric random
walk is recurrent in dimension 1 and 2, and transient otherwise. Thus, if we set any element in the
lattice, say 0, to be an terminal state, then the program is almost surely terminating in dimension
1 and 2 but not almost surely terminating when 3 ≥ 3. We shall refer to the 3 = 1 and 3 = 2 cases
as 1DRW and 2DRW, respectively. �

2.3 The Unrolling Lemma

Let G be anCFG such that Prterm(G) ≥ ? for some rational ? > 0. Fix a scheduler s. Let (c1, c2, . . .)
be an ordering of the terminating runs of G consistent with s such that |c1 | ≤ |c2 | ≤ · · · . For some
n > 0, let 8= be the smallest number such that

Ps (c1) + · · · + Ps (c8=) ≥ ? − n

where Ps is the probability measure induced by s over the set of all runs of G.
We call |c= | the required simulation time of G under s to assimilate a termination probability of

? − n . The required simulation time of s is simply the length of the longest terminating run that
must be accounted for in the termination probability series for it to cross ? − n .
Define the simulation time of G w.r.t. n as the supremum over all schedulers s of the required

simulation time of G under s and n . The following lemma is at the core of showing that the almost
sure termination problem is Π0

2-complete [33].

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 9

Lemma 2.6 (Unrolling Lemma [33]). Let G be an CFG such that Prterm(G) ≥ ? . For any n , the
simulation time of G w.r.t. n is bounded above.

Lemma 2.6 is a generalization of Lemma B.3 of Majumdar and Sathiyanarayana [33]. It holds
for CFGs because the branching at nondeterministic locations is bounded. To prove the unrolling
lemma, for each< ∈ N, we consider unrollings of G for< steps, running under partial schedules
that resolve nondeterministic choices for up to< steps. Partial schedules are naturally ordered into
a tree, where a partial schedule s is extended by s′ if s′ agrees with s when restricted to the domain
of s. An infinite path in this tree defines a scheduler. For each scheduler s, we mark the :-th node
in its path if : is the minimum number such that the :-step unrolled program amasses termination
probability at least ? −n . If two schedulers agree up to : steps, then they both mark the same node.
The key observation is that, since the nondeterminism is finite-branching, the scheduler tree is
finite-branching. Thus, if we cut off the tree at marked nodes and still have an infinite number of
incomparable marked nodes, there must be an infinite path in the tree that is not marked. But this
is a contradiction, because this infinite path corresponds to a scheduler that never amasses ? − n

probability mass for termination.
Corollary 2.7 follows directly, and is used multiple times in the proofs of the soundness and

completeness of our rules.

Corollary 2.7. Let f be a state of an CFG G. Suppose Prterm(G(f)) > 0. Then, varied across
schedulers, there is an upper bound on the length of the shortest consistent terminal run from f .

Proof. For a scheduler s, let cs be the smallest terminal run of G(f) consistent with s. The
simulation time to assimilate a termination probability of n for some 0 < n < Prterm(G(f)) under
scheduler s is necessarily at least as large as |cs |. If the collection of lengths |cs | across schedulers s
wasn’t bounded, then this simulation time is unbounded. This contradicts the unrolling lemma. �

2.4 Assertion Language and Program Logic

Our language of choice for specifying assertions is the language of arithmetic with addition, mul-
tiplication, and order interpreted over the domain of rationals. We fix the interpretation model for
our assertions as the standard model of rationals. Refer to this interpretation by IQ.

2 Let Th(Q)
denote the theory of rationals, i.e., the collection of assertions that are true in the standard model of
rationals. The evaluation of our assertions is tantamount to their implication by Th(Q). All proof
techniques we present in our work are relative to complete proof systems for Th(Q).
Assertions are evaluated at program states. Fix aCFGGwith transition relation ↦→G . A statef of

G satisfies an assertion i if the interpretation IQ augmented with the variable valuation encoded
in f models i . We denote this by f � i . An assertion i is valid if f � i for all states f . Valid
assertions are contained in Th(Q).
We employ a program logic inspired by the seminal work of Floyd [22]. Statements in our logic

affix assertions as preconditions and postconditions to transitions in G. For example, the transition
g ∈ ↦→G could be affixed a precondition ig and postcondition kg to yield the sentence {ig }g{kg }.
The precondition ig is evaluated at the program state before taking g , and the postconditionkg is
evaluated at states reached immediately after g . The sentence {ig }g{kg } is true for G if for every
state f with f � i , if g is enabled at f and f ′ is a successor of f through g , then f ′

� kg .
We use the notion of inductive invariants in our proof rules. An inductive invariant is an assertion

with = + 1 free variables, the first ranging over ! and the others over Q, that is closed under the
successor operation. That is, an assertion Inv is an inductive invariant if, whenever (;, x) satisfies

2Instead of fixing IQ, one can use any arithmetical structure [27] to specify and interpret assertions. All our proof rules will

remain sound and relatively complete with this change.

, Vol. 1, No. 1, Article . Publication date: May 2024.

10 Rupak Majumdar and V. R. Sathiyanarayana

Inv, and (; ′, x′) is a successor to (;, x), then (; ′, x′) satisfies Inv. It follows that if (;init , xinit) satisfies
Inv, then every reachable state satisfies Inv.
Floyd [22] specified axioms for a proof system over this program logic. Proof rules extend this sys-

tem by enabling the deduction of complicated program properties, such as termination. These rules
are composed of antecedents and consequents. Antecedents are finite collections of statements writ-
ten in the program logic. Consequents detail properties of the program at which the antecedents
are evaluated. Soundness of a proof rule implies that if the antecedents are true for a program G,
then the consequents hold for G. Completeness of a proof rule implies that if the consequents are
true for someG, then one can come up with proofs for the antecedents of the rule in the underlying
proof system.
The completeness of all proof rules in this work is dependent on the existence of a complete

proof system for Th(Q). Such proof rules are said to be complete relative to a proof system for
Th(Q). Relative completeness of this kind is standard in program logics.

To show the relative completeness of our proof rules, we will need to be able to encode com-
putable relations in our assertion language. A relation is computable if its characteristic function is
decidable. It is known that the theory of arithmetic interpreted over natural numbers can encode
all computable relations. Let IN refer to the interpretation model of the standard model of naturals.
Denote by Th(N) the collection of all true assertions under IN. Th(N) is generally referred to as
the theory of natural numbers. Thus, for each computable relation '(G1, G2, . . . G=), there is an as-
sertion i' (G1, G2, . . . G=) that is true in Th(N). To represent computable relations in Th(Q), we use
a result by Robinson [42].

Theorem 2.8 (Robinson [42]). N is definable in Th(Q).

We refer to the assertion that encodes N by Nat. Therefore, Nat(G) is true in IQ iff G ∈ N. All
computable relations can be encoded in our assertion language through liberal usage of Nat. An
important implication is that termination probabilities are expressible in our assertion language.

Lemma 2.9. For a CFG G and a ? ∈ [0, 1] with Prterm(G) = ? , there is an assertionk (G) with one
free variable G such that Th(Q) � k (G) ⇔ G ≤ ? .

Proof. We know that Prterm(G) ≥ ? iff Prterm(G) ≥ ? − n for all n > 0. The unrolling lemma
implies that for all n > 0, there is a : ∈ N such that the probability mass of the :-unrolled program
is at least ?−n . Finite unrollings ofG are, by definition, computable, and checking the probability of
termination amassed in this finite unrolling is also computable; see Kaminski et al. [31] for details.
This means that a relation '(n, :) representing this relationship between every rational n and
natural : . Such computable relations are representable in Th(Q) through Theorem 2.8, completing
the proof. �

Notice that while the termination probabilities ? are real numbers, the lower bounds verified
by the assertion k in the above lemma are entirely rational. However, by representing the set of
rational numbers under ? , k has effectively captured the Dedekind cut of ? . This expressibility
shows how irrational lower bounds on termination probabilities can be deduced using our proof
techniques.

3 ALMOST-SURE TERMINATION: MARTINGALES

In all rules in this work, we fix a CFG G = (!,+ , ;8=8C, x8=8C, ↦→,�,Pr,Upd). We also abuse notation
slightly and use the inductive invariant Inv as a shorthand for all states ofG satisfying the predicate
Inv.
Our proof rules consist of sets and functions over the state spaces that satisfy certain properties.

Each of these entities must be representable in our assertion language; therefore, they must be

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 11

arithmetical expressions over the program variables and program locations. Instead of specifying
each condition in our rules as formal statements in our program logic, we directly describe the
properties these entities must satisfy. We do so to emphasize these entities themselves over the
formalism surrounding them. It is nevertheless possible to write each of the following proof rules
as finite sets of statements in the program logic.
Recall that a proof rule is sound if, whenever we can find arithmetical expressions in our asser-

tion language that satisfy the conditions outlined in the premise of a rule, the conclusion of the
rule holds. A proof rule is relatively complete if, whenever the conclusion holds (e.g., a program G

is AST), we can find certificates in the assertion language that satisfy all the premises.

3.1 McIver and Morgan’s Variant Rule

We start with a well-known rule for almost-sure termination from [36]. The rule is sound but
complete only for finite-state programs McIver and Morgan [36, Lemma 7.6.1].

Proof Rule 3.1: Variant Rule for AST [36]

If there is

(1) an inductive invariant Inv containing the initial state (;8=8C, x8=8C),
(2) a function * : Inv → Z,
(3) bounds Lo and Hi such that for all states (;, x) ∈ Inv, Lo ≤ * (;, x) < Hi, and
(4) an n > 0,

such that, for each state (;, x) ∈ Inv,

(a) if (;, x) is a terminal state, * (;, x) = 0.
(b) if (;, x) is an assignment, or nondeterministic state, * (; ′, x′) < * (;, x) for every suc-

cessor (; ′, x′).
(c) if (;, x) is a probabilistic state,

∑

Pr(;, ; ′) [x] > n over all successor states (; ′, x′) with
* (; ′, x′) < * (;, x).

Then, G is AST.

Lemma 3.1 (McIver and Morgan [36]). Rule 3.1 is sound for all AST programs. It is relatively
complete for finite-state AST CFGs.

While McIver and Morgan [36] claim completeness and not relative completeness, their proof
trivially induces relative completeness. This rule is not complete, however. This is because, if the
rule is applicable, the program is guaranteed a terminal run of length at mostHi−Lo from any state.
But the 1D random walk (outlined in Example 2.5) does not satisfy this property, even though it
terminates almost-surely.
Over the years, McIver and Morgan’s proof rule has been extended many times [30, 37]. The

most significant extension is the proof rule of McIver et al. [37], where they require the function
* to additionally be a supermartingale. None of these extensions have managed to be proven
complete. Because we do not use ideas from these extensions, we do not present them here.

3.2 Our Rule

We present a martingale-based proof rule for AST that exploits the fact that AST programs, when
repeatedly run, are recurrent.

, Vol. 1, No. 1, Article . Publication date: May 2024.

12 Rupak Majumdar and V. R. Sathiyanarayana

Proof Rule 3.2: Martingale Rule for AST

If there exists

(1) an inductive invariant Inv containing the initial state,
(2) a set � ⊂ Inv containing the terminal state,
(3) a supermartingale function + : Inv → R that assigns 0 to the terminal state and at all

states (;, x) ∈ Inv \�,
(a) + (;, x) > 0,
(b) + (;, x) > + (;�, x�) for each (;�, x�) ∈ �,
(c) if (;, x) is an assignment or nondeterministic state, then + (;, x) ≥ + (; ′, x′) for all

possible successor states (; ′, x′), and
(d) if (;, x) is a probabilistic state, then, over all successor states (; ′, x′), + (f) ≥

∑

Pr(;, ; ′)+ (; ′, x′),
(4) a variant function* : Inv → N that
(a) assigns 0 to the terminal state,
(b) ensures that at nondeterministic and assignment states (;, x) ∈ Inv, * (;, x) >

* (; ′, x′) for all possible successor states (; ′, x′), and
(c) satisfies the following compatibility criteria with the sublevel sets +≤A = {f ∈ Inv |

+ (f) ≤ A } for each A ∈ R:
(i) the set {D ∈ N | f ∈ +≤A ∧ D = * (f)} is bounded, and
(ii) there exists an nA > 0 such that, for all probabilistic states (;, x) ∈ +≤A , the sum

∑

Pr(;, ; ′) [x] > nA over all successor states (;
′, x′) with * (; ′, x′) < * (;, x).

Under these conditions, G is AST.

In this rule,* is meant to play the role of the variant function from Rule 3.1. � is meant to form
a “ball” around the terminal state; it is useful in applications where the supermartingale properties
of + are difficult to establish at all states. If the execution were to be restricted within this ball �,
the rule makes it easy to establish almost-sure termination. This is because while + must only be
a supermartingale outside of �, the variant * must still decrease within �. Observe that � must
be a strict subset of Inv; this is to enforce an upper bound on the collection of + -values of states
in �. It’s easy to see that this rule reduces to Rule 3.1 if the supermartingale + was bounded.
Intuitively, + can be thought of as a measure of relative likelihood. The probability that a tran-

sition increases + by an amount E reduces as E increases. Unlikely transitions are associated with
greater increments to+ , and (relatively) unlikely states have greater+ values. Separately, the vari-
ant * reprises its role from Rule 3.1: it effectively measures the shortest distance to a terminal
state.
At a high level, Rule 3.2 works for the following reasons. Suppose + is unbounded and execu-

tions begin at some initial state f0 ∈ Inv. The supermartingale property of + implies that from f0,
the probability of reaching a state f with + (f) > + (f0) approaches 0 as + (f) grows to +∞. Now,
fix an unlikely state f with + (f) ≫ + (f0). Let’s now restrict our attention to the executions that
remain in states W ∈ Inv with + (W) ≤ + (f). The compatibility conditions satisfied by the variant
* with + at the sublevel set +≤+ (f) implies the almost-sure termination of these executions. The
remaining executions must reach some unlikely state W ′ with + (W ′) ≥ + (f).
Thus, as the probability of reaching unlikely states W ′ reduces the “further away” (from the

perspective of+) they are, the probability of terminating approaches 1. Since+ is unbounded, the
probability of termination is 1.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 13

Remark. We note that our rule is quite similar to the AST rule of McIver et al. [37]. Their rule
consisted of a single supermartingale+ that, with the help of a few antitone functions, also exhib-
ited the properties of a distance variant. In other words, they combined the duties of the functions
+ and* into a single function + . It is not known if their rule is complete.

Lemma 3.2 (Soundness). Rule 3.2 is sound.

Proof. Let us first dispense of the case where + is bounded. If + is bounded, the compatibility
criteria forces a bound on the variant function * . The soundness of Rule 3.1 implies G ∈ AST.
Therefore, from now on, + is assumed to be unbounded.

Denote the initial state by f0. For each = ∈ N, define Π= to be the collection of runs from f0
that reach a maximum+ value of =. This means that for each state f encountered in executions in
Π= , + (f) ≤ =. Define Π∞ to be the remaining collection of executions beginning at f0 that don’t
have a bound on the + values that they reach. This means that for each execution c ∈ Π∞ and
each = ∈ N, there are states f ∈ c such that + (f) > =. We have thus partitioned the collection of
executions of the CFG G to Π∞ ∪ (

⋃

8∈N Π8).
We will now argue that under every scheduler, the probability measure of all non-terminating

executions in each Π= is 0. By definition, all executions in Π= lie entirely within the sublevel set
+≤=. The compatibility of * with +≤= implies that the variant * is bounded across states in Π= .
Consider an CFG G≤= that mirrors G inside +≤=, but marks states in G outside +≤= as terminal.
Applying Rule 3.1 using the now bounded variant* allows us to deduce that G≤= is almost-surely
terminating. Observe now that the collection of non-terminating runs of G≤= is precisely the col-
lection of non-terminating runs in Π= . This immediately gives us what we need.
We now turn our attention to the final collection Π∞. Observe that Π∞ must only contain

non-terminal executions. Suppose that, under some scheduler s, the probability measure of Π∞

wasn’t 0. Let the probability space defining the semantics of G under s (see Section 2.1) be
(RunsG(f) , FG(f) , Ps), and let its canonical filtration be {F=}. Define a stochastic process {-s

=}

over the aforementioned probability space augmented with the filtration {F=} that tracks the cur-
rent state of the execution of the program. Define another stochastic process {. s

= } as

. s
= ,

{

+ (-s
=) -s

= ∉ �

0 otherwise

It’s easy to see that . s
= is a non-negative supermartingale. Since . s

= is non-negative, Doob’s Mar-
tingale Convergence Theorem [18] implies the almost-sure existence of a random variable . s

∞ that
the process {. s

= } converges to. This means that E[. s
∞] ≤ . s

0 .
Under the condition that Π∞ occurs, . s

∞ = +∞. Since the probability measure of these non-
terminal executions isn’t 0, we have that E[. s

∞] = +∞ > . s
0 = + (-s

0). This raises a contradiction,
completing the proof. �

To show completeness, we adapt a technique by Mertens et al. [39] to build the requisite super-
martingale+ . Suppose G is AST. Let Reach(G) be the set of its reachable states. Fix a computable
enumeration Enum of Reach(G) that assigns 0 to its terminal state. Intuitively, Enum is meant to
order states in a line so that the probability of reaching a state that’s far to the right in this order
is small. This is because the AST nature of G forces executions to “lean left” toward the terminal
state. Note that we place no other requirements on Enum; these intuitions will work no matter
how Enum orders the states. A state f is said to be indexed 8 if Enum(f) = 8 . From now on, we
will refer to the state indexed 8 by f8 .

A crucial part of our construction is the following function ' : (N × N) → [0, 1]. Intuitively, '
measures the ability of executions beginning from a state to reach states that are far to the right

, Vol. 1, No. 1, Article . Publication date: May 2024.

14 Rupak Majumdar and V. R. Sathiyanarayana

of it in the Enum order. Let G8 be the CFG obtained from G by switching its initial state to f8 . Let
the semantics of G8 under a scheduler s be the probability space (RunsG8 , FG8 ,P

8
s). Define '(8, =)

at indices 8 and = to be

'(8, =) , inf sP
8
s (^ ({f< ∈ Reach(G) | < ≥ =})) (1)

Where ^(�) represents the event of eventually reaching the set � . We will refer to the first argu-
ment 8 as the source index and the second argument = as the minimum target index. Put simply,
'(8, =) measures the infimum probability of reaching the target indices {=, = + 1, . . .} from the
source f8 .

Lemma 3.3. '(8, =) → 0 as = → ∞ at every 8 ∈ N, i.e., ∀8 ∈ N · lim=→∞ '(8, =) = 0.

Proof. Denote by �= the event that executions beginning from f8 reach states with index ≥ =.
Clearly, '(8, =) measures the infimum probability of �= . Denote by �∞ the event that executions
beginning from f8 increase the maximum observed state index infinitely often. It’s easy to see that,
for every = ∈ N, the event �= contains �∞. Also, each execution outside �∞ must be inside some
�= \ �=+1, as it must yield a maximum state index contained in it. Additionally, �=+1 ⊆ �= for all =.
These three facts imply

�∞ =
⋂

8∈N

�= = lim
=→∞

�=

Suppose that, lim=→∞ '(8, =) > 0 for some index 8 . Since '(8, =) = inf sP
8
s [�=], we have

inf sP
8
s [�∞] = inf s

(

lim
=→∞
P8s [�=]

)

= lim
=→∞

inf sP
8
s [�=] = lim

=→∞
'(8, =) > 0

As all executions in �∞ are non-terminating, this contradicts the AST nature of G. �

It turns out that, if we fix the minimum target index =, the function' becomes a supermartingale.
Define+= (f) = '(Enum(f), =) for every = ∈ N. It’s easy enough to see that+= is a supermartingale;
for assignment / non-deterministic states f with possible successors f ′, +=(f) ≥ +=(f

′), and for
probabilistic f = (;, x),+=(;, x) ≥

∑

Pr(;, ; ′)+=(;
′, x) across all successors (; ′, x). However, += isn’t

the supermartingale we need, as we may not always be able to construct a compatible * for any
+=. This is because every += is bounded above (by 1), whereas* typically isn’t bounded above.

To construct an unbounded supermartingale, one could consider the sum
∑

+= varied across all
= ∈ N. However, this sum could be ∞ for certain states. To combat this, we carefully choose an
infinite subset of N to form the domain for

∑

+=. Consider the sequence (= 9) 9∈N such that = 9 is
the smallest number so that '(8, = 9) ≤ 2− 9 for all 8 ≤ 9 . Each element in this sequence is certain to
exist due to the monotonically non-increasing nature of '(8, =) for fixed 8 and the limit result of
Lemma 3.3. Furthermore, restricting the domain of

∑

+= to elements in (= 9) 9∈N will mean that no
state is assigned ∞ by the sum. This is because for each f , the values of += 9 (f) = '(Enum(f), = 9)

will certainly repeatedly halve after 9 ≥ Enum(f). Further note that the supermartingale nature of
the+= implies that this sum is also a supermartingale. We thus have our required supermartingale

+ (f) =
∑

9∈N

+= 9 (f) =
∑

9∈N

'(Enum(f), = 9) (2)

Lemma 3.4 (Completeness). Rule 3.2 is relatively complete.

Proof. Take an AST CFG G, and set Inv and� to Reach(G) and the singleton set containing the
terminal state respectively. We first describe our choice for the variant function* . Since G is AST,
for every f ∈ Reach(G), every scheduler must induce a finite path to a terminal state. Corollary 2.7
implies an upper bound on the length of the shortest terminal run from every f ∈ Inv. Set * to
map each f ∈ Inv to this upper bound.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 15

If* is bounded, setting+ (f) = 1 for all f ∈ Inv suffices. Otherwise, set+ to the supermartingale
function defined in Eq. (2). It is easy to observe that for every A , the sublevel set+≤A = {f | + (f) <

A } is finite. This implies that* is bounded within every sublevel set, and is hence compatible with
this + . This completes the construction of the certificates required by the proof rule.
We now argue that the invariant Inv, the set�, the supermartingale+ and variant* can each be

represented in our assertion language of arithmetic interpreted over the rationals. We do this by
encoding them first encoding them in the theory of natural numbers, and then using the relation
Nat from Theorem 2.8 to insert them into our assertion language. Recall that all computable rela-
tions can be encoded in Th(Q). We present techniques with which one can augment computable
relations with first-order quantifiers to represent these entities. By doing so, we demonstrate that
these sets are arithmetical; see the works of Kozen [32] and Rogers Jr. [43] for detailed accounts
on arithmetical sets.
� can trivially be represented in Th(Q). For Inv, consider the relation � that contains tuples of

the form (:, f1, f2) where : ∈ N and f1 and f2 are states of G. Require (:, f1, f2) ∈ � iff there is a
finite path of length ≤ : from f1 to f2. Clearly, � is a computable relation and is thus representable
in Th(Q). Inv(f) can be represented from � as ∃: · � (:, f0, f) where f0 is the initial state of G.
Similarly, the output of * (f) at every f can be represented using � as * (f) = : ⇐⇒ � (f, f⊥, :)

∧ (∀= < : · ¬� (f, f⊥, =)), where f⊥ is the terminal state. If * were bounded, representing + is
trivial; we focus our attention on representing + when* isn’t bounded.
Representations of ' (defined in Eq. (1) and used to derive +) and + are complicated slightly

because they can output real numbers. Instead of capturing the precise values of these functions,
we capture their Dedekind cuts instead. In other words, we show that the collections of rational
numbers ≤ + (f), ≥ + (f), ≤ i8 (=) and ≥ i8 (=) are each representable for each f , 8 , and =.
The unrolling lemma implies that if the probability of termination is ? , then for all = ∈ N,

assimilating a termination probability mass of at least ? − 1/= requires finitely many steps. It
is simple to generalize this to observe that assimilating a probability mass of at least '(8, =) −
1/= for the event ^ ({f< ∈ Inv | < ≥ =}) when f8 is the initial state also requires finitely many
steps. Furthermore, computing the probability of the occurrence of this event within : steps is
computable for every natural number : . These two facts indicate that lower bounds on '(8, =)

can be represented in Th(Q). Upper bounds on '(8, =) can be represented by simply negating this
lower bound representation.
Using these, enable the representation of each member of the sequence (= 9) 9∈N that forms the

domain of the sum that defines + . This enables representations of lower bounds on + (f), which
in turn enables representations of upper bounds on + (f). Thus, the Dedekind cut of + (f) is rep-
resentable in Th(Q). This completes the proof. �

Example 3.5 (Random Walks). For the 1DRW example from Example 2.5, we take Inv to be all
program states, � to be the set containing the single terminal state {G1 ≔ 0}, and we set + (G) =

* (G) ≔ |G |. It’s trivial to observe that all conditions required in Rule 3.2 are met, and therefore,
the 1DRW is AST.
Let us now consider the 2-D RandomWalker (2DRW). The AST nature of this program has been

notoriously hard to prove using prior rules. The principal enabler of our rule on the 2DRW is its
set � that forms a circle around the origin.
Begin by setting Inv to the set of all states. Declare the distance variant * to be the Manhattan

distance |G | + |~ | of any state (G,~) from the origin. Clearly,* has a ≥ 1/4 probability of reducing
in a single step from every state. Now, define + as

+ (G,~) ,

√

ln
(

1 +
√

G2 + ~2
)

, Vol. 1, No. 1, Article . Publication date: May 2024.

16 Rupak Majumdar and V. R. Sathiyanarayana

It is difficult to prove that+ is a supermartingale for all non-terminal states. However, using Tay-
lor series expansions, one can show that + is a supermartingale for “sufficiently large” values of
G2 + ~2. Menshikov et al. [38] (see also Popov [41, Section 2.3]) showed precisely this; their proof
showed that the error terms in the Taylor series expansion of+ (G,~) cease to matter when G2 +~2

grow large. They prove that there must exist a number : such that the error terms in the Taylor
expansion do not affect the non-negativity conditions at states where G2 +~2 > : . We now declare
� to be the set of states (G,~) where G2 +~2 ≤ : . Thus,+ satisfies the supermartingale conditions
of Rule 3.2 outside of�. Note that we don’t need to precisely decipher the value of : for the sound-
ness of the proof rule to work; we just need � to be smaller than the invariant Inv. The finiteness
of � satisfies this criterion. Furthermore, since the sublevel set +≤A is finite, + is compatible with
* . Therefore, the 2DRW is AST. �

4 ALMOST-SURE TERMINATION: STOCHASTIC INVARIANTS

Next, we give a different proof rule that takes a dual view. Instead of a single unbounded su-
permartingale, we consider several bounded supermartingales that each focus on different finite
parts of the program’s state space. This focus means that each of these supermartingales takes
on non-trivial values (i.e., between 0 and 1) at only finitely many states. They are thus “local”
supermartingales, i.e., they are only meaningful at particular parts of the state space.
The key to our rule is the observation that a program is almost surely terminating if, for every

n > 0, we can show that it terminates with probability at least n . We characterize this “n-wiggle
room” using the stochastic invariants of Chatterjee et al. [11].

Definition 4.1 (Stochastic Invariants [11]). Let G = (!,+ , ;8=8C, x8=8C, ↦→,�, Pr,Upd) be a CFG. Sup-
pose Ψ is a subset of states and let ? be a probability value. The tuple (Ψ, ?) is a stochastic invari-
ant (SI) if, under any scheduler s, the probability mass of the collection of runs beginning from
(;init, xinit) leaving Ψ is bounded above by ? , i.e.,

sup sPs
[

d ∈ RunsG | ∃= ∈ N · d [=] ∉ Ψ
]

≤ ?

Intuitively, stochastic invariants generalize the standard notion of invariants to the probabilistic
setting. Given a stochastic invariant (Ψ, ?), the program execution is expected to hold Ψ (i.e.,
remain inside Ψ) with probability ≥ 1− ? . As with invariants, the collection of states in stochastic
invariants is typically captured by a predicate written in the assertion language of the program
logic. In this work however, we do not characterize stochastic invariants directly; we instead use
stochastic invariant indicators.

Definition 4.2 (Stochastic Invariant Indicator [10]). Let G be the CFG (!,+ , ;8=8C,

x8=8C, ↦→,�,Pr,Upd). A tuple (SI, ?) is a stochastic invariant indicator (SI-indicator) if ? is a
probability value and SI : ! × Z+ → R is a partial function such that SI(;8=8C, x8=8C) ≤ ? , and for all
states (;, x) reachable from (;init , xinit),

(1) SI(;, x) ≥ 0.
(2) if (;, x) is an assignment or nondeterministic state, then SI(;, x) ≥ SI(; ′, x′) for every succes-

sor (; ′, x′).
(3) if (;, x) is a probabilistic state, then SI(;, x) ≥

∑

Pr((;, ; ′)) [x] × SI(; ′, x′) over all possible
successor states (; ′, x′).

Observe that functions SI in the SI-indicators are supermartingale functions. These SI are typ-
ically most interesting at states f where SI(f) < 1; in fact, the collection of states f with this
property corresponds to an underlying stochastic invariant with the same probability value as the
SI-indicator. This was formally proven by Chatterjee et al. [10].

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 17

Lemma 4.3 ([10]). Let G be an CFG. For each stochastic invariant (Ψ, ?) of G, there exists a
stochastic invariant indicator (SI, ?) of G such that Ψ ⊇ {W ∈ ΣG | SI(W) < 1}. Furthermore,
for each stochastic invariant indicator (SI, ?) of G, there is a stochastic invariant (Ψ, ?) such that
Ψ = {W ∈ ΣG | SI(W) < 1}.

The SI-indicator SI corresponding to the stochastic invariantΨmaps each state f the probability
with which runs beginning from f exit Ψ. Thus, the SI-indicator tracks the probability of violating
the stochastic invariant. Observe that SI(f) ≥ 1 for all states f ∉ Ψ.
Wewill use SI-indicators in our proof rules. Note thatwe cannot use a single stochastic invariant:

this is too weak to ensure soundness. Instead, we use a family of stochastic invariants, one for
each reachable state. Unlike stochastic invariants, representing SI-indicators is more complicated.
Because SI-indicators map states to reals, we cannot always write them directly in our assertion
language. At all AST programs, we will nevertheless show that one can always find expressions in
our assertion language to effectively represent the SI-indicators our proof rule needs.
AST is a property that holdswhen the initial state is changed to any reachable state. IfG is almost

surely terminating, then G is almost surely terminating from any state f reachable from the initial
state f0 = (;init, xinit). Furthermore, if from every reachable state f , G is known to terminate with
some minimum probability n > 0, then the program is AST. We exploit these facts in our rule.

Proof Rule 4.1: SI-Indicators for AST

If, for a fixed 0 < ? < 1, there exists

(1) an inductive invariant Inv containing the initial state,
(2) a mapping SI from each f ∈ Inv to SI-indicator functions (SIf , ?) : Inv → R such that

SIf (;, x) ≤ ? and, for all (;, x) ∈ Inv,
(a) SIf (;, x) ≥ 0.
(b) if (;, x) is an assignment, or nondeterministic state, then SIf (;, x) ≥ SIf (;

′, x′) for
every successor (; ′, x′).

(c) if (;, x) is a probabilistic state, then SIf (;, x) ≥
∑

Pr((;, ; ′)) [x] × SIf (;
′, x′) over all

possible successor states (; ′, x′).
(3) a mapping E mapping states f ∈ Inv to values nf ∈ (0, 1],
(4) a mappingH mapping states f ∈ Inv to values �f ∈ N,
(5) a mapping U from each f ∈ Inv to variants *f : Inv → N that is bounded above

by H(f), maps all states {W | SIf (W) ≥ 1 ∨ W is terminal} to 0 and, for other states
(;, x) ∈ Inv,

(a) if (;, x) is an assignment, or nondeterministic state, *f (;
′, x′) < *f (;, x) for every

successor (; ′, x′).
(b) if (;, x) is a probabilistic state,

∑

Pr(;, ; ′) [x] > E(f) over all successor states (; ′, x′)
with *f (;

′, x′) < *f (;, x).

Then, G is AST.

Intuitively, our rule requires SI-indicator functions SIf at each f ∈ Inv that hold for executions
beginning at f with probability ≥ 1−? . Each of these imply stochastic invariants (Ψf , ?) centered
around the state f . The functionsU, H , and E combine together to form variant functions*f of
the McIver-Morgan kind at each f ∈ Inv. These*f further imply that a terminal state is contained
within each Ψf , and induces paths within each Ψf to this terminal state. Feeding *f , nf , and �f

into McIver and Morgan’s variant Rule 3.1 gives us a proof for the fact that, were the execution
to be restricted to Ψf , the probability of termination from f is 1. Therefore, the probability of

, Vol. 1, No. 1, Article . Publication date: May 2024.

18 Rupak Majumdar and V. R. Sathiyanarayana

termination from each f is ≥ 1 − ? . Applying the zero-one law of probabilistic processes [36,
Lemma 2.6.1] completes the proof of soundness of this rule.
Notice that we don’t mandate any locality conditions on the SI-indicators in this rule. This is

because they aren’t necessary to infer the soundness of the rule. However, we show in our com-
pleteness proof that one can always find “local” SI-indicators that only take on values < 1 at finitely
many states for AST programs. This is because these SI-indicators are built from appropriate finite
stochastic invariants, the existence of which is a consequence of the unrolling lemma.

Lemma 4.4 (Completeness). Rule 4.1 is relatively complete.

Proof (sketch). Let G be an AST CFG. Set Inv = Reach(G), the set of reachable states of G.
Fix a 0 < ? < 1 and a f ∈ Reach(G). Since G is AST, Prterm(G(f)) = 1. The unrolling lemma
indicates a : ∈ N such that the required simulation time to amass a termination probability of 1−?
in G(f) is bounded above by : . Let Σf

:
be the collection of all states reachable from f by a finite

path of length at most : . Observe that runs of G(f) (a) terminate inside Σ
f
:
with a probability of

at least 1 − ? , and (b) almost-surely terminate either inside Σ
f
:
or outside Σ

f
:
. (Σf

:
, ?) is thus the

required stochastic invariant for f . Arguments by Chatterjee et al. [10, Theorem 1] indicate the
existence of an SI-Indicator (SIf , ?) for the stochastic invariant (Σ

f
:
, ?). Furthermore, the finiteness

of Σf
:
combined with the almost-sure property of either termination inside or exit from Σ

f
:
enables

Corollary 2.7, from which it is trivial to extract a suitable variant function *f bounded above by
some�f exhibiting aminimum probability of decrease of nf > 0. This is can be done for all f ∈ Inv.
Let us now show how we can represent these entities in our assertion language. As in the proof

of the completeness of the martingale Rule 3.2, consider the relation � such that (:, f1, f2) ∈ � iff
there is a finite path of length ≤ : from f1 to f2 in G. Clearly, � is a computable relation and is thus
representable in Th(Q). Inv and each *f can easily be represented in Th(Q) using this relation �

in exactly the same way as with Rule 3.2.
To represent each SIf , we note that arguments from Chatterjee et al. [10] show that the output

of SIf at a state W is precisely the probability of leaving the stochastic invariant (Σf
:
, ?). Encoding

lower bounds on this probability in Th(Q) uses the unrolling lemma, and was essentially shown
by Majumdar and Sathiyanarayana [33]. The probability with which executions escape Σf

:
within

< steps lower bounds the probability of leaving Σ
f
:
. The former probability is computable, and

the unrolling lemma ensures that in spite of non-determinism, augmenting < with a universal
quantifier produces the precise lower bounds over the latter. Hence, each SIf (W) is representable
in Th(Q). This completes our proof of relative completeness. �

5 QUANTITATIVE TERMINATION

Wenow extend our rules to reason about lower and upper bounds on the probability of termination.
This notion of termination is referred to in the literature as quantitative termination. This is in
contrast to qualitative termination, the nomenclature employed for AST. As mentioned earlier, the
proof rules we specify in this section can be used to show irrational bounds on the termination
probability; this is a simple consequence of the fact that all possible termination probabilities can
be expressed in our assertion language.
Our upper bound rule is immediate from an observation of the nature of stochastic invariants.

Proof Rule 5.1: Upper Bounds Rule

If there exists

(1) an inductive invariant Inv containing (;init , xinit),

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 19

(2) a function SI : Inv → R such that SI(;8=8C, x8=8C) ≤ ? and for all (;, x) ∈ Inv,
(a) SI(;, x) ≥ 0;
(b) if (;, x) is an assignment, or nondeterministic state, then SI(;, x) ≥ SI(; ′, x′) for every

successor (; ′, x′);
(c) if (;, x) is a probabilistic state, then SI(;, x) ≥

∑

Pr((;, ; ′)) [x] × SI(; ′, x′) over all
possible successor states (; ′, x′).

(d) if (;, x) is a terminal state, then SI(;, x) ≥ 1.

Then, Prterm(G) ≤ ? .

This rule asks for an SI-indicator (and therefore a stochastic invariant) that excludes the termi-
nal state. Therefore, the probability of termination is the probability of escaping the SI-indicator,
which is included in the property of the indicator. Notice that, because the SI-indicator is a super-
martingale function, the mere existence of a bounded supermartingale that assigns to the terminal
state a value ≥ 1 is sufficient to extract an upper bound.

Lemma 5.1. Rule 5.1 is sound and relatively complete.

Proof. Lemma 4.3 shows that the pair ({W ∈ Inv | SI(W) < 1}, ?) is a stochastic invariant of G.
Since SI(W) ≥ 1 at the terminal state, this stochastic invariant doesn’t contain the terminal state.
Soundness of the rule trivially follows from the fact that, in order to terminate, a run must leave
this invariant and this probability is bounded above by ? .
For completeness, set Inv = Reach(G) and let f⊥ ∈ Inv be the terminal state. Set Ψ = Inv \

{f1>C}, and observe that the collection of runs leaving Ψ is identical to the collection of terminal
runs. Therefore, (Ψ, ?) must be a stochastic invariant. Lemma 4.3 indicates the existence of the
SI-Invariant SI from Ψ. SI immediately satisfies the conditions of the rule.
To represent SI in our assertion language, note again that SI(W) is precisely the probability of

termination from W . The unrolling lemma indicates that this probability is lower bounded by the
probability of termination within< steps fromW . The latter probability is computable, and is hence
representable in Th(Q). Prepending an appropriate universal quantifier for < allows us to form
lower bounds for SI in Th(Q). Our upper bound rule is thus relatively complete. �

5.1 Towards a Lower Bound

For a lower bound on the probability of termination, we start with the following rule from Chat-
terjee et al. [10].

Proof Rule 5.2: SI-indicators for Lower Bounds

If there exists

(1) an inductive invariant Inv containing (;init , xinit),
(2) a stochastic invariant indicator SI : Inv → R such that SI(;init , xinit) ≥ ? , and for all

(;, x) ∈ Inv,
(a) SI(;, x) ≥ 0.
(b) if (;, x) is an assignment, or nondeterministic state, then SI(;, x) ≥ SI(; ′, x′) for every

successor (; ′, x′).
(c) if (;, x) is a probabilistic state, then SI(;, x) ≥

∑

Pr((;, ; ′)) [x] × SI(; ′, x′) over all
possible successor states (; ′, x′).

(3) an n > 0,

, Vol. 1, No. 1, Article . Publication date: May 2024.

20 Rupak Majumdar and V. R. Sathiyanarayana

f ∈ Σ6>>3

Fig. 1. If shortest runs of Σ6>>3 were too long. This is a representation of the collection of executions begin-
ning at a good state f ∈ Σ6>>3 , according to the partitioning system suggested in the proof of Lemma 5.2.
The black nodes are the terminal states; they all lead to the single terminal state. The blue states are identical
to each other; the same holds for the blue green states. The pathological scheduler s′ always takes the red
back edges, rendering no terminal runs from f .

(4) a variant * : Inv → N that is bounded above by some � , maps all states {W ∈ Inv |

SI(W) ≥ 1 ∨ W is terminal} to 0, and for other states (;, x) ∈ Inv,
(a) if (;, x) is an assignment, or nondeterministic state, * (; ′, x′) < * (;, x) for every

successor (; ′, x′).
(b) if (;, x) is a probabilistic state,

∑

Pr(;, ; ′) [x] > n over all successor states (; ′, x′) with
* (; ′, x′) < * (;, x).

Then, Prterm(G) ≥ 1 − ? .

This rule demands a SI-indicator (SI, ?) and a bounded variant* such that SI induces a stochastic
invariant (Ψ, ?) that contains the terminal state. Intuitively, this rule works by splitting the state
space into terminating and possibly non-terminating segments. The invariant Ψ represents the
terminating section of the state space. The application of McIver & Morgan’s Rule 3.1 with the
variant * allows us to deduce that, were the execution be restricted to Ψ, the program almost-
surely terminates. Observe that the variant * effectively considers all states outside Ψ to be ter-
minal. Therefore, G almost-surely either escapes Ψ or terminates within Ψ. Non-termination is
thus subsumed by the event of escaping the invariant, the probability of which is ? . Hence, the
probability of termination is ≥ 1 − ? .
Observe that, like our AST Rule 3.2, this rule requires a supermartingale and a variant function

that work in tandem. However, unlike Rule 3.2, the supermartingale and the variant are entirely
bounded.
This soundness argument was formally shown by Chatterjee et al. [10]. In their original pre-

sentation, they do not specify an exact technique for determining the almost-sure property of
either termination within or escape from the induced stochastic invariant Ψ. We will explain our
choice of the bounded variant Rule 3.1 of McIver and Morgan [36] in a moment. They addition-
ally claimed the completeness of this rule, assuming the usage of a complete rule for almost-sure
termination. If their completeness argument were true, it would indicate that all probabilistic pro-
grams induce state spaces that can neatly be partitioned into terminating and non-terminating
sections. In Section 5.3, we show that this isn’t the case using a counterexample where this split
isn’t possible.
Nevertheless, this rule is complete for finite-state programs. This finite-state completeness pairs

well with the finite-state completeness of the bounded variant Rule 3.1 we use to certify the almost-
sure property contained in the rule.

Lemma 5.2. Rule 5.2 is complete for finite state CFGs.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 21

Proof. In this proof, we argue about the stochastic invariants directly. The SI-indicator and
variant functions can be derived from them using prior techniques [10, 36].

Let G be a finite state CFG. Partition Reach(G), the set of states reachable from the initial
state of G, into (a) the singleton containing the terminal state Σ⊥, (b) the bad states Σ103 with the
property that no finite paths ending on these states can be extended to a terminal run, (c) the good
states Σ6>>3 such that if a scheduler 5 induces a finite path ending at a good state f , 5 induces at
least one terminating run passing through f , and (d) the remaining neutral states Σ=4DCA0; , with
the property that each neutral state f is associated with a pathological scheduler sf that induces
runs that, if they pass through f , do not terminate. Notice that, as long as ? < 1 (the case where
? = 1 is trivial, so we skip it), the initial state of G is in Σ6>>3 . We show that (Σ6>>3 ∪ Σ⊥, ?) is the
required stochastic invariant.
We begin by showing that runs that remain inside Σ6>>3∪Σ⊥ almost-surely terminate. Fix a state

f ∈ Σ6>>3 . Map to every scheduler s that induces runs passing through f the shortest terminating
consistent finite path cs beginning from f . Suppose, for some scheduler s, |cs | > |Reach(G)|.
Then, cs must visit some f ′ ∈ Reach(G) twice. This indicates a loop from f ′ → f ′ in G, and there
must thus exist a scheduler s′ that extends cs by repeating this loop infinitely often. Since cs is the
smallest terminating finite path beginning from f , the same holds for all terminating finite paths
consistent with s beginning from f . Thus, all terminating runs consistent with s that pass through
f must contain a loop. There must exist a scheduler s′ which exploits these loops and yields no
terminating runs passing through f . Fig. 1 depicts the operation of s′. Observe that the existence
of s′ contradicts f ∈ Σ6>>3 .
Therefore, from every state f ∈ Σ6>>3 , there is a terminating run of length ≤ |Reach(G)| no

matter which scheduler is used. Thus, the probability of leaving Σ6>>3 from f is bounded below

by @ |Reach (G) | , where @ is the smallest transition probability of G (note that @ only exists because
G is finite state). Further, Σ6>>3 only contains non-terminal states. This enables the zero-one law
of probabilistic processes [36, Lemma 2.6.1], allowing us to deduce the almost-certain escape from
Σ6>>3 to Σ⊥ ∪ Σ103 ∪ Σ=4DCA0; . Hence, under all schedulers, the probability of either terminating
inside Σ6>>3 ∪ Σ⊥ or entering Σ103 ∪ Σ=4DCA0; is 1.
We now show that (Σ6>>3 ∪ Σ1>C , ?) is a stochastic invariant. It’s easy to see that if a run ever

enters Σ103 , it never terminates. We know that if an execution enters some f ∈ Σ=4DCA0; under
a pathological scheduler sf , it never terminates. Let f1 and f2 be neutral states and s1 and s2 be
their corresponding pathological schedulers. Notice that s1 may induce terminating executions
that pass through f2. One can build a scheduler s3 that mimics s1 until the execution reaches f2,
and once it does, mimics s2. Thus, s3 would produce the pathological behaviour of both s1 and s2.
In this way, we compose the pathological behavior of all neutral states to produce a scheduler f
that induces runs that, if they enter a neutral state, never terminate. Under f, leaving Σ6>>3 ∪ Σ⊥

is equivalent to non-termination, and all terminating runs are made up of good states until their
final states.
Take a scheduler s that induces terminating runs that pass through neutral states. Compose the

scheduler s′ that mimics s until the execution enters a neutral state and mimics f from then on.
Let)s and)s′ be the collection of terminating runs consistent with s and s′ respectively. Each run
in)s′ is made up of good and/or terminal states, and is therefore consistent with s. Hence,)s ⊃)s′

and, because s and s′ agree on)s′ , we have Ps ()s) > Ps ()s′), where Ps is the probability measures
in the semantics of G induced by s.
Leaving Σ6>>3 ∪Σ⊥ is equivalent to entering Σ=4DCA0; ∪Σ⊥. Observe that the probability of never

leaving Σ6>>3 ∪ Σ⊥ under s is the same as the probability of never leaving Σ6>>3 ∪ Σ⊥ under s′, as
s and s′ agree until then. Furthermore, the probability measure of never leaving Σ6>>3 ∪ Σ⊥ is just

, Vol. 1, No. 1, Article . Publication date: May 2024.

22 Rupak Majumdar and V. R. Sathiyanarayana

;1 ;2;3

G1/G2

G1 ≔ G2
G2 ≔ G2 + G3
G3 ≔ G3/2

1 − (G1/G2)

Fig. 2. Counterexample to the SI-rule for lower bounds.With an initial state of (;1, (1, 2, 1/4)), the termination
probability of this program is 1/2. However, there is no SI that shows this.

Prs ()s′) = Prs′ ()s′). Add Prterm(G) ≥ 1 − ? =⇒ ?s′ ()s′) ≥ 1 − ? , and we get that, under s, the
probability of leaving Σ6>>3 ∪ Σ⊥ is upper bounded by ? . Since this is true for any s, the lemma is
proved. �

We do not show the relative completeness of this rule; nevertheless, this is easy to show using
techniques discussed in prior rules.

5.2 Our Rule

We now show a sound and complete rule for lower bounds that fixes the prior Rule 5.2. This rule is
implicitly contained in the details of the erroneous proof of [10]. It is principally similar to Rule 4.1,
in that it identifies finite sub-instances where prior rules can apply. It then combines the proofs of
these sub-instances to deduce the desired lower bound.

Proof Rule 5.3: Lower Bounds Rule

If for all = ∈ N, there are functions (�= and *= that enable the application of Rule 5.2 to
deduce Prterm(G) ≥ 1 − (? + 1

=
), then Prterm(G) ≥ 1 − ? .

Soundness of this rule follows trivially from the soundness of the prior Rule 5.2. The complete-
ness of this rule is derived from the unrolling lemma; to reach a termination probability of ? ,
the program must be able to amass a termination probability of ? − 1

=
within a finite subspace.

Lemma 5.2 shows that finiteness can always be captured by the prior Rule 5.2.

Lemma 5.3. Rule 5.3 is relatively complete.

Proof. Let G be CFG such that Prterm(G) ≥ 1 − ? for some ? > 0. Fix some = ∈ N. Let := be
the upper bound over the required simulation times across all schedulers to amass a termination
probability of ? − 1/=. Denote by Σ= the set of states f such that there is a finite path of length
at most := beginning at (;8=8C, x8=8C) and ending at f . Clearly, Σ= must be finite and, for a fixed
scheduler s, the probability measure of the collection of terminating runs made up of states in Σ=

consistent with s must be ≥ ? − 1/=. Additionally, observe that runs of G either terminate inside
Σ= or leave Σ=. By the soundness of Rule 5.2, the termination probability of Gi= must be ≥ ? −1/=.
Each stochastic invariant (Σ=, ? + 1/=) can be transformed into SI-Indicators (SI=, ? + 1/=) us-

ing prior techniques [10]. Representing each (�= and *= in Th(Q) can be done using techniques
described in the proof of Lemma 4.4. Hence, this rule is relatively complete. �

5.3 Counterexample to Completeness for Rule 5.2

[10] claimed that their Rule 5.2 is complete for all programs. As promised, we now demonstrate a
counterexample to their claim of completeness.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 23

Rule 5.2 for lower bounds can be applied onto any CFG that induces a set of states Ψ with the
property that executions remain within Ψ with exactly the probability of termination. As men-
tioned previously, not all programs are so well behaved. Consider the programK defined in Fig. 2.
The initial location of K is ;1, and the values of the variables (G1, G2, G3) are (1, 2, 1/4). ;1 is a

probabilistic location, ;3 is an assignment location, and ;2 is a terminal location. It isn’t difficult to
prove that the probability of termination of K is 1/2; we leave the details to the diligent reader.
The SI-rule for lower bounds requires a stochastic invariant (ΨK , 1/2) such that executions almost-
surely either terminate or exit ΨK .

Lemma 5.4. There is no stochastic invariant (ΨK , 1/2) of K such that runs almost-surely either
terminate or leave ΨK .

Proof. Suppose there does exist a stochastic invariant (ΨK , 1/2) that satisfies these properties.
Therefore, the probability measure of the union of the collection of runs LeaveΨ that leaveΨK and
the runs TermΨ that terminate inside ΨK is 1. However, because ΨK is a stochastic invariant, the
probability measure of LeaveΨ is bounded above by 1/2. This means that the measure of TermΨ is
bounded below by 1/2. But, the termination probability ofK is 1/2. Consequently, the measure of
TermΨ must be exactly 1/2. This means TermΨ contains all terminating runs of K .

It is easy to see that from any state (;, x) reachable from the initial state, there is a finite path of
length at most 2 that leads it to a terminal state. Therefore, all reachable states (;, x) are a part of
some terminating run; meaning that the set of states that make up the runs in TermΨ must be the
set of reachable states. This is only possible when ΨK is the set of reachable states. This means
no runs leave ΨK , and therefore, the measure of TermΨ is 1. This contradicts the fact that the
termination probability of K is 1/2. �

A note on syntax. The CFG of Chatterjee et al. [10] over which the claim of completeness of
Rule 5.2 was made do not feature fractional expressions guiding probabilistic branching. Neverthe-
less, they can be simulated with small programs that only use the basic coin flip [21]. Therefore,
Fig. 2 is a valid counterexample to their claim.

6 TRAVELING BETWEEN PROOF SYSTEMS

A new proof rule, ultimately, is interesting only if one can actually prove the termination of many
programs. In order to show that our proof rules, in addition to their theoretical properties, are also
applicable in a variety of situations, we demonstrate that proofs in many existing proof systems
can be compiled into our proof rules.

From McIver and Morgan [36]. The variant functions from Rule 3.1 immediately form the variant
functions required in Rule 3.2. Take� to simply be the singleton containing the terminal state, and
set + to 0 at the terminal state and 1 everywhere else. This gives all we need to apply Rule 3.2.

From McIver et al. [37]. The AST proof rule proposed by McIver et al. [37] has been applied onto a
variety of programs, and has been shown to be theoretically applicable over the 2D randomwalker.
Applications of their rule effectively requires the construction of a distance variant that is also a
supermartingale. We note that their variants can be reused in Rule 3.2 with little alterations as both
the supermartingale and variant functions. This means proofs in their rule can be easily translated
to proofs that use Rule 3.2.

From Rule 3.2 to Rule 4.1. Hidden in the proof of the soundness of Rule 3.2 are the stochastic in-
variants that form the basis of Rule 4.1. Fix a ? , and take the set Ψf = {W ∈ Inv | + (W) ≤ E�}

for a sufficiently high value of E� to yield an upper bound of ? on the probability of exiting Ψf .
Then, expand Ψf with the states necessary to keep all shortest consistent terminal runs across

, Vol. 1, No. 1, Article . Publication date: May 2024.

24 Rupak Majumdar and V. R. Sathiyanarayana

schedulers from states inΨf entirely within Ψf . In spite of these extensions, the value of+ will be
entirely bounded when restricted to states in Ψf . It is then trivial to build the indicator functions
from each stochastic invariant (Ψf , ?) and the variant functions from* , completing a translation
from Rule 3.2 to Rule 4.1. Note that using this technique, one can translate proofs from McIver
et al. [37] and McIver and Morgan [36] to Rule 4.1 as well.

Using Guard Strengthening [19]. Feng et al. [19] have demonstrated Guard Strengthening as a tech-
nique for proving lower bounds on, amongst others, the termination of deterministic probabilistic
programs. In principle, their technique can be translated to apply overCFGs as follows: strengthen
each transition guard by a suitable predicatei and add self loops at all locations guarded by¬i . We
observe that guards can succinctly overapproximate the set of states forming finite-state stochas-
tic invariants: simply take the highest and lowest values each variable can take while remaining
in the invariant, and form a predicate that limits each variable within these bounds. Thus, guards
serve as convenience mechanisms for the application of Rule 5.3. Additionally, observe that when
proving lower bounds on termination probabilities, relevant finite state stochastic invariants Ψf

for each reachable state f are guaranteed to exist. Therefore, each stochastic invariant in Rule 5.3
can be more succinctly represented using guards.

Using Stochastic Invariants [10]. Separately, Chatterjee et al. [10] have shown the applicability of
Rule 5.2 to demonstrate lower bounds on the termination probabilities for a variety of programs,
and have also presented template-based synthesis techniques for achieving limited completeness.
These proofs are also valid for Rule 5.3, by setting the same stochastic invariant for each =.

7 CONCLUSION

We have presented the first sound and relatively complete proof rules for qualitative and quan-
titative termination of probabilistic programs with bounded probabilistic and nondeterministic
choice. Our proof rules combine the familiar ingredients of supermartingales and variant func-
tions in novel ways to reach completeness. We have demonstrated relative completeness of our
rules in the assertion language of arithmetic. Our rules are able to accommodate existing proof
techniques in the literature with minimal effort, thus demonstrating their applicability.

, Vol. 1, No. 1, Article . Publication date: May 2024.

Sound and Complete Proof Rules for Probabilistic Termination 25

REFERENCES

[1] Krzysztof R. Apt. 1981. Ten Years of Hoare’s Logic: A Survey - Part 1. ACM Trans. Program. Lang. Syst. 3, 4 (1981),

431–483. https://doi.org/10.1145/357146.357150

[2] Krzysztof R. Apt and Dexter Kozen. 1986. Limits for Automatic Verification of Finite-State Concurrent Systems. Inf.

Process. Lett. 22, 6 (1986), 307–309. https://doi.org/10.1016/0020-0190(86)90071-2

[3] Krzysztof R. Apt and Gordon D. Plotkin. 1986. Countable nondeterminism and random assignment. J. ACM 33, 4

(1986), 724–767. https://doi.org/10.1145/6490.6494

[4] Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. 2020. On probabilistic term rewriting. Sci. Comput. Program.

185 (2020). https://doi.org/10.1016/j.scico.2019.102338

[5] Christel Baier and Joost-Pieter Katoen. 2008. Principles of model checking. MIT Press.

[6] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2021. Relatively complete verifi-

cation of probabilistic programs: an expressive language for expectation-based reasoning. Proc. ACM Program. Lang.

5, POPL (2021), 1–30. https://doi.org/10.1145/3434320

[7] Andrea Bianco and Luca de Alfaro. 1995. Model Checking of Probabalistic and Nondeterministic Systems. In

Foundations of Software Technology and Theoretical Computer Science, 15th Conference, Bangalore, India, December

18-20, 1995, Proceedings (Lecture Notes in Computer Science, Vol. 1026), P. S. Thiagarajan (Ed.). Springer, 499–513.

https://doi.org/10.1007/3-540-60692-0_70

[8] Olivier Bournez and Florent Garnier. 2005. Proving Positive Almost-Sure Termination. In Term Rewriting and Appli-

cations, 16th International Conference, RTA 2005, Nara, Japan, April 19-21, 2005, Proceedings (Lecture Notes in Computer

Science, Vol. 3467), Jürgen Giesl (Ed.). Springer, 323–337. https://doi.org/10.1007/978-3-540-32033-3_24

[9] Aleksandar Chakarov and Sriram Sankaranarayanan. 2013. Probabilistic Program Analysis with Martingales. In Com-

puter Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceed-

ings (Lecture Notes in Computer Science, Vol. 8044), Natasha Sharygina and Helmut Veith (Eds.). Springer, 511–526.

https://doi.org/10.1007/978-3-642-39799-8_34

[10] Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, and Dorde Zikelic. 2022. Sound

and Complete Certificates for Quantitative Termination Analysis of Probabilistic Programs. In Computer

Aided Verification - 34th International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part

I (Lecture Notes in Computer Science, Vol. 13371), Sharon Shoham and Yakir Vizel (Eds.). Springer, 55–78.

https://doi.org/10.1007/978-3-031-13185-1_4

[11] Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. 2017. Stochastic invariants for probabilistic termi-

nation. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL

2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 145–160.

https://doi.org/10.1145/3009837.3009873

[12] Stephen A. Cook. 1978. Soundness and Completeness of an Axiom System for Program Verification. SIAM J. Comput.

7, 1 (1978), 70–90. https://doi.org/10.1137/0207005

[13] Costas Courcoubetis and Mihalis Yannakakis. 1995. The Complexity of Probabilistic Verification. J. ACM 42, 4 (1995),

857–907. https://doi.org/10.1145/210332.210339

[14] Luca de Alfaro and Thomas A. Henzinger. 2000. Concurrent Omega-Regular Games. In 15th Annual IEEE Sympo-

sium on Logic in Computer Science, Santa Barbara, California, USA, June 26-29, 2000. IEEE Computer Society, 141–154.

https://doi.org/10.1109/LICS.2000.855763

[15] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. 2007. Concurrent reachability games. Theor. Comput.

Sci. 386, 3 (2007), 188–217. https://doi.org/10.1016/J.TCS.2007.07.008

[16] Jerry den Hartog and Erik P. de Vink. 2002. Verifying Probabilistic Programs Using a Hoare Like Logic. Int. J. Found.

Comput. Sci. 13, 3 (2002), 315–340. https://doi.org/10.1142/S012905410200114X

[17] Edsger W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall. https://www.worldcat.org/oclc/01958445

[18] J. L. Doob. 1953. Stochastic processes. John Wiley & Sons, New York. viii+654 pages. MR 15,445b. Zbl 0053.26802..

[19] Shenghua Feng, Mingshuai Chen, Han Su, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Naijun Zhan. 2023.

Lower Bounds for Possibly Divergent Probabilistic Programs. Proc. ACM Program. Lang. 7, OOPSLA1 (2023), 696–726.

https://doi.org/10.1145/3586051

[20] Luis María Ferrer Fioriti and Holger Hermanns. 2015. Probabilistic Termination: Soundness, Completeness, and Com-

positionality. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-

guages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 489–501.

https://doi.org/10.1145/2676726.2677001

[21] Philippe Flajolet, Maryse Pelletier, and Michèle Soria. 2011. On Buffon Machines and Numbers. In Proceedings of

the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA,

January 23-25, 2011, Dana Randall (Ed.). SIAM, 172–183. https://doi.org/10.1137/1.9781611973082.15

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/10.1145/357146.357150
https://doi.org/10.1016/0020-0190(86)90071-2
https://doi.org/10.1145/6490.6494
https://doi.org/10.1016/j.scico.2019.102338
https://doi.org/10.1145/3434320
https://doi.org/10.1007/3-540-60692-0_70
https://doi.org/10.1007/978-3-540-32033-3_24
https://doi.org/10.1007/978-3-642-39799-8_34
https://doi.org/10.1007/978-3-031-13185-1_4
https://doi.org/10.1145/3009837.3009873
https://doi.org/10.1137/0207005
https://doi.org/10.1145/210332.210339
https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1016/J.TCS.2007.07.008
https://doi.org/10.1142/S012905410200114X
https://www.worldcat.org/oclc/01958445
https://doi.org/10.1145/3586051
https://doi.org/10.1145/2676726.2677001
https://doi.org/10.1137/1.9781611973082.15

26 Rupak Majumdar and V. R. Sathiyanarayana

[22] Robert W. Floyd. 1993. Assigning Meanings to Programs. Springer Netherlands, Dordrecht, 65–81.

https://doi.org/10.1007/978-94-011-1793-7_4

[23] F.G. Foster. 1951. Markov chains with an enumerable number of states and a class of cascade processes. Math. Proc.

Cambridge Philos. Soc. 47 (1951), 77–85.

[24] F.G. Foster. 1953. On the stochastic matrices associated with certain queuing processes. Ann. Math. Statistics 24 (1953),

355–360.

[25] Hongfei Fu and Krishnendu Chatterjee. 2019. Termination of Nondeterministic Probabilistic Programs. In Verification,

Model Checking, and Abstract Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal, January

13-15, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11388), Constantin Enea and Ruzica Piskac (Eds.).

Springer, 468–490. https://doi.org/10.1007/978-3-030-11245-5_22

[26] David Harel. 1980. Proving the Correctness of Regular Deterministic Programs: A Unifying Survey Using Dynamic

Logic. Theor. Comput. Sci. 12 (1980), 61–81. https://doi.org/10.1016/0304-3975(80)90005-5

[27] David Harel, Dexter Kozen, and Jerzy Tiuryn. 2000. Dynamic Logic. MIT Press.

[28] Sergiu Hart, Micha Sharir, and Amir Pnueli. 1983. Termination of Probabilistic Concurrent Program. ACM Trans.

Program. Lang. Syst. 5, 3 (1983), 356–380. https://doi.org/10.1145/2166.357214

[29] Peter Hitchcock and David Michael Ritchie Park. 1972. Induction Rules and Termination Proofs. In Automata, Lan-

guages and Programming, Colloquium, Paris, France, July 3-7, 1972, Maurice Nivat (Ed.). North-Holland, Amsterdam,

225–251.

[30] Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. 2018. New Approaches for Almost-Sure Termination of

Probabilistic Programs. In Programming Languages and Systems - 16th Asian Symposium, APLAS 2018, Wellington, New

Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer,

181–201. https://doi.org/10.1007/978-3-030-02768-1_11

[31] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja. 2019. On the hardness of analyzing proba-

bilistic programs. Acta Informatica 56, 3 (2019), 255–285. https://doi.org/10.1007/s00236-018-0321-1

[32] Dexter Kozen. 2006. Theory of Computation. Springer. https://doi.org/10.1007/1-84628-477-5

[33] Rupak Majumdar and V. R. Sathiyanarayana. 2023. Positive Almost-Sure Termination - Complexity and Proof Rules.

CoRR abs/2310.16145 (2023). https://doi.org/10.48550/ARXIV.2310.16145 arXiv:2310.16145

[34] Rupak Majumdar and V. R. Sathiyanarayana. 2024. Positive Almost-Sure Termination: Complexity and Proof Rules.

Proc. ACM Program. Lang. 8, POPL (2024), 1089–1117. https://doi.org/10.1145/3632879

[35] Zohar Manna and Amir Pnueli. 1974. Axiomatic Approach to Total Correctness of Programs. Acta Informatica 3

(1974), 243–263. https://doi.org/10.1007/BF00288637

[36] Annabelle McIver and Carroll Morgan. 2005. Abstraction, Refinement and Proof for Probabilistic Systems. Springer.

https://doi.org/10.1007/B138392

[37] Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. 2018. A new proof rule for

almost-sure termination. Proc. ACM Program. Lang. 2, POPL (2018), 33:1–33:28. https://doi.org/10.1145/3158121

[38] Mikhail Menshikov, Serguei Popov, and Andrew Wade. 2017. Non-homogeneous random walks: Lyapunov function

methods for near critical stochastic systems. Cambridge University Press.

[39] Jean-François Mertens, Ester Samuel-Cahn, and Shmuel Zamir. 1978. Necessary and Sufficient Conditions for Recur-

rence and Transience of Markov Chains, in Terms of Inequalities. Journal of Applied Probability 15, 4 (1978), 848–851.

http://www.jstor.org/stable/3213440

[40] George Pólya. 1921. Über eine aufgabe betreffend die irrfahrt im strassennetz. Math. Ann. 84 (1921), 149–160.

[41] Serguei Popov. 2021. Two-Dimensional Random Walk: From Path Counting to Random Interlacements. Cambridge

University Press. https://doi.org/10.1017/9781108680134

[42] Julia Robinson. 1949. Definability and Decision Problems in Arithmetic. J. Symb. Log. 14, 2 (1949), 98–114.

https://doi.org/10.2307/2266510

[43] Hartley Rogers Jr. 1987. Theory of recursive functions and effective computability (Reprint from 1967). MIT Press.

https://mitpress.mit.edu/9780262680523/theory-of-recursive-functions-and-effective-computability/

[44] Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. 2021. Ranking and Repulsing Supermartin-

gales for Reachability in Randomized Programs. ACM Trans. Program. Lang. Syst. 43, 2 (2021), 5:1–5:46.

https://doi.org/10.1145/3450967

[45] Alan M. Turing. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math.

Soc. s2-42, 1 (1937), 230–265. https://doi.org/10.1112/PLMS/S2-42.1.230

[46] Moshe Y. Vardi. 1985. Automatic Verification of Probabilistic Concurrent Finite-State Programs. In 26th Annual Sympo-

sium on Foundations of Computer Science, Portland, Oregon, USA, 21-23 October 1985. IEEE Computer Society, 327–338.

https://doi.org/10.1109/SFCS.1985.12

, Vol. 1, No. 1, Article . Publication date: May 2024.

https://doi.org/10.1007/978-94-011-1793-7_4
https://doi.org/10.1007/978-3-030-11245-5_22
https://doi.org/10.1016/0304-3975(80)90005-5
https://doi.org/10.1145/2166.357214
https://doi.org/10.1007/978-3-030-02768-1_11
https://doi.org/10.1007/s00236-018-0321-1
https://doi.org/10.1007/1-84628-477-5
https://doi.org/10.48550/ARXIV.2310.16145
https://arxiv.org/abs/2310.16145
https://doi.org/10.1145/3632879
https://doi.org/10.1007/BF00288637
https://doi.org/10.1007/B138392
https://doi.org/10.1145/3158121
http://www.jstor.org/stable/3213440
https://doi.org/10.1017/9781108680134
https://doi.org/10.2307/2266510
https://mitpress.mit.edu/9780262680523/theory-of-recursive-functions-and-effective-computability/
https://doi.org/10.1145/3450967
https://doi.org/10.1112/PLMS/S2-42.1.230
https://doi.org/10.1109/SFCS.1985.12

	Abstract
	1 Introduction
	2 Probabilistic Programs
	2.1 Syntax and Semantics
	2.2 The Termination Problem
	2.3 The Unrolling Lemma
	2.4 Assertion Language and Program Logic

	3 Almost-Sure Termination: Martingales
	3.1 McIver and Morgan's Variant Rule
	3.2 Our Rule

	4 Almost-Sure Termination: Stochastic Invariants
	5 Quantitative Termination
	5.1 Towards a Lower Bound
	5.2 Our Rule
	5.3 Counterexample to Completeness for proofrule:SI-simple-lower-bounds-rule

	6 Traveling Between Proof Systems
	7 Conclusion
	References

