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Metrization of Gromov-Hausdorff-type topologies on

boundedly-compact metric spaces

Ryoichiro Noda∗

Abstract

We present a new general framework for metrization of Gromov-Hausdorff-type topologies on
non-compact metric spaces. We also give easy-to-check conditions for separability and complete-
ness and hence the measure theoretic requirements are provided to study convergence of random
spaces with additional random objects. In particular, our framework enables us to define a metric
inducing a suitable Gromov-Hausdorff-type topology on the space of rooted boundedly-compact
metric spaces with laws of stochastic processes and/or random fields, which was not clear how to
do in previous frameworks. In addition to general theory, this paper includes several examples of
Gromov-Hausdorff-type topologies, verifying that classical examples such as the Gromov-Hausdorff
topology and the Gromov-Hausdorff-Prohorov topology are contained within our framework.

1 Introduction

The Gromov-Hausdorff metric (see (1.1) below) defines a distance between compact metric spaces and
was originally introduced by Gromov [17] for group theoretic purposes. However, it has found important
applications in probability theory as well since it provides a framework for discussing convergence of
random compact metric spaces, such as the scaling limit of critical Galton-Watson trees [26], the critical
random graph [3], random planer maps [27] and percolation on some (random) graph [5, 11]. In many
examples, one’s interest is in not only the geometry of spaces but also additional objects on spaces such
as measures [1], compact subsets [29] and heat-kernel-type functions [15]. Moreover, there are many
examples of random non-compact metric spaces such as the uniform spanning tree on Z

d [4, 8], the
uniform half-plane quandrangulation [18] and the incipient infinite cluster of the critical percolation on
Z
d [9]. In consideration of such metric spaces and additional objects on them, various generalizations

of the Gromov-Hausdorff metric have been introduced and studied in the literature [1, 6]. Recently,
in [23], Khezeli proposed a general method for defining a Gromov-Hausdorff-type metric. However, its
applicability is limited because one needs to check complicated conditions to verify that the defined
function is indeed a metric and yields a proper topological space for probability theory (i.e., a Polish
space). In this paper, we introduce a new method, which is more straightforward to implement. It
includes all the examples in Khezeli’s framework and enables a wider range of examples to be handled.
Indeed, our framework provides a new topological setting for discussing convergence of random spaces
equipped with random objects such as stochastic processes.

Before presenting our main results, in Section 1.1, we recall the Gromov-Hausdorff metric and
the Gromov-Hausdorff-Prohorov (vague) metric, which are commonly used in the study of random
measured metric spaces in probability theory. In Section 1.2, we then explain how those metrics are
generalized in our framework and describe the contributions of the present paper in more detail. For
the purposes of our discussions, we set a ∨ b := max{a, b} and a ∧ b := min{a, b} for a, b ∈ R ∪ {±∞}.

1.1 Introduction to Gromov-Hausdorff-type metrics

The Gromov-Hausdorff metric. As already introduced, the Gromov-Hausdorff metric defines the
distance between compact metric spaces. The idea used to define the distance is to embed different
compact metric spaces isometrically into a common compact metric space and measure the distance
between them using the Hausdorff metric in the ambient space. (The definition of the Hausdorff metric
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is recalled in Section 2.2.1.) More precisely, the distance between two compact metric spaces (K1, d
K1)

and (K2, d
K2) is defined by

dGH((K1, d
K1), (K2, d

K2)) := inf
f1,f2,K

dKH(f1(K1), f2(K2)), (1.1)

where the infimum is taken over all compact metric spaces (K, dK) and distance-preserving maps
fi : Ki → K, i = 1, 2, and dKH denotes the Hausdorff metric in (K, dK). The Gromov-Hausdorff
metric is a separable and complete metric on the collection of isometric equivalence classes of compact
metric spaces, and the induced topology is called the Gromov-Hausdorff topology. In applications,
the following characterization of the topology is often useful: a sequence of compact metric spaces
(Kn, d

Kn) converges to a compact metric space (K, dK) in the Gromov-Hausdorff topology if and only
if it is possible to embed Kn and K isometrically into a common compact metric space (M,dM ) in
such a way that

dMH (Kn,K) → 0, (1.2)

where Kn and K are regarded as subsets of M . In our framework, this characterization is naturally
generalized.

Remark 1.1. One should note that it is not possible to consider the “set” of compact metric spaces
nor isometric equivalence classes of compact metric spaces from the rigorous viewpoint of set theory.
Indeed, any two singletons are isometric as compact metric spaces, but the collection of all singletons
is not a set. However, as discussed in [12], it is possible to regard the collection of isometric equivalence
classes as a legitimate set. This is true even when we consider the collection of non-compact metric
spaces equipped with additional objects (see Section 3.2).

The Gromov-Hausdorff-Prohorov metric. One generalization of the Gromov-Hausdorffmetric
is the (pointed) Gromov-Hausdorff-Prohorov metric dGHP (see (1.3) below), which gives the distance
between two rooted-and-measured compact metric spaces. Note that a rooted-and-measured compact
metric space (K, dK , ρ, µ) is a compact metric space (K, dK) equipped with a distinguished element ρ
called the root and a finite Borel measure µ on K. The metric dGHP was introduced in [1] (and [2])
to study a measured-tree-valued process, and it is defined in the same spirit as the Gromov-Hausdorff
metric. In particular, for two rooted-and-measured compact metric spaces Ki = (Ki, d

Ki , ρi, µi), i =
1, 2, the distance between them is given by setting

dGHP (K1,K2) := inf
f1,f2,K

{
dKH(f1(K1), f2(K2)) ∨ dKP (µ1 ◦ f

−1
1 , µ2 ◦ f

−1
2 ) ∨ dK(f1(ρ1), f2(ρ2))

}
, (1.3)

where the infimum is taken over all compact metric spaces (K, dK) and distance-preserving maps
fi : Ki → K, i = 1, 2, and dKP denotes the Prohorov metric between finite Borel measures on (K, dK)
(see Section 2.2.2 for the definition). Similar to the Gromov-Hausdorff metric, the Gromov-Hausdorff-
Prohorov metric is a separable and complete metric on the collection of equivalence classes of measured
compact metric spaces, and the induced topology is called the (pointed) Gromov-Hausdorff-Prohorov
topology. Moreover, similarly to (1.2), a characterization of the topology in terms of convergence of
objects isometrically embedded into a common metric space holds.

The local Gromov-Hausdorff-vague metric. In various applications, it is desirable to relax
the assumption of compactness. For that, it is convenient to consider rooted boundedly-compact spaces
(S, dS , ρ), that is, (S, dS , ρ) is a rooted metric space in which every closed ball of finite radius is
compact. The local Gromov-Hausdorff-vague metric dGHV (given in (1.4) below) is an extension of
the Gromov-Hausdorff-Prohorov metric. It is a metric on the collection of the equivalence classes of
rooted boundedly-compact metric spaces equipped with Radon measures (called rooted-and-measured
boundedly-compact metric spaces), and was first presented in [1]. Although in [1] the focus was on
a subclass of boundedly-compact metric spaces called length spaces, in [22] it was verified that the
metric dGHV is well-defined on the full space. The idea behind the definition of dGHV is that two
rooted-and-measured boundedly-compact metric spaces are close if the restrictions of them to balls
centered at roots with finite radius are close with respect to the Gromov-Hausdorff-Prohorov metric
dGHP (for Lebesgue almost-all radii). More precisely, for two rooted-and-measured boundedly-compact
metric spaces Xi = (Xi, d

Xi , ρi, µi), i = 1, 2, where ρi is the root and µi is a Radon measure on Xi,
the distance between X1 and X2 is given by

dGHV (X1,X2) :=

∫ ∞

0

e−r
(
1 ∧ dGHP (X

(r)
1 ,X

(r)
2 )

)
dr, (1.4)

2
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where we define X
(r)
i = (X

(r)
i , dX

(r)
i , ρ

(r)
i , µ

(r)
i ) by setting X

(r)
i to be the closed ball centered at ρi with

radius r, dX
(r)
i and µ

(r)
i to be the restrictions of dXi and µi to X

(r)
i respectively, and ρ

(r)
i := ρi. In

[22], it is proven that dGHV is a separable and complete metric and we call the induced topology the
local Gromov-Hausdorff-vague topology.

Remark 1.2. The terms the “local Gromov-Hausdorff-vaguemetric” and the “local Gromov-Hausdorff-
vague topology” are not in common use and are only used in the present paper as a matter of conve-
nience. Moreover, one should note that the local Gromov-Hausdorff-vague topology is different from
the Gromov-Hausdorff-vague topology introduced in [6] in that the local Gromov-Hausdorff-vague
topology takes into account the metric structure of the entire underlying space while the Gromov-
Hausdorff-vague topology ignores the metric structure outside the support of the measure.

1.2 The contributions of the present paper

As a generalization of the metrics introduced in Section 1.1, our interest is in the metrization of the
space consisting of (the equivalence classes of) (X, dX , ρ, a) such that (X, dX , ρ) is a rooted boundedly-
compact metric space and a is an element of a metric space τ(X), which is determined by (X, dX , ρ).
For example, in the local Gromov-Hausdorff-vague topology, τ(X) is the set of Radon measures on X
equipped with the vague topology. In this paper, we provide a framework to define a metric on such a
space inducing a suitable Gromov-Hausdorff-type topology, meaning that (Xn, d

Xn , ρn, an) converges
to (X, dX , ρ, a) if and only if it is possible to embed Xn and X isometrically into a common rooted
boundedly-compact metric space (M,dM , ρM ) in such a way that roots are carried into the root ρM
by the embedding maps, Xn converges to X in the local Hausdorff topology as subsets in M and an
converges to a as elements of τ(M). (The local Hausdorff topology is introduced in Section 2.2.1.)
Moreover, we also provide easy-to-check conditions for separability and completeness, which ensures
that the resulting Gromov-Hausdorff-type topology is suitable for probability theory.

We mention that such a general framework was proposed by Khezeli in [23], which follows the
philosophy of the formulation given in (1.4). In Khezeli’s framework, one first defines a metric dcK
on the collection of X = (X, dX , ρ, a) such that (X, dX) is compact. To extend this to non-compact

spaces, Khezeli considers restrictions X (r) = (X(r), dX
(r)

, ρ(r), a(r)) of X = (X, dX , ρ, a), e.g. in the
local Gromov-Hausdorff-vague case, a(r) corresponds to the restricted measure µ(r). He then defines a
distance between X1 and X2 by setting

dK(X1,X2) :=

∫ ∞

0

e−r
(
1 ∧ dcK(X

(r)
1 ,X

(r)
2 )

)
dr. (1.5)

The metric dK is a natural generalization of the local Gromov-Hausdorff-vague metric. An operation
such as a(r) is needed in the case of the local Gromov-Hausdorff-vague metric because the Prohorov
metric is a metric defined only on the set of finite Borel measures, and it initially seems natural to
consider a generalization of this approach to other additional structures. However, in some cases,
considering the operation a(r) is not natural. For example, consider a cadlag function with values in X
as an additional object a. Since the usual J1-Skorohod metric is defined even when X is non-compact,
it seems we should not need to consider the operation a(r) (although it is possible). A more serious
problem is that checking [23, Assumption 3.11], which is a condition regarding the operation a(r) and
ensures that the integral (1.5) is well-defined, does not seem easy in general. Indeed, in the case of
cadlag curves, one needs to introduce a metric different to the usual J1-Skorohod metric, and checking
[23, Assumption 3.11] requires one to understand the effect of the operation a(r) on the relevant
metric, which is far from a trivial exercise (see [23, Example 3.45]). Therefore, it seems that Khezeli’s
framework cannot be easily applied when one wants to consider a more complicated additional object
such as a probability measure on cadlag curves, which is a natural and important object in the study
of scaling limits of stochastic processes.

In contrast, our framework follows the philosophy of the formulation given (1.1) and (1.3). For
example, in our framework, a metric for the local Gromov-Hausdorff-vague topology is constructed
roughly as follows: firstly, we introduce the local Hausdorff metric (see Section 2.2.1) that can measure
the distance between non-compact subsets in a fixed metric space and the vague metric (see Section
2.2.2) that can measure the distance between non-finite Borel measures on a fixed metric space; then,
using these metrics, we define a metric on the collection of equivalence classes of rooted-and-measured
boundedly-compact metric spaces in a similar way to (1.3). We are able to confirm that the resulting
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metric indeed induces the local Gromov-Hausdorff-vague topology (see Theorem 4.13). Moreover,
since in our framework there is no need to check complicated conditions such as [23, Assumption
3.11], our approach makes it easy to define a metric on the collection of (the equivalence classes of)
rooted(-measured) boundedly-compact metric spaces equipped with laws of stochastic processes and/or
random fields (see Section 4.8). This gives a proper topological framework for discussing scaling limits
of stochastic processes, as studied in [7, 14] for example. Furthermore, in [31], following the framework
in this paper, a Gromov-Hausdorff-type topology is introduced, which enables us to discuss convergence
of laws of Markov processes and associated local times living in different spaces. We expect that our
framework can be also used in other various studies on random geometry such as the quantum zipper
(c.f. [32]). Although our framework is easier to apply than that of [23], it should be noted that some
ideas of Khezeli are essential at the point of our arguments where we extend a metric defined only for
“compact” objects into a metric for “non-compact” objects. Indeed, we follow his arguments to define
the local Hausdorff metric and the vague metric.

The remainder of the article is organized as follows. In Section 2, we define the local Hausdorff
metric and the vague metric. We then, in Section 3, establish our main results on metrization of the
Gromov-Hausdorff-type topologies. In Section 4, we present some examples of our main results based
on topologies used in the literature.

Throughout this article, we use various superscripts: Ac denotes the complement of a set A; Aε

denotes the (closed) ε-neighborhood of a set A defined in (2.11); a(r) is a restriction of an object a
defined above (2.1).

2 The local Hausdorff metric and the vague metric

In Section 2.1, we provide a method for extending a metric defined only for “compact” objects to
a metric for “non-compact” objects. This is a generalization of Khezeli’s framework in [23] and we
need this to define the local Hausdorff metric (for marked spaces) and the vague metric in Section 2.2.
Those who only want to see the definitions of these metrics can skip Section 2.1.

2.1 Metric for non-compact objects

Let C be a non-empty set and let dC be an extended metric on C. (NB. An extended metric is a metric
that is allowed to take the value ∞.) We equip C with the topology induced from dC. Fix a set D

including C. To extend the metric dC to D, we equip a partial order � on D. Our aim in this section
is to define a metric on D, which induces a natural topology on D generalizing the topology on C, and
to study basic propertis of the metric. The metric is presented in (2.2) below, and the main results
regarding convergence, polishness and precompactness are found in Theorem 2.8, Corollary 2.18 and
Theorem 2.20, respectively.

Example 2.1. The arguments in this section are very abstract, and so it may be easier to read with
a concrete example in mind. For example, one can think C as the set of compact subsets in a rooted
boundedly-compact metric space, dC as the Hausdorff metric, D as the set of closed subsets, and � as
the inclusion order. This is the setting considered in Section 2.2.1 and the framework in this section
provides a natural generalization of the Hausdorff metric.

We define a restriction system, which describes how elements in D are truncated to elements in C.

Definition 2.2 (Restriction system). Let Rr : D → C be an order-preserving map for each r > 0. We
call (Rr)r>0 a restriction system of (C,D,�) if it satisfies the following:

(RS1) For each r > 0 and a ∈ D, Rr(a) � a.

(RS2) For any s, r > 0, Rr ◦Rs = Rs∧r.

(RS3) If Rr(a) = Rr(b) for all r > 0, then a = b.

Example 2.3. In the setting of Example 2.1, Rr is the restriction of a closed subset to the closed ball
centered at the root of the space with radius r. Similarly, in the other examples we see in Section 2.2,
restriction systems also depend on the root of the space.
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We fix a restriction system R = (Rr)r>0. We simply write Rr(a) = a(r). The following is an
immediate consequence of (RS1) and (RS2):

a(s) � a(r), ∀a ∈ D, s ≤ r. (2.1)

In the same spirit as the local Gromov-Hausdorff-vague metric given in (1.4), we define the distance
between a, b ∈ D by setting

dD(a, b) :=

∫ ∞

0

e−r(1 ∧ dC(a
(r), b(r))) dr. (2.2)

To ensure that dD is a well-defined metric on D, we suppose the following continuity property of the
operation a(r) with respect to r, The assumption corresponds to [23, Lemma 3.17].

Assumption 2.4. Fix a ∈ D. Then the map (0,∞) ∋ r 7→ a(r) ∈ C is continuous for all but countably
many r > 0.

Proposition 2.5. Under Assumption 2.4, dD is well-defined. Moreover, dD is a metric on D.

Proof. Write d(c, d) := 1∧dC(c, d). Since d is a metric on C, by the triangle inequality, we deduce that

∣∣∣d(a(r
′), b(r

′))− d(a(r), b(r))
∣∣∣

≤
∣∣∣d(a(r

′), b(r
′))− d(b(r

′), b(r))
∣∣∣+

∣∣∣d(a(r
′), b(r))− d(a(r), b(r))

∣∣∣

≤d(b(r
′), b(r)) + d(a(r

′), a(r)).

This, combined with Assumption 2.4, implies that the map r 7→ 1 ∧ dC(a
(r), b(r)) ∈ R+ is continuous

for all but countably many r > 0. Hence, dD is well-defined. Symmetry and the triangle inequality
are obvious. If dD(a, b) = 0, then a(r) = b(r) for Lebesgue-almost every r > 0. By (RS2) and (RS3),
we obtain a = b.

To prove that the metric dD induces a natural topology on D and is separable and complete, we
suppose the following additional conditions. They correspond to [23, Assumption 3.11 and Lemma
3.20].

Assumption 2.6.

(i) Let a, b be elements of C and suppose that dC(a, b) ≤ ε for some ε > 0. Fix r ≥ s > ε arbitrarily.
Then, for any a′ ∈ C with a(s) � a′ � a(r), there exists b′ ∈ C such that b(s−ε) � b′ � b(r+ε) and
dC(a

′, b′) ≤ ε.

(ii) Let a be an element of C. For all but countably many r > 0, it holds that

sup{dC(a
(r), a′) | a′ ∈ C, a(r−δ) � a′ � a(r+δ)}

δ↓0
−−→ 0. (2.3)

Henceforth, we assume that the restriction system (Rr)r>0 satisfies Assumption 2.6. Note that
Assumption 2.6(ii) implies Assumption 2.4. Thus, under Assumption 2.6, dD is a well-defined metric
on D.

Lemma 2.7. Let a, a1, a2, . . . be elements of C. If dC(an, a) → 0, then dC(a
(r)
n , a(r)) → 0 for all but

countably many r > 0.

Proof. Fix r > 0 satisfying (2.3) and ε ∈ (0, r). By Assumption 2.6(ii), there exists δ ∈ (0, ε) such that

sup
{
dC(a

(r), a′) | a′ ∈ C, a(r−δ) � a′ � a(r+δ)
}
≤ ε. (2.4)

Since we have that dC(an, a) ≤ δ for all sufficiently large n, by (2.1) and Assumption 2.6(i), we can find

bn ∈ C such that a(r−δ) � bn � a(r+δ) and dC(a
(r)
n , bn) ≤ δ. Using (2.4) and the triangle inequality, we

deduce that
dC(a

(r)
n , a(r)) ≤ dC(a

(r)
n , bn) + dC(bn, a

(r)) ≤ δ + ε < 2ε,

which yields the desired result.
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Theorem 2.8 (Convergence with respect to dD). Let a, a1, a2, . . . be elements of D. Then, the fol-
lowing are equivalent.

(i) The elements an converge to a with respect to dD.

(ii) The elements a
(r)
n converge to a(r) with respect to dC for all but countably many r > 0.

(iii) There exists an increasing sequence (rk)k with rk ↑ ∞ such that a
(rk)
n converges to a(rk) with

respect to dC for each k.

(iv) There exists a non-decreasing sequence (rn)n≥1 with rn ↑ ∞ such that dC(a
(rn)
n , a(rn)) → 0.

Proof. The implication (ii) ⇒ (iii) is obvious. It is also easy to check that (iii) implies (iv). If (ii)
is satisfied, then the dominated convergence theorem yields (i). Lemma 2.7 immediately yields the
implication (iii) ⇒ (ii). Hence, it suffices to show the implications (i) ⇒ (ii) and (iv) ⇒ (ii). We begin
with proving the first implication. Assume that (i) holds. Fix r > 0 such that the convergence (2.3)
holds for a. Then, given ε ∈ (0, r), we can find δ ∈ (0, ε) satisfying

sup
{
dC(a

(r), a′) | a′ ∈ C, a(r−δ) � a′ � a(r+δ)
}
< ε. (2.5)

From (i), for all sufficiently large n, we have that
∫ ∞

0

e−s
(
1 ∧ dC(a

(s)
n , a(s))

)
dr < δe−r,

which implies that for each such n there exists sn > r such that dC(a
(sn)
n , a(sn)) ≤ δ. By (2.1) and

Assumption 2.6(i), we can find bn ∈ C such that a(r−δ) � bn � a(r+δ) and dC(a
(r)
n , bn) ≤ δ. This,

combined with (2.5), yields that

dC(a
(r)
n , a(r)) ≤ dC(a

(r)
n , bn) + dC(bn, a

(r)) < δ + ε < 2ε.

Hence we obtain (ii).
Assume that (iv) holds. Fix r > 0 such that the convergence (2.3) holds for a. Given ε ∈ (0, r), we

choose δ ∈ (0, ε) satisfying (2.5). For all sufficiently large n, we have that rn > r and dC(a
(rn)
n , a(rn)) <

ε. Therefore, by a similar argument as above, we obtain that dC(a
(r)
n , a(r)) < 2ε, which implies (ii).

The following is an immediate consequence of Lemma 2.7 and Theorem 2.8.

Corollary 2.9. The relative topology on C induced from D is coarser than the topology on C. In other
words, if an ∈ C converges to a ∈ C with respect to dC, then an converges to a with respect to dD.

Remark 2.10. In general, the relative topology on C induced from D does not coincide with the
topology on C. (See Remark 2.29.)

In general, a restriction system is not unique. We provide a sufficient condition that ensures that
two restrictions induce the same topology on D.

Definition 2.11. (The distance dis(R,R′)) Let R = (Rr)r>0 and R′ = (R′
r)r>0 be restriction systems.

We define

dis(R,R′) := inf{r∗ | Rs = Rs ◦R
′
r, R

′
s = R′

s ◦Rr for all s, r such that s+ r∗ ≤ r},

where we set dis(R,R′) := ∞ if the infimum is taken over the empty set.

Theorem 2.12. Let R′ = (R′
r)r>0 be another restriction system satisfying Assumption 2.6. If

dis(R,R′) < ∞, then the topology on D induced from R′ coincides the topology induced from R.

Proof. Write dD and d′
D

for the metric on D determined by R and R′, respectively. Choose r∗ >
dis(R,R′). By definition, it holds that Rs = Rs ◦ R′

r and R′
s = R′

s ◦ Rr for all s + r∗ ≤ r. Assume
that an converges to a with respect to d′

D
. Then, for all but countably many r > 0, it holds that

R′
r(an) → R′

r(a) in C. For such r, by Lemma 2.7, we obtain that Rs ◦ R′
r(an) → Rs ◦ R′

r(a) for all
but countably many s > 0. Thus, we can find an increasing sequence (sk)k≥1 with sk ↑ ∞ such that
Rsk(an) → Rsk(a) in C, which implies that an → a with respect to dD. Similarly, it is proven that if
an → a with respect to dD, then an → a with respect to dD.
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Remark 2.13. As we mentioned in Example 2.3, in all the examples we see in Section 2.2, the
restriction systems depend on the root of the space. However, in each example, one can check that the
distance between two restriction systems is bounded above by the distance between roots. Therefore,
by Theorem 2.12, it can be verified that the resulting topology on D is independent of the root.

Theorem 2.14 (Separability of dD). If (C, dC) is separable, then so is (D, dD).

Proof. Let D be a dense subset in (C, dC). By Corollary 2.9, D is dense in C with the relative topology
induced from D. It is easy to check that a(r) → a for any a ∈ D. Hence D is dense in (D, dD).

To prove that dD is complete, we assume a condition to ensure that D contains sufficiently many
elements.

Definition 2.15 (Complete restriction system). Let (ak)k≥1 be a sequence in C and (rk)k≥1 be an
non-decreasing sequence of non-negative numbers with rk ↑ ∞. A sequence (ak, rk)k≥1 is said to be a

compatible sequence if and only if ak = a
(rk)
k′ for all k ≤ k′. A restriction system (Rr)r>0 is said to be

complete if it satisfies the following:

(RS4) For every compatible sequence (ak, rk)k≥1, there exists a ∈ D such that ak = a(rk).

Lemma 2.16. Suppose that (Rr)r>0 is complete. Let (an)n≥1 be a sequence in C. Assume that there
exist a non-decreasing sequence (rk)k≥1 of positive numbers with rk ↑ ∞ and a sequence (αk)k≥1 in C

such that
dC(a

(rk)
n , αk)

n→∞
−−−−→ 0, ∀k ≥ 1.

Then the sequence (an)n≥1 converges to an element α ∈ D with respect to dD.

Proof. If necessary, by choosing a subsequence, we may assume that (rk)k≥1 is strictly increasing. By
Lemma 2.7, for all but countably many r > 0, it holds that

dC(a
(rk∧r)
n , α

(r)
k )

n→∞
−−−−→ 0, ∀k ≥ 1. (2.6)

Choose sl ∈ (rl−1, rl) so that (2.6) holds with r = sl, i.e.,

dC(a
(rk∧sl)
n , α

(sl)
k )

n→∞
−−−−→ 0, ∀k, l ≥ 1. (2.7)

For k′ ≥ k, by substituting l = k (and k′) in (2.7), we obtain that

dC(a
(sk)
n , α

(sk)
k )

n→∞
−−−−→ 0, dC(a

(sk)
n , α

(sk)
k′ )

n→∞
−−−−→ 0, (2.8)

which implies that α
(sk)
k = α

(sk)
k′ if k′ ≥ k. Therefore, (α

(sk)
k , sk)k≥1 is a compatible sequence. Since

the restriction system is complete, we can find α ∈ D such that α(sk) = α
(sk)
k . By (2.8), it holds that

dC(a
(sk)
n , α(sk)) → 0 as n → ∞ for each k ≥ 1. From Theorem 2.8, it follows that an → α.

Theorem 2.17 (Completeness of dD). If (C, dC) is complete and the restriction system (Rr)r>0 is
complete, then the metric dD is complete.

Proof. Fix a Cauchy sequence an in D. If necessary, by choosing a subsequence, we may assume
that dD(an, an+1) < 2−ne−2n . By the definition of dD (see (2.2)), for some qn > 2n, we have

dC(a
(qn)
n , a

(qn)
n+1) < 2−n. For each m ≥ 1, set am,m := a

(2m)
m . Since we have dC(a

(qm)
m , a

(qm)
m+1) < 2−m with

qm > 2m, by Assumption 2.6(i), there exists am+1,m ∈ C such that

a
(2m−2−m)
m+1 � am+1,m � a

(2m+2−m)
m+1 , dC(am,m, am+1,m) < 2−m.

Since we have dC(a
(qm+1)
m+1 , a

(qm+1)
m+2 ) < 2−m−1 with qm+1 > 2m+1, by using Assumption 2.6(i) again, we

can find am+2,m ∈ C such that

a
(2m−2−m−2−m−1)
m+2 � am+2,m � a

(2m+2−m+2−m−1)
m+2 , dC(am+1,m, am+2,m) < 2−m−1.

Inductively, we obtain a sequence (an,m)n≥m in C such that, for each n ≥ m,

a(2
m−2−m+1)

n � an,m � a(2
m+2−m+1)

n , dC(an,m, an+1,m) < 2−n. (2.9)

7
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In particular, (an,m)n≥m is a Cauchy sequence (C, dC), and hence there exists αm ∈ C such that
dC(an,m, αm) → 0 as n → ∞ for each m ≥ 1. By Lemma 2.7, for all but countably many r > 0, it

holds that dC(a
(r)
n,m, α

(r)
m ) → 0 as n → ∞ for each m ≥ 1. Fix an increasing sequence (rm)m≥1 with

rm ↑ ∞ and rm < 2m − 2−m+1 such that

dC(a
(rm)
n,m , α(rm)

m )
n→∞
−−−−→ 0, ∀m ≥ 1. (2.10)

By (2.9) and (RS2), we have that a
(rm)
n � a

(rm)
n,m � a

(rm)
n for all n ≥ m, which implies a

(rm)
n,m = a

(rm)
n

for all n ≥ m. From (2.10), it follows that dC(a
(rm)
n , α

(rm)
m ) → 0 as n → ∞ for each m ≥ 1. Applying

Lemma 2.16, we deduce that an converges to an element of D.

We provide a summary of the results so far.

Corollary 2.18. Assume that (C, dC) is a complete, separable metric space. Let R be a restriction
system satisfying Assumption 2.6. Then, the function dD given in (2.2) is a well-defined metric on D

and the metric space (D, dD) is complete and separable. Moreover, if R′ is another restriction system
satisfying Assumption 2.6 and dis(R,R′) < ∞, then the topologies on D induced from R and R′ are
the same.

In all the examples we see in Section 2.2, the following condition is satisfied, which plays an
important role in the discussion of precompactness. It corresponds to [23, Assumption 3.17].

Assumption 2.19. For every a ∈ C, the set {b ∈ C | b � a} is compact in (C, dC).

Theorem 2.20 (Precompactness in D). Suppose that the restriction system (Rr)r>0 satisfies Assump-
tion 2.6 and is complete. Fix a non-empty subset A ⊆ D. Write A (r) := {a(r) | a ∈ A } ⊆ C for each
r > 0. Consider the following statements.

(i) The set A (r) is precompact in (C, dC) for all r > 0.

(ii) There exists an increasing sequence (rk)k≥1 with rk ↑ ∞ such that A (rk) is precompact in (C, dC).

(iii) The set A is precompact in (D, dD).

Then, it holds that (i) ⇒ (ii) ⇒ (iii). Moreover, if Assumption 2.19 is satisfied, then (i), (ii) and (iii)
are equivalent.

Proof. The implication (i) ⇒ (ii) is obvious. Assume that (ii) holds. Fix a sequence (an)n≥1 in A .
By a diagonal argument, one can find a subsequence (anm

)m≥1 and a sequence (αk)k≥1 in C such that

dC(a
(rk)
nm , αk) → 0 as m → ∞ for each k ≥ 1. By Lemma 2.16 we deduce that (anm

)m≥1 is a convergent
sequence in D, which implies (iii).

Suppose that (iii) holds and Assumption 2.19 is satisfied. Fix r > 0 and a sequence (a
(r)
n )n≥1 in

A (r). Choose a subsequence (nm)m≥1 such that (anm
)m≥1 converges to a ∈ D with respect to dD.

If necessary, by choosing a further subsequence, we may assume that dD(anm
, a) < 2−me−m. Then,

there exists sm > m such that dC(a
(sm)
nm , a(sm)) < 2−m. We consider a sufficiently large m satisfying

sm > r. By Assumption 2.6(i), there exists a(r−2−m) � bm � a(r+2−m) such that dC(a
(r)
nm , bm) < 2−m.

Using Assumption 2.19, we can find a further subsequence (nmk
)k≥1 such that bmk

converges to some

b in C. It then follows that a
(r)
nmk

converges to b in C, which implies (i).

2.2 Examples

In this section, we apply the framework developed in Section 2.1 to examples, and introduce the local
Hausdorff metric, the vague metric and the local Hausdorff metric for marked spaces.

Henceforth, given a metric space (S, dS), we set

BS(x, r) := {y ∈ S | dS(x, y) < r}, DS(x, r) := {y ∈ S | dS(x, y) ≤ r},

and denote the closure of a subset A by cl(A). We recall that (S, dS) is said to be boundedly compact
if and only if DS(x, r) is compact for any x ∈ S and r > 0. Given maps f : A → B and g : A′ → B′,
we write

(f × f ′)(x, y) := (f(x), f ′(y)), (x, y) ∈ A×A′.

For a set A, we denote the identify map from A to itself by idA.
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2.2.1 The local Hausdorff metric

In this section, We introduce the local Hausdorff metric and the local Hausdorff topology, which are
suitable for discussing convergence of non-compact subsets in a fixed metric space.

Let (S, dS , ρ) be a rooted boundedly-compact metric space, that is, (S, dS) is a boundedly-compact
metric space and ρ is a distinguished element of S called the root.

Definition 2.21 (The space Ccpt(S) and C(S)). We define C(S) to be the set of closed subsets in S.
We denote by Ccpt(S) the subset of C(S) consisting of compact subsets.

A commonly used metric on Ccpt(S) is the Hausdorff metric. To recall it, we define the (closed)
ε-neighborhood of a subset A in S by setting

Aε := {x ∈ S | ∃y ∈ A such that dS(x, y) ≤ ε}. (2.11)

Definition 2.22 (The Hausdorff metric dSH and the Hausdorff topology). The Hausdorff metric dSH
on Ccpt(S) is defined by setting

dSH(A,B) := inf{ε ≥ 0 | A ⊆ Bε, B ⊆ Aε},

where we set the infimum over the empty set to be ∞. The function dSH is indeed an extended metric
on Ccpt(S). (Note that the distance between the empty set and a non-empty set is always infinite.)
We call the topology on Ccpt(S) induced by the Hausdorff metric the Hausdorff topology. It is known
that the Hausdorff topology is separable and dSH is complete. (See [12] for details)

We equip C(S) with the inclusion order ⊆. We now define a restriction system of (Ccpt(S), C(S),⊆).

Definition 2.23 (The restriction system of (Ccpt(S), C(S),⊆)). We define a restriction system R =
(Rr)r>0 by setting

Rr(A) = A(r) := A ∩DS(ρ, r), r > 0, A ∈ C(S).

Lemma 2.24. The restriction system R of (Ccpt(S), C(S),⊆) is complete and satisfies Assumption 2.6.
Moreover, if R′ is a restriction system associated with another root ρ′ of S, then dis(R,R′) ≤ dS(ρ, ρ′).

Proof. We only give a sketch of the proof. If (rk, Ak)k≥1 is a compatible sequence, the closed subset
A :=

⋃
k≥1 Ak satisfies A(rk) = Ak, which shows that R is complete. Suppose that dH(A,B) ≤ ε for

some A,B ∈ Ccpt(S). Fix r > s > ε and A(s) ⊆ A′ ⊆ A(r). We define

B′ := {x ∈ S | dS(x, y) ≤ ε for some y ∈ A′}.

It is then the case that B(s−ε) ⊆ B′ ⊆ B(r+ε) and dSH(A′, B′) ≤ ε, which yields Assumption 2.6(i).
It is not difficult to show that, for each A ∈ Ccpt(S), the map (0,∞) ∋ r 7→ A(r) ∈ (Ccpt(S), d

S
H) is

cadlag. Let r > 0 be a continuity point of the map. Then, one can check that

sup{dSH(A(r), A′) | A′ ∈ Ccpt(S), A
(r−δ) ⊆ A′ ⊆ A(r+δ)}

δ↓0
−−→ 0,

which implies Assumption 2.6(ii). Since we have that, for all s, r > 0 with s+ dS(ρ, ρ′) ≤ r,

DS(ρ, s) ∩DS(ρ
′, r) = DS(ρ, s), DS(ρ

′, s) ∩DS(ρ, r) = DS(ρ
′, s),

we deduce that dis(R,R′) ≤ dS(ρ, ρ′).

Remark 2.25. There is another natural restriction system R̃ of (Ccpt(S), C(S),⊆) defined by setting

R̃r(A) to be the closure of A ∩BS(ρ, r). One can check the same result as Lemma 2.48.

By Corollary 2.18 and Lemma 2.24, we obtain a complete, separable metric on C(S). Define

dS,ρ
H̄

(A,B) :=

∫ ∞

0

e−r(1 ∧ dSH(A(r), B(r)))dr, A,B ∈ C(S). (2.12)

Theorem 2.26. The function dS,ρ
H̄

is a well-defined metric on C(S) and the metric space (C(S), dS,ρ
H̄

)

is complete and separable. Moreover, the topology on C(S) induced from dS,ρ
H̄

is independent of the root
ρ.

9
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Definition 2.27 (The local Hausdorff metric and the local Hausdorff topology). We call dS,ρ
H̄

given by
(2.14) the local Hausdorff metric (with root ρ) and the induced topology on C(S) the local Hausdorff
topology.

By Theorem 2.8, we obtain a characterization of the local Hausdorff topology in terms of conver-
gence.

Theorem 2.28 (Convergence in the local Hausdorff topology). Let A,A1, A2, . . . be elements of C(S).
Then, the following are equivalent.

(i) The sets An converge to A in the local Hausdorff topology.

(ii) The sets A
(r)
n converge to A(r) in the Hausdorff topology for all but countably many r > 0.

(iii) There exists an increasing sequence (rk)k with rk ↑ ∞ such that A
(rk)
n converges to A(rk) in the

Hausdorff topology for each k.

Remark 2.29. The relative topology on Ccpt(S) induced from the local Hausdorff topology on C(S)
is strictly coarser than the Hausdorff topology. For example, consider the case (S, dS , ρ) = (R, dR, 0),
where (R, dR) is the one-dimensional Euclidean metric space, and the sequence An := [n, n+1]. Then,
An converges to the empty set in the local Hausdorff topology but does not converge in the Hausdorff
topology.

The following is an easy application of Theorem 2.20.

Theorem 2.30. The space C(S) equipped with the local Hausdorff topology is compact.

Proof. By Theorem 2.20, it suffices to show that, for each r > 0, C(S)(r) = {A(r) | A ∈ C(S)} is
compact in the Hausdorff topology. This follows from [12, Theorem 7.3.8] and the fact that C(S)(r) is
the set of closed subsets in the compact set S(r).

We next proceed to show that the local Hausdorff metric inherits the property that the Hausdorff
distance between sets is preserved when the sets are carried into a different space by a distance-
preserving map. This is important when we establish a framework for metrization of Gromov-
Hausdorff-type topologies in Section 3.2.

Lemma 2.31. Let (Si, d
Si), i = 1, 2 be boundedly-compact metric spaces and f : S1 → S2 be a distance-

preserving map. Then the map (Ccpt(S1), d
S1

H ) ∋ A 7→ f(A) ∈ (Ccpt(S2), d
S2

H ) is distance-preserving.

Proof. Since f is distance-preserving, we deduce that

f(A) ∩ f(B)ε = {f(x) ∈ S2 | x ∈ A, ∃y ∈ B such that dS2(f(x), f(y)) ≤ ε}

= {f(x) ∈ S2 | x ∈ A, ∃y ∈ B such that dS1(x, y) ≤ ε}

= {f(x) ∈ S2 | x ∈ A ∩Bε}

= f(A ∩Bε)

and similarly f(B) ∩ f(A)ε = f(B ∩Aε). Hence, it follows that

dS2

H (f(A), f(B)) = inf{ε > 0 | f(A) = f(A) ∩ f(B)ε, f(B) = f(B) ∩ f(A)ε}

= inf{ε > 0 | A = A ∩Bε, B = B ∩ Aε}

= dS1

H (A,B).

Proposition 2.32. Let (Si, d
Si , ρi), i = 1, 2 be rooted boundedly-compact metric spaces and f : S1 →

S2 be root-and-distance-preserving map. Then the map (C(S1), d
S1,ρ1

H̄
) ∋ A 7→ f(A) ∈ (C(S2), d

S2,ρ2

H̄
) is

distance-preserving.

Proof. Fix A,B ∈ C(S1). Since f(ρ1) = ρ2 and f is distance-preserving, we obtain that

f(A)(r) = {f(x) ∈ S2 | dS2(ρ2, f(x)) ≤ r}

= {f(x) ∈ S2 | dS1(ρ1, x) ≤ r}

= f(A(r))

10
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and similarly f(B)(r) = f(B(r)). Thus, by Lemma 2.31, we deduce that

dS2

H (f(A)(r), f(B)(r)) = dS2

H (f(A(r)), f(B(r))) = dS1

H (A(r), B(r)).

Now the desired result is straightforward.

2.2.2 The vague metric

There are various versions of metrics inducing the vague topology (e.g. [16, Section A2.6] and [20,
Section 4.1]). In this section, we define one such metric in a similar way to the local Hausdorff metric.

Let (S, dS , ρ) be a rooted boundedly-compact metric space. We first introduce the space of mea-
sures.

Definition 2.33 (The space Mfin(S) and M(S)). We define M(S) to be the set of Radon measures
µ on S, that is, µ is a Borel measure on S such that µ(K) < ∞ for every compact subset K. We
denote the subset of M(S) consisting of finite Borel measures by Mfin(S)

A commonly used metric on Mfin(S) is the Prohorov metric.

Definition 2.34 (The Prohorov metric and the weak topology). For µ, ν ∈ Mfin(S), we define

dSP (µ, ν) := inf{ε > 0 : µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε for all closed subsets A ⊆ S}.

The function dSP is a separable and complete metric on M(S) and is called the Prohorov metric. The
topology on Mfin(S) induced by dSP coincides with the topology of weak convergence and is called the
weak topology. (See [16, Section A2.5] for details.)

Let ≤ be a partial order on M(S) given by

µ ≤ ν ⇔ µ(A) ≤ ν(A), ∀A ∈ B(S),

where B(S) denotes the set of Borel sets. We then define a restriction system of (Mfin(S),M(S),≤).

Definition 2.35 (The restriction system of (Mfin(S),M(S),≤)). We define a restriction system
R = (Rr)r>0 by setting

Rr(µ)(A) = µ(r)(A) := µ(A ∩ S(r)), ∀A ∈ B(S).

The following result is basically proven in a similar way to the proof of Lemma 2.24. However,
Assumption 2.6(i) is not straightforward to check, and so we give a proof in Appendix A.

Lemma 2.36. The restriction system R of (Mfin(S),M(S),≤) is complete and satisfies Assumption
2.6. Moreover, if R′ is a restriction system associated with another root ρ′ of S, then dis(R,R′) ≤
dS(ρ, ρ′).

By Corollary 2.18 and Lemma 2.24, we obtain a complete, separable metric on M(S). Define

dS,ρV (µ, ν) :=

∫ ∞

0

e−r(1 ∧ dSP (µ
(r), ν(r))) dr, µ, ν ∈ M(S). (2.13)

Theorem 2.37. The function dS,ρV is a well-defined metric on M(S) and the metric space (M(S), dS,ρV )

is complete and separable. Moreover, the topology on M(S) induced from dS,ρV is independent of the
root ρ.

Definition 2.38 (The vague metric). We call dS,ρV given by (2.13) the vague metric (with root ρ).

The next result shows that the topology on M(S) induced from dS,ρV is indeed the vague topology.

Theorem 2.39 (Convergence with respect to dS,ρV ). Let µ, µ1, µ2, . . . be elements of M(S). Then, the
following are equivalent.

(i) The measures µn converges to µ with respect to dS,ρV .

(ii) The measures µ
(r)
n converges to µ(r) weakly for all but countably many r > 0.

11
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(iii) There exists an increasing sequence (rk)k with rk ↑ ∞ such that µ
(rk)
n converges to µ(rk) weakly

for each k.

(iv) The measures µn converges to µ vaguely, that is, it holds that

lim
n→∞

∫

S

f(x)µn(dx) =

∫

S

f(x)µ(dx)

for all continuous functions f : S → R with compact support.

Proof. The equivalence of (i), (ii) and (iii) follows from Theorem 2.8. It is easy to check that (ii)
implies (iv). Assume that (iv) is satisfied. Let r > 0 be such that µ({x | dS(ρ, x) = r}) = 0. Then, by
[20, Lemma 4.1], we have that µn(S

(r)) → µ(S(r)). Let A be a closed subset in S. It follows from [20,
Lemma 4.1] that

lim sup
n→∞

µ(r)
n (C) = lim sup

n→∞
µn(C ∩ S(r)) ≤ µ(C ∩ S(r)) = µ(r)(C).

Therefore, by [16, Theorem A.2.3.II], we obtain that µ
(r)
n converges to µ(r) weakly.

Similar to the local Hausdorff metric, the vague metric inherits the property that the Prohorov
distance between measures is preserved when the measures are carried into a different space by a
distance-preserving map.

Lemma 2.40. Let (Si, d
Si), i = 1, 2 be boundedly-compact metric spaces and f : S1 → S2 be a

distance-preserving map. Then the map (Mfin(S1), d
S1

P ) ∋ µ 7→ µ ◦ f−1 ∈ (Mfin(S2), d
S2

P ) is distance-
preserving.

Proof. Choose ε > 0 such that dS1

P (µ, ν) ≤ ε. Fix a closed subset A ⊆ S2. If x ∈ f−1(A)ε, then there
exists y ∈ S1 such that f(y) ∈ A and dS1(x, y) ≤ ε. It is then the case that dS2(f(x), f(y)) ≤ ε and
hence f(x) ∈ Aε. Thus, f−1(A)ε ⊆ f−1(Aε). Therefore, we obtain that

µ ◦ f−1(A) = µ(f−1(A)) ≤ ν(f−1(A)ε) + ε ≤ ν ◦ f−1(Aε) + ε,

and similarly, ν ◦ f−1(A) ≤ µ ◦ f−1(Aε) + ε. This yields that dS2

P (µ ◦ f−1, ν ◦ f−1) ≤ ε. By letting

ε ↓ dS1

P (µ, ν), we obtain that dS2

P (µ◦f−1, ν◦f−1) ≤ dS1

P (µ, ν). Next, suppose that dS2

P (µ◦f−1, ν◦f−1) ≤
ε. Fix a closed subset A ⊆ S1. If x ∈ f(A)ε ∩ f(S1), then there exist y ∈ S1 and z ∈ A such that
x = f(y) and dS2(f(y), f(z)) ≤ ε. It is then the case that dS1(y, z) ≤ ε and hence x ∈ f(Aε). Thus,
f(A)ε ∩ f(S1) ⊆ f(Aε). This, combined with S1 = f−1(f(S1)), yields that

f−1(f(A)ε) = f−1(f(A)ε) ∩ f−1(f(S1)) = f−1(f(A)ε ∩ f(S1)) ⊆ f−1(f(Aε)) = Aε.

Therefore, we deduce that

µ(A) = µ ◦ f−1(f(A)) ≤ µ ◦ f−1(f(A)ε) + ε ≤ µ(Aε) + ε,

and similarly ν(A) ≤ µ(Aε) + ε. Thus, by the same argument as before, we obtain dS1

P (µ, ν) ≤

dS2

P (µ ◦ f−1, ν ◦ f−1), which completes the proof.

Proposition 2.41. Let (Si, d
Si , ρi), i = 1, 2 be rooted boundedly-compact metric spaces and f :

S1 → S2 be a root-and-distance-preserving map. Then the map (M(S1), d
S1,ρ1

V ) ∋ µ 7→ µ ◦ f−1 ∈

(M(S2), d
S2,ρ2

V ) is distance-preserving.

Proof. For A ∈ B(S2) and µ ∈ M(S1), we have that

f−1(A ∩DS2(ρ2, r)) = {x ∈ S1 | f(x) ∈ A, dS2(ρ2, f(x)) ≤ r}

= {x ∈ S1 | f(x) ∈ A, x ∈ DS1(ρ1, r)}

= f−1(A) ∩DS1(ρ1, r).

Thus, we deduce that

(µ ◦ f−1)(r)(A) = µ(f−1(A) ∩DS1(ρ1, r)) = µ(r)(f−1(A)),

which implies that (µ ◦ f−1)(r) = µ(r) ◦ f−1. This, combined with Lemma 2.40, yields that for
µ, ν ∈ M(S1)

dS2

P

(
(µ ◦ f−1)(r), (ν ◦ f−1)(r)

)
= dS1

P (µ(r), ν(r)).

Therefore, we obtain the desired result.

12



Metrization of Gromov-Hausdorff-type topologies on boundedly-compact metric spaces

Remark 2.42. Another metric inducing the vague topology is found in [20, Lemma 4.6], but it is not
clear that the metric satisfies the property of Proposition 2.41. In [16, Section A2.6], a metric defined

in a similar way to dS,ρV is proposed. However, as pointed out by [30], there are mistakes in the proofs
in [16], which is the reason why we have not simply adopted the metric in that book.

2.2.3 The compact-convergence topology with variable domains

We next introduce a topology on a collection of functions with different domains. This topological
framework is needed, for example, when one considers the metrization of a Gromov-Hausdorff-type
topology on the collection of elements of the form (S, dS , ρ, f) such that the additional object f is an
element of C(S,Ξ), where Ξ is a fixed metric space. Note that C(S,Ξ) denotes the set of continuous
functions f : X → Ξ and we equip C(S,Ξ) with the compact-convergence topology, that is, fn converges
to f if and only if fn converges to f uniformly on every compact subset. The difficulty in defining a
Gromov-Hausdorff-type metric for such a space is that C(S,Ξ) cannot be embedded in C(S′,Ξ) in a

natural way when S is a subspace of S′. The idea for resolving this issue is to consider the set Ĉ(S,Ξ)

consisting of functions from a subset of S to Ξ. Then, we have a natural embedding of Ĉ(S,Ξ) into

Ĉ(S′,Ξ). With this background, we define a metric on Ĉ(S,Ξ) inducing a natural extension of the
topology on C(S,Ξ).

Fix a non-empty separable and complete metric space (Ξ, dΞ) and a rooted boundedly-compact
metric space (S, dS , ρ).

Definition 2.43 (The sets Ĉc(S,Ξ) and Ĉ(S,Ξ)). We define

Ĉ(S,Ξ) :=
⋃

X∈C(S)

C(X,Ξ).

Note that Ĉ(S,Ξ) contains the empty map ∅Ξ : ∅ → Ξ. Write dom(f) for the domain of a function f .

We then define Ĉc(S,Ξ) to be the subset of Ĉc(S,Ξ) consisting of f such that dom(f) is compact in
S.

Definition 2.44 (The metrics dS
Ĉc,Ξ

and dS,ρ
Ĉ,Ξ

). For f, g ∈ Ĉc(S,Ξ) and ε > 0, consider the following

condition.

(Ĉc) For any x ∈ dom(f), there exists an element y ∈ dom(g) such that dS(x, y) ∨ dΞ(f(x), g(y)) ≤
ε. Similarly, for any y ∈ dom(g), there exists an element x ∈ dom(g) such that dS(x, y) ∨
dΞ(f(x), g(y)) ≤ ε.

We define
dS
Ĉc,Ξ

(f, g) := inf{ε > 0 | ε satisfies (Ĉc)},

where the infimum over the empty set is defined to be ∞. For f ∈ Ĉ(S,Ξ), write f (r) := f |dom(f)(r) ,

where we recall that dom(f)(r) = dom(f) ∩ S(r). We then define

dS,ρ
Ĉ,Ξ

(f, g) :=

∫ ∞

0

e−r
(
1 ∧ dS

Ĉc,Ξ
(f (r), g(r))

)
dr.

Theorem 2.45. The function dS,ρ
Ĉ,Ξ

is a well-defined metric on Ĉ(S,Ξ). The space (Ĉ(S,Ξ), dS,ρ
Ĉ,Ξ

) is

Polish and the induced topology is independent of the root ρ.

To prove Theorem 2.45, we borrow the idea given in [23, Section 4.5]: we identify each function of

Ĉ(S,Ξ) with its graph, and consider a larger space C(S,Ξ) introduced below. Note that we equip with
S × Ξ the max product metric dS×Ξ, which is a metric given by

dS×Ξ((x, a), (y, b)) := dS(x, y) ∨ dΞ(a, b).

Definition 2.46 (The space Ccpt(S,Ξ) and C(S,Ξ)). We define C(S,Ξ) to be the set of closed subsets
E ⊆ S × Ξ such that E ∩ (S(r) × Ξ) is compact for all r > 0. We denote by Ccpt(S,Ξ) the subset of
C(S,Ξ) consisting of compact subsets of S × Ξ.

We equip Ccpt(S,Ξ) with the Hausdorff metric dS×Ξ
H and C(S,Ξ) with the inclusion order ⊆. We

then define a restriction system of (Ccpt(S,Ξ), C(S,Ξ),⊆).

13
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Definition 2.47 (The restriction system of (Ccpt(S,Ξ), C(S,Ξ),⊆)). We define a restriction system
R = (Rr)r>0 by setting

Rr(E) = E(r,∗) := E ∩ (S(r) × Ξ), r > 0, E ∈ C(S,Ξ).

Similar to the restriction system of (Ccpt(S), C(S),⊆) given in Section 2.2.1, the restriction system
R of (Ccpt(S,Ξ), C(S,Ξ),⊆) is complete and satisfies Assumption 2.6. Since it is proven in the same
way as the proof of Lemma 2.24, we omit the proof.

Lemma 2.48. The restriction system R of (Ccpt(S,Ξ), C(S,Ξ),⊆) is complete and satisfies Assumption
2.6. Moreover, if R′ is a restriction system associated with another root ρ′ of S, then dis(R,R′) ≤
dS(ρ, ρ′).

By Corollary 2.18 and Lemma 2.24, we obtain a complete, separable metric on C(S,Ξ). Define

dS,ρ
H̄,Ξ

(E,F ) :=

∫ ∞

0

e−r(1 ∧ dS×Ξ
H (E(r,∗), F (r,∗))) dr, E, F ∈ C(S,Ξ). (2.14)

Theorem 2.49. The function dS,ρ
H̄,Ξ

is a well-defined metric on C(S,Ξ) and the metric space (C(S,Ξ), dS,ρ
H̄,Ξ

)

is complete and separable. Moreover, the topology on C(S,Ξ) induced from dS,ρ
H̄,Ξ

is independent of the
root ρ.

Theorem 2.50 (Convergence in C(S,Ξ)). Let E,E1, E2, . . . be elements of C(S,Ξ). Then, the following
are equivalent.

(i) The elements En converge to E in C(S,Ξ).

(ii) The elements E
(r,∗)
n converge to E(r,∗) in the Hausdorff topology for all but countably many r > 0.

(iii) There exists an increasing sequence (rk)k with rk ↑ ∞ such that E
(rk,∗)
n converges to E(rk,∗) in

the Hausdorff topology for each k.

Remark 2.51. In general, the space (C(S,Ξ), dS,ρ
H̄,Ξ

) is not compact even when S is compact. For

example, if S = {ρ} and Ξ = R equipped with the Euclidean metric, then a sequence En := {(ρ, n)}
does not have a convergent subsequence.

Now we are ready to start proving Theorem 2.45.

Definition 2.52 (The graph map g). For each function f , we write g(f) for its graph, i.e., g(f) :=
{(x, f(x)) | x ∈ dom(f)}.

The following result is an immediate consequence of the definitions of dS
Ĉc,Ξ

and dS,ρ
Ĉc,Ξ

, and so we

omit the proof.

Proposition 2.53. It holds that

dS
Ĉc,Ξ

(f, g) = dS×Ξ
H (g(f), g(g)), ∀f, g ∈ Ĉc(S,Ξ),

dS,ρ
Ĉ,Ξ

(f, g) = dS,ρ
H̄,Ξ

(g(f), g(g)), ∀f, g ∈ Ĉ(S,Ξ).

As a consequence, dS
Ĉc,Ξ

is an extended metric on Ĉc(S,Ξ) and dS,ρ
Ĉ,Ξ

is a metric on Ĉ(S,Ξ).

Corollary 2.54. The map g : (Ĉ(S,Ξ), dS,ρ
Ĉ,Ξ

) → (C(S,Ξ), dS,ρ
H̄,Ξ

) is distance-preserving.

Definition 2.55 (The compact-convergence topology with variable domains). We equip Ĉ(S,Ξ) with

the topology induced from dS,ρ
Ĉ,Ξ

, which we call the compact-convergence topology with variable domains.

By using the graph map g of Corollary 2.54, we regard Ĉ(S,Ξ) is a subspace of C(S,Ξ). To show

that Ĉ(S,Ξ) is Polish, we define a sequence of subspaces in C(S,Ξ) converging to Ĉ(S,Ξ).

Definition 2.56 (The space Ĉk(S,Ξ)). Fix k ∈ N. We define Ĉk(S,Ξ) to be the collection of E ∈
C(S,Ξ) such that there exist r = r(E) > k and δi = δi(E) ∈ (0, 1/k), i = 1, 2 satisfying the following.
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(C) For any (x, a), (y, b) ∈ E(r,∗), if dS(x, y) < δ1, then dΞ(a, b) < δ2.

Lemma 2.57. For each k ∈ N, Ĉk(S,Ξ) is an open subset of C(S,Ξ).

Proof. Fix E ∈ Ĉk(S,Ξ). Let r > k and δi ∈ (0, 1/k), i = 1, 2 be constants satisfying (C) for E.
Choose ε ∈ (0, 1) so that

r − ε > k, r < ε−1, 2ε < δ1, 2ε+ δ2 < 1/k.

Fix F ∈ C(S,Ξ) such that dS,ρ
H̄,Ξ

(E,F ) < εe−1/ε. It is enough to show that F ∈ Ĉk(S,Ξ). By the

definition of dS,ρ
H̄,Ξ

, we can find r̃ > 1/ε such that

dS×Ξ
H (E(r̃,∗), F (r̃,∗)) < ε. (2.15)

Define r′ > k and 0 < δ′i < 1/k, i = 1, 2 by setting

r′ := r − ε, δ′1 := δ1 − 2ε, δ′2 := δ2 + 2ε, (2.16)

We will prove that r′, δ′1 and δ′2 satisfy (C) for F . Fix (x, a), (y, b) ∈ F (r′,∗) satisfying dS(x, y) < δ′1.
By (2.15), there exists (x′, a′), (y′, b′) ∈ E(r̃,∗) such that

dS(x, x′) ∨ dΞ(a, a′) < ε, dS(y, y′) ∨ dΞ(b, b′) < ε. (2.17)

It is then from (2.16) and (2.17) that (x′, a′), (y′, b′) ∈ E(r,∗) and dS(x′, y′) < δ1. Using (C), we obtain
that dΞ(a′, b′) < δ2. This, combined with (2.16) and (2.17), yields that dΞ(a, b) < δ′2, which implies

that F ∈ Ĉk(S,Ξ).

Lemma 2.58. It holds that Ĉ(S,Ξ) =
⋂

k≥1 Ĉk(S,Ξ).

Proof. It is easy to check that Ĉk(S,Ξ) ⊆
⋂

k≥1 Ĉk(S,Ξ) by using the uniform continuity of f ∈

Ĉk(S,Ξ) on compact subsets. Fix E ∈
⋂

k≥1 Ĉk(S,Ξ). It suffices to construct a function f ∈ Ĉ(S,Ξ)
whose graph coincides with E. Define X to be the subset of S consisting of x such that (x, a) ∈ E for

some a ∈ Ξ. By the definition of Ĉk(S,Ξ), one can check that X is a closed subset of S. The condition
(C) implies that, for each x ∈ X , an element ax ∈ Ξ satisfying (x, ax) ∈ E is uniquely determined. We
define f : X → Ξ by setting f(x) := ax. Then, using (C) again, we deduce that f is continuous, which
competes the proof.

Now, we complete the proof of Theorem 2.45.

Proof of Theorem 2.45. We already checked that dS,ρ
Ĉ,Ξ

is a metric on Ĉ(S,Ξ) by Theorem 2.49 and

Proposition 2.53. The Polishness of Ĉ(S,Ξ) is an immediate consequence of Theorem 2.49, Lemma
2.57 and 2.58.

We provide a characterization of convergence in Ĉ(S,Ξ), which shows that the topology on Ĉ(S,Ξ)
is a natural extension of the compact-convergence topology.

Theorem 2.59 (Convergence in Ĉ(S,Ξ)). Let f, f1, f2, . . . be elements of Ĉ(S,Ξ). The following
conditions are equivalent.

(i) The functions fn converge to f in the compact-convergence topology with variable domains.

(ii) For all but countably many r > 0, f
(r)
n converges to f (r) with respect to dS

Ĉc,Ξ
.

(iii) There exists an increasing sequence (rk)k≥1 with rk ↑ ∞ such that f
(rk)
n converges to f (rk) with

respect to dS
Ĉc,Ξ

.

(iv) The sets dom(fn) converge to dom(f) in the local Hausdorff topology in S, and, for all r > 0 (or
equivalently, r ∈ I with some unbounded subset I ⊆ (0,∞)), it holds that

lim
δ→0

lim sup
n→∞

sup
xn∈dom(fn)

(r),

x∈dom(f)(r),

dS(xn,x)<δ

dΞ(fn(xn), f(x)) = 0. (2.18)
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(v) The sets dom(fn) converge to dom(f) in the local Hausdorff topology in S, and there exist func-
tions gn, g ∈ C(S,Ξ) such that gn|dom(fn) = fn, g|dom(f) = f and gn → g in the compact-
convergence topology.

Proof. By definition, we have that g(f)(r,∗) = g(f (r)) for each f ∈ Ĉ(S,Ξ). Thus, we obtain the
equivalence of (i), (ii) and (iii) by using Lemma 2.53 and Theorem 2.50. Assume that (ii) holds. Fix

r > 0 such that f
(r)
n converges to f with respect to dS

Ĉ,Ξ
. It is easy to check that dom(fn)

(r) converges

to dom(f)(r) in the Hausdorff topology in S, which implies that dom(fn) converges to dom(f) in the
local Hausdorff topology in S. Fix ε > 0. By the uniform continuity of f on dom(f)(r), we can find
δ ∈ (0, ε) such that, for x, y ∈ dom(f)(r),

dS(x, y) < 2δ =⇒ dΞ(f(x), f(y)) < ε. (2.19)

Choose N ∈ N so that
dS
Ĉ,Ξ

(f (r)
n , f (r)) < δ, ∀n > N. (2.20)

Fix n > N and xn ∈ dom(fn), x ∈ dom(f) with dS(xn, x) < δ. By (2.20), there exists y ∈ dom(f)(r)

satisfying
dS(xn, y) ∨ dΞ(fn(xn), f(y)) < δ. (2.21)

Since we have that
dS(x, y) ≤ dS(x, xn) + dS(xn, y) < 2δ,

it follows from (2.19) that dΞ(f(x), f(y)) < ε. This, combined with (2.21), yields that

dΞ(fn(xn), f(x)) ≤ dΞ(fn(xn), f(y)) + dΞ(f(y), f(x)) < 2ε.

Thus, we obtain (iv).
If (iv) is satisfied, then by the same argument as [13, Proof of Proposition 2.3] we obtain (v).

Finally, assume that (v) holds. Let r > 0 be such that dom(fn)
(r) → dom(f)(r) in the Hausdorff

topology in S. Fix ε > 0. Using the convergence gn → g and the uniform continuity of g on S(r), we
deduce that there exists δ ∈ (0, ε) satisfying

lim sup
n→∞

sup
xn,x∈S(r),

dS(xn,x)<δ

dΞ(gn(xn), g(x)) < ε.

Then, we can find N ∈ N such that, for all n > N ,

dSH(dom(fn)
(r), dom(f)(r)) < δ, sup

xn∈dom(fn)
(r), x∈dom(f)(r),

dS(xn,x)<δ

dΞ(fn(xn), f(x)) < ε.

From the above inequalities, it is easy to deduce that dS
Ĉ,Ξ

(f
(r)
n , f (r)) < ε for all n > N . Therefore, we

obtain (iii).

Corollary 2.60. Fix X ∈ C(S). Then the map C(X,Ξ) ∋ f 7→ f ∈ Ĉ(S,Ξ) is a homeomorphism onto
its image, where we recall that C(X,Ξ) is equipped with the compact-convergence topology.

Remark 2.61. Convergence of functions with different compact domains is considered in [13, Section
2.1]. From Theorem 2.59, one can see that the convergence with variable domains introduced in this
section is a natural generalization of the convergence used in that paper.

We provide a precompactness criterion in Ĉ(S,Ξ), which is a generalization of the Arzelà-Ascoli
theorem.

Theorem 2.62 (Precompactness in Ĉ(S,Ξ)). A non-empty subset {fα | α ∈ A } is precompact in

Ĉ(S,Ξ) if and only if the following conditions are satisfied.

(i) For each r > 0, the set {fα(x) | x ∈ dom(fα)
(r), α ∈ A } is precompact in Ξ.

(ii) For each r > 0, it holds that

lim
δ→0

sup
α∈A

sup
x,y∈dom(fα)(r),

dS(x,y)<δ

dΞ(fα(x), fα(y)) = 0.
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Proof. We suppose that {fα | α ∈ A } is precompact. Assume that (i) is not satisfied. Then, for some
r > 0, we can find a sequence (αn, xn)n≥1 with αn ∈ A and xn ∈ dom(fαn

)(r) such that (fαn
(xn))n≥1

contains no convergent subsequence. If necessary, by choosing a subsequence, we may assume that fαn

converges to some f ∈ Ĉ(S,Ξ). By Theorem 2.59(iv), if necessary, by choosing a further subsequence,
we may also assume that xn converges to some x ∈ dom(f) in S. It then follows from (2.18) that
fαn

(xn) converges to f(x) in Ξ, which is a contradiction. Therefore, we obtain (i). Next, assume that
(ii) is not satisfied. Then, for some r > 0, we can find ε > 0, a decreasing sequence (δn)n≥1 with
δn ↓ 0, a sequence (αn)n≥1 in A , and xn, yn ∈ dom(fαn

)(r) with dS(xn, yn) < δn satisfying

dΞ(fαn
(xn), fαn

(yn)) > 3ε, ∀n ≥ 1. (2.22)

If necessary, by choosing a subsequence, we may assume that fαn
converges to some f ∈ Ĉ(S,Ξ). By

Theorem 2.59(iv), there exists r′ > r such that dom(fαn
)(r

′) → dom(f)(r
′) in the Hausdorff topology in

S. By the uniform continuity of f on dom(f)(r
′), we can find δ′ < ε satisfying, for all x, y ∈ dom(f)(r

′),

dS(x, y) < 3δ′ =⇒ dΞ(f(x), f(y)) < ε. (2.23)

By (2.18), if necessary, by replacing δ′ with a smaller number, we may assume that

lim sup
n→∞

sup
xn∈dom(fn)

(r),

x∈dom(f)(r),

dS(xn,x)<δ′

dΞ(fn(xn), f(x)) < ε.

Then, it is possible to choose N ∈ N so that, for all n > N ,

sup
{
dΞ(fn(xn), f(x)) | xn ∈ dom(fn)

(r), x ∈ dom(f)(r) with dS(xn, x) < δ′
}
< ε, (2.24)

dSH(dom(fαn
)(r

′), dom(f)(r
′)) < δ′, (2.25)

δn < δ′. (2.26)

Fix n > N . By (2.25), for some z, w ∈ dom(f)(r
′), we have that dS(xn, z) < δ′ and dS(yn, w) < δ′. It

then follows from (2.24) and (2.26) that dΞ(fαn
(xn), f(z)) < ε, dΞ(fαn

(yn), f(w)) < ε and

dS(z, w) ≤ dS(z, xn) + dS(xn, yn) + dS(yn, w) ≤ δ′ + δn + δ′ < 3δ′.

Since (2.23) yields that dΞ(f(z), f(w)) < ε, we obtain that

dΞ(fαn
(xn), fαn

(yn)) ≤ dΞ(fαn
(xn), f(z)) + dΞ(f(z), f(w)) + dΞ(f(w), fαn

(yn)) < 3ε,

which contradicts (2.22). Therefore, (ii) holds.
Conversely, assume that (i) and (ii) are satisfied. Fix a sequence (αn)n≥1 in A . By Theorem

2.30, if necessary, by choosing a subsequence, we may assume that, for some non-empty X ∈ C(S),
dom(fαn

) → X in the local Hausdorff topology in S. Define U to be a countable index set such that
(xu : u ∈ U) is a dense subset of X . By the convergence of dom(fαn

) to X , for each u ∈ U , we can find
xn
u ∈ dom(fαn

) such that xn
u → xu in S. From (i) and a diagonal procedure, by choosing a subsequence

if necessary, we may assume that fαn
(xn

u) converges to some f(xu) ∈ Ξ. For x ∈ X , choose a sequence
(uk)k≥1 so that xuk

→ x in S. Using (ii), one can check that (f(xuk
))k≥1 is a Cauchy sequence in Ξ,

and we set f(x) to be the limit of (f(xuk
))k≥1. The condition (ii) yields that f : X → Ξ is continuous

and, for xn ∈ dom(fαn
) and x ∈ X ,

xn → x =⇒ fαn
(xn) → f(x). (2.27)

Fix ε > 0 and r > 0 such that dom(fαn
)(r) → X(r). By the uniform continuity of f on X(r), we can

find δ > 0 satisfying, for any x, y ∈ X(r),

dS(x, y) < δ =⇒ dΞ(f(x), f(y)) < ε. (2.28)

Since we have (ii), if necessary, by resetting δ to a smaller value, we may also assume that

sup
α∈A

sup
x,y∈dom(fα)(r),

dS(x,y)<3δ

dΞ(fα(x), fα(y)) < ε. (2.29)
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Choose a finite subset (x(k))lk=1 ofX
(r) so thatX(r) ⊆

⋃l
k=1 BS(x

(k), δ). For each k, by the convergence

of dom(fαn
)(r) to X(r), there exists a sequence (x

(k)
n )n≥1 with x

(k)
n ∈ dom(fαn

)(r) convergent to x(k)

in S. The convergence x
(k)
n → x(k) and (2.27) imply the existence of N ∈ N such that

dS(x(k), x(k)
n ) < δ, dΞ(fαn

(x(k)
n ), f(x(k))) < ε, ∀k, n > N.

Fix n > N and xn ∈ dom(fαn
)(r), x ∈ X(r) with dS(xn, x) < δ. Choose k satisfying dS(x(k), x) < δ.

From (2.28), it follows dΞ(f(x(k)), f(x)) < ε. Since we have that

dS(x(k)
n , xn) ≤ dS(x(k)

n , x(k)) + dS(x(k), x) + dS(x, xn) < 3δ,

we obtain from (2.29) that dΞ(fαn
(x

(k)
n ), fαn

(xn)) < ε. Therefore, we deduce that

dΞ(f(x), fαn
(xn)) ≤ dΞ(f(x), f(x(k))) + dΞ(f(x(k)), fαn

(x(k)
n )) + dΞ(fαn

(x(k)
n ), fαn

(xn)) < 3ε.

By applying Theorem 2.59, we establish that fαn
→ f in Ĉ(S,Ξ).

The following result is an analog of Proposition 2.32, which is important for the arguments in
Section 4.7.

Proposition 2.63. Let (Si, d
Si , ρi), i = 1, 2 be rooted boundedly-compact metric spaces and F : S1 →

S2 be root-and-distance-preserving map. Then the following map is distance-preserving:

(Ĉ(S1,Ξ), d
S1,ρ1

Ĉ,Ξ
) ∋ f 7→ f ◦ F−1 ∈ (Ĉ(S2,Ξ), d

S2,ρ2

Ĉ,Ξ
).

Note that the domain of F−1 is restricted to F (dom(f)) so that f ◦ F−1 is well-defined.

Proof. Fix f, g ∈ Ĉ(S,Ξ). We deduce that

g
(
(f ◦ F−1)(r)

)
= {(y, f ◦ F−1(y)) ∈ S2 × Ξ | y ∈ F (dom(f))(r)}

= {(F (x), f(x)) ∈ S2 × Ξ | x ∈ dom(f)(r)}

= (F × idΞ)(g(f
(r))),

and similarly g
(
(g ◦ F−1)(r)

)
= (F × idΞ)(g(g

(r))). Since F × idΞ : S1 × Ξ → S2 × Ξ is distance-
preserving, it follows from Lemma 2.31 and Proposition 2.53 that

dS2

Ĉc,Ξ
((f ◦ F−1)(r), (g ◦ F−1)(r)) = dS2×Ξ

H

(
g
(
(f ◦ F−1)(r)

)
, g

(
(g ◦ F−1)(r)

))

= dS1×Ξ
H

(
g(f (r)), g(g(r))

)

= dS1

Ĉc,Ξ
(f (r), g(r))

Therefore, we obtain the desired result.

3 Main results

3.1 The local Gromov-Hausdorff metric

In this section, we define the local Gromov-Hausdorff metric on the collection of (equivalence classes of)
rooted boundedly-compact metric spaces, which is a natural generalization of the Gromov-Hausdorff
metric on the collection of (equivalence classes of) rotted compact metric spaces given in (1.1).

Let M◦ be the collection of rooted boundedly-compact metric spaces X = (X, dX , ρX). Note
that, from the rigorous point of view of set theory, M◦ is not a set (c.f. Remark 1.1). Thus, we write
X ∈ M◦ just to declare that X is a rooted boundedly-compact metric space. For X = (X, dX , ρX), Y =
(Y, dY , ρY ) ∈ M◦, we say that X and Y are rooted-isometric if and only if there exists a root-preserving
isometry f : X → Y . Note that f being root-preserving means that f(ρX) = ρY , and f being an
isometry means that f is a distance-preserving bijection. As mentioned in Remark 1.1, it is impossible
to define the “set” of rooted-isometric equivalence classes of elements in M◦. However, it is possible to
choose a representative from each equivalence class to obtain a legitimate set, as shown in Proposition
3.1 below. The proof is omitted as we prove a more general result in Proposition 3.17.
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Proposition 3.1. There exists a set M satisfying the following.

(i) The set M consists of elements in M◦.

(ii) For any Y ∈ M◦, there exists a unique element X ∈ M such that X is rooted-isometric to Y.

Definition 3.2 (The set M). A set M satisfying the properties of Proposition 3.1 is uniquely deter-
mined if we identify any two rooted-isometric spaces. Thus, we refer to M as the set of rooted-isometric
equivalence classes of elements in M◦.

Definition 3.3 (The metric dM). For X = (X, dX , ρX),Y = (Y, dY , ρY ) ∈ M◦, we define

dM(X ,Y) := inf
f,g,Z

dZ,ρZ

H̄
(f(X), g(Y )), (3.1)

where the infimum is taken over all (Z, dZ , ρZ) ∈ M and root-and-distance-preserving maps f : X → Z

and g : Y → Z. (Recall the local Hausdorff metric dZ,ρZ

H̄
from Section 2.2.1)

Remark 3.4. One needs to check that the infimum in (3.1) is well-defined, that is, it is taken over a
non-empty set. We give a sketch of how to check it. Fix (X, dX , ρX), (Y, dY , ρY ) ∈ M◦. Define Z ′ to
be the disjoint union X ⊔Y and define a pseudometric on Z by setting dZ

′

|X×X := dX , dZ
′

|Y ×Y := dY

and dZ
′

(x, y) := dX(x, ρX)+dY (ρY , y) for x ∈ X, y ∈ Y . Then, dZ
′

(ρX , ρY ) = 0. Therefore, by setting
Z to be the quotient space and ρZ to be the equivalence class {ρX , ρY }, we obtain a rooted boundedly-
compact metric space (Z, dZ , ρZ), where (X, dX , ρX) and (Y, dY , ρY ) are naturally embedded.

The function dM is indeed a metric on M and the induced topology is characterized by conver-
gence of spaces embedded into a common metric space as at (1.2), which can be viewed as a natural
generalization of the Gromov-Hausdorff topology to non-compact spaces. More precisely, we have the
following results. The proofs are omitted because they are the same as corresponding more general
results in Section 3.2.

Theorem 3.5. For X ,Y ∈ M◦, dM(X ,Y) = 0 if and only if X is rooted-isometric to Y. Moreover,
the function dM is a separable and complete metric on M.

Definition 3.6 (The local Gromov-Hausdorff topology). We call the topology on M induced by dM
the local Gromov-Hausdorff topology.

Theorem 3.7 (Convergence in the local Gromov-Hausdorff topology). For each n ∈ N ∪ {∞}, let
Xn = (Xn, d

Xn , ρXn
) be an element in M. Then, Xn converges to X∞ if and only if there exist

(Z, dZ , ρZ) ∈ M and root-and-distance-preserving maps fn : Xn → Z such that fn(Xn) → f∞(X∞) in
the local Hausdorff topology in Z.

For X = (X, dX , ρX) ∈ M◦, we define X (r) = (X(r), dX
(r)

, ρ
(r)
X ) by setting

X(r) := DX(ρX , r), dX
(r)

:= dX |X(r)×X(r) , ρ
(r)
X := ρX .

The following result ensures that the local Gromov-Hausdorff topology coincides with the general-
ization of the Gromov-Hausdorff topology to non-compact spaces considered in the literature such as
[17], [12] and [22]. In Theorem 4.13, we prove a more general result and thus the proof is omitted here.

Theorem 3.8. For each n ∈ N ∪ {∞}, let Xn = (Xn, d
Xn , ρXn

) be an element of M. Then, the
following statements are equivalent.

(i) Xn converges to X∞ with respect to dM,

(ii) X
(r)
n converges to X

(r)
∞ in the Gromov-Hausdorff topology for all but countably many r > 0,

(iii) There exist a boundedly-compact metric space (Z, dZ) and distance-preserving maps fn : Xn → Z

and f∞ : X∞ → Z such that, for all but countably many r > 0, fn(ρ
(r)
Xn

) → f∞(ρ
(r)
X∞

) in Z and

fn(X
(r)
n ) → f∞(X

(r)
∞ ) in the Hausdorff topology in Z.

To describe a precompactness criterion in the local Gromov-Hausdorff topology, we introduce the
notion of an ε-covering and metric entropy.
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Definition 3.9 (ε-covering, metric entropy). Let (S, dS) be a metric space and ε be a positive number.
A subset A ⊆ S is called an ε-covering of S if it holds that S =

⋃
x∈ADS(x, ε). We define

N(S, ε) := min{|A| | A is an ε-covering of S},

where | · | denotes the cardinality of a set. An ε-convering A with |A| = N(S, ε) is called a minimal
ε-covering of (S, dS). We call the family {N(S, ε) | ε > 0} the metric entropy of (S, dS).

Remark 3.10. In Definition 3.9, we borrow the definition of metric entropy given in [28], but one
should note that the metric entropy is defined to be the logarithm of N(S, ε) elsewhere in the literature.

Before the result on precompactness in the local Gromov-Hausdorff topology, we state a simple
property of the metric entropy. The result follows directly from the definition, so we omit the proof.

Lemma 3.11. Let (K, dK) be a compact metric space. Then N(K, ·) is right-continuous with left-hand
limits. In particular, it has at most countable discontinuity points.

Theorem 3.12 (Convergence of metric entropies). If a sequence of compact metric spaces (Kn, d
Kn)

converges to a compact metric space (K, dK) in the Gromov-Hausdorff topology, then

N(K, ε) ≤ lim inf
n→∞

N(Kn, ε),

for all ε > 0, and, for all continuity points ε > 0 of N(S, ·),

lim
n→∞

N(Kn, ε) = N(K, ε)

holds. In particular, the above equality holds for all but countably many ε.

Proof. It is not difficult to check that a characterization of convergence in the Gromov-Hausdorff
topology similar to Theorem 3.7 holds. Thus, we may assume that all the spaces Kn and K are
isometrically embedded into a common compact metric space (E, d) in such a way that dH(Kn,K) → 0
as n → ∞. Set N := lim infn→∞ N(Kn, ε). Then (if needed, by choosing a subsequence,) we may

assume that for all sufficiently large n, we have N(Kn, ε) = N . Let (x
(n)
i )Ni=1 be a minimal ε-covering

of (Kn, d
Kn). Since (E, d) is compact, (if needed, by choosing a further subsequence,) we may assume

that x
(n)
i → xi for some xi ∈ E for all i, and one can check that xi ∈ K using the convergenceKn → K

and that K is closed in E. For x ∈ K, choose xn ∈ Kn such that d(x, xn) ≤ dH(Kn,K) and then

choose x
(n)
i ∈ Kn such that d(x

(n)
i , xn) ≤ ε. By the triangle inequality, it holds that

d(x, xi) ≤ d(x, xn) + d(xn, x
(n)
i ) + d(x

(n)
i , xi) ≤ dH(Kn,K) + ε+max

j
d(x

(n)
j , xj),

and letting n → ∞ we obtain that d(x, xi) ≤ ε. Thus (xi)
N
i=1 is an ε-covering of (K, dK) and therefore

we obtain that N(K, ε) ≤ N .
Now suppose that ε > 0 is a continuity point of NdK (K, ·). Then we can find an ε′ < ε satisfying

N(K, ε′) = N(K, ε). Set N ′ := lim supn→∞ N(Kn, ε) and assume that N ′ > N(K, ε). Then (if needed,
by choosing a subsequence,) we may assume that for all sufficiently large n, we haveN(Kn, ε) = N ′. Let

(xi)
N ′′

i=1 be a minimal ε′-covering of (K, dK). We choose x
(n)
i ∈ Kn such that d(xi, x

(n)
i ) ≤ dH(Kn,K).

For y ∈ Kn, we choose x ∈ K such that d(x, y) ≤ dH(Kn,K) and then we choose xi such that
d(xi, x) ≤ ε′. By the triangle inequality, we obtain that

d(y, x
(n)
i ) ≤ d(y, x) + d(x, xi) + d(xi, x

(n)
i ) ≤ 2dH(Kn,K) + ε′.

Since Kn → K, the right-hand side of the above inequality is smaller than ε for all sufficiently large

n. Hence (x
(n)
i )N

′′

i=1 is an ε-covering of (Kn, d
Kn), which implies that N(Kn, ε) ≤ N(K, ε′) = N(K, ε)

for all sufficiently large n. Letting n → ∞ in the above inequality yields a contradiction. Therefore it
holds that N ′ ≤ N(K, ε) and combining this with the first result yields the second assertion.

Theorem 3.13 (Precompactness in the local Gromov-Hausdorff topology). A non-empty subset {Xα =
(Xα, d

Xα , ρα) | α ∈ A } of M is precompact in the local Gromov-Hausdorff topology if and only if the
following condition is satisfied.
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(i) For every r > 0 and ε > 0, it holds that supα N(X
(r)
α , ε) < ∞.

Proof. Suppose that {Xα | α ∈ A } is precompact. Assume that (i) does not hold. It is then the

case that, for some r > 0 and ε > 0, we can find a sequence (αn)n≥1 satisfying N(X
(r)
αn , ε) → ∞.

We choose a subsequence (nk)k≥1 such that (Xαnk
)k≥1 converges to some X = (X, dX , ρX) ∈ M. It

then follows from Theorem 3.12 that limk→∞ N(X
(r)
αnk

, ε′) = N(X(r), ε′) < ∞ for some ε′ < ε. Since

N(X
(r)
αnk

, ε) ≤ N(X
(r)
αnk

, ε′), we obtain that lim supk→∞ N(X
(r)
αnk

, ε) ≤ N(X(r), ε′) < ∞, which is a
contradiction. Therefore, (i) holds.

Conversely, suppose that (i) is satisfied. Fix a sequence (αn)n≥1 in A . For each Xαn
, we define a

rooted-and-measured boundedly-compact metric space X ′
αn

by equipping Xαn
with the zero measure.

Then, by [1, Theorem 2.6] and [22, Theorem 3.28], the sequence (X ′
αn

)n≥1 has a subsequence (X ′
αnk

)k≥1

convergent in the local Gromov-Hausdorff-vague topology. This implies that (Xαnk
)k≥1 converges in

the local Gromov-Hausdorff topology (c.f. Corollary 3.25 and Theorem 4.13 below).

3.2 The local Gromov-Hausdorff metric with an additional structure

In this section, we provide a method for metrization of the Gromov-Hausdorff-type topologies on
boundedly-compact spaces equipped with additional objects.

Definition 3.14 (Functor). We call τ a functor if it satisfies the following.

(i) For every (X, dX , ρX) ∈ M◦, one has a metric space (τ(X, dX , ρX), dX,ρX
τ ) where τ(X, dX , ρX)

is a set and dX,ρX
τ is a metric on it. We simply write τ(X) := τ(X, dX , ρX).

(ii) For every (Xi, d
Xi , ρXi

), i = 1, 2 and root-and-distance-preserving map f : X1 → X2, one has a
distance-preserving map τf : τ(X1) → τ(X2).

(iii) For any two root-and-distance-preservingmaps f : X → Y, g : Y → Z, it holds that τg◦f = τg◦τf .

(iv) For any (X, dX , ρX) ∈ M◦, it holds that τidX
= idτ(X).

Remark 3.15. As explained in [23], τ is indeed a functor between the categories of rooted boundedly-
compact metric spaces and metric spaces.

Example 3.16. A typical example of functors is the functor for measures, which is given by setting
τm(X) := M(X) equipped with the vague metric (recall it from Section 2.2.2) and τmf (µ) := µ ◦ f−1,
i.e., the pushforward of µ. This functor yields the local Gromov-Hausdorff-vague topology. (See Section
4.4 for details).

We fix a functor τ . Let M◦(τ) be the collection of X = (X, dX , ρX , aX) such that (X, dX , ρX) ∈ M◦

and aX ∈ τ(X). We say that X = (X, dX , ρX , aX) and Y = (Y, dY , ρY , aY ) are τ -equivalent if and
only if there exists a root-preserving isometry f : X → Y such that τf (aX) = aY . The following result
justifies considering the “set” of τ -equivalent classes.

Proposition 3.17. There exists a set M(τ) satisfying the following.

(i) The set M(τ) consists of elements in M◦(τ).

(ii) For any Y ∈ M◦(τ), there exists a unique element X ∈ M(τ) such that X is τ-equivalent to Y.

Proof. Let 2R be the set of non-empty subsets of R. For every M ∈ 2R, we denote by D(M) the set
of functions dM : M ×M → R+ such that dM is a metric on M and (M,dM ) is boundedly-compact.
We then define a set M by setting

M :=
{
(M,dM , ρM , aM ) : M ∈ 2R, dM ∈ D(M), ρM ∈ M,aM ∈ τ(M,dM , ρM )

}
.

Fix Y = (Y, dY , ρY , aY ) ∈ M◦(τ). Since the cardinality of Y is smaller than or equal to the cardinality
of R, there exist X ∈ 2R and a bijection f : Y → X . We define a function dX : X×X → R+ by setting
dX(f(x), f(y)) := dY (x, y). It is then the case that dX ∈ D(M) and f is an isometry from (Y, dY ) to
(X, dX). By setting ρX := f(ρY ) and aX := τf (aY ), we obtain an element (X, dX , ρX , aX) ∈ M which
is τ -equivalent to Y. Choosing a representative from each τ -equivalence class of elements in M , we
obtain the desired set M(τ).
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Definition 3.18 (The set M(τ)). Similarly to M, we refer to a set M(τ) satisfying the properties of
Proposition 3.17 as the set of τ -equivalence classes of elements in M◦(τ).

Definition 3.19 (The metric dτ
M
). For X = (X, dX , ρX , aX),Y = (Y, dY , ρY , aY ) ∈ M◦(τ), we define

dτM(X ,Y) := inf
f,g,Z

{
dZ,ρZ

H̄
(f(X), g(Y )) ∨ dZ,ρZ

τ (τf (aX), τg(aY ))
}
,

where the infimum is taken over all (Z, dZ , ρZ) ∈ M and root-and-distance-preserving maps f : X → Z
and g : Y → Z.

We will suppose that the following continuity condition for τ holds to show dτ
M

is a metric on M(τ).

Assumption 3.20. Fix (X, dX , ρX), (Y, dY , ρY ) ∈ M◦ arbitrarily. Let fn : X → Y, n ∈ N ∪ {∞} be
root-and-distance-preserving maps. If fn → f∞ in the compact-convergence topology, then τfn(a) →
τf∞(a) in τ(Y ) for all a ∈ τ(X).

Definition 3.21 (Continuous functor). We say that a functor τ is continuous if τ satisfies Assumption
3.20.

For example, one can check that the functor τm, which is briefly introduced in Example 3.16, is
continuous by using the dominated convergence theorem.

Lemma 3.22. Let Xn = (Xn, d
Xn , ρXn

, aXn
), ∈ N be elements of M◦(τ) such that dτ

M
(Xn,Xn+1) <

2−ne−2n . Then, there exist a rooted boundedly-compact metric spaces (Z∗, dZ
∗

, ρZ∗) and root-and-
distance-preserving maps hn : Xn → Z∗ such that

dZ
∗,ρZ∗

H̄
(hn(Xn), hn+1(Xn+1)) < 2−ne−2n , dZ

∗,ρZ∗

τ (τhn
(aXn

), τhn+1(aXn+1)) < 2−ne−2n .

Proof. By assumption, for each n, there exist a boundedly-compact metric space (Yn, d
Yn , ρYn

) and
root-and-distance-preserving maps fn : Xn → Yn and gn : Xn+1 → Yn such that

d
Yn,ρYn

H̄
(fn(Xn), gn(Xn+1)) < 2−ne−2n , d

Yn,ρYn
τ (τfn(aXn

), τgn(aXn+1)) < 2−ne−2n . (3.2)

By restricting the codomains of fn and gn, we may assume that Yn = fn(Xn) ∪ gn(Xn+1). Note that
by the definition of the local Hausdorff metric there exists sn > 2n such that

dYn

H (fn(X
(sn)
n ), gn(X

(sn)
n+1 )) = dYn

H (fn(Xn)
(sn), gn(Xn+1)

(sn)) < 2−n (3.3)

We define a pseudometric dM on M :=
⊔

n Xn by setting dM |Xn×Xn
:= dXn and

dM (xn, xn+k) := inf

{
k−1∑

l=0

dYn+l(fn+l(xn+l), gn+l(xn+l+1)) | xn+1 ∈ Xn+1, . . . , xn+k−1 ∈ Xn+k−1

}

for xn ∈ Xn xn+k ∈ Xn+k and k ≥ 1. Note that we set dM (xn, xn+1) = dYn(fn(xn), gn(xn+1)) for
xn ∈ Xn, xn+1 ∈ Xn+1. We use the equivalence relation ∼ on M given by

x ∼ y ⇔ dM (x, y) = 0 (3.4)

to obtain the quotient space Z := M/ ∼. We denote the equivalence class of x ∈ M by [x]. It is then
the case that [ρYn

] = [ρYn+1 ] for all n and we define the root of Z by setting ρZ := [ρYn
]. We write

dZ([x], [y]) := dM (x, y),

which is well-defined and a metric on Z.
We show that DZ(ρZ , r) is totally bounded for every r > 0. Fix r > 0 and ε > 0. Choose N so

that
∑∞

l=N 2−l < ε and 2N > r + 1. For each n ≤ N , there exists a subset {wi,n}
Tn

i=1 ⊆ Xn such that

DXn
(ρXn

, r + 1) ⊆
⋃Tn

i=1 DXn
(wi,n, ε). We set W := {[wi,n] | n = 1, 2, . . . , N, i = 1, 2, . . . , Tn} ⊆ Z.

Fix [xn] ∈ Z satisfying d(ρZ , [xn]) ≤ r and xn ∈ Xn. If n ≤ N , then there exists wi,n ∈ Xn such that

dXn(xn, wi,n) ≤ ε, which implies that dZ([wi,n], [xn]) ≤ ε. Suppose n > N . Since xn ∈ X
(r)
n ⊆ X

(sn)
n ,
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by (3.3), we can find xn−1 ∈ Xn−1 satisfying dYn−1(fn−1(xn−1), gn−1(xn)) < 2−n+1. Since it holds
that

dXn−1(ρXn−1 , xn−1) = dYn−1(ρYn−1 , fn−1(xn−1))

≤ dYn−1(ρYn−1 , gn−1(xn)) + dYn−1(gn−1(xn), fn−1(xn−1))

≤ dXn(ρXn
, xn) + 2−n+1

≤ r + 2−n+1,

it is the case that xn−1 ∈ X
(r+2−n+1)
n−1 . Inductively, we obtain a sequence xN ∈ XN , . . . , xn ∈ Xn such

that dYl(fl(xl), gl(xl+1)) < 2−l for each l ∈ {N,N+1, . . . , n−1} and xN ∈ X
(r+2−N)
N . We choose wi,N

such that dXN (wi,N , xN ) ≤ ε. We deduce that

dM (wi,N , xn) ≤ dM (wi,N , xN ) + dM (xN , xn)

≤ dXN (wi,N , xN ) +
n−1∑

l=N

dYl(fl(xl), gl(xl+1))

< 2ε,

which implies that dZ([wi,N ], [xn]) < 2ε. Therefore, DZ(ρZ , r) is totally bounded. Let (Z∗, dZ
∗

) be
the completion of (Z, dZ). Then, (Z∗, dZ

∗

) is boundedly compact and we define the root of Z∗ by
setting ρZ∗ := ρZ . Note that we regard (Z, dZ) as a subspace of (Z∗, dZ

∗

).
Let ιn : Xn → M be the inclusion map and q : M → Z ⊆ Z∗ be the quotient map (i.e., q(x) := [x])

and define hn : Xn → Z∗ by setting hn := q ◦ ιn. It is easy to check that hn is root-and-distance-
preserving. Recall that we have Yn = fn(Xn) ∪ gn(Xn+1). Define a map ξn : Yn → Z by setting
ξn(fn(xn)) = [xn] and ξn(gn(xn+1)) = [xn+1], which is well-defined by (3.4). It then holds that
ξn ◦ fn = hn and ξn ◦ gn = hn+1. Moreover, ξn is root-and-distance-preserving. Therefore, from
Proposition 2.32 and (3.2), it follows that

dZ
∗,ρZ∗

H̄
(hn(Xn), hn+1(Xn+1)) = dZ

∗,ρZ∗

H̄
(ξn ◦ fn(Xn), ξn ◦ gn(Xn+1))

= d
Y n,ρYn

H̄
(fn(Xn), gn(Xn+1))

< 2−ne−2n ,

and similarly dZ
∗,ρZ∗

τ (τhn
(aXn

), τhn+1(aXn+1)) < 2−ne−2n . Therefore, we obtain the desired result.

Theorem 3.23. Assume that a functor τ is continuous. Then dτ
M
(X ,Y) = 0 if and only if X is

τ-equivalent to Y. Moreover, dτ
M

is a metric on M(τ).

Proof. By the definition of dτ
M
, if X is τ -equivalent to Y, then dτ

M
(X ,Y) = 0. Conversely, assume

that dτ
M
(X ,Y) = 0 for X = (X, dX , ρX , aX) and Y = (Y, dY , ρY , aY ). Define Zn = (Zn, d

Zn , ρZn
, aZn

)
by setting Z2n−1 = X and Z2n = Y. By Lemma 3.22, there exist a rooted boundedly-compact metric
spaces (W,dW , ρW ) and root-and-distance-preserving maps fn : Zn → W such that

dW,ρW

H̄
(fn(Zn), fn+1(Zn+1)) < 2−ne−2n , dW,ρW

τ (τfn(aZn
), τfn+1(aZn+1)) < 2−ne−2n . (3.5)

Since the sequence (fn(Zn))n is a Cauchy sequence in C(W ), by Theorem 2.30, there exists a closed
subset Z ⊆ W such that

dW,ρW

H̄
(fn(Zn), Z) → 0. (3.6)

Since each f2n−1 : X → W is distance-preserving, the family (f2n−1)n is equicontinuous. Moreover, for
every x ∈ X , we have that supn d

W (ρW , f2n−1(x)) = dX(ρX , x). Hence, by the Arzelá-Ascoli theorem,
(f2n−1)n is compact in C(X,W ) equipped with the compact-convergence topology. Similarly, (f2n)n
is compact in C(Y,W ). Thus, we can choose a subsequence (nk)k such that f2nk−1 → g in C(X,W )
and f2nk

→ h in C(Y,W ). It is easy to check that g and h are root-and-distance-preserving. By
Assumption 3.20 and (3.5), we obtain that dW,ρW

τ (τg(aX), τh(aY )) = 0, which implies that

τg(aX) = τh(aY ). (3.7)
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We show that Z = g(X) = h(Y ). Fix z ∈ Z. Then, by (3.6) and Theorem 2.28, we can find r > 0

and (z2nk−1)n ⊆ Z
(r)
2nk−1 satisfying f2nk−1(z2nk−1) → z. Since z2nk−1 ∈ Z

(r)
2nk−1 = X(r), (if necessary,

by choosing a further subsequence) we may assume that z2nk−1 → x for some x ∈ X . It is then the
case that

dW (z, f2nk−1(x)) ≤ dW (z, f2nk−1(z2nk−1)) + dW (f2nk−1(z2nk−1), f2nk−1(x))

= dW (z, f2nk−1(z2nk−1)) + dX(z2nk−1, x),

which implies that f2nk−1(x) → z. Thus Z ⊆ g(X). Fix x ∈ X . Then, by (3.6), we can find a sequence
(z2nk−1)k ⊆ Z such that dW (f2nk−1(x), z2nk−1) → 0. If necessary, by choosing a subsequence, we may
assume that z2nk−1 → z ∈ Z. This yields that g(x) = z ∈ Z. Therefore, we obtain Z = g(X) and
similarly Z = h(Y ).

We define root-preserving isometries g′ : X → g(X) and h′ : Y → h(Y ) by restricting the codomains
of g and h. We then obtain the root-preserving isometry (h′)−1 ◦ g′ : X → Y . Let ι : Z → W be the
inclusion map. It then holds that g = ι◦g′ and h = ι◦h′. Since τι : τ(Z) → τ(W ) is injective, it follows
from (3.7) that τg′(aX) = τh′(aY ). This yields that τ(h′)−1◦g′(aX) = aY . Hence, X is τ -equivalent to
Y (via (h′)−1 ◦ g′).

The symmetry of dτ
M

is obvious. To prove the triangle inequality, assume that dτ
M
(X1,X2) < r and

dτ
M
(X2,X3) < s for Xi = (Xi, d

Xi , ρXi
, aXi

), i = 1, 2, 3. By a similar argument to the proof of Lemma
3.22, it is possible to show that there exist a rooted boundedly compact metric space (Y, dY , ρY ) and
root-and-distance-preserving maps fi : Xi → Y, i = 1, 2, 3 such that

dY,ρY

H̄
(f1(X1), f2(X2)) < r, dY,ρY

H̄
(f2(X2), f3(X3)) < s,

dY,ρY
τ (τf1 (aX1), τf2(aX2 )) < r, dY,ρY

τ (τf2(aX2 ), τf3(aX3)) < s.

This yields that dτ
M
(X1,X3) < r + s, which implies that dτ

M
satisfies the triangle inequality.

Theorem 3.24 (Convergence in M(τ)). Fix a continuous functor τ . For each n ∈ N ∪ {∞}, let
Xn = (Xn, d

Xn , ρXn
, aXn

) be an element of M◦(τ). Then, Xn converges to X∞ with respect ot dτ
M

if
and only if there exist (Z∗, dZ

∗

, ρZ∗) ∈ M and root-and-distance-preserving maps hn : Xn → Z∗ such
that

dZ
∗,ρZ∗

H̄
(hn(Xn), h∞(X∞)) → 0, dZ

∗,ρZ∗

τ (τhn
(aXn

), τh∞
(aX∞

)) → 0. (3.8)

Proof. If (Xn)n∈N∪{∞} are embedded into a common rooted boundedly-compact metric space in such
a way that (3.8) holds, then it is easy to check that dτ

M
(Xn,X∞) → 0.

Assume that εn := dτ
M
(Xn,X∞) → 0. Then there exist a rooted boundedly-compact metric space

(Yn, d
Yn , ρYn

) and root-and-distance-preserving maps fn : Xn → Yn and gn : X∞ → Yn such that

d
Yn,ρYn

H̄
(fn(Xn), gn(X∞)) < εn + n−1, d

Yn,ρYn
τ (τfn(aXn

), τgn(aX∞
)) < εn + n−1. (3.9)

We define a pseudometric dZ on Z :=
⊔

n∈N∪{∞}Xn by setting dZ |Xn×Xn
:= dXn ,

dZ(xn, x∞) := dYn(fn(xn), gn(x∞))

for xn ∈ Xn, x∞ ∈ X∞, n 6= ∞ and

dZ(xn, xm) := inf{dYn(fn(xn), gn(x∞)) + dYm(gm(x∞), fm(xm)) | x∞ ∈ X∞}

for xn ∈ Xn, xm ∈ Xm, n 6= m, n,m ∈ N. We use the equivalence relation ∼ on Z given by

x ∼ y ⇔ dZ(x, y) = 0 (3.10)

to obtain the quotient space Z∗ := Z/ ∼. Let q : Z → Z∗ be the quotient map. The metric
dZ

∗

is given by dZ
∗

(q(x), q(y)) := dZ(x, y). It is not difficult to check that (Z∗, dZ
∗

) is boundedly
compact and q(ρYn

) = q(ρYm
) for all n,m. We define the root ρZ∗ of Z by setting ρZ∗ = q(ρY1).

We write ιn : Xn → Z for the inclusion map and set hn := q ◦ ιn : Xn → Z∗, which is root-and-
distance-preserving. Define a map Xn ⊔ X∞ → Yn by setting ξn|Xn

= fn, ξn|X∞
= gn. Then, by

the definition of the equivalence relation given in (3.10), we obtain a map ξ∗n : q(Xn ⊔ X∞) → Yn

such that ξ∗n ◦ q|Xn⊔X∞
= ξn. We equip the set q(Xn ⊔X∞) ⊆ Z∗ with the root ρZ∗ and the metric
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obtained by restricting the metric dZ
∗

. It is then the case that ξ̄n is root-and-distance-preserving. Let
qn : Xn → q(Xn ⊔X∞) and qn∞ : X∞ → q(Xn ⊔X∞) be the be the corestriction of q ◦ ιn and q ◦ ι∞,
respectively. In addition, we let κn : q(Xn ⊔X∞) → Z be the inclusion map. Then, it follows that

dZ
∗,ρZ∗

τ (τhn
(aXn

), τh∞
(aX∞

)) = dZ
∗,ρZ∗

τ (τκn
◦ τqn(aXn

), τκn
◦ τqn

∞
(aX∞

))

= dq(Xn⊔X∞),ρZ∗

τ (τqn(aXn
), τqn

∞
(aX∞

))

= d
Yn,ρYn
τ (τξ∗n ◦ τqn(aXn

), τξ∗n ◦ τqn
∞
(aX∞

))

= d
Yn,ρYn
τ (τfn(aXn

), τf∞(aX∞
))

< εn + n−1,

where we use (3.9) at the last inequality. Similarly, we obtain that

dZ
∗,ρZ∗

H̄
(hn(Xn), h∞(X∞)) < εn + n−1,

which completes the proof.

The following is an immediate consequence of Theorem 3.24.

Corollary 3.25. Fix a continuous functor τ . The map M(τ) ∋ (X, dX , ρX , aX) 7→ (X, dX , ρX) ∈ M

is continuous.

For compactness and separability, we consider additional conditions. For X = (X, dX , ρX), Y =
(Y, dY , ρY ) ∈ M◦, we write X � Y if and only if X ⊆ Y , dY |X×X = dX and ρX = ρY .

Assumption 3.26. Let Xn = (Xn, d
Xn , ρXn

), n ∈ N ∪ {∞} and Z = (Z, dZ , ρZ) be elements in M◦

such that Xn � Z for all n ∈ N ∪ {∞} and Xn converges to X with respect to dZ,ρZ

H̄
. We write

ιn : Xn → Z for the inclusion map.

(i) If b ∈ τ(Z) and an ∈ τ(Xn) are such that dZ,ρZ
τ (τιn(aXn

), b) → 0, then there exists a ∈ τ(X∞)
satisfying b = τι∞(a).

(ii) For every a ∈ τ(X∞), there exists a sequence an ∈ τ(Xn) such that τιn(an) → τι∞(a).

Assumption 3.26(i) and (ii) are related to the completeness and the separability of the metric dτ
M
,

respectively. For example, for the functor τm (recall it from Example 3.16), the condition (i) says that
if measures µn on Xn converges to a measure µ as measures on Z, then µ is supported on X , and the
condition (ii) says that any measure µ on X is approximated by measures on Xn, where Xn assumed
to converge to X in the local Hausdorff topology as subsets of Z. (See Section 4.4 for details.)

Definition 3.27 (Complete, separable functor). A functor τ is said to be complete (resp. separable)
if and only if it satisfies Assumption 3.26(i) (resp. (ii)) and, for each (X, dX , ρX) ∈ M◦, the metric
space (τ(X), dX,ρX

τ ) is complete (resp. separable).

Theorem 3.28 (Completeness of dτ
M
). Suppose that τ is complete and continuous. Then, dτ

M
is a

complete metric on M(τ).

Proof. Let Xn = (Xn, d
Xn , ρXn

, aXn
) ∈ M, n ∈ N be a Cauchy sequence in M(τ). We choose a

subsequence (Xnk
)k≥1 satisfying dτ

M
(Xnk

,Xnk+1
) < 2ke−2k . By Lemma 3.22, there exist a rooted

boundedly-compact metric space (Z, dZ , ρZ) and root-and-distance-preserving maps fk : Xnk
→ Z

such that

dZ,ρZ

H̄
(fk(Xnk

), fk+1(Xnk+1
)) < 2−ke−2k , dZ,ρZ

τ (τfk(aXnk
), τfk+1

(aXnk+1
)) < 2−ke−2k .

It is then the case that (fk(Xnk
))k≥1 is a Cauchy sequence in C(Z) and hence fn(Xn) converges to a

closed subset Y ⊆ Z in C(Z). Similarly, it follows that τfk(aXnk
) converges to an element a ∈ τ(Z)

in τ(Z). We equip Y with the metric dY := dZ |Y×Y and the root ρY := ρZ . Let ι : Y → Z be the
inclusion map. By Assumption 3.26(i), there exists aY ∈ τ(Y ) satisfying τι(aY ) = b. Therefore, by
Theorem 3.24, we obtain that Xnk

converges to (Y, dY , ρY , aY ), which completes the proof.

Theorem 3.29 (Separability ofM(τ)). Suppose that τ is separable and continuous. Then, (M(τ), dτ
M
)

is separable.
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Proof. Let A be a countable collection of elements in M which is dense in M in the local Gromov-
Hausdorff topology. For each (X, dX , ρX) ∈ M, we choose a countable dense subset D(X) ⊆ τ(X).
We write

D
◦ := {(X, dX , ρX , aX) | (X, dX , ρX) ∈ A , aX ∈ D(X)}.

We then define a countable subset D by setting

D := {Y ∈ M(τ) | Y is τ -equivalent to some X ∈ D
◦} .

Fix X = (X, dX , ρX , aX) ∈ M(τ). We choose (Xn, d
Xn , ρXn

) ∈ A such that (Xn, d
Xn , ρXn

) converges
to (X, dX , ρX) in the local Gromov-Hausdorff topology. Then, there exist a rooted boundedly-compact
metric space (Y, dY , ρY ) and root-and-distance-preserving maps fn : Xn → Y and f : X → Y such
that fn(Xn) converges to f(X) in C(Y ). By Assumption 3.26(ii), we can find aXn

∈ τ(Xn) such that
τfn(aXn

) converges to τf (aX) in τ(Y ). Since D(Xn) is dense in τ(Xn), we may assume that aXn
is an

element of D(Xn). By Theorem 3.24, we obtain that Xn := (Xn, d
Xn , ρXn

, aXn
) ∈ D◦ converges to X .

Since M(τ) is the collection of τ -equivalence classes, there exists Yn ∈ M(τ) which is τ -equivalent to
Xn. By definition, Yn is an element of D and hence D is dense in M(τ).

The following is a summary of the results so far.

Corollary 3.30. If a functor τ is complete, separable and continuous, then (M(τ), dτ
M
) is a complete,

separable metric space.

We provide a method to compare Gromov-Hausdorff-type topologies via functors.

Definition 3.31 (Topological subfunctor). Let τ̃ and τ be functors. We say that τ is a topological
subfunctor of τ̃ if and only if the following conditions are satisfied.

(T1) For every (X, dX , ρX) ∈ M◦, there exists a topological embedding of τ(X) into τ̃ (X), that is,
there exists a homeomorphism from τ(X) to a subset of τ̃(X). Using this map, we always regard
τ(X) as a subspace of τ̃ (X).

(T2) For every (Xi, d
Xi , ρXi

), i = 1, 2 and root-and-distance-preserving map f : X1 → X2, it holds
that τf = τ̃f |τ(X1).

The following results are immediate consequences of Definition 3.31 and Theorem 3.24, and hence
we omit the proofs.

Proposition 3.32. Let τ be a topological subfunctor of τ̃ . If τ̃ is continuous, then so is τ .

Proposition 3.33. Let τ be a topological subfunctor of τ̃ and assume that τ̃ is continuous. Then, the
following map is a homeomorphism onto its image:

M(τ) ∋ (X, dX , ρX , aX) 7→ (X, dX , ρX , aX) ∈ M(τ̃ ).

By Proposition 3.32 and Proposition 3.33, we always regard M(τ) as a subspace of M(τ̃ ) when τ
is a topological subfunctor of a continuous functor.

We next provide a method to check the Polishness of M(τ) for a functor τ that is not necessarily
complete. This method will be used in Section 4.7.

Definition 3.34 (Polish functor). We say that a functor τ is Polish if there exist a functor τ̃ and,
for each (X, dX , ρX) ∈ M◦, a sequence (τ̃k(X))∞k=1 of open subsets in τ̃ (X) satisfying the following
conditions.

(P1) The functor τ̃ is complete, separable and continuous.

(P2) The functor τ is a topological subfunctor of τ̃ .

(P3) For every (X, dX , ρX) ∈ M◦, it holds that τ(X) =
⋂

k≥1 τ̃k(X).

(P4) Let f : X1 → X2 be a root-and-distance-preserving map between (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2.
Then, τ̃−1

f (τ̃k(X2)) = τ̃k(X1) for each k ≥ 1. In particular, τ̃−1
f (τ(X2)) = τ(X1).

We call (τ̃ , (τ̃k)k≥0) a Polish system of τ .
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The intuition for the above conditions is as follows: (P1) and (P2) say that the space M(τ) is
topologically embedded into a Polish space M(τ̃ ); (P3) implies that τ(X) is Polish; (P4) is a condition
on the consistency of τ̃k(X) with respect to morphisms of τ̃ .

Remark 3.35. When (τ̃ , (τ̃k)k≥0) of τ is a Polish system, then by setting σk(X) :=
⋂k

l=1 τ̃ (X) for each
(X, dX , ρX) ∈ M◦, we obtain another Polish system (τ̃ , (σk)k≥1) of τ . Thus, we can always assume
that (τ̃k(X))k≥1 is a decreasing sequence.

Theorem 3.36. If τ is a Polish functor, then the topology on M(τ) is Polish. (N.B. The metric dτ
M

is not necessarily a complete metric.)

Proof. Define

M(τ̃k) := {(X, dX , ρX , aX) ∈ M(τ̃ ) | aX ∈ τ̃k(X)}.

Then, we have that M(τ) =
⋂

k≥1 M(τ̃k). Since M(τ̃ ) is Polish by Corollary 3.30 and (P1), it suffices

to show that M(τ̃k) is open in M(τ̃ ). Let ((Xn, d
Xn , ρn, aXn

))n≥1 be a sequence of M(τ̃k)
c converging

to some (X, dX , ρX , aX) in M(τ̃ ), where we recall that ·c denotes the complement. By Theorem 3.24,
there exist a rooted boundedly-compact metric space (Z, dZ , ρZ) and root-and-distance-preserving
maps fn : Xn → Z and f : X → Z such that fn(Xn) → f(X) in C(Z) and τ̃fn(aXn

) → τ̃f (aX) in
τ̃(Z). By (P4), we have that τ̃fn(aXn

) ∈ τ̃k(Z)c. Since τ̃k(Z)c is closed, we obtain that τ̃f (aX) ∈ τ̃k(Z)c.
Using (P4) again, we deduce that aX /∈ τ̃k(X), which implies that (X, dX , ρX , aX) ∈ M(τ̃k)

c. Hence,
M(τ̃k) is open.

In this framework, it is fairly easy to consider multiple objects.

Definition 3.37 (The product functor). Fix N ∈ N ∪ {∞} Let (τ (k))Nk=1 be a sequence of functors.

The product functor τ =
∏N

k=1 τ
(k) is defined as follows:

(i) For every (X, dX , ρX) ∈ M◦, we set τ(X) :=
∏N

k=1 τ
(k)(X). If N < ∞, then we equip τ(X) with

the max product metric. Otherwise, we equip τ(X) with the metric given by

dX,ρX

τ

(
(ak)

∞
k=1, (bk)

∞
k=1

)
:=

∞∑

k=1

2−k
(
1 ∧ dX,ρX

τ (k) (ak, bk)
)
.

(ii) For every (Xi, d
Xi , ρXi

), i = 1, 2 and root-and-distance-preserving map f : X1 → X2, we set

τf :=
∏N

k=1 τ
(k)
f , that is, τf : τ(X1) → τ(X2) is a distance-preserving map given by

τf
(
(ak)

N
k=1

)
:=

(
τ
(k)
f (ak)

)N
k=1

.

The following results are straightforward, so we omit the proof.

Proposition 3.38. Fix N ∈ N∪{∞} Let (τ (k))Nk=1 be a sequence of functors. If each τ (k) is continuous

(resp. complete, separable, Polish), then so does the product functor
∏N

k=1 τ
(k).

Proposition 3.39. Fix N ∈ N∪{∞}. Let (τ (k))Nk=1, (τ̃
(k))Nk=1 be functors such that τ (k) is a topological

subfunctor of τ̃ (k) for each k. Then,
∏N

k=1 τ
(k) is a topological subfunctor of

∏N
k=1 τ̃

(k).

4 Examples of functors

Recall the definitions of a functor τ and the resulting metric space (M(τ), dτ
M
) from Section 3.2. In this

section, we give examples of functors τ by defining a metric space (τ(X), dX,ρX
τ ) for each (X, dX , ρX) ∈

M◦, and defining a distance-preserving map τf : τ(X1) → τ(X2) for each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2
and root-and-distance-preserving map f : X1 → X2, where we recall that M

◦ is the collection of rooted
boundedly-compact metric spaces.
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4.1 The functor for a fixed structure

We begin with a very simple example, which is perhaps not interesting by itself, but it enables us to
consider a rich variety of additional structures through product functors or the functor introduced in
Section 4.8.

Fix a complete, separable metric space (Ξ, dΞ). Define a functor τΞ as follows.

• For (X, dX , ρX) ∈ M◦, set τΞ(X) := Ξ and dX,ρX

τΞ := dΞ.

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set
τΞf := idΞ.

The following result is straightforward and thus we omit the proof.

Proposition 4.1. The functor τΞ is continuous, complete and separable.

Corollary 4.2. The function dτ
Ξ

M
is a complete, separable metric on M(τΞ).

Proof. This is an immediate consequence of Corollary 3.30.

The following result provides a precompactness criterion for M(τΞ). Since it is proven easily by
using Theorem 3.24, we omit the proof (c.f. the proof of Theorem 4.6 below).

Theorem 4.3 (Precompactness in M(τΞ)). A non-empty subset {Xα = (Xα, d
α, ρα, ξα) | α ∈ A } of

M(τΞ) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xα, d
α, ρα) | α ∈ A } of M is precompact in the local Gromov-Hausdorff topology.

(ii) The set {ξα | α ∈ A } is precompact in Ξ.

4.2 The functor for points

In [14, Section 8.3], a Gromov-Hausdorff-type topology was introduced on a set of equivalence classes
of measured compact metric spaces equipped with points. The topology is useful for discussing con-
vergence of glued spaces (e.g. [3, Section 4]) and fused spaces (e.g. [14, Section 8.3]). In this section,
we provide a functor that gives a natural generalization of that topology.

Define a functor τpt as follows.

• For (X, dX , ρX) ∈ M◦, set τpt(X) := X and dX,ρX

τpt := dX .

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set
τptf (x) := f(x).

The following result is straightforward and thus we omit the proof.

Proposition 4.4. The functor τpt is continuous, complete and separable.

Corollary 4.5. The function dτ
pt

M
is a complete, separable metric on M(τpt).

Theorem 4.6 (Precompactness in M(τpt)). A non-empty subset {Xα = (Xα, d
α, ρα, vα) | α ∈ A } of

M(τpt) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xα, d
α, ρα) | α ∈ A } of M is precompact in the local Gromov-Hausdorff topology.

(ii) For some r > 0, it holds that vα ∈ X
(r)
α for all α ∈ A .

Proof. Assume that {Xα | α ∈ A } is precompact. From Corollary 3.25, we obtain (i). If (ii) is
not satisfied, we can find an increasing (rn)n≥1 with rn ↑ ∞ and a sequence (vαn

)n≥1 with vαn
∈

X
(rn)
αn such that vαn

/∈ X
(rn)
αn for all n. If necessary, by choosing a subsequence, we may assume

that (Xαn
, dαn , ραn

, vαn
) converges to some (X, dX , ρX , vX) ∈ M(τpt). By Theorem 3.24, there exist

a rooted boundedly-compact metric space (Z, dZ , ρZ) and root-and-distance-preserving maps fn :
Xαn

→ Z and f : X → Z such that fn(Xαn
) → f(X) in the local Hausdorff topology in Z and

fn(vαn
) → f(vX) in Z. It is then the case that, for some r > 0, vαn

∈ X
(r)
αn for all n, which is a

contradiction. Therefore, we obtain (ii).
Conversely, assume that (i) and (ii) are satisfied. From Theorem 3.24, it is easily proven that

any sequence in {Xα | α ∈ A } has a convergent subsequence, which implies that {Xα | α ∈ A } is
precompact.
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For n ∈ N, we define τn,pts to be the n-product functor of τpt. Then, M(τn,pts) is the collection of
equivalence classes of rooted boundedly-compact metric spaces equipped with additional n points and
the metric dτ

n,pts

M
induces a suitable topology on M(τn,pts).

4.3 The functor for subsets

In [29, Section 6.4], a Gromov-Hausdorff-type topology was introduced on a set of equivalence classes
of measured compact metric spaces equipped with subsets. In this section, we provide a functor that
gives a natural generalization of that topology. Recall from Section 2.2.1 that, for each (S, dS , ρ) ∈ M◦,

C(S) denotes the collection of closed subsets in S and dS,ρ
H̄

denotes the local Hausdorff metric on C(S).
Define a functor τ st as follows.

• For (X, dX , ρX) ∈ M◦, set τ st(X) := C(X) and dX,ρX

τ st := dX,ρX

H̄
.

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set
τ stf (A) := f(A).

The following results are straightforward and thus we omit the proofs.

Proposition 4.7. The functor τ st is continuous, complete and separable.

Corollary 4.8. The function dτ
st

M
is a complete, separable metric on M(τ st).

Theorem 4.9 (Precompactness in M(τ st)). A non-empty subset {Xα = (Xα, d
α, ρα, Aα) | α ∈ A } of

M(τ st) is precompact if and only if the subset {(Xα, d
α, ρα) | α ∈ A } of M is precompact in the local

Gromov-Hausdorff topology.

Proof. Using Theorem 3.24 and Theorem 2.30, one can prove the desired result in a similar way to the
proof of Theorem 4.6.

For n ∈ N, we define τn,sts to be the n-product functor of τ st. Then, M(τn,sts) is the collection of
equivalence classes of rooted boundedly-compact metric spaces equipped with n boundedly-compact
subsets and the metric dτ

n,sts

M
induces a suitable topology on M(τn,sts).

Remark 4.10. If one wants to consider spaces equipped with compact subsets (not closed subsets),
using the Hausdorff metric instead of the local Hausdorff metric, one obtains a suitable functor.

4.4 The functor for measures

The local Gromov-Hausdorff-vague topology (recall it from Section 1.1) is commonly used for study-
ing random measured spaces. In this section, we recover this topology by introducing a functor for
measures. Recall from Section 2.2.2 that, for each (S, dS , ρ) ∈ M◦, M(S) denotes the set of Radon

measure on S and dS,ρV denotes the vague metric on M(S).
Define a functor τm as follows.

• For (X, dX , ρX) ∈ M◦, set τm(X) := M(X) and dX,ρX

τm := dX,ρX

V .

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set
τmf (µ) := µ ◦ f−1.

Proposition 4.11. The functor τm is complete, separable and continuous.

Proof. The continuity follows immediately from the definition of the vague topology and the dominated
convergence theorem. Let Xn = (Xn, d

Xn , ρXn
), n ∈ N ∪ {∞} and Z = (Z, dZ , ρZ) be elements in M◦

such that Xn � Z for all n ∈ N∪{∞} and Xn converges to X with respect to dZ,ρZ

H̄
. Let µn ∈ M(Xn)

be such that µn converges to some µ ∈ M(Z) with respect to dZ,ρZ

V . Fix x ∈ Z \X . Since Z \X is
open, there exists ε > 0 such that BZ(x, ε) ∩X = ∅. Choose r > 0 such that BZ(x, ε) ⊆ DZ(ρZ , r),

X
(r)
n → X(r) with respect to dZH and µ

(r)
n → µ(r) with respect to dZP . Then, Xn ∩BZ(x, ε) = ∅ for all

sufficiently large n, and so we obtain

µ(BZ(x, ε)) = µ(r)(BZ(x, ε)) ≤ lim inf
n→∞

µ(r)
n (BZ(x, ε)) = 0,

29



R. Noda

which implies supp(µ) ⊆ X . This proves that τm is complete. Next, let µ be a finite measure with
finite atoms in X . By approximating the atoms by atoms in Xn, it is not difficult to construct a finite
measure µn with atoms in Xn such that µn converges to µ in the vague topology. Since such measures
µ are dense in the set of measures with support in X , we obtain the separability of τm.

Corollary 4.12. The function dτ
m

M
is a complete, separable metric on M(τm).

We check that the topology on M(τm) coincides with the local Gromov-Hausdorff-vague topology
introduced in [1, 22]. Recall that, for X = (X, dX , ρX , µX) ∈ M(τm) and r > 0, we define X (r) =

(X(r), dX
(r)

, ρ
(r)
X , µ

(r)
X ) by setting

X(r) := DX(ρX , r), dX
(r)

:= dX |X(r)×X(r) , ρ
(r)
X := ρX , µ

(r)
X (·) := µX(· ∩X(r)).

Theorem 4.13. For each n ∈ N ∪ {∞}. let Xn = (Xn, d
Xn , ρXn

, µXn
) be an element of M(τm). The

following statements are equivalent.

(i) The elements Xn converge to X∞ with respect to dτ
m

M
,

(ii) The elements Xn converge to X∞ in the local Gromov-Hausdorff-vague topology,

(iii) The elements X
(r)
n converge to X

(r)
∞ in the Gromov-Hausdorff-Prohorov topology for all but count-

ably many r > 0.

(iv) There exist a boundedly-compact metric space (Z, dZ) and distance-preserving maps fn : Xn → Z

and f∞ : X∞ → Z such that, for all but countably many r > 0, fn(ρ
(r)
Xn

) → f∞(ρ
(r)
X∞

) in Z,

fn(X
(r)
n ) → f∞(X

(r)
∞ ) in the Hausdorff topology in Z and µ

(r)
Xn

◦ f−1
n → µ

(r)
X∞

◦ f−1
∞ weakly as

measures on Z.

Proof. See Appendix A.

Theorem 4.14 (Precompactness in the local Gromov-Hausdorff-vague topology). A non-empty subset
{Xα = (Xα, d

α, ρα, µα) | α ∈ A } of M(τm) is precompact in the local Gromov-Hausdorff-vague topology
if and only if the following conditions are satisfied.

(i) The set {(Xα, d
α, ρα) | α ∈ A } is precompact in the local Gromov-Hausdorff topology.

(ii) For every r > 0, it holds that supα∈A µα(X
(r)
α ) < ∞.

Proof. If {Xα | α ∈ A } satisfies (i) and (ii), then by Theorem 3.13, [1, Theorem 2.6] and [22, Theorem
3.28], {Xα | α ∈ A } is precompact in the local Gromov-Hausdorff-vague topology. Conversely, assume
that {Xα | α ∈ A } is precompact in the local Gromov-Hausdorff-vague topology. Then, by Corollary
3.25 and Theorem 4.13, (i) holds. Assume that (ii) is not satisfied. Then, for some r > 0, there exists

a sequence (αn)n≥1 in A such that µαn
(X

(r)
αn ) → ∞. Choose a subsequence (αnk

)k≥1 so that Xαnk

converges to some X = (X, dX , ρX , µX) ∈ M(τm). By Theorem 3.24, it is possible to embed Xαnk
and

X rooted-isometrically into a common rooted boundedly-compact metric space (Z, dZ , ρZ) in such a
way that µXαnk

→ µ vaguely as measures on Z, which is a contradiction. Therefore, we obtain (ii).

4.5 The functor for cadlag curves

A stochastic process with cadlag paths is a random cadlag curve and is a fundamental object of interest
in probability theory. In this section, we define a functor for cadlag curves. This functor, combined
with a functor introduced in Section 4.8, gives a suitable topological setting for studying stochastic
processes living on different spaces.

Given a separable complete metric space (S, dS), we denote by D(R+, S) the set of cadlag functions
f : R+ → S. We equip D(R+, S) with the usual J1-Skorohod topology and write dSJ1

for a complete,
separable metric inducing the usual J1-Skorohod topology (see [10] or [33] for such metrics).

Define a functor τJ1 as follows.

• For (X, dX , ρX) ∈ M◦, set τJ1(X) := D(R+, X) and dX,ρX

τJ1
:= dXJ1

.

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set
τJ1

f (ξ) := f ◦ ξ.
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Proposition 4.15. The functor τJ1 is complete, separable and continuous.

Proof. Checking the continuity is straightforward. Let Xn = (Xn, d
Xn , ρXn

), n ∈ N ∪ {∞} and Z =
(Z, dZ , ρZ) be elements in M◦ such that Xn � Z for all n ∈ N ∪ {∞} and Xn converges to X with

respect to dZ,ρZ

H̄
. Let ξn ∈ D(R+, Xn) be such that ξn → ξ in the usual J1-Skorohod topology for some

ξ ∈ D(R+, Z). Then, for each t ≥ 0, there exists tn ≥ 0 such that ξn(tn) → ξ(t) in Z. Choose r > 0 so

that ξn(tn) ∈ Z(r) for all n and dZH(X
(r)
n , X(r)) → 0. Then, one can check that ξ(t) ∈ X(r). Therefore,

we obtain that ξ ∈ D(R+, X), which implies the completeness of τJ1 . To obtain the separability, note
that every function in D(R+, X) is approximated by a sequence of step functions, where a step function
is a function that can be written in the following form:

ξ(t) =

{
ak t ∈ [tk−1, tk)

am+1 t ∈ [tm,∞)
(4.1)

for some ak ∈ X, k = 1, 2, . . . ,m + 1 and 0 = t0 < t1 < t2 < · · · < tm < ∞. Using the conver-
gence dZ,ρZ

H̄
(Xn, X) → 0, for every step function ξ in D(R+, X), one can construct step functions in

D(R+, Xn) approximating ξ. Therefore, τJ1 is separable.

Corollary 4.16. The function dτ
J1

M
is a complete, separable metric on M(τJ1).

Let us prepare to describe a precompactness criterion. For ξ ∈ D(R+, S), where (S, d
S) is a metric

space, we define
w̃S(ξ, h, t) := inf

(Ik)∈Πt

max
k

sup
r,s∈Ik

dS(ξ(r), ξ(s)), t, h > 0,

where Πt denotes the set of partitions of the interval [0, t) into subintervals Ik = [u, v) with v − u ≥ h
when v < t. We recall a precompactness criterion on the usual J1-Skorohod topology.

Lemma 4.17 ([21, Theorem A5.4]). Let (S, dS , ρS) be a rooted boundedly-compact metric space. Fix
a dense set T ⊆ R+. A subset {ξα | α ∈ A } of D(R+, S) is precompact in the usual J1-Skorohod
topology if and only if the following conditions are satisfied.

(i) For each t ∈ T , there exists r > 0 such that ξα(t) ∈ S(r) for all α ∈ A .

(ii) It holds that lim
h→0

sup
α∈A

w̃S(ξα, h, t) = 0 for all t > 0.

In that case, it follows that {ξα(s) | α ∈ A , s ≤ t} is precompact in S for all t ≥ 0.

It is easy to obtain a precompactness criterion for the topology on M(τJ1) from Lemma 4.17.

Theorem 4.18 (Precompactness in M(τJ1)). Fix a dense set T ⊆ R+. A non-empty subset {Xα =
(Xα, d

α, ρα, ξα) | α ∈ A } of M(τJ1) is precompact if and only if the following conditions are satisfied.

(i) The set {(Xα, d
α, ρα) | α ∈ A } is precompact in the local Gromov-Hausdorff topology.

(ii) For each t ∈ T , there exists r > 0 such that ξα(t) ∈ X
(r)
α for all α ∈ A .

(iii) It holds that lim
h→0

sup
α∈A

w̃Xα
(ξα, h, t) = 0 for all t > 0.

In that case, the following result stronger than (ii) holds.

(iv) For each t ≥ 0, there exists r > 0 such that ξα(s) ∈ X
(r)
α for all α ∈ A and s ≤ t.

Proof. Assume that (i), (ii) and (iii) are satisfied. Fix a sequence (αn)n≥1 in A . By (i), if neces-
sary, by choosing a subsequence, we may assume that Xαn

converges to some (X, dX , ρX , ξX) in the
local Gromov-Hausdorff topology. By Theorem 3.24, there exist a rooted boundedly-compact metric
space (Z, dZ , ρZ) and root-and-distance-preserving maps fn : Xαn

→ Z and f : X → Z satisfying

dZ,ρZ

H̄
(fn(Xαn

), f(X)) → 0. It follows from (ii), (iii) and Lemma 4.17 that, for some subsequence
(αnk

)k≥1, the sequence (fnk
◦ ξαnk

)k≥1 converges to some ξ ∈ D(R+, Z) in the usual J1-Skorohod

topology. Since τJ1 satisfies Assumption 3.26(i), we can find ξX ∈ D(R+, X) such that f ◦ ξX = ξ.
Therefore, we deduce that Xαnk

converges to (X, dX , ρX , ξX) in M(τJ1), which completes the proof.
Conversely, assume that {Xα | α ∈ A } is precompact in A . From Corollary 3.25, we obtain

(i). If (iv) is not satisfied, then we can find t ≥ 0, an increasing sequence (rn)n≥1 with rn ↑ ∞, a
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sequence (αn)n≥1 in A , and a sequence (sn)n≥1 with sn ≤ t such that ξαn
(sn) /∈ X

(rn)
αn for all n. If

necessary, by choosing a subsequence, we may assume that Xαn
converges to some (X, dX , ρX , ξX)

in the local Gromov-Hausdorff topology. By Theorem 3.24, there exist a rooted boundedly-compact
metric space (Z, dZ , ρZ) and root-and-distance-preserving maps fn : Xαn

→ Z and f : X → Z such
that fn(Xαn

) → f(X) in the local Hausdorff topology in Z and fn ◦ ξαn
→ f ◦ ξX in the usual J1-

Skorohod topology. By Lemma 4.17, it is the case that {fn ◦ ξαn
(s) | n ∈ N, s ≤ t} is precompact in Z.

Therefore, for some r > 0, we have that fn ◦ ξαn
(sn) ∈ Z(r) for all n. This yields that ξαn

(sn) ∈ X
(r)
αn

for all n, which is a contradiction. Hence, we obtain (iv). By a similar argument, we also obtain
(iii).

4.6 The functor for continuous curves

In [18], a Gromov-Hausdorff-type topology on a set of equivalence classes of metric spaces equipped
with continuous curves was introduced, where a continuous curve is used to capture the boundary of
a space. However, the focus was on length spaces for technical reasons. In this section, we define a
functor which gives a natural generalization of that topology.

Fix a non-empty boundedly-compact metric space (T, dT ). Recall that, for another boundedly-
compact metric space (S, dS), we denote by C(T, S) the set of continuous functions ξ : T → S equipped
with the compact-convergence topology. It is known that C(T, S) is Polish (see [21, Lemma A5.1]),
and one can construct a complete metric dSC(T ) on C(T, S) as follows: choose an increasing sequence

(Kn)n≥1 of compact subsets in T such that
⋃

n≥1 Kn = T ; we then define

dSC(T )(ξ, η) :=

∞∑

n=1

2−n(1 ∧ sup
t∈Kn

dS(ξ(t), η(t))), ∀ξ, η ∈ C(T, S).

Define a functor τC(T ) as follows.

• For (X, dX , ρX) ∈ M◦, set τC(T )(X) := C(T,X) and dX,ρX

τC(T ) := dXC(T ).

• For every root-and-distance-preserving map f : X1 → X2 between (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2,

set τ
C(T )
f (ξ) := f ◦ ξ.

By a similar argument to the proof of Proposition 4.15, one can check that the functor τC(T ) is
continuous and complete. However, the separability cannot be proven similarly because in general
there is no natural discretization of continuous functions as in the way we have step functions for
cadlag functions (see (4.1)). To prove that the topology on M(τC(T )) is separable, we introduce a
larger functor τC(T ) defined below. Note that we fix an element o ∈ T , which we set to be the root of
T .

• For (X, dX , ρX) ∈ M◦, set τC(T )(X) := C(T,X) and dX,ρX

τC(T ) := dT,o

H̄,X
.

• For every root-and-distance-preserving map f : X1 → X2 between (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2,

set τ
C(T )
f (E) := (idT ×f)(E).

Proposition 4.19. The functor τC(T ) is continuous and complete, and the functor τC(T ) is complete,
separable and continuous. Moreover, τC(T ) is a topological subfunctor of τC(T ).

Proof. As we mentioned, one can check that τC(T ) is continuous and complete in a similar way to the
proof of Proposition 4.15. It is not difficult to obtain the continuity of τC(T ) by using Theorem 2.50.
Let Xn = (Xn, d

Xn , ρXn
), n ∈ N ∪ {∞} and Z = (Z, dZ , ρZ) be elements in M◦ such that Xn � Z for

all n ∈ N∪{∞} and Xn converges to X with respect to dZ,ρZ

H̄
. Let En ∈ C(T,Xn) be such that En → E

with respect to dT,o
H̄,Z

for some E ∈ C(T, Z). Fix (t, x) ∈ E ⊆ T × Z and choose (tn, xn) ∈ En such

that (tn, xn) → (t, x). Using the convergence Xn → X , we deduce that x ∈ X . Thus, it follows that
E ∈ C(T,X), which implies the completeness of τC(T ). Let D be a countable dense subset in T ×X .
Using the convergence Xn → X , one can check that every finite subset in D is approximated by a
sequence of finite subsets in T ×Xn. Since the set of finite points in D is dense in C(T,X), we deduce
that τC(T ) is separable. By Corollary 2.54 and Corollary 2.60, the map g : τC(T )(X) → τC(T )(X),
which carries a function to its graph, is a topological embedding. Hence, we deduce that τC(T ) is a
topological subfunctor of τC(T ).
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Corollary 4.20. The metric dτ
C(T )

M
is a complete, separable metric on M(τC(T )).

Proof. By Corollary 3.30, Proposition 3.33 and Proposition 4.19, we obtain the desired result.

Let us prepare to describe a precompactness criterion. For ξ ∈ C(T, S), where (S, dS) is a metric
space, we define

wS(ξ, h,K) := sup{dS(ξ(s), ξ(r)) | r, s ∈ K such that dT (r, s) ≤ h}, K ∈ Ccpt(T ), h > 0,

where we recall that Ccpt(T ) denotes the set of compact subsets in (T, dT ).

Theorem 4.21. (Precompactness in M(τC(T ))) Fix a dense set T ′ ⊆ T . A non-empty subset {Xα =
(Xα, d

α, ρα, ξα) | α ∈ A } of M(τC(T )) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xα, d
α, ρα) | α ∈ A } of M is precompact in the local Gromov-Hausdorff topology.

(ii) For each t ∈ T ′, there exists r > 0 such that ξα(t) ∈ X
(r)
α for all α ∈ A .

(iii) It holds that lim
h→0

sup
α∈A

wXα
(ξα, h,K) = 0 for all K ∈ Ccpt(T ).

Proof. Using a precompactness criterion for the compact-convergence topology (see [21, Theorem A5.2]
for example), one can prove the desired result in a similar way to the proof of Theorem 4.18.

Remark 4.22. When T is a connected subset of R, by chaining arguments, one can check that the
condition (ii) is implied by (iii) and the following condition (c.f. [10, Theorem 7.2]).

(ii’) For some t0 ∈ T , there exists r > 0 such that ξα(t0) ∈ X
(r)
α for all α ∈ A .

It is known that the restriction of the usual J1-Skorohod topology to the set of continuous functions
is the compact-convergence topology (c.f. [19, Chapter VI. Proposition 1.17]). The following result is
a generalization of this fact.

Proposition 4.23. In the above setting, define T := R+ (equipped with the Euclidean metric). Then,
the functor τC(R+) is a topological subfunctor of τJ1 defined in Section 4.5. As a consequence, the
following map is a topological embedding:

M(τC(R+)) ∋ (X, dX , ρX , ξX) 7→ (X, dX , ρX , ξX) ∈ M(τJ1 ).

Proof. Fix (X, dX , ρX) ∈ M◦. By [19, Chapter VI. Proposition 1.17], the inclusion map from τC(R+) =
C(R+, X) to τJ1(X) = D(R+, X) is a topological embedding. Therefore, we deduce that τC(R+) is a
topological subfunctor of τJ1 . The last assertion immediately follows from Proposition 3.33.

Example 4.24. In the setting of [18], T is the one-dimensional Euclidean metric space (R, dR). If one
sets T := [0, 1]/{0, 1}, then C(T, S) is a set of loops in S. By taking the countably many products of
copies of τC(T ), one obtains a functor for spaces equipped with countably many loops, which might be
useful for studying random loop soups (e.g. [25]).

4.7 The functor for space-domain continuous maps

In [15], a Gromov-Hausdorff-type topology on a set of equivalence classes of compact metric spaces X
equipped with heat-kernel-type functions was introduced, where a heat-kernel-type function f means a
continuous function f : I ×X ×X → R with a fixed compact interval I ⊆ (0,∞). In [8, 4], a Gromov-
Hausdorff-type topology on a set of equivalence classes of real trees X equipped with embedding maps,
where an embedding map means a continuous map from X to some fixed metric space. In this section,
we define a functor for space-domain continuous maps, which include the above-mentioned examples.
Moreover, the functor, combined with a functor introduced in Section 4.8, gives a suitable topological
setting for studying local times of stochastic processes living on different spaces, which is in used in
[31].

For (X, dX , ρX) ∈ M◦ and k ∈ N, we define (Xk, dX
k

, ρXk) ∈ M◦ by setting (Xk, dX
k

) be the
product space equipped with the max product metric and ρXk := (ρX , . . . , ρX) ∈ Xk. Note that Xk

is not the k-neighborhood of X . Although this is abuse of notation, there is no confusion as we never
use the notion of ε-neighborhood in this section. Given a map f : X → Y , we simply write fk for
the k-product function f × · · · × f : Xk → Y k. We remark the following basic property of the local
Hausdorff metric. The proof is omitted as it is an easy exercise regarding the Hausdorff metric.
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Lemma 4.25. Fix (Z, dZ , ρZ) ∈ M◦. Then, for any k ∈ N, it holds that

dZH(A,B) = dZ
k

H (Ak, Bk), ∀A,B ∈ Ccpt(Z),

dZ,ρZ

H̄
(X,Y ) = d

Zk,ρ
Zk

H̄
(Xk, Y k), ∀X,Y ∈ C(Z).

Fix a separable and complete metric space (Ξ, dΞ) and a natural number k. Define a functor τk,Ξ

as follows.

• For X = (X, dX , ρX) ∈ M, set τk,Ξ(X) := Ĉ(Xk,Ξ) and dX,ρX

τk,Ξ := d
Xk,ρ

Xk

Ĉ,Ξ
.

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set

τk,Ξf (g) := g ◦ (fk)−1.

To prove that τk,Ξ is Polish, we define a Polish system (τ̃ , (τ̃l)l≥1).

• For X = (X, dX , ρX) ∈ M, set τ̃(X) := C(Xk,Ξ) and dX,ρX

τ̃ := d
Xk,ρ

Xk

H̄,Ξ
.

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set
τ̃f (E) := (fk × idΞ)(E).

• For X = (X, dX , ρX) ∈ M and l ≥ 1, set τ̃l(X) := Ĉl(X
k,Ξ).

Lemma 4.26. The functor τ̃ is complete, separable and continuous.

Proof. It is not difficult to check the continuity of τ̃ by using Theorem 2.50. Let Xn = (Xn, d
Xn , ρXn

)
with n ∈ N ∪ {∞} and Z = (Z, dZ , ρZ) be elements in M◦ such that Xn � Z for all n ∈ N ∪ {∞} and

Xn converges to X with respect to dZ,ρZ

H̄
. From Lemma 4.25, it follows that Xk

n → Xk in the local

Hausdorff topology in Zk. Let En ∈ C(Xk
n,Ξ) be such that En → E with respect to d

Zk,ρ
Zk

H̄,Ξ
for some

E ∈ C(Zk,Ξ). Fix (x, a) ∈ E ⊂ Zk × Ξ and choose (xn, an) ∈ En such that (xn, an) → (x, a). By the
convergence Xk

n → Xk, we deduce that x ∈ Xk. Thus, it follows that E ∈ C(Xk,Ξ), which implies the
completeness of τ̃ . Let D be a countable dense subset in Xk × Ξ. Using the convergence Xk

n → Xk,
one can check that every finite subset in D is approximated by a sequence of finite subsets in Xk

n ×E.
Since the set of finite points in D is dense in C(Xk,Ξ), we deduce that τ̃ is separable.

Proposition 4.27. The functor τk,Ξ is a Polish functor with a Polish system (τ̃ , (τ̃l)l≥1) defined above.

Proof. The conditions (P1) and (P2) are immediate from Lemma 4.26 and the definition of τk,Ξ and
τ̃ , respectively. The condition (P3) is also immediate from Lemma 2.57 and Lemma 2.58. One can
check (P4) by Definition 2.56.

Proposition 4.27, combined with Theorem 3.36, immediately yields the following result.

Corollary 4.28. The topology on M(τk,Ξ) is Polish.

Remark 4.29. To consider spaces X equipped with heat-kernel-type functions, we identify a con-
tinuous function f : (0,∞) ×X ×X → R with a continuous function X × X ∋ (x, y) 7→ f(·, x, y) ∈
C((0,∞),R). Then, by setting k := 2 and Ξ := C((0,∞),R), the metric space M(τk,Ξ) becomes a
proper space for studying spaces equipped with heat-kernel-type functions.

Theorem 4.30 (Precompactness in M(τk,Ξ)). A non-empty subset {Xα = (Xα, d
α, ρα, fα) | α ∈ A }

of M(τk,Ξ) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xα, d
α, ρα) | α ∈ A } of M is precompact in the local Gromov-Hausdorff topology.

(ii) For every r > 0, {fα(x) | x ∈ dom(fα)
(r), α ∈ A } is relatively compact in Ξ.

(iii) For every r > 0,

lim
δ→0

sup
α∈A

sup
x,y∈dom(fα)(r)

dα(x,y)≤δ

dΞ(fα(x), fα(y)) = 0.
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Proof. Basically, using the precompactness criterion in Ĉ(S,Ξ) given by Theorem 2.62, one can prove
the desired result in a similar way to the proof of Theorem 4.18. However, the part where we use
Assumption 3.26(i) in that proof needs a slight modification because the functor τk,Ξ is not complete.
Therefore, we explain how to modify that part. Assume that (i), (ii) and (iii) are satisfied. Fix
a sequence (αn)n≥1 in A . Then, one can show that there exist a subsequence (αnl

)l≥1, a rooted
boundedly-compact metric space (Z, dZ , ρZ), and root-and-distance-preserving maps Fl : Xαnl

→ Z

and F : X → Z such that fαl
◦ (F k

l )
−1 converges to some f ∈ Ĉ(Zk,Ξ). Since the functor τ̃ satisfies

Assumption 3.26(i), we can find fX ∈ C(Xk,Ξ) satisfying f = τ̃F (fX). Using (P4), we deduce that

fX ∈ Ĉ(Xk,Ξ). The remaining part can be proved by following the proof of Theorem 4.18.

4.8 The functor for laws of additional structures

In this section, we define a functor which provides a topological setting suitable for studying random
objects in different spaces.

Let τ be a functor. Define a functor σP(τ) as follows.

• For X = (X, dX , ρX) ∈ M◦, set σP(τ)(X) := P(τ(X)) and dX,ρX

σP(τ) = d
τ(X),ρX

P to be the Prohorov

metric on P(τ(X)) defined by the metric dX,ρX
τ on τ(X).

• For each (Xi, d
Xi , ρXi

) ∈ M◦, i = 1, 2 and root-and-distance-preserving map f : X1 → X2, set

σ
P(τ)
f (P ) := P ◦τ−1

f , that is, σ
P(τ)
f (P ) is the pushforward measure of P by the distance-preserving

map τf : τ(X1) → τ(Y2).

Theorem 4.31. Let τ be a separable functor. Then, the functor σP(τ) is also separable. In addition
to the separability of τ , if τ is continuous (resp. complete), then so is σP(τ).

Proof. Note that, since τ is assumed to be separable, the metric space (τ(X), dX,ρX
τ ) is separable for

each (X, dX , ρX) ∈ M◦.
Suppose that τ is continuous. Let fn : X → Y, n ∈ N∪{∞} be root-and-distance-preserving maps.

If fn → f∞ in the compact-convergence topology, then we have that τfn(a) → τf (a) in τ(Y ) for all
a ∈ τ(X). Using the dominated convergence theorem, one can see that σP(τ) is continuous.

Fix (Z, dZ , ρZ) ∈ M. Assume that closed subsets Xn ⊆ Z converge to a closed subset X ⊆ Z in the

metric dZ,ρZ

H̄
. Let Pn be a probability measure with supp(Pn) ⊆ τ(Xn) such that Pn converges to some

probability measure P on τ(Z) with respect to d
τ(Z),ρZ

P . By the Skorohod representation theorem,
there exists a probability measure space (Ω,F , Q) and random elements ξn of τ(Xn) and ξ of τ(Z)
such that Q(ξn ∈ ·) = Pn, Q(ξ ∈ ·) = P and ξn → ξ in (τ(Z), dZ,ρZ

τ ) almost-surely. Assume that τ is
complete. Then we have that ξ ∈ τ(X) almost-surely. This yields that supp(P ) ⊆ τ(X). Moreover,

since dZ,ρZ
τ is a complete, separable metric on τ(Z), we deduce that d

τ(Z),ρZ

P is complete and separable.
Hence, σP(τ) is complete. Finally, we prove that σP(τ) is separable. Let P be a probability measure
with finite atoms in τ(X). By the separability of τ , such atoms are approximated by points in τ(Xn),
and thus one can construct probability measures with support in τ(Xn) which converges to P . Since
such probability measures P are dense in the set of probability measures with support in τ(X), the
separability of σP(τ) is verified.

Theorem 4.32. If τ is a Polish functor, then so is σP(τ).

Proof. Let (τ̃ , (τ̃k)k≥1) be a Polish system of the Polish functor τ . Set a functor σ̃ := σP(τ̃), which is
a complete, separable continuous functor by Theorem 4.31. For each k ≥ 1, we define σ̃k by setting,
for each (X, dX , ρX) ∈ M◦,

σ̃k(X) := {P ∈ σ̃(X) | P (τ̃k(X)) > 1− k−1}.

We will show that (σ̃, (σ̃k)k≥1) is a Polish system of σP(τ). Firstly, we check that σ̃k(X) is open in
σ̃(X). Suppose that a sequence (Pn)n≥1 in σ̃k(X)c converges to P ∈ σ̃(X). Since τ̃k(X) is open in
τ̃(X), we deduce that

P (τ̃k(X)) ≤ lim inf
n→∞

Pn(τ̃k(X)) ≤ 1− k−1,

which implies that P ∈ σ̃k(X)c. Hence, σ̃k(X) is open in σ̃(X). Let f : X1 → X2 be a root-and-
distance-preserving map between (Xi, d

Xi , ρXi
) ∈ M◦, i = 1, 2. For any P ∈ σ̃(X), we have that

σ̃f (P )(τ̃k(Y )) = P ◦ τ̃−1
f (τ̃k(Y )) = P (τ̃k(X)),
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which implies that σ̃−1
f (σ̃k(Y )) = σ̃k(X). Fix P ∈

⋂
k≥1 σ̃k(X). Since we may assume that τ̃k(X)

is decreasing to τ(X) (see Remark 3.35), it follows that P (τ(X)) = limk→∞ P (τ̃k(X)) = 1, which
implies that P ∈ σP(τ)(X). Therefore, we deduce that

⋂
k≥1 σ̃k(X) = σP(τ)(X), which completes the

proof.

Proposition 4.33. Let τ and τ̃ be functors such that τ is a topological subfunctor of τ̃ . Then, the
functor σP(τ) is a topological subfunctor of σP(τ̃).

Proof. Fix (X, dX , ρX) ∈ M. Let ι : τ(X) → τ̃ (X) be the associated topological embedding that
appears in (T1). Then, we have a topological embedding σP(τ)(X) ∋ P 7→ P ◦ ι−1 ∈ σP(τ̃)(X). One
can check that this embedding satisfies (T2), and therefore we obtain the desired result.

Corollary 4.34. Let τ be any one of the functors defined from Section 4.1 to 4.7. Then, the space
M(σP(τ)) is Polish.

Remark 4.35. It is possible to define a functor σM(τ) for Radon measures on additional structure, that

is, σM(τ) is given by setting σM(τ)(X) := M(τ(X)) equipped with the vague metric and σ
M(τ)
f (µ) :=

µ ◦ τ−1
f . In this case, one can establish the same results as above in a similar way (with slight

modification to the parts where we use properties of the weak convergence). For example, one can use
this functor to obtain a topological setting for studying spaces X equipped with a measure on X × I
with some fixed complete, separable metric space, which is considered in [24]. (Note that the topology
introduced in [24] focuses on the metric structure of the supports of measures, while our topology takes
into account the entire underlying spaces.)

If one has a nice tightness criterion for random elements of τ(X), then it is not difficult to obtain
a precompactness criterion for M(σP(τ)). We demonstrate how to do it in the case τ = τJ1 . Firstly,
we recall a tightness criterion for probability measures on cadlag functions. Note that given a random
element we denote by P its underlying probability measure.

Lemma 4.36 (Tightness in D(R+, S), [21, Theorem 23.4]). Fix a dense set T ⊆ R+ and a rooted
boundedly-compact metric space (S, dS , ρS). A sequence (ξn)n≥1 of random elements of D(R+, S) is
tight if and only if the following conditions are satisfied.

(i) For each t ∈ T , it holds that lim
r→∞

lim sup
n→∞

P
(
ξn(t) /∈ S(r)

)
= 0.

(ii) For each t > 0, it holds that, for all ε > 0, lim
h→0

lim sup
n→∞

P (w̃S(ξn, h, t) > ε) = 0.

In that case, the following result stronger than (i) holds.

(iii) For each t ≥ 0, it holds that lim
r→∞

lim sup
n→∞

P
(
ξn(s) /∈ S(r), ∀s ≤ t

)
= 0.

Theorem 4.37 (Precompactness in M(σP(τJ1))). Fix a dense set T ⊆ R+. Let (Xn)n≥1 be a sequence

in M(σP(τJ1 )). Write Xn = (Xn, d
n, ρn, Pn). For each n, we set ξn to be a random element whose law

coincides with Pn. Then, the sequence (Xn)n≥1 is precompact if and only if the following conditions
are satisfied.

(i) The sequence (Xn, d
n, ρn)n≥1 in M is precompact in the local Gromov-Hausdorff topology.

(ii) For each t ∈ T , it holds that lim
r→∞

lim sup
n→∞

P
(
ξn(t) /∈ X(r)

n

)
= 0.

(iii) For each t > 0, it holds that, for all ε > 0, lim
h→0

lim sup
n→∞

P (w̃Xn
(ξn, h, t) > ε) = 0

In that case, the following result stronger than (ii) holds.

(iv) For each t ≥ 0, it holds that lim
r→∞

lim sup
n→∞

P
(
ξn(s) ∈ X(r)

n , ∀s ≤ t
)
= 0.

Proof. Assume that (i), (ii) and (iii) are satisfied. Fix a sequence (nk)k≥1. From (i), if necessary,
by choosing a subsequence, we may assume that Xnk

converges to some (X, dX , ρX , ξX) in the lo-
cal Gromov-Hausdorff topology. By Theorem 3.24, there exist a rooted boundedly-compact metric
space (Z, dZ , ρZ) and root-and-distance-preserving maps fk : Xnk

→ Z and f : X → Z satisfying
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dZ,ρZ

H̄
(fk(Xnk

), f(X)) → 0. It follows from (ii), (iii) and Lemma 4.36 that, for some subsequence
(nk(l))l≥1, the sequence (fk(l) ◦ ξnk(l)

)l≥1 converges to some random element ξ of D(R+, Z) in distribu-

tion. By Proposition 4.15 and Theorem 4.31, the functor σP(τJ1) satisfies Assumption 3.26(i), which

implies that there exists a random element ξX of D(R+, X) such that ξ
d
= f ◦ξX . Therefore, we deduce

that Xnk(l)
converges to (X, dX , ρX , P (ξX ∈ ·)) in M(σP(τJ1 )). One can prove the reverse direction in

the same way as the proof of Theorem 4.18, using Lemma 4.36.

Appendix

A Omitted proofs

A.1 Lemma 2.36

In this appendix, we prove that the restriction system introduced in Definition 2.35 satisfies Assumption
2.6(i), which is a part of Lemma 2.36.

Recall that we fix a rooted boundedly compact metric space (S, dS , ρ). We prepare some notation.
For a set A ⊆ S and ε > 0, we write

A−ε := {x ∈ A | dS(x, y) ≤ ε =⇒ y ∈ A, ∀y ∈ S}.

Note that
(A−ε)ε ⊆ A.

For µ, ν ∈ Mfin(S), we define the total variation distance of them by setting

‖µ− ν‖ := sup{|µ(A)− ν(A)| | A ∈ B(S)},

where B(S) dentotes the set of Borel sets in S.

Lemma A.1. Let µ, ν be elements of Mfin(S). Suppose that dSP (µ, ν) ≤ ε. Fix r ≥ s > ε arbitrarily.
Then for any µ′ ∈ Mfin(S) with µ(s) ≤ µ′ ≤ µ(r), there exists ν′ ∈ Mfin(S) such that ν(s−ε) ≤ ν′ ≤
ν(r+ε) and dSP (µ

′, ν′) ≤ ε.

Proof. Set E := {(x, y) ∈ S × S | dS(x, y) > ε}. By [22, Theorem 2.1], there exists a finite Borel
measure α on S × S such that

‖µ− π1∗α‖+ ‖ν − π2∗α‖ + α(E) ≤ ε, π1∗α ≤ µ, π2∗α ≤ ν, (A.1)

where πi : S × S → S is the projection of the i-th coordinate and πi∗α is the pushforward of α. Set

f(x) :=
dµ′

dµ
, g(x) :=

d(π1∗α)

dµ
.

Write

F := {x ∈ S | g(x) ≤ f(x)}, F>0 := {x ∈ S | f(x) > 0}, G := {x ∈ S | g(x) > f(x)}.

Observe that
Gε ⊆ (F−ε)c, (A.2)

where ·c denotes the complement of a set. Since we have that µ(s) ≤ µ′ ≤ µ(r), we may assume that
1S(s) ≤ f ≤ 1S(r) . By (A.1), we may assume that 0 ≤ g ≤ 1. It is then the case that

S(s) ⊆ F, S(s) ⊆ F>0 ⊆ S(r).

Thus, it follows that
S(s−ε) ⊆ F−ε, S(s+ε) ⊆ F ε

>0 ⊆ S(r+ε). (A.3)

Set

h(x) :=

{
1, x ∈ F,

f(x)/g(x), x ∈ G.
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We then define

ν′(A) = ν(A ∩ F ε
>0 ∩ F−ε) +

∫

S×(A∩F ε
>0(F

−ε)c)

h(x)α(dxdy),

From (A.3), we have that ν(s−ε) ≤ ν′. Moreover, (A.3) and (A.1) yield that

ν′(A) ≤ ν(A ∩ F ε
>0 ∩ F−ε) +

∫

S×(A∩F ε
>0∩(F−ε)c)

α(dxdy)

≤ ν(A ∩ F ε
>0 ∩ F−ε) + ν(A ∩ F ε

>0 ∩ (F−ε)c)

≤ ν(A ∩ F ε
>0)

≤ ν(r+ε)(A).

Thus, it holds that ν(s−ε) ≤ ν′ ≤ ν(r+ε). Fix a Borel set A ⊆ S. We deduce from (A.1) and (A.2) that

µ′(A) =

∫

A

f(x)µ(dx)

=

∫

A∩G∩F>0

h(x) g(x)µ(dx) +

∫

A∩F∩F>0

f(x)µ(dx)

≤

∫

A∩G∩F>0

h(x)π1∗α(dx) + µ(A ∩ F ∩ F>0)

≤

∫

(A∩G∩F>0)×S

h(x)α(dxdy) +

∫

(A∩F∩F>0)×S

α(dxdy) + ‖µ− π1∗α‖

≤

∫

(A∩G∩F>0)×(Aε∩Gε∩F ε
>0)

h(x)α(dxdy) +

∫

(A∩F∩F>0)×(Aε∩F ε∩F ε
>0)

α(dxdy)

+ ‖µ− π1∗α‖+ α(E)

≤

∫

(A∩G)×(Aε∩F ε
>0∩(F−ε)c)

h(x)α(dxdy) +

∫

(A∩F )×(Aε∩F ε∩F ε
>0∩(F−ε)c)

α(dxdy)

+

∫

(A∩F )×(Aε∩F ε
>0∩F−ε)

α(dxdy) + ε

≤

∫

G×(Aε∩F ε
>0∩(F−ε)c)

h(x)α(dxdy) +

∫

F×(Aε∩F ε
>0∩(F−ε)c)

h(x)α(dxdy)

+

∫

S×(Aε∩F ε
>0∩F−ε)

α(dxdy) + ε

≤

∫

S×(Aε∩F ε
>0∩(F−ε)c)

h(x)α(dxdy) + π2∗α(A
ε ∩ F ε

>0 ∩ F−ε) + ε

≤ ν′(Aε) + ε,

and

ν′(A) = ν(A ∩ F ε
>0 ∩ F−ε) +

∫

S×(A∩F ε
>0∩(F−ε)c)

h(x)α(dxdy)

≤ ‖π2∗α− ν‖+

∫

S×(A∩F ε
>0∩F−ε)

α(dxdy) +

∫

S×(A∩F ε
>0∩(F−ε)c)

h(x)α(dxdy)

≤ ‖π2∗α− ν‖+ α(E) +

∫

(Aε∩F )×(A∩F ε
>0∩F−ε)

α(dxdy) +

∫

Aε×(A∩F ε
>0∩(F−ε)c)

h(x)α(dxdy)

≤ ε+

∫

(Aε∩F )×(A∩F−ε)

h(x)α(dxdy) +

∫

Aε×(A∩(F−ε)c)

h(x)α(dxdy)

≤ ε+

∫

Aε

h(x)π1∗α(dx)

= ε+

∫

Aε

h(x)g(x)µ(dx)

≤ ε+

∫

Aε

f(x)µ(dx)

38



Metrization of Gromov-Hausdorff-type topologies on boundedly-compact metric spaces

= ε+ µ′(Aε).

Therefore, we obtain that dSP (µ
′, ν′) ≤ ε.

A.2 Theorem 4.13

In this appendix, we provide a proof of Theorem 4.13. We first prove a general result about restriction
systems. Recall the setting of Section 2.1. The following result gives a characterization of convergence
of a sequence in D in terms of convergence of a sequence restricted by a sequence of restriction systems.
The result can be viewed as a generalization of [23, Theorem 3.19] (see also Theorem 4.13).

Proposition A.2. For each n ∈ N, let R(n) = (R
(n)
r )r>0 be a restriction system. Assume that

dis(R(n), R) → 0. We equip D with the topology induced from R. (Note that the topology coincides
with the topology induced from R(n) by Theorem 2.12.) For elements a, a1, a2, . . . of D, the following
statements are equivalent.

(i) The elements an converge to a in D.

(ii) It holds that dC(R
(n)
r (an), Rr(a)) → 0 for all but countably many r > 0.

(iii) There exists a non-decreasing sequence (rn)n≥1 with rn → ∞ satisfying dC(R
(n)
rn (an), Rrn(a)) →

0.

Proof. Let R ⊆ (0,∞) be the collection of r > 0 satisfying

inf{dC(Rr(a), a
′) | Rr−δ(a) � a′ � Rr+δ(a)}

δ→0
−−−→ 0.

Note that (0,∞) \R is countable by Assumption 2.6(ii). Assume that (i) holds. Fix r ∈ R and ε > 0.
Choose δ ∈ (0, ε) satisfying

inf{dC(Rr(a), a
′) | Rr−δ(a) � a′ � Rr+δ(a)} < ε. (A.4)

Choose r′ ∈ R with r′ > r + δ and N ∈ N such that, for all n > N , it holds that

dis(R(n), R) < δ/2, (A.5)

dC(Rr′(an), Rr′(a)) < δ/2. (A.6)

Since R(n) satisfies Assumption 2.6(i), (A.6) implies that there exists a′ ∈ C such that

R
(n)
r−δ/2 ◦Rr′(a) � a′ � R

(n)
r+δ/2 ◦Rr′(a), dC(R

(n)
r ◦Rr′(an), a

′) < δ/2. (A.7)

By (RS1), (RS2) and (A.5), we deduce that

R(n)
r ◦Rr′ = R(n)

r (an),

R
(n)
r−δ/2 ◦Rr′(a) � Rr−δ ◦R

(n)
r−δ/2 ◦Rr′(a) = Rr−δ ◦Rr′(a) = Rr−δ(a),

R
(n)
r+δ/2 ◦Rr′(a) = R

(n)
r+δ/2 ◦Rr+δ ◦Rr′(a) � Rr+δ ◦Rr′(a) = Rr+δ(a).

It then follows from (A.8) that

Rr−δ(a) � a′ � Rr+δ(a), dC(R
(n)
r (an), a

′) < δ/2.

Therefore, the triangle inequality and (A.4) yield that dC(R
(n)
r (an), Rr(a)) < 2ε for all n > N , which

implies (ii).
It is not difficult to check that (ii) implies (iii). Thus, it remains to prove the implication (iii) ⇒

(i). We assume that (iii) holds. Fix r ∈ R and ε > 0. We choose δ ∈ (0, ε) satisfying (A.8). Let N ∈ N

be such that, for all n > N , it holds that

rn > r + δ, dis(R(n), R) < δ, dC(R
(n)
rn (an), Rrn(a)) < δ.

Since R satisfies Assumption 2.6(i), there exists a′ ∈ C such that

Rr−δ ◦Rrn(a) � a′ � Rr+δ ◦Rrn(a), dC(Rr ◦R
(n)
rn (an), a

′) < δ. (A.8)

39



R. Noda

By a similar argument as before, we obtain that

Rr−δ(a) � a′ � Rr+δ(a), dC(Rr(an), a
′) < δ.

Thus, we deduce that, for all n > N ,

dC(Rr(an), Rr(a)) ≤ dC(Rr(an), a
′) + dC(a

′, Rr(a)) < 2ε,

which implies (i).

Now, it is possible to prove Theorem 4.13. Recall the setting of Section 4.4.

Proof of Theorem 4.13. By [22, Theorem 3.24], (ii) and (iii) are equivalent. The implications (i) ⇒
(iii) and (i) ⇒ (iv) are easily obtained from Theorem 3.24. Thus, it suffices to show the implications
(iii) ⇒ (iv) and (iv) ⇒ (i). We begin with proving the first implication. Assume that (iii) holds.

Choose a non-decreasing sequence (rn)n≥1 satisfying rn → ∞ and εn := dGHP (X
(rn)
n ,X

(rn)
∞ ) → 0.

By the definition of the Gromov-Hausdorff-Prohorov metric (see (1.3)), we can find a compact metric

space (Zn, d
Zn) and distance-preserving maps gn : X

(rn)
n → Zn, hn : X

(rn)
∞ → Zn such that

dZn

H (gn(X
(rn)
n ), hn(X

(rn)
∞ )) ∨ dZn

P (µ
(rn)
Xn

◦ g−1
n , µ

(rn)
X∞

◦ h−1
n ) ∨ dZn(gn(ρ

(rn)
Xn

), hn(ρ
(rn)
X∞

)) (A.9)

<εn + n−1.

We may assume that Zn = gn(X
(rn)
n ) ∪ hn(X

rn
∞ ). Let dn be a pseudometric on the disjoint union

Xn ⊔X∞ satisfying dn|Xn×Xn
= dXn , dn|X∞×X∞

= dX∞ and

dn(xn, x∞) = dZn(gn(xn), hn(x∞))

for all xn ∈ X
(rn)
n , x∞ ∈ X

(rn)
∞ . We then define a pseudometric dZ on Z :=

⊔
n∈N∪{∞}Xn that extends

every dn by setting

dZ(xm, xn) := inf{dm(xm, x∞) + dn(x∞, xn) | x∞ ∈ X∞}

for all xm ∈ Xm, xn ∈ Xn with n,m ∈ N and n 6= m. We use the equivalence relation ∼ on Z given
by

x ∼ y ⇔ dZ(x, y) = 0 (A.10)

to obtain the quotient space Z∗ := Z/ ∼. Let q : Z → Z∗ be the quotient map. The metric dZ
∗

is given
by dZ

∗

(q(x), q(y)) := dZ(x, y). It is not difficult to check that (Z∗, dZ
∗

) is boundedly compact. For each
n ∈ N ∪ {∞}, we let ιn : Xn → Z be the inclusion map and fn : Xn → Z∗ be the distance-preserving
map given by fn := q ◦ ιn. By the definition of dZ and the equivalence relation (A.10), there exist a
(unique) distance-preserving map ξn : Zn → Z∗ satisfying ξn ◦ gn = fn|X(rn)

n
and ξn ◦ hn = f∞|

X
(rn)
∞

for each n ∈ N ∪ {∞}. Therefore, by Lemma 2.31, Lemma 2.40 and (A.9), we deduce that

dZ
∗

H (fn(X
(rn)
n ), f∞(X(rn)

∞ )) ∨ dZ
∗

P (µ
(rn)
Xn

◦ f−1
n , µ

(rn)
X∞

◦ f−1
∞ ) ∨ dZ

∗

(fn(ρ
(rn)
Xn

), f∞(ρ
(rn)
X∞

))

<εn + n−1. (A.11)

We define a restriction system R(n) of (Ccpt(Z∗), C(Z∗),⊆) by setting

R(n)
r (A) := A ∩DZ∗(fn(ρXn

), r).

It is then the case that

fn(X
(r)
n ) = R(n)

r (fn(Xn)), f∞(X(r)
∞ ) = R(∞)

r (f∞(X∞)).

Moreover, we have that
dis(R(n), R(∞)) ≤ dZ

∗

(fn(ρXn
), f∞(ρX∞

)).

These, combined with Proposition A.2 and (A.11), yield that dZ
∗

H (fn(X
(r)
n ), f∞(X

(r)
∞ )) → 0 for all but

countably many r > 0. By a similar argument, we also deduce that dZ
∗

P (µ
(r)
Xn

◦ f−1
n , µ

(r)
X∞

◦ f−1
∞ ) → 0.

Thus, we obtain (iv).
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Assume that (iv) holds. Define a metric dM on M :=
⊔

n∈N∪{∞}Xn by setting d|Xn×Xn
:= dXn for

each n ∈ N ∪ {∞} and

d(xn, xm) := dZ(fn(ρXn
), fm(ρXm

)) + dZ(fn(xn), fm(xm))

for each xn ∈ Xn, xm ∈ Xm with n 6= m. Let ιn : Xn → M be the inclusion map. Then, one can
check that, for every r > 0,

dH(ιn(X
(r)
n ), ι∞(X(r)

∞ )) ≤ dZH(fn(X
(r)
n ), f∞(X(r)

∞ )) + dZ(fn(ρXn
), f∞(ρX∞

)), (A.12)

dP (µ
(r)
Xn

◦ ι−1
n , µ

(r)
X∞

◦ ι−1
∞ ) ≤ dZP (µ

(r)
Xn

◦ f−1
n , µ

(r)
X∞

◦ f−1
∞ ) + dZ(fn(ρXn

), f∞(ρX∞
)). (A.13)

We define a pseudometric dM on M by setting

dM (x, y) := inf{d(x, ρXn1
) + d(ρXn2

, ρXn3
) + · · ·+ d(ρXnk−2

, ρXnk−1
) + d(ρXnk

, y)}, (A.14)

where the infimum is taken over all finite sequence (ni)
k
i=1 in N including the empty sequence, which

corresponds to d(x, y). Since we have that, for m 6= n,

d(xn, ρXm
) = dZ(fn(ρXn

), fm(ρXm
)) + dZ(fn(xn), fm(ρXm

))

≥ dZ(fn(xn), fn(ρXn
)) = d(xn, ρXn

),

we deduce that dM |Xn×Xn
= dXn for all n ∈ N ∪ {∞}. We use the equivalence relation ∼ on M given

by
x ∼ y ⇔ dM (x, y) = 0 (A.15)

to obtain the quotient space M∗ := M/ ∼. We write q : M → M∗ for the quotient map and dM
∗

for
the associated metric on M∗. It is not difficult to check that (M∗, dM

∗

) is boundedly compact. We
define the root ρM∗ of M∗ by setting ρM∗ := q(ρXn

), which is independent of n by (A.14) and (A.15).
Set gn := q ◦ ιn. Note that gn is a root-and-distance preserving map from Xn to M∗. By the definition
of dM , it is obvious that dM

∗

(q(xn), q(x∞)) ≤ d(xn, x∞) for all xn ∈ Xn, x∞ ∈ X∞. This, combined
with (A.12) and (A.13), yields that, for every r > 0,

dM
∗

H (gn(X
(r)
n ), g∞(X(r)

∞ )) ≤ dZH(fn(X
(r)
n ), f∞(X(r)

∞ )) + dZ(fn(ρXn
), f∞(ρX∞

)),

dM
∗

P (µ
(r)
Xn

◦ g−1
n , µ

(r)
X∞

◦ g−1
∞ ) ≤ dZP (µ

(r)
Xn

◦ f−1
n , µ

(r)
X∞

◦ f−1
∞ ) + dZ(fn(ρXn

), f∞(ρX∞
)).

From these inequalities and (iv), it follows that

dM
∗

H (gn(X
(r)
n ), g∞(X(r)

∞ )) → 0, dM
∗

P (µ
(r)
Xn

◦ g−1
n , µ

(r)
X∞

◦ g−1
∞ ) → 0, (A.16)

for all but countably many r > 0. Since gn : Xn → M∗ is root-and-distance-preserving, it holds

that gn(X
(r)
n ) = gn(Xn)

(r) and µ
(r)
Xn

◦ g−1
n = (µXn

◦ g−1
n )(r). Therefore, from (A.16), Theorem 2.28

and Theorem 2.39, we deduce that gn(Xn) converges to g∞(X∞) in the local Hausdorff topology and
µXn

◦ g−1
n converges to µX∞

◦ g−1
∞ in the vague topology, which implies (i).
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