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Metrization of Gromov-Hausdorff-type topologies on
boundedly-compact metric spaces

Ryoichiro Noda*

Abstract

We present a new general framework for metrization of Gromov-Hausdorff-type topologies on
non-compact metric spaces. We also give easy-to-check conditions for separability and complete-
ness and hence the measure theoretic requirements are provided to study convergence of random
spaces with additional random objects. In particular, our framework enables us to define a metric
inducing a suitable Gromov-Hausdorff-type topology on the space of rooted boundedly-compact
metric spaces with laws of stochastic processes and/or random fields, which was not clear how to
do in previous frameworks. In addition to general theory, this paper includes several examples of
Gromov-Hausdorff-type topologies, verifying that classical examples such as the Gromov-Hausdorff
topology and the Gromov-Hausdorff-Prohorov topology are contained within our framework.

1 Introduction

The Gromov-Hausdorff metric (see (II]) below) defines a distance between compact metric spaces and
was originally introduced by Gromov [I7] for group theoretic purposes. However, it has found important
applications in probability theory as well since it provides a framework for discussing convergence of
random compact metric spaces, such as the scaling limit of critical Galton-Watson trees [26], the critical
random graph [3], random planer maps [27] and percolation on some (random) graph [5, [IT]. In many
examples, one’s interest is in not only the geometry of spaces but also additional objects on spaces such
as measures [I], compact subsets [29] and heat-kernel-type functions [I5]. Moreover, there are many
examples of random non-compact metric spaces such as the uniform spanning tree on Z? [4, [§], the
uniform half-plane quandrangulation [I8] and the incipient infinite cluster of the critical percolation on
7% [9]. In consideration of such metric spaces and additional objects on them, various generalizations
of the Gromov-Hausdorff metric have been introduced and studied in the literature [Il [6]. Recently,
in [23], Khezeli proposed a general method for defining a Gromov-Hausdorff-type metric. However, its
applicability is limited because one needs to check complicated conditions to verify that the defined
function is indeed a metric and yields a proper topological space for probability theory (i.e., a Polish
space). In this paper, we introduce a new method, which is more straightforward to implement. It
includes all the examples in Khezeli’s framework and enables a wider range of examples to be handled.
Indeed, our framework provides a new topological setting for discussing convergence of random spaces
equipped with random objects such as stochastic processes.

Before presenting our main results, in Section [T we recall the Gromov-Hausdorff metric and
the Gromov-Hausdorff-Prohorov (vague) metric, which are commonly used in the study of random
measured metric spaces in probability theory. In Section [[2] we then explain how those metrics are
generalized in our framework and describe the contributions of the present paper in more detail. For
the purposes of our discussions, we set a V b := max{a, b} and a A b := min{a, b} for a,b € RU {+oo}.

1.1 Introduction to Gromov-Hausdorff-type metrics

The Gromov-Hausdorff metric. As already introduced, the Gromov-Hausdorff metric defines the
distance between compact metric spaces. The idea used to define the distance is to embed different
compact metric spaces isometrically into a common compact metric space and measure the distance
between them using the Hausdorff metric in the ambient space. (The definition of the Hausdorff metric
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is recalled in Section Z.2.11) More precisely, the distance between two compact metric spaces (K, d1)
and (Ka,d®?) is defined by

dan((Ky,d™), (Ky,d"?)) = inf dig(fi(K1), f2(K2)), (1.1)

1,J2,
where the infimum is taken over all compact metric spaces (K,dX) and distance-preserving maps
fi : Ki — K,i = 1,2, and d¥ denotes the Hausdorff metric in (K,dX). The Gromov-Hausdorff
metric is a separable and complete metric on the collection of isometric equivalence classes of compact
metric spaces, and the induced topology is called the Gromov-Hausdorff topology. In applications,
the following characterization of the topology is often useful: a sequence of compact metric spaces
(K, d%") converges to a compact metric space (K,d”X) in the Gromov-Hausdorff topology if and only
if it is possible to embed K,, and K isometrically into a common compact metric space (M, d™) in

such a way that
dif (Kn, K) = 0, (1.2)

where K,, and K are regarded as subsets of M. In our framework, this characterization is naturally
generalized.

Remark 1.1. One should note that it is not possible to consider the “set” of compact metric spaces
nor isometric equivalence classes of compact metric spaces from the rigorous viewpoint of set theory.
Indeed, any two singletons are isometric as compact metric spaces, but the collection of all singletons
is not a set. However, as discussed in [12], it is possible to regard the collection of isometric equivalence
classes as a legitimate set. This is true even when we consider the collection of non-compact metric
spaces equipped with additional objects (see Section [B.2)).

The Gromov-Hausdorff-Prohorov metric. One generalization of the Gromov-Hausdorff metric
is the (pointed) Gromov-Hausdorff-Prohorov metric dgpp (see (L3) below), which gives the distance
between two rooted-and-measured compact metric spaces. Note that a rooted-and-measured compact
metric space (K,d™, p, 1) is a compact metric space (K, d") equipped with a distinguished element p
called the root and a finite Borel measure p on K. The metric dggyp was introduced in [I] (and [2])
to study a measured-tree-valued process, and it is defined in the same spirit as the Gromov-Hausdorff
metric. In particular, for two rooted-and-measured compact metric spaces K; = (K;, d%, p;, j1;), i =
1, 2, the distance between them is given by setting

danp (K1, K2) = fl??zf,K {df (f1(Ky), f2(K2)) Vdp (po fit pa o fo ') vd™ (fi(pr), fa(p2))}, (1.3)

where the infimum is taken over all compact metric spaces (K,dX) and distance-preserving maps
fi: K;— K,i=1,2, and df.f denotes the Prohorov metric between finite Borel measures on (K, d¥)
(see Section 2222 for the definition). Similar to the Gromov-Hausdorff metric, the Gromov-Hausdorff-
Prohorov metric is a separable and complete metric on the collection of equivalence classes of measured
compact metric spaces, and the induced topology is called the (pointed) Gromov-Hausdorff-Prohorov
topology. Moreover, similarly to (L2)), a characterization of the topology in terms of convergence of
objects isometrically embedded into a common metric space holds.

The local Gromov-Hausdorff-vague metric. In various applications, it is desirable to relax
the assumption of compactness. For that, it is convenient to consider rooted boundedly-compact spaces
(S,d%, p), that is, (S,d%,p) is a rooted metric space in which every closed ball of finite radius is
compact. The local Gromov-Hausdorff-vague metric dgpy (given in (L)) below) is an extension of
the Gromov-Hausdorff-Prohorov metric. It is a metric on the collection of the equivalence classes of
rooted boundedly-compact metric spaces equipped with Radon measures (called rooted-and-measured
boundedly-compact metric spaces), and was first presented in [I]. Although in [I] the focus was on
a subclass of boundedly-compact metric spaces called length spaces, in [22] it was verified that the
metric dggy is well-defined on the full space. The idea behind the definition of dgyy is that two
rooted-and-measured boundedly-compact metric spaces are close if the restrictions of them to balls
centered at roots with finite radius are close with respect to the Gromov-Hausdorf-Prohorov metric
depup (for Lebesgue almost-all radii). More precisely, for two rooted-and-measured boundedly-compact
metric spaces X; = (X, dXi, pi, i), i = 1,2, where p; is the root and p; is a Radon measure on X,
the distance between X; and A is given by

demy (X1, Xp) = / e (MdGHP(Xf’“),X;”)) dr, (1.4)
0
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where we define XZ-(T) = (Xi(T), ax” , pz(-r), MET)) by setting XZ-(T) to be the closed ball centered at p; with

radius r, 4% and /LZ(-T) to be the restrictions of d*¢ and p; to Xi(r) respectively, and pz(.r) = p;. In
[22], it is proven that dg v is a separable and complete metric and we call the induced topology the

local Gromov-Hausdorff-vague topology.

Remark 1.2. The terms the “local Gromov-Hausdorff-vague metric” and the “local Gromov-Hausdorff-
vague topology” are not in common use and are only used in the present paper as a matter of conve-
nience. Moreover, one should note that the local Gromov-Hausdorff-vague topology is different from
the Gromov-Hausdorfl-vague topology introduced in [6] in that the local Gromov-Hausdorff-vague
topology takes into account the metric structure of the entire underlying space while the Gromov-
Hausdorff-vague topology ignores the metric structure outside the support of the measure.

1.2 The contributions of the present paper

As a generalization of the metrics introduced in Section [Tl our interest is in the metrization of the
space consisting of (the equivalence classes of) (X, dX, p,a) such that (X, d%, p) is a rooted boundedly-
compact metric space and a is an element of a metric space 7(X), which is determined by (X, d*X, p).
For example, in the local Gromov-Hausdorff-vague topology, 7(X) is the set of Radon measures on X
equipped with the vague topology. In this paper, we provide a framework to define a metric on such a
space inducing a suitable Gromov-Hausdorff-type topology, meaning that (X,,,d*", p,,a,) converges
to (X,dX,p,a) if and only if it is possible to embed X, and X isometrically into a common rooted
boundedly-compact metric space (M,d™, pyr) in such a way that roots are carried into the root pps
by the embedding maps, X,, converges to X in the local Hausdorff topology as subsets in M and a,,
converges to a as elements of 7(M). (The local Hausdorff topology is introduced in Section [Z211)
Moreover, we also provide easy-to-check conditions for separability and completeness, which ensures
that the resulting Gromov-Hausdorff-type topology is suitable for probability theory.

We mention that such a general framework was proposed by Khezeli in [23], which follows the
philosophy of the formulation given in (L4). In Khezeli’s framework, one first defines a metric d$
on the collection of X = (X,d¥, p,a) such that (X,d¥) is compact. To extend this to non-compact
spaces, Khezeli considers restrictions X(") = (X(T),dX(T),p(T),a(T)) of X = (X,dX,p,a), e.g. in the
local Gromov-Hausdorff-vague case, a(™) corresponds to the restricted measure ;). He then defines a
distance between X} and X5 by setting

di (X1, Xo) ::/ e " (1Ad§(()(f”,9(2<’“>)) dr. (1.5)
0

The metric di is a natural generalization of the local Gromov-Hausdorff-vague metric. An operation
such as a(™ is needed in the case of the local Gromov-Hausdorff-vague metric because the Prohorov
metric is a metric defined only on the set of finite Borel measures, and it initially seems natural to
consider a generalization of this approach to other additional structures. However, in some cases,
considering the operation a(") is not natural. For example, consider a cadlag function with values in X
as an additional object a. Since the usual J;-Skorohod metric is defined even when X is non-compact,
it seems we should not need to consider the operation a(") (although it is possible). A more serious
problem is that checking [23, Assumption 3.11], which is a condition regarding the operation a™ and
ensures that the integral (L)) is well-defined, does not seem easy in general. Indeed, in the case of
cadlag curves, one needs to introduce a metric different to the usual J;-Skorohod metric, and checking
[23] Assumption 3.11] requires one to understand the effect of the operation a™ on the relevant
metric, which is far from a trivial exercise (see [23] Example 3.45]). Therefore, it seems that Khezeli’s
framework cannot be easily applied when one wants to consider a more complicated additional object
such as a probability measure on cadlag curves, which is a natural and important object in the study
of scaling limits of stochastic processes.

In contrast, our framework follows the philosophy of the formulation given (L)) and (I3]). For
example, in our framework, a metric for the local Gromov-Hausdorff-vague topology is constructed
roughly as follows: firstly, we introduce the local Hausdorff metric (see Section Z2.T]) that can measure
the distance between non-compact subsets in a fixed metric space and the vague metric (see Section
2:22) that can measure the distance between non-finite Borel measures on a fixed metric space; then,
using these metrics, we define a metric on the collection of equivalence classes of rooted-and-measured
boundedly-compact metric spaces in a similar way to (I3]). We are able to confirm that the resulting
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metric indeed induces the local Gromov-Hausdorff-vague topology (see Theorem [I3). Moreover,
since in our framework there is no need to check complicated conditions such as [23, Assumption
3.11], our approach makes it easy to define a metric on the collection of (the equivalence classes of)
rooted(-measured) boundedly-compact metric spaces equipped with laws of stochastic processes and/or
random fields (see Section [£.]). This gives a proper topological framework for discussing scaling limits
of stochastic processes, as studied in |7} [14] for example. Furthermore, in [31], following the framework
in this paper, a Gromov-Hausdorff-type topology is introduced, which enables us to discuss convergence
of laws of Markov processes and associated local times living in different spaces. We expect that our
framework can be also used in other various studies on random geometry such as the quantum zipper
(c.f. 32]). Although our framework is easier to apply than that of [23], it should be noted that some
ideas of Khezeli are essential at the point of our arguments where we extend a metric defined only for
“compact” objects into a metric for “non-compact” objects. Indeed, we follow his arguments to define
the local Hausdorff metric and the vague metric.

The remainder of the article is organized as follows. In Section 2l we define the local Hausdorff
metric and the vague metric. We then, in Section [3] establish our main results on metrization of the
Gromov-Hausdorfl-type topologies. In Section M we present some examples of our main results based
on topologies used in the literature.

Throughout this article, we use various superscripts: A€ denotes the complement of a set A; A®
denotes the (closed) e-neighborhood of a set A defined in (ZII); a(") is a restriction of an object a
defined above (21).

2 The local Hausdorff metric and the vague metric

In Section 211 we provide a method for extending a metric defined only for “compact” objects to
a metric for “non-compact” objects. This is a generalization of Khezeli’s framework in [23] and we
need this to define the local Hausdorff metric (for marked spaces) and the vague metric in Section 221
Those who only want to see the definitions of these metrics can skip Section 2.1}

2.1 Metric for non-compact objects

Let € be a non-empty set and let d¢ be an extended metric on €. (NB. An extended metric is a metric
that is allowed to take the value 0o.) We equip € with the topology induced from d¢. Fix a set ©
including €. To extend the metric dg to ®, we equip a partial order < on ®. Our aim in this section
is to define a metric on ®, which induces a natural topology on © generalizing the topology on €, and
to study basic propertis of the metric. The metric is presented in (22) below, and the main results
regarding convergence, polishness and precompactness are found in Theorem 2.8 Corollary and
Theorem [2.20] respectively.

Example 2.1. The arguments in this section are very abstract, and so it may be easier to read with
a concrete example in mind. For example, one can think € as the set of compact subsets in a rooted
boundedly-compact metric space, d¢ as the Hausdorff metric, © as the set of closed subsets, and < as
the inclusion order. This is the setting considered in Section 2Z.2.1] and the framework in this section
provides a natural generalization of the Hausdorff metric.

We define a restriction system, which describes how elements in ® are truncated to elements in €.

Definition 2.2 (Restriction system). Let R, : © — € be an order-preserving map for each » > 0. We
call (R,)r>0 a restriction system of (€, D, <) if it satisfies the following;:

(RS1) For each r >0 and a € D, R.(a) < a.
(RS2) For any s,7 > 0, R, o Ry = Rypp-
(RS3) If R.(a) = R,(b) for all r > 0, then a = b.

Example 2.3. In the setting of Example 2.I], R, is the restriction of a closed subset to the closed ball
centered at the root of the space with radius r. Similarly, in the other examples we see in Section 2.2]
restriction systems also depend on the root of the space.
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We fix a restriction system R = (R,),>o. We simply write R,.(a) = a(™). The following is an
immediate consequence of [[RST)| and [[RS2)}

a®) < a(T), Vae®D, s<r. (2.1)

In the same spirit as the local Gromov-Hausdorff-vague metric given in (I4]), we define the distance
between a,b € ® by setting

do(a,b) == / e (1 Ade(a™,pM)) dr. (2.2)
0
To ensure that do is a well-defined metric on ®, we suppose the following continuity property of the

operation a(") with respect to r, The assumption corresponds to [23, Lemma 3.17].

Assumption 2.4. Fiz a € ©. Then the map (0,00) 3 r — a™) € € is continuous for all but countably
many r > 0.

Proposition 2.5. Under Assumption[2.4] do is well-defined. Moreover, dp is a metric on ®.

Proof. Write d(c,d) := 1Adg(c,d). Since d is a metric on €, by the triangle inequality, we deduce that
’d(aw'), b)) — d(a™, b<r>)‘
< ‘d(aw'), by — A, b<r>)‘ n ‘d(aw')’ () — d(a™, b<r>)‘
<d(b", b)) + d(a, ™).

This, combined with Assumption 4] implies that the map 7 — 1 A de(a, b)) € R, is continuous
for all but countably many r > 0. Hence, dg is well-defined. Symmetry and the triangle inequality
are obvious. If dp (a,b) = 0, then a(™) = b(") for Lebesgue-almost every r > 0. By [[RS2)] and [[RS3)]
we obtain a = b. O

To prove that the metric dp induces a natural topology on ® and is separable and complete, we
suppose the following additional conditions. They correspond to [23, Assumption 3.11 and Lemma
3.20].

Assumption 2.6.

(i) Let a,b be elements of € and suppose that de(a,b) < e for some e > 0. Fiz r > s > € arbitrarily.
Then, for any a’ € € with a'® < o’ < a'"), there exists b’ € € such that b5~ < b < b("+e) and
de(a’,b') <e.

(ii) Let a be an element of €. For all but countably many r > 0, it holds that
sup{de(a™,a’) | d’ € €,a""9 < a’ <"t} 240 . (2.3)

Henceforth, we assume that the restriction system (R, ),so satisfies Assumption Note that
Assumption 20(ii)| implies Assumption [Z4l Thus, under Assumption [Z0] do is a well-defined metric
on®.

Lemma 2.7. Let a,ay,as,... be elements of €. If de(an,a) — 0, then dg(agf),a(”) — 0 for all but
countably many r > 0.

Proof. Fix r > 0 satisfying (23) and ¢ € (0,7). By Assumption 2f|(i1)] there exists § € (0, €) such that
sup {d@(a(T), a)lad €cg, a9 <4’ < a“""”} <e. (2.4)

Since we have that de(a,,a) < § for all sufficiently large n, by (2.1]) and Assumption we can find
b, € € such that a"=9 <b,, < ("9 and dg(ag), by) < 4. Using [24) and the triangle inequality, we
deduce that

de(al”,a™) < de(al"),b,) + de(bn,a™) <5+ ¢ < 2e,

which yields the desired result. O
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Theorem 2.8 (Convergence with respect to do). Let a,a1,aq,... be elements of ®. Then, the fol-
lowing are equivalent.

(i) The elements a,, converge to a with respect to dg .

(ii) The elements agf) converge to a'™) with respect to de for all but countably many r > 0.

(iii) There exists an increasing sequence (ry)x with ri T oo such that a'"™) converges to a(™) with

respect to dg for each k.

w) There exists a non-decreasing sequence (ry)n>1 with r, T 0o such that d¢ ag"),a(”) — 0.
g seq >

Proof. The implication = [(iii)| is obvious. It is also easy to check that implies If
is satisfied, then the dominated convergence theorem yields Lemma 2.7 immediately yields the

implication = |(ii) Hence, it suffices to show the implications|(1)| = and = We begin
with proving the first implication. Assume that [(i)| holds. Fix r > 0 such that the convergence (23]
holds for a. Then, given ¢ € (0,7), we can find § € (0,¢) satisfying

sup {dg(a(”, d)ld ece a0 <d < a(T+5)} <e. (2.5)

From for all sufficiently large n, we have that
/ e”? (1 A d¢(a$f),a(s))) dr < e,
0

which implies that for each such n there exists s, > r such that dg(agf"), at*n)) < 4. By @I) and
Assumption we can find b, € € such that a"=% < b, < "9 and dg(ag),bn) < §. This,
combined with ([Z3]), yields that

de(al",a ") < de(al?,b,) + de(bn,al™) < 6+ ¢ < 2.
Hence we obtain

Assume that [(iv) holds. Fix r > 0 such that the convergence (23] holds for a. Given ¢ € (0,r), we

choose ¢ € (0, ) satisfying (2.5]). For all sufficiently large n, we have that r, > r and dg(agf"), alm)) <

€. Therefore, by a similar argument as above, we obtain that dg(ag), a(") < 2¢, which implies O

The following is an immediate consequence of Lemma 2.7 and Theorem 2.8

Corollary 2.9. The relative topology on € induced from ® is coarser than the topology on €. In other
words, if a, € € converges to a € € with respect to de, then a,, converges to a with respect to dg.

Remark 2.10. In general, the relative topology on € induced from ® does not coincide with the
topology on €. (See Remark [2.29])

In general, a restriction system is not unique. We provide a sufficient condition that ensures that
two restrictions induce the same topology on ©.

Definition 2.11. (The distance dis(R, R')) Let R = (R,.),>0 and R’ = (R).);~¢ be restriction systems.
We define

dis(R,R') == inf{r. | Rs = Rso R, R, = R, o R, for all s,r such that s +r, <7},
where we set dis(R, R') := oo if the infimum is taken over the empty set.

Theorem 2.12. Let R’ = (R).),~o be another restriction system satisfying Assumption [Z6. If
dis(R, R') < oo, then the topology on ® induced from R’ coincides the topology induced from R.

Proof. Write dp and df for the metric on © determined by R and R’, respectively. Choose r, >
dis(R, R'). By definition, it holds that Ry = Rs o R, and R, = R, o R, for all s + r. < r. Assume
that a, converges to a with respect to d%. Then, for all but countably many r > 0, it holds that
R/ (an) = R.(a) in €. For such r, by Lemma [Z7] we obtain that R, o R..(an) — Rs o R, (a) for all
but countably many s > 0. Thus, we can find an increasing sequence (sj)r>1 with si 1 co such that
R, (an) = Rs, (a) in €, which implies that a,, — a with respect to dg. Similarly, it is proven that if
an, — a with respect to do, then a,, — a with respect to do. O
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Remark 2.13. As we mentioned in Example 23] in all the examples we see in Section 2.2] the
restriction systems depend on the root of the space. However, in each example, one can check that the
distance between two restriction systems is bounded above by the distance between roots. Therefore,
by Theorem .12 it can be verified that the resulting topology on ® is independent of the root.

Theorem 2.14 (Separability of do). If (€,d¢) is separable, then so is (D,ds).

Proof. Let D be a dense subset in (€, d¢). By Corollary[2.9] D is dense in € with the relative topology
induced from ©. Tt is easy to check that a(™ — a for any a € . Hence D is dense in (D, do). O

To prove that dg is complete, we assume a condition to ensure that ® contains sufficiently many
elements.

Definition 2.15 (Complete restriction system). Let (ax)r>1 be a sequence in € and (rg)r>1 be an
non-decreasing sequence of non-negative numbers with 75, 1 0co. A sequence (ag, ri)r>1 is said to be a

compatible sequence if and only if ay = a,(cr,’“) for all k < k’. A restriction system (R;),¢ is said to be
complete if it satisfies the following:

(RS4) For every compatible sequence (ag,)k>1, there exists a € © such that ay = alme).

Lemma 2.16. Suppose that (R;)r>o is complete. Let (an)n>1 be a sequence in €. Assume that there
exist a non-decreasing sequence (Tx)g>1 of positive numbers with v, T 0o and a sequence (o )k>1 in €
such that

de(al™) ap) 222250, Yk > 1.

Then the sequence (ay)n>1 converges to an element o € D with respect to ds.

Proof. If necessary, by choosing a subsequence, we may assume that (ry)g>1 is strictly increasing. By
Lemma 2.7 for all but countably many r > 0, it holds that

de(alFM) o) 222 0 vk > 1. (2.6)
Choose s; € (r;—1,71) so that 6] holds with r = sy, i.e.,
de(alrms) o)y 2220 0 kg 1> 1, (2.7)
For k' > k, by substituting [ = k (and £’) in (21), we obtain that
de (@), af™) 27250, de(al), afit) 122 0, (2.8)

which implies that a](:k) = a,(j’“) if ¥’ > k. Therefore, (oz,(:’“), Sk)k>1 is a compatible sequence. Since
the restriction system is complete, we can find & € © such that a(s*) = oz,(:’“). By (2.8), it holds that
dg(agf’“), a*r)) — 0 as n — oo for each k > 1. From Theorem 28 it follows that a, — a. O

Theorem 2.17 (Completeness of dg). If (€,d¢) is complete and the restriction system (Ry)rso 1S
complete, then the metric do is complete.

Proof. Fix a Cauchy sequence a, in ®. If necessary, by choosing a subsequence, we may assume
that do(an,ant1) < 27" 2". By the definition of dp (see ([ZZ)), for some ¢, > 2", we have

de (ali™), aglqj;z) < 27", For each m > 1, set ap.m = a4 ). Since we have de (ale™, aggﬁ) < 27™ with
Gm > 2™, by Assumption m there exists am+1,m € € such that
(@m=27") @"+27") g —m
Qg1 D Um+1,m = Q41 ) Q(am,m; am+1,m) <2 .
Since we have d¢(a,(73${1), afﬂgl)) < 27™7 L with ¢y > 2™, by using Assumption 20(i)| again, we
can find ay,42,m € € such that

(2m-2—m
m+2

(2771_,'_27771_,’_2777171)

_g—m—1) —m—1
a j Am+2,m j am+2 ) d@(aerl,my am+2,m) <2 me

Inductively, we obtain a sequence (Gn m)n>m in € such that, for each n > m,

m_o—m+1 m | o—m+1
al?" ) Rap g 2 al ),

d¢(an,m, an+17m) < 27", (29)
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In particular, (an,m)n>m is a Cauchy sequence (€,d¢), and hence there exists a,, € € such that
de(@n,m,m) = 0 as n — oo for each m > 1. By Lemma 27 for all but countably many r > 0, it

holds that dg(ag}n, a%)) — 0 as n — oo for each m > 1. Fix an increasing sequence (7, )m>1 with
Twm T 00 and r, < 2™ —27™F1 guch that

de(alrm) alrm))y 2222 g

n,m » “*m

. VYm>1. (2.10)

By (Z9) and we have that a{/™) < ag%) < a"™ for all n > m, which implies a%’:;”n) = all™
for all n > m. From (ZI0), it follows that d¢(a$f’"), a%’")) — 0 as n — oo for each m > 1. Applying
Lemma [2T6] we deduce that a,, converges to an element of ®. O

We provide a summary of the results so far.

Corollary 2.18. Assume that (€,d¢) is a complete, separable metric space. Let R be a restriction
system satisfying Assumption[Z8. Then, the function do given in [22)) is a well-defined metric on D
and the metric space (D,dp) is complete and separable. Moreover, if R’ is another restriction system
satisfying Assumption [Z0 and dis(R, R') < oo, then the topologies on © induced from R and R’ are
the same.

In all the examples we see in Section 2.2] the following condition is satisfied, which plays an
important role in the discussion of precompactness. It corresponds to [23], Assumption 3.17].

Assumption 2.19. For every a € €, the set {b € €| b =< a} is compact in (€, d¢).

Theorem 2.20 (Precompactness in ©). Suppose that the restriction system (R, ),>o satisfies Assump-
tion[Z.8 and is complete. Fiz a non-empty subset o7 CD. Write /") == {a") | a € &/} C € for each
r > 0. Consider the following statements.

(i) The set /") is precompact in (€,dg) for all v > 0.

(ii) There exists an increasing sequence (rx)g>1 with mi T 00 such that </ ™) is precompact in (€, de).
(iii) The set &/ is precompact in (D, dyp).
Then, it holds that|(i) = = . Moreover, if Assumption is satisfied, then cmd

are equivalent.

Proof. The implication |(i)| = is obvious. Assume that holds. Fix a sequence (an)n,>1 in 7.
By a diagonal argument, one can find a subsequence (ay,, )m>1 and a sequence (ay)g>1 in € such that
dg(asﬁﬁ), ax) — 0 as m — oo for each k > 1. By Lemma[2ZT6 we deduce that (an,, )m>1 is a convergent
sequence in ®, which implies

Suppose that holds and Assumption is satisfied. Fix r > 0 and a sequence (ag))nzl in
/(M. Choose a subsequence (Nm)m>1 such that (an,, )m>1 converges to a € © with respect to do.
If necessary, by choosing a further subsequence, we may assume that do(an,, ,a) < 27™e™™. Then,
there exists s,, > m such that dg(a%sn’f), a(sm)) < 27™. We consider a sufficiently large m satisfying
$m > 7. By Assumption Z@1)} there exists a"=2 ") < b,, < a"t?"") such that dg(agfn)“bm) <27m,

Using Assumption .19 we can find a further subsequence (ny,, )x>1 such that b,,, converges to some
T

b in €. It then follows that agik converges to b in €, which implies (|

2.2 Examples

In this section, we apply the framework developed in Section 2] to examples, and introduce the local
Hausdorff metric, the vague metric and the local Hausdorff metric for marked spaces.
Henceforth, given a metric space (.5, d®), we set

Bg(x,r) ={ye S| ds(:c,y) <r}, Dglx,r)={yes| ds(x,y) <r},

and denote the closure of a subset A by cl(A). We recall that (S, d”) is said to be boundedly compact
if and only if Dg(z,r) is compact for any z € S and r > 0. Given maps f: A — Band g: A’ —» B’,
we write

(f x f)z,y) = (f(2), f'(¥), (z,y) € Ax A"
For a set A, we denote the identify map from A to itself by id 4.
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2.2.1 The local Hausdorff metric

In this section, We introduce the local Hausdorff metric and the local Hausdorff topology, which are
suitable for discussing convergence of non-compact subsets in a fixed metric space.

Let (S,d®, p) be a rooted boundedly-compact metric space, that is, (S,d°) is a boundedly-compact
metric space and p is a distinguished element of S called the root.

Definition 2.21 (The space Ccpt(S) and C(S)). We define C(S) to be the set of closed subsets in S.
We denote by Cept(S) the subset of C(S) consisting of compact subsets.

A commonly used metric on Cept(S) is the Hausdorfl metric. To recall it, we define the (closed)
e-neighborhood of a subset A in S by setting

A® = {x € 5|3y € Asuch that d°(z,y) < e}. (2.11)

Definition 2.22 (The Hausdorff metric d7, and the Hausdorff topology). The Hausdorff metric dz;
on Cept(S) is defined by setting

d3(A,B) :=inf{e >0 | AC B°, B C A},

where we set the infimum over the empty set to be oco. The function d}q{ is indeed an extended metric
on Cept(S). (Note that the distance between the empty set and a non-empty set is always infinite.)
We call the topology on Cept(S) induced by the Hausdorff metric the Hausdorff topology. It is known
that the Hausdorff topology is separable and d3; is complete. (See [12] for details)

We equip C(S) with the inclusion order C. We now define a restriction system of (Cept(.S), C(S), C).

Definition 2.23 (The restriction system of (Cept(S),C(S),C)). We define a restriction system R =
(RT)’I‘>O by Setting
R.(A) = A" = AN Dg(p,r), >0, AeccC(S).

Lemma 2.24. The restriction system R of (Ccpt(S),C(S), C) is complete and satisfies Assumption[Z.6.
Moreover, if R is a restriction system associated with another root p' of S, then dis(R, R') < d°(p, p').

Proof. We only give a sketch of the proof. If (ry, Ar)r>1 is a compatible sequence, the closed subset
A= Uk21 Ay, satisfies A(™) = Ay, which shows that R is complete. Suppose that dy (A, B) < ¢ for

some A, B € Cept(S). Fix r > s > ¢ and A C A C A, We define
B :={zxeS|d°(x,y) <e for somey € A'}.

It is then the case that B~ C B’ C B("+¢) and d¥(A’, B') < ¢, which yields Assumption
It is not difficult to show that, for each A € Cepi(S), the map (0,00) 3 7 — A" € (Cope(S),d3y) is
cadlag. Let r > 0 be a continuity point of the map. Then, one can check that

sup{d5 (AT, A') | A" € Cepr(S), AT C A’ C A+0)y 240 ¢
which implies Assumption Zf(ii)} Since we have that, for all s,r > 0 with s +d%(p, p') < r,
Ds(p,s) N Ds(p',7) = Ds(p,s), Ds(p',s) N Ds(p,7) = Ds(p’,s),
we deduce that dis(R, R') < d°(p, p'). O

Remark 2.25. There is another natural restriction system R of (Cept(S),C(S), ) defined by setting

R, (A) to be the closure of AN Bg(p,r). One can check the same result as Lemma [Z48

By Corollary [Z18 and Lemma [Z224] we obtain a complete, separable metric on C(S). Define
A2’ (A, B) :=/ e "(1AdE (AT, BMY)dr, A, BeC(S). (2.12)
0

Theorem 2.26. The function d%’p is a well-defined metric on C(S) and the metric space (C(S), df—l’p)
is complete and separable. Moreover, the topology on C(S) induced from d}%’p is independent of the root
p.
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Definition 2.27 (The local Hausdorff metric and the local Hausdorff topology). We call d%p given by
2I4) the local Hausdorff metric (with root p) and the induced topology on C(S) the local Hausdorff

topology.

By Theorem [Z8, we obtain a characterization of the local Hausdorff topology in terms of conver-
gence.

Theorem 2.28 (Convergence in the local Hausdorff topology). Let A, A1, Aa, ... be elements of C(S).
Then, the following are equivalent.

(i) The sets A,, converge to A in the local Hausdorff topology.
(i) The sets Ag) converge to A" in the Hausdor(f topology for all but countably many r > 0.

(iii) There exists an increasing sequence (i) with v, T 0o such that AUY) converges to AT in the
Hausdorff topology for each k.

Remark 2.29. The relative topology on Cepi(S) induced from the local Hausdorff topology on C(S)
is strictly coarser than the Hausdorff topology. For example, consider the case (S, ds, p) = (R, d®,0),
where (R, d®) is the one-dimensional Euclidean metric space, and the sequence A,, := [n,n + 1]. Then,
A, converges to the empty set in the local Hausdorff topology but does not converge in the Hausdorff
topology.

The following is an easy application of Theorem [2.20]
Theorem 2.30. The space C(S) equipped with the local Hausdor(f topology is compact.

Proof. By Theorem 20 it suffices to show that, for each r > 0, C(S)™) = {A") | A € C(9)} is
compact in the Hausdorff topology. This follows from [I2, Theorem 7.3.8] and the fact that C(S)(") is
the set of closed subsets in the compact set S, O

We next proceed to show that the local Hausdorff metric inherits the property that the Hausdorff
distance between sets is preserved when the sets are carried into a different space by a distance-
preserving map. This is important when we establish a framework for metrization of Gromov-
Hausdorff-type topologies in Section

Lemma 2.31. Let (S;,d%), i = 1,2 be boundedly-compact metric spaces and f : Sy — So be a distance-
preserving map. Then the map (Cept(S1), d}q{l) S5 A f(A) € (Cept(Sa), d}qf) is distance-preserving.

Proof. Since f is distance-preserving, we deduce that
f(ANf(B)* ={f(x) € Sy | x € A, Jy € B such that d°*(f(x), f(y)) < ¢}
={f(z) € So | 2 € A, Jy € B such that d°*(z,y) < ¢}

={f(x) e Sy |z € An B}
- f(AnB)

and similarly f(B) N f(A) = f(B N A®). Hence, it follows that
dyf (f(A), f(B)) = inf{e > 0| f(A) = f(A) N f(B)", f(B) = f(B) N f(A)}
—inf{e >0| A= ANB°, B=BnA}
= d3} (A, B).
(|

Proposition 2.32. Let (S;,d%,p;), i = 1,2 be rooted boundedly-compact metric spaces and f : Sy —
Sy be root-and-distance-preserving map. Then the map (C(S1), dSHl’pl) 3 A f(A) € (C(S2), dSHQ’”) is
distance-preserving.

Proof. Fix A, B € C(S1). Since f(p1) = p2 and f is distance-preserving, we obtain that
FA)T = {f(z) € S5 | d°(pa, f(x)) <7}
<

={f(z) € S2 | d**(p1,2) <1}
= f(A™)

10
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and similarly f(B)") = f(B(")). Thus, by Lemma 23T, we deduce that
A5 (F(A)D), 1(B)M) = dS2 (F(AM), F(BM)) = d51(AM), BM).

Now the desired result is straightforward. |

2.2.2 The vague metric

There are various versions of metrics inducing the vague topology (e.g. [16, Section A2.6] and [20]
Section 4.1]). In this section, we define one such metric in a similar way to the local Hausdorff metric.

Let (S,d”, p) be a rooted boundedly-compact metric space. We first introduce the space of mea-
sures.

Definition 2.33 (The space Mgy, (S) and M(S)). We define M(S) to be the set of Radon measures
@ on S, that is, p is a Borel measure on S such that u(K) < oo for every compact subset K. We
denote the subset of M(S) consisting of finite Borel measures by May(S)

A commonly used metric on Mg, (S) is the Prohorov metric.

Definition 2.34 (The Prohorov metric and the weak topology). For u,v € Mg, (S), we define
d3(p,v) = inf{e > 0: p(A) < v(A%) +¢, v(A) < u(A%) + ¢ for all closed subsets A C S}.

The function d3 is a separable and complete metric on M(S) and is called the Prohorov metric. The
topology on Mgy (S) induced by dISD coincides with the topology of weak convergence and is called the
weak topology. (See [16], Section A2.5] for details.)

Let < be a partial order on M(S) given by
p<ve pu(A) <v(d), VAeB(S),
where B(S) denotes the set of Borel sets. We then define a restriction system of (Magn(S), M(S), <).

Definition 2.35 (The restriction system of (Mgy(S), M(S),<)). We define a restriction system
R = (R;)r>0 by setting

R (n)(A) = u(A) = u(AnST), VA€ B(S).

The following result is basically proven in a similar way to the proof of Lemma 2.241 However,
Assumption mﬂ is not straightforward to check, and so we give a proof in Appendix [Al

Lemma 2.36. The restriction system R of (Mgn(S), M(S), <) is complete and satisfies Assumption
[Z4 Moreover, if R' is a restriction system associated with another root p' of S, then dis(R,R') <

d%(p, p').

By Corollary 218 and Lemma [Z.24] we obtain a complete, separable metric on M(.S). Define
80 = [ TN A dr v € M(S) (2.13)
0

Theorem 2.37. The function d“g/’p is a well-defined metric on M(S) and the metric space (M(S), d‘s,’p)

is complete and separable. Moreover, the topology on M(S) induced from d‘s,’p is independent of the
T00% p.

Definition 2.38 (The vague metric). We call di’p given by (ZI3)) the vague metric (with root p).
The next result shows that the topology on M(S) induced from d‘s,’p is indeed the vague topology.

Theorem 2.39 (Convergence with respect to d‘s,’p). Let p, p1, pa, - . . be elements of M(S). Then, the
following are equivalent.

(i) The measures ., converges to p with respect to d‘S,’p.

(i) The measures ug) converges to ") weakly for all but countably many r > 0.

11
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(r)

(iii) There exists an increasing sequence (ry,) with r), 1 oo such that un ™ converges to p™) weakly

for each k.

(iv) The measures p, converges to p vaguely, that is, it holds that

lim [ f(x) po(da) = /S f(2) u(de)

n—oo S
for all continuous functions f : S — R with compact support.

Proof. The equivalence of [(i)| and follows from Theorem 2.8 It is easy to check that
implies Assume that [(iv)]is satisfied. Let r > 0 be such that u({z | d°(p,xz) = r}) = 0. Then, by
[20, Lemma 4.1], we have that , (S)) — u(S(™). Let A be a closed subset in S. Tt follows from [20,
Lemma 4.1] that

lim sup {7 (C) = limsup p, (C N SM) < p(CNSMY) = puM(C).

n—oo n—oo
Therefore, by [16, Theorem A.2.3.I1], we obtain that ,ugf) converges to u(") weakly. (|

Similar to the local Hausdorff metric, the vague metric inherits the property that the Prohorov
distance between measures is preserved when the measures are carried into a different space by a
distance-preserving map.

Lemma 2.40. Let (S;,d%),i = 1,2 be boundedly-compact metric spaces and f : Sy — Sa be a
distance-preserving map. Then the map (/\/lﬁn(Sl),dISgl) Sur—pofte (/\/lﬁn(Sg),dISf) is distance-
preserving.

Proof. Choose € > 0 such that d3! (u,v) < e. Fix a closed subset A C Sy. If 2 € f~'(A)*, then there
exists y € S such that f(y) € A and d*(z,y) < e. It is then the case that d°2(f(z), f(y)) < € and
hence f(z) € A%. Thus, f~1(A)* C f~1(A®). Therefore, we obtain that

po fTHA) = p(f7HA) S v(fTHA)) +eSvo fTHA%) +e,

and similarly, v o f71(A) < po f~1(A°) +e. This yields that d??(uo f~',v o f~1) < &. By letting
e | d3' (u, v), we obtain that d? (uo f =1, vo f~1) < d7' (uu,v). Next, suppose that dy? (uo f~1, vof~1) <
e. Fix a closed subset A C Sy. If x € f(A)° N f(S1), then there exist y € S and z € A such that
x = f(y) and d%2(f(y), f(z)) < e. It is then the case that d°!(y, z) < ¢ and hence = € f(A%). Thus,
f(A)E N £(S1) C f(A%). This, combined with S; = f~1(f(S1)), yields that
FTHAA)) = FHAA) N FTHfS) = FHF(A)T N f(S1) € FH(f(A%)) = A
Therefore, we deduce that
W(A) = po fTHF(A)) < po fHF(A)T) +e < (A7) +e,

and similarly v(A) < u(A°) +&e. Thus, by the same argument as before, we obtain dy!(u,v) <
d32(wo f~', vo f~1), which completes the proof. O

Proposition 2.41. Let (S;,d%, p;),i = 1,2 be rooted boundedly-compact metric spaces and f :
S1,p1

S1 — Sy be a root-and-distance-preserving map. Then the map (M(S1),dy" ") > p— po f7h €
(M(S2), d‘s/z””) is distance-preserving.
Proof. For A € B(S2) and u € M(S1), we have that
fTHANDs,(p2,7)) = {x € S1 | f(w) € A, d>(p2, f(2)) <1}

={x eS| flx)e A x€ Ds (p1,7)}

= f~(A) N Ds, (p1,7).
Thus, we deduce that

(o f7T(A) = u(F~1(A) N Ds, (pr, 7)) = n(f 7 (A)),

which implies that (uo f~1)(") = (" o f~1. This, combined with Lemma 240, yields that for
v € M(S1)

@ (o ), wo 7)) = i (u), v7).

Therefore, we obtain the desired result. O

12
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Remark 2.42. Another metric inducing the vague topology is found in |20, Lemma 4.6], but it is not
clear that the metric satisfies the property of Proposition 241l In [I6], Section A2.6], a metric defined
in a similar way to d‘S,’p is proposed. However, as pointed out by [30], there are mistakes in the proofs
in [16], which is the reason why we have not simply adopted the metric in that book.

2.2.3 The compact-convergence topology with variable domains

We next introduce a topology on a collection of functions with different domains. This topological
framework is needed, for example, when one considers the metrization of a Gromov-Hausdorff-type
topology on the collection of elements of the form (S, d”, p, f) such that the additional object f is an
element of C(S,E), where = is a fixed metric space. Note that C(S,E) denotes the set of continuous
functions f : X — Z and we equip C(S, E) with the compact-convergence topology, that is, f,, converges
to f if and only if f, converges to f uniformly on every compact subset. The difficulty in defining a
Gromov-Hausdorfl-type metric for such a space is that C(S,Z) cannot be embedded in C(S’,E) in a
natural way when S is a subspace of S’. The idea for resolving this issue is to consider the set C (S,2)
consisting of functions from a subset of S to =. Then, we have a natural embedding of C (S,E) into

~

C(S’,2). With this background, we define a metric on C (S,Z) inducing a natural extension of the
topology on C(S, Z).

Fix a non-empty separable and complete metric space (Z,d=) and a rooted boundedly-compact
metric space (S, d°, p).

Definition 2.43 (The sets C(S, ) and C(S,E)). We define

cis,2)= |J ox.=).
Xec(S)

Note that CA'(S, =) contains the empty map 0z : § — =. Write dom(f) for the domain of a function f.
We then define C.(S, =) to be the subset of C.(S, =) consisting of f such that dom(f) is compact in
S.

Definition 2.44 (The metrics dg and d%’p:). For f,g € @(S, =) and ¢ > 0, consider the following

condition.
(C.) For any z € dom(f), there exists an element y € dom(g) such that d(z,y) V d=(f(z), g(y)) <
e. Similarly, for any y € dom(g), there exists an element 2 € dom(g) such that d°(z,y) V

d=(f(x),9(y)) <e.

We define
S o .
déc,z(f’ g) = inf{e > 0| & satisfies |(C..)[},

where the infimum over the empty set is defined to be co. For f € 6(5’, 2), write f(7) = f|dom(f)<r),
where we recall that dom(f)(™ = dom(f) N S"). We then define

)

S.p _ [T S (p) ()
b= [ (1ndg Lr0g) an

Theorem 2.45. The function dg”; is a well-defined metric on 6(5’, E). The space (6(5,5),d%’;) is

Polish and the induced topology is independent of the root p.

To prove Theorem .45 we borrow the idea given in [23] Section 4.5]: we identify each function of
C(S,Z) with its graph, and consider a larger space C(S, Z) introduced below. Note that we equip with
S x Z the maz product metric d°*=, which is a metric given by

dSXE((:c, a), (y,b)) == ds(z, y) V d=(a,b).

Definition 2.46 (The space Cept (S, Z) and C(S, Z)). We define C(S, Z) to be the set of closed subsets
E C S x E such that EN (S x E) is compact for all 7 > 0. We denote by Cepi(S,Z) the subset of
C(S,E) consisting of compact subsets of S x =.

We equip Cepi (S, Z) with the Hausdorff metric d%XE and C(S,E) with the inclusion order C. We
then define a restriction system of (Ccpt (S, Z),C(S, E), C).

13
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Definition 2.47 (The restriction system of (Cept(S, E),C(S, =), C)). We define a restriction system
R = (R;)r>0 by setting

R.(E)=E") =En(S™ xE), r>0,EelC(S2).

Similar to the restriction system of (Ccpt(S),C(S), C) given in Section 2:21] the restriction system

R of (Cops(S,E),C(S,E), Q) is complete and satisfies Assumption Since it is proven in the same

way as the proof of Lemma [2.24] we omit the proof.

Lemma 2.48. The restriction system R of (Cept (S, E),C(S, E), Q) is complete and satisfies Assumption
(224 Moreover, if R is a restriction system associated with another root p' of S, then dis(R,R') <

d5(p, p').

By Corollary [Z18 and Lemma [Z24] we obtain a complete, separable metric on C(.5, Z). Define

d3" (E,F) = / eTT(ANdZEETH FO) dr, B F € C(S,E). (2.14)
0
Theorem 2.49. The function d%’pg is a well-defined metric on C(S, E) and the metric space (C(S, E), df—l’pa)

S,p

7'= is independent of the

is complete and separable. Moreover, the topology on C(S,ZE) induced from d
T00% p.

Theorem 2.50 (Convergence in C(S,=2)). Let E, Ey, Es, ... be elements of C(S,E). Then, the following
are equivalent.

(i) The elements E, converge to E in C(S,Z).

(i) The elements Eff’*) converge to E(*) in the Hausdorff topology for all but countably many r > 0.

(iii) There exists an increasing sequence (ry), with ri T oo such that E,(f’“’*) converges to E(s*) in

the Hausdorff topology for each k.

Remark 2.51. In general, the space (C (S,E),d}%’pg) is not compact even when S is compact. For

example, if S = {p} and = = R equipped with the Euclidean metric, then a sequence E,, = {(p,n)}
does not have a convergent subsequence.

Now we are ready to start proving Theorem [2.45]

Definition 2.52 (The graph map g). For each function f, we write g(f) for its graph, i.e., g(f) =
{(z,f(z)) | # € dom(f)}.

The following result is an immediate consequence of the definitions of d% and d%’p

o=

and so we

=)

omit the proof.

Proposition 2.53. It holds that

d2 _(f,9) = di"=(a(f),8(9)), Vfi g€ Cu(S,5),
(f.9) = dy"-(0(f),8(9)), Vf.g€C(S,5).

is an extended metric on @(S, =) and dg’p_

As a consequence, d% is a metric on C(S,Z).

1]

Corollary 2.54. The map g : (C(S, E),d%’pg) — (C(S, H),dsg’fa) is distance-preserving.

)

Definition 2.55 (The compact-convergence topology with variable domains). We equip C (S, Z) with
the topology induced from dé’p which we call the compact-convergence topology with variable domains.

[

By using the graph map g of Corollary [Z54] we regard 6(5, =) is a subspace of C(S,Z). To show
that C(S, E) is Polish, we define a sequence of subspaces in C(5, Z) converging to C(S, Z).

Definition 2.56 (The space Cj(S,E)). Fix k € N. We define Ci(S,Z) to be the collection of E €
C(S,E) such that there exist r = r(E) > k and §; = §;(E) € (0,1/k), i = 1,2 satisfying the following,.

14
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(C) For any (x,a), (y,b) € E*) if d%(z,y) < 61, then d=(a,b) < Js.
Lemma 2.57. For each k € N, Cy(S,Z) is an open subset of C(S,Z).
Proof. Fix E € ak(S,E). Let » > k and 6; € (0,1/k), i = 1,2 be constants satisfying for E.
Choose € € (0,1) so that

r—e>k, r<el, 2<8, 2+ <1/k.

Fix F € C(S,E) such that d%pE(E,F) < ee~V/¢. Tt is enough to show that F € Ci(S,E). By the
definition of d%pE, we can find 7 > 1/e such that

dISqXE(E(i*),F(ﬁ*)) < e. (2.15)
Define " > k and 0 < ¢, < 1/k, i = 1,2 by setting
7 i=r—g, 06]=20 —2¢ =20+ 2, (2.16)

We will prove that /0] and &) satisfy for F. Fix (z,a), (y,b) € F""*) satisfying d°(z,y) < 6.
By (ZI5), there exists (z',a’), (y', V') € EU*) such that

d5(z, 2 )V d=(a,d') <e, d°(y,y')Vd=(b,b) <e. (2.17)

It is then from (ZI6) and @I7) that (2/,a’), (v/,b') € ET*) and d%(2',y') < 61. Using[(C)| we obtain
that d=(a’,b’) < d. This, combined with (2I6) and I7), yields that d=(a,b) < &5, which implies
that F € Cy(S, Z). O

Lemma 2.58. It holds that C(S,Z) =, Ci(S,Z).

Proof. 1t is easy to check that ék(s,z) C Mi>1 CA‘k(S, E) by using the uniform continuity of f €
Ci(S,Z) on compact subsets. Fix E € MNi>1 Ci(S,Z). Tt suffices to construct a function f € C(S,E)
whose graph coincides with E. Define X to be the subset of S consisting of z such that (z,a) € E for
some a € Z. By the definition of ék(s, =), one can check that X is a closed subset of S. The condition
implies that, for each z € X, an element a, € = satisfying (z,a,) € E is uniquely determined. We
define f: X — Z by setting f(z) := a,. Then, using again, we deduce that f is continuous, which
competes the proof. O

Now, we complete the proof of Theorem [2.47]

" is a metric on C(S,Z) by Theorem A7 and

S,
Proof of Theorem [2.49] We already checked that d >

Proposition 2531 The Polishness of C (S,E) is an immediate consequence of Theorem 249, Lemma
(257 and 258 O

=)

We provide a characterization of convergence in C (S, Z), which shows that the topology on C (S,2)
is a natural extension of the compact-convergence topology.

Theorem 2.59 (Convergence in 6(8’, E)). Let f, f1, f2,... be elements of 6(5,5). The following
conditions are equivalent.

(i) The functions f, converge to f in the compact-convergence topology with variable domains.

(ii) For all but countably many r > 0, f,(f) converges to f() with respect to d% -

cs

(i1i) There exists an increasing sequence (Tg)g>1 wWith 1y T 0o such that f,ﬁ’”” converges to f(%) with
respect to d%

(iv) The sets dom(f,) converge to dom(f) in the local Hausdorff topology in S, and, for all v >0 (or
equivalently, r € I with some unbounded subset I C (0,00)), it holds that

lim lim sup sup d=(fn(zn), f(z)) = 0. (2.18)
=0 n—oo Tn Edom(fn)(r),

zedom(f),

d (zn,2)<8
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(v) The sets dom(f,) converge to dom(f) in the local Hausdorff topology in S, and there exist func-
tions gn,g € C(S,ZE) such that gnlaom(f,) = fn, 9laomr) = f and gn — g in the compact-
convergence topology.

Proof. By definition, we have that g(f)"*) = g(f)) for each f € C(S,Z). Thus, we obtain the
equivalence of and by using Lemma and Theorem Assume that holds. Fix
r > 0 such that f,(f) converges to f with respect to d% _. It is easy to check that dom( fn)(’”) converges
to dom(f)(™) in the Hausdorff topology in S, which implies that dom(f,) converges to dom(f) in the

local Hausdorff topology in S. Fix & > 0. By the uniform continuity of f on dom(f)(™, we can find
§ € (0,¢) such that, for ,y € dom(f)™),

dS(z,y) <26 = d=(f(x), fy)) <e. (2.19)

Choose N € N so that
dg _(f,f) <5, Yn>N. (2.20)

Fix n > N and z,, € dom(f,), « € dom(f) with d°(z,,z) < é. By [@20), there exists y € dom(f)")
satisfying _
A% (20, y) V A= (fa(zn), f(y)) < 6. (2.21)

Since we have that
d%(z,x,) + d° (2, y) < 2,

) < e. This, combined with (22I]), yields that

d°(x,
it follows from (Z.I9) that d=(f(z), f(y

A= (fa(an), f(2)) < d(falzn), f(y)) + d>(f(y), f(2)) < 2e.

y) <
)

Thus, we obtain

If [(iv)| is satisfied, then by the same argument as [I3] Proof of Proposition 2.3] we obtain
Fmally, assume that |(v) - )| holds. Let 7 > 0 be such that dom(f,)" — dom(f)) in the Hausdorff
topology in S. Fix ¢ > 0. Using the convergence g, — ¢ and the uniform continuity of g on S, we
deduce that there exists § € (0,¢) satisfying

limsup sup  d=(gn(wn),9(2)) <e.
n—oo zn,IES(T),
ds(mn,,z)<5

Then, we can find N € N such that, for all n > N,

dfy(dom(f,)™, dom(f)") <6, sup A= (fulzn), f(2) <e.
Tn Edom(fn)(r) , zedom(f)(r)7
d (zn,x)<8

From the above inequalities, it is easy to deduce that d% _( f,(f), f(T)) < ¢ for all n > N. Therefore, we
obtain |
Corollary 2.60. Fiz X € C(S). Then the map C(X,Z) 3 f s f € C(S,E) is a homeomorphism onto

its image, where we recall that C(X,E) is equipped with the compact-convergence topology.

Remark 2.61. Convergence of functions with different compact domains is considered in [I3, Section
2.1]. From Theorem [Z50] one can see that the convergence with variable domains introduced in this
section is a natural generalization of the convergence used in that paper.

We provide a precompactness criterion in 6’(8’, =), which is a generalization of the Arzela-Ascoli
theorem.

Theorem 2.62 (Precompactness in C(S,Z)). A non-empty subset {fo | o € &/} is precompact in
C(S,Z2) if and only if the following conditions are satisfied.

(i) For each r >0, the set {fo(z) | 2 € dom(fo)"), o € &} is precompact in .
(it) For each r > 0, it holds that

lim sup sup :(fa('r)afa(y)) =0
d—0 acd 4 yedom(fa)(r)
d® (z,y)<d
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Proof. We suppose that {f, | « € &} is precompact. Assume that [(1)|is not satisfied. Then, for some
r > 0, we can find a sequence (o, Tn)n>1 With o, € &7 and x,, € dom(f,, )" such that (fa, (n))n>1
contains no convergent subsequence. If necessary, by choosing a subsequence, we may assume that f,,
converges to some f € C (S,E). By Theorem if necessary, by choosing a further subsequence,
we may also assume that z,, converges to some z € dom(f) in S. It then follows from (2I8)) that
fa, (zn) converges to f(z) in Z, which is a contradiction. Therefore, we obtain [(i)} Next, assume that
is not satisfied. Then, for some r > 0, we can find € > 0, a decreasing sequence (d,),>1 With
5n 4 0, a sequence (v, )n>1 in o7, and x,,,y, € dom(f,, )" with d¥(x,,y,) < 6, satisfying

A= (fa, (@0), fa, (yn)) > 38, VYn >1. (2.22)

If necessary, by choosing a subsequence, we may assume that f,  converges to some f € C (S,2). By
Theorem Z5H(1v)] there exists ' > r such that dom(f,, )" — dom(f)("") in the Hausdorff topology in
S. By the uniform continuity of f on dom(f)""), we can find ¢’ < ¢ satisfying, for all 2,y € dom(f)("",

ds(z,y) <3y = dE(f(:c),f(y)) <e. (2.23)

By (ZIJ), if necessary, by replacing ¢’ with a smaller number, we may assume that

lim sup sup d=(fn(zn), f(z)) <e.
n—00 mnedom(fn,)(r),
zedom(f)),
ds(zn,z)<6/

Then, it is possible to choose V € N so that, for all n > N,

sup {dE(fn(zn), £(2)) | zn € dom(f)™, z € dom(f)™ with dS (2, z) < 5’} <& (2.24)

d3%;(dom(fa, )", dom(f)) < &, (2.25)
6y, < 4. (2.26)

Fix n > N. By [2.25), for some z,w € dom(f)("), we have that d5(z,,z) < & and d°(y,,w) < &'. Tt
then follows from (Z.24) and [2.26) that d=(fa, (zn), f(2)) < &, d=(fa, (yn), f(w)) < & and

d%(z,w) < d%(z,2p) + d% (20, yn) + d° (yn, w) < & + 6, + 6" < 30",
Since ([Z.23)) yields that d=(f(z), f(w)) < &, we obtain that

A= (fan (@n)s fan (Yn)) < d°(fa, (2n), F(2)) + dZ(f(2), f(w)) + dZ(f(w), fa, (yn)) < 3¢,

which contradicts (Z22)). Therefore, holds.

Conversely, assume that and are satisfied. Fix a sequence (an)n>1 in /. By Theorem
230 if necessary, by choosing a subsequence, we may assume that, for some non-empty X € C(95),
dom(fe, ) — X in the local Hausdorff topology in S. Define U to be a countable index set such that
(24 : u € U) is a dense subset of X. By the convergence of dom(f,, ) to X, for each u € U, we can find
al € dom(f,, ) such that 27 — z,, in S. Fromand a diagonal procedure, by choosing a subsequence
if necessary, we may assume that f,, (') converges to some f(x,) € E. For € X, choose a sequence
(ug)r>1 so that x,, — x in S. Using one can check that (f(xy,))r>1 is a Cauchy sequence in =,
and we set f(z) to be the limit of (f(zu, ))r>1. The condition [(ii)] yields that f : X — = is continuous
and, for x,, € dom(f,, ) and z € X,

Tp = = fao,(zn) = fx). (2.27)

Fix € > 0 and 7 > 0 such that dom(f,, )" — X (). By the uniform continuity of f on X(), we can
find 6 > 0 satisfying, for any z,y € X,

ds(:c,y) <8 = d&=(f(2), fly)) <e. (2.28)

Since we have if necessary, by resetting ¢ to a smaller value, we may also assume that

sup sup d=(fa(2), faly)) < e. (2.29)
€4 g yedom(fa) ™,
d’ (z,y)<38
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Choose a finite subset (z(®)! _ of X (") so that X (") C UZ, Bg(z™®,§). For each k, by the convergence
of dom(fq, )™ to X()| there exists a sequence (x%k))nx with 2\ € dom(fa, )" convergent to x(*)
in S. The convergence x( ) = 2®) and @210) imply the existence of N € N such that

d%(x® 2Py <6, d%(fa,(@F), f(@¥)) <e, Yk n>N.
)

Fix n > N and z,, € dom(f,, )", x € X with d%(z,,2) < §. Choose k satisfying d%(z*),z) < 4.
From ([228), it follows d=(f(z®), f(z)) < . Since we have that

d% (P z,) < d (@™ 2®)) + a%@®) | 2) + d¥(x, z,) < 39,
we obtain from ([Z29) that d=(f,, (mn ), fo, (€n)) < €. Therefore, we deduce that

& (f (@) fan (@0)) < d=(f(2), f(20) + dZ(f (@), fan (@) + d% (fa, (#0); fan(@0)) < 3.
By applying Theorem 259, we establish that f, — f in 6(8’, =). O

The following result is an analog of Proposition 22321 which is important for the arguments in

Section 471

Proposition 2.63. Let (S;,d%, p;), i = 1,2 be rooted boundedly-compact metric spaces and F : Sy —
S be root-and-distance-preserving map. Then the following map is distance-preserving:

(6(51,_),d21f1) > f = fOFil € (6(52a5)ad227£2)

Note that the domain of F~1 is restricted to F(dom(f)) so that f o F~! is well-defined.
Proof. Fix f,g € a(S, E). We deduce that

o (/o F)") = {(y. fo F'(y) € S2 x 2| y € F(dom(/)) "}
= {(F(x), f(x)) € S x = | « € dom(f)"}
= (F xid=)(a(f ")),

and similarly g ((goFﬁl)(T)) = (F x idz)(g(¢™)). Since F x idz : S x £ — So x = is distance-
preserving, it follows from Lemma 2.31] and Proposition that

a2 _((foF )", (go FT)) =d5z*= (g ((fo F)) 5 (g0 F 1))

= d3"= (3£, 8(9"))
= d%lﬂg(f(r)’ g™)

Therefore, we obtain the desired result. O

3 Main results

3.1 The local Gromov-Hausdorff metric

In this section, we define the local Gromov-Hausdorff metric on the collection of (equivalence classes of)
rooted boundedly-compact metric spaces, which is a natural generalization of the Gromov-Hausdorff
metric on the collection of (equivalence classes of) rotted compact metric spaces given in (L]).

Let 9° be the collection of rooted boundedly-compact metric spaces X = (X,d¥,px). Note
that, from the rigorous point of view of set theory, 9° is not a set (c.f. Remark [[LT]). Thus, we write
X € M° just to declare that X is a rooted boundedly-compact metric space. For X = (X, dX, px), YV =
(Y,dY, py) € 9M°, we say that X and Y are rooted-isometric if and only if there exists a root-preserving
isometry f : X — Y. Note that f being root-preserving means that f(px) = py, and f being an
isometry means that f is a distance-preserving bijection. As mentioned in Remark [[T] it is impossible
to define the “set” of rooted-isometric equivalence classes of elements in 91°. However, it is possible to
choose a representative from each equivalence class to obtain a legitimate set, as shown in Proposition
BI below. The proof is omitted as we prove a more general result in Proposition 317
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Proposition 3.1. There exists a set M satisfying the following.
(i) The set M consists of elements in IM°.

(ii) For any Y € IM°, there exists a unique element X € M such that X is rooted-isometric to Y.

Definition 3.2 (The set ). A set 9 satisfying the properties of Proposition Bl is uniquely deter-
mined if we identify any two rooted-isometric spaces. Thus, we refer to 9 as the set of rooted-isometric
equivalence classes of elements in 90°.

Definition 3.3 (The metric dgy). For X = (X,dX,px),Y = (Y,d¥, py) € M°, we define

don(X,Y) i= Inf A5 (£(X),9(V), (3.1)

where the infimum is taken over all (Z, d?, pz) € M and root-and-distance-preserving maps f : X — Z
and g : Y — Z. (Recall the local Hausdorff metric dZH’p 7 from Section [Z2.7))

Remark 3.4. One needs to check that the infimum in 1)) is well-defined, that is, it is taken over a
non-empty set. We give a sketch of how to check it. Fix (X,d*X,px),(Y,d¥,py) € 9M°. Define Z' to
be the disjoint union X LUY and define a pseudometric on Z by setting dZ' |xxx = X, dZ' ly xy = a¥
and d?' (z,y) == d¥(z,px)+d¥ (py,y) forx € X,y € Y. Then, dz (px,py) = 0. Therefore, by setting
Z to be the quotient space and pz to be the equivalence class {px, py }, we obtain a rooted boundedly-
compact metric space (Z,d?, pz), where (X,d*, px) and (Y,d", py) are naturally embedded.

The function dgy is indeed a metric on 9t and the induced topology is characterized by conver-
gence of spaces embedded into a common metric space as at ([.2)), which can be viewed as a natural
generalization of the Gromov-Hausdorff topology to non-compact spaces. More precisely, we have the
following results. The proofs are omitted because they are the same as corresponding more general
results in Section

Theorem 3.5. For X, € M°, dom(X,Y) = 0 if and only if X is rooted-isometric to ). Moreover,
the function dsy is a separable and complete metric on 9.

Definition 3.6 (The local Gromov-Hausdorff topology). We call the topology on 9t induced by doy
the local Gromov-Hausdorff topology.

Theorem 3.7 (Convergence in the local Gromov-Hausdorff topology). For each n € N U {co}, let
X, = (Xn,d%",px,) be an element in M. Then, X, converges to Xo if and only if there evist
(Z,d%,pz) € M and root-and-distance-preserving maps fn : Xn — Z such that fn(Xn) — foo(Xoo) in
the local Hausdorff topology in Z.

For X = (X,d~, px) € 9M°, we define X" = (X dX(T),pgg)) by setting

r (r) T
X" = Dx(px,r), d¥" =d¥|xmuxm, pg() = px.

The following result ensures that the local Gromov-Hausdorff topology coincides with the general-
ization of the Gromov-Hausdorff topology to non-compact spaces considered in the literature such as
[17], [12] and [22]. In Theorem [L.13] we prove a more general result and thus the proof is omitted here.

Theorem 3.8. For each n € NU {oo}, let X, = (X,,d*",px,) be an element of M. Then, the
following statements are equivalent.

(i) X, converges to Xoo with respect to doy,

(ii) X,ST) converges to Xg) in the Gromov-Hausdorff topology for all but countably many r > 0,

(iii) There exist a boundedly-compact metric space (Z,d?) and distance-preserving maps fn, : X, — Z
and foo : Xoo — Z such that, for all but countably many r > 0, fn(pgg)l) — foo(pggo) in Z and
fn(Xff)) — fOO(Xég)) in the Hausdorff topology in Z.

To describe a precompactness criterion in the local Gromov-Hausdorff topology, we introduce the
notion of an e-covering and metric entropy.
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Definition 3.9 (e-covering, metric entropy). Let (S, d®) be a metric space and ¢ be a positive number.

A subset A C S is called an e-covering of S if it holds that S = (J,. 4 Ds(z,€). We define

N(S,¢) := min{|A| | A is an e-covering of S},

where | - | denotes the cardinality of a set. An e-convering A with |A| = N(S,¢) is called a minimal
e-covering of (S,d®). We call the family {N(S,¢) | € > 0} the metric entropy of (S, d?).

Remark 3.10. In Definition B9, we borrow the definition of metric entropy given in [28], but one
should note that the metric entropy is defined to be the logarithm of N (S, ) elsewhere in the literature.

Before the result on precompactness in the local Gromov-Hausdorff topology, we state a simple
property of the metric entropy. The result follows directly from the definition, so we omit the proof.

Lemma 3.11. Let (K, d¥) be a compact metric space. Then N(K,-) is right-continuous with left-hand
limits. In particular, it has at most countable discontinuity points.

Theorem 3.12 (Convergence of metric entropies). If a sequence of compact metric spaces (K,,,d"")
converges to a compact metric space (K,d®) in the Gromov-Hausdorff topology, then

N(K,¢) < liminf N(K,,e),

n—oo

for all e > 0, and, for all continuity points € >0 of N(S,-),

lim N(K,,e) = N(K,e¢)

n—oo
holds. In particular, the above equality holds for all but countably many .

Proof. Tt is not difficult to check that a characterization of convergence in the Gromov-Hausdorff
topology similar to Theorem 3.7 holds. Thus, we may assume that all the spaces K,, and K are
isometrically embedded into a common compact metric space (E, d) in such a way that dy (K,,, K) — 0
as n — oo. Set N := liminf,, oo N(K,,¢). Then (if needed, by choosing a subsequence,) we may
assume that for all sufficiently large n, we have N(K,,c) = N. Let (xEn))fvzl be a minimal e-covering
of (K,,d%"). Since (E,d) is compact, (if needed, by choosing a further subsequence,) we may assume
that xEn — x; for some x; € F for all 4, and one can check that z; € K using the convergence K,, — K

and that K is closed in E. For z € K, choose z,, € K,, such that d(x,z,) < dy(K,, K) and then
choose 2™ € K, such that d(x(-"),acn) < e. By the triangle inequality, it holds that

[ [

d(z,z;) < d(z,z,) + d(mn,xgn)) + d(acz(-"),aci) <dpg(Kp,K)+e+ maxd(x;n),xj),
J

and letting n — co we obtain that d(x,z;) < e. Thus (z;)}¥; is an e-covering of (K, d¥) and therefore

we obtain that N(K,e) < N.

Now suppose that € > 0 is a continuity point of Nyx (K, -). Then we can find an ¢’ < ¢ satisfying
N(K,e') = N(K,¢e). Set N’ :=limsup,,_,., N(K,,¢) and assume that N’ > N (K, ). Then (if needed,
by choosing a subsequence,) we may assume that for all sufficiently large n, we have N(K,,e) = N'. Let
(2:)N", be a minimal &’-covering of (K,dX). We choose J:Z(-") € K, such that d(z;, 1135")) <dpy(Kp, K).
For y € K,, we choose x € K such that d(z,y) < duy(K,,K) and then we choose z; such that
d(x;,x) < ¢’. By the triangle inequality, we obtain that

d(y, ™) < d(y, z) + d(z, ;) + d(z;, 2\ < 2 (K, K) + €.
Since K,, — K, the right-hand side of the above inequality is smaller than ¢ for all sufficiently large
n. Hence (xgn))fvzul is an e-covering of (K,,d" "), which implies that N(K,,¢) < N(K,&') = N(K,¢)
for all sufficiently large n. Letting n — oo in the above inequality yields a contradiction. Therefore it
holds that N’ < N(K,¢) and combining this with the first result yields the second assertion. O

Theorem 3.13 (Precompactness in the local Gromov-Hausdorff topology). A non-empty subset { X, =
(Xo,dX o, pa) | a € &} of M is precompact in the local Gromov-Hausdorff topology if and only if the
following condition is satisfied.
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(i) For every r >0 and € > 0, it holds that sup,, N(Xg), g) < 00.

Proof. Suppose that {X, | « € &/} is precompact. Assume that does not hold. It is then the

case that, for some » > 0 and € > 0, we can find a sequence (ay,)n>1 satisfying N(Xgn),s) — 0.
We choose a subsequence (ng)i>1 such that (Xa, )k>1 converges to some X = (X, dX,px) € M. It

then follows from Theorem that limg_ o0 N(X,gfn)‘ &) = N(X™) &'} < oo for some &' < ¢. Since

k
N(Xa?k,g) < N(Xa?k,a’), we obtain that limsup,_, N(Xa?k,g) < N(X™M &) < oo, which is a
contradiction. Therefore, holds.

Conversely, suppose that is satisfied. Fix a sequence (o, )n>1 in &. For each &, , we define a
rooted-and-measured boundedly-compact metric space &7, by equipping Xy, with the zero measure.
Then, by [I, Theorem 2.6] and [22, Theorem 3.28], the sequence (X, ),>1 has a subsequence (X(;nk Vi1
convergent in the local Gromov-Hausdorff-vague topology. This implies that (Xank )k>1 converges in

the local Gromov-Hausdorff topology (c.f. Corollary and Theorem below). O

3.2 The local Gromov-Hausdorff metric with an additional structure

In this section, we provide a method for metrization of the Gromov-Hausdorff-type topologies on
boundedly-compact spaces equipped with additional objects.

Definition 3.14 (Functor). We call 7 a functor if it satisfies the following.

(i) For every (X,dX,px) € 9M°, one has a metric space (7(X,d~, px),dX %) where 7(X,dX, px)
is a set and dXPX is a metric on it. We simply write 7(X) = 7(X, d*, px).

(ii) For every (X;,d™, px,), i = 1,2 and root-and-distance-preserving map f : X; — X», one has a
distance-preserving map 75 : 7(X1) = 7(X2).

(iii) For any two root-and-distance-preservingmaps f : X =Y, g : Y — Z, it holds that 7yoy = T4075.
(iv) For any (X,dX,px) € M°, it holds that 1a, = id,(x).

Remark 3.15. As explained in [23], 7 is indeed a functor between the categories of rooted boundedly-
compact metric spaces and metric spaces.

Example 3.16. A typical example of functors is the functor for measures, which is given by setting
7" (X) == M(X) equipped with the vague metric (recall it from Section 2Z.2Z.2) and 77" (p) = po f,
i.e., the pushforward of p. This functor yields the local Gromov-Hausdorfl-vague topology. (See Section
[44] for details).

We fix a functor 7. Let 901°(7) be the collection of X = (X, d~, px,ax) such that (X, dX, px) € IM°
and ax € 7(X). We say that X = (X,d~,px,ax) and Y = (Y,d", py,ay) are T-equivalent if and
only if there exists a root-preserving isometry f : X — Y such that 7¢(ax) = ay. The following result
justifies considering the “set” of T-equivalent classes.

Proposition 3.17. There exists a set M(7) satisfying the following.
(i) The set M(T) consists of elements in M (7).

(ii) For any Y € IM°(1), there exists a unique element X € M(7) such that X is T-equivalent to ).

Proof. Let 2% be the set of non-empty subsets of R. For every M € 2% we denote by D(M) the set
of functions d™ : M x M — R, such that d™ is a metric on M and (M, d™) is boundedly-compact.
We then define a set .# by setting

M= {(Mvdl\/lvpl\/fvaM):M€2RadM ED(M)apM GM,(I]\/[ ET(MadepM)}'

Fix Y = (Y,dY, py,ay) € M°(7). Since the cardinality of Y is smaller than or equal to the cardinality
of R, there exist X € 2% and a bijection f : Y — X. We define a function d¥ : X x X — R, by setting
dX(f(x), f(y)) = d¥ (z,y). It is then the case that dX € D(M) and f is an isometry from (Y,d¥) to
(X,dX). By setting px = f(py) and ax = 7f(ay), we obtain an element (X,d*X, px,ax) € .4 which
is 7-equivalent to ). Choosing a representative from each 7-equivalence class of elements in ., we
obtain the desired set M(7). O
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Definition 3.18 (The set M(7)). Similarly to M, we refer to a set M(7) satisfying the properties of
Proposition B.IT as the set of T-equivalence classes of elements in 9°(7).

Definition 3.19 (The metric dj,). For X = (X,dX, px,ax),Y = (Y,d¥, py,ay) € M°(7), we define
Gia(X.Y) = inf {57 (F(X),9()) Va2 (rp(ax). myar)) }

where the infimum is taken over all (Z,d?, pz) € M and root-and-distance-preserving maps f : X — Z

and g:Y — Z.

We will suppose that the following continuity condition for 7 holds to show dfy is a metric on 9(7).

Assumption 3.20. Fiz (X,d~,px),(Y,dY,py) € IMM° arbitrarily. Let f, : X — Y, n € NU {oo} be
root-and-distance-preserving maps. If fn — foo in the compact-convergence topology, then 74, (a) —
Tr. (@) in 7(Y) for all a € 7(X).

Definition 3.21 (Continuous functor). We say that a functor 7 is continuous if 7 satisfies Assumption
1. 20

For example, one can check that the functor 7, which is briefly introduced in Example B.16], is
continuous by using the dominated convergence theorem.

Lemma 3.22. Let X,, = (X,,d*",px,,ax,), € N be elements of M°(1) such that diy (X, Xpi1) <
27 me=2" | Then, there exist a rooted boundedly-compact metric spaces (Z*,dZ*,pZ*) and root-and-
distance-preserving maps hy, : X,, — Z* such that

d?]*ﬁpz* (hn (X’ﬂ)a hn+1(Xn+1)) < 27"672”7 df*,pz* (Thn (aXn)7 Thnt1 (aXn+1)) < 27”67271"

Proof. By assumption, for each n, there exist a boundedly-compact metric space (Y;,,d"", py,) and
root-and-distance-preserving maps f, : X,, = Y, and g, : X;,+1 — Y, such that

Yn .0y, —n _—2" Yn,0v, —n _—2"
A" (fa(Xn), gn(Xnt1)) <2772, de™P7 (14, (ax,, ), Ty, (ax,4)) <2777 (32)

By restricting the codomains of f, and g,, we may assume that Y;,, = f,,(X;,) U gn(X,+1). Note that
by the definition of the local Hausdorff metric there exists s, > 2" such that

&7 (Fa(XE), gn(XE))) = A3 (X)), g (X ppr) ) < 277 (3.3)

We define a pseudometric d™ on M :=| | X, by setting d™|x, xx, = d* and

k-1
dM (2, Tpyr) = inf {Z A (Frst(@ngt), Gnrt(Tntis1)) | Tog1 € Xngty o Tngr—1 € Xn+k1}
=0

for 2, € XpTpir € Xpnar and k > 1. Note that we set d™ (2, 2n11) = d¥ (fn(2n), gn(Tny1)) for
Ty € Xpn, Tny1 € Xpg1. We use the equivalence relation ~ on M given by

r~y e d(z,y) =0 (3.4)

to obtain the quotient space Z := M/ ~. We denote the equivalence class of x € M by [z]. It is then
the case that [py,] = [py,,,] for all n and we define the root of Z by setting pz = [py,]. We write

d?([z], [y]) = d" (z,y),

which is well-defined and a metric on Z.

We show that Dyz(pz,r) is totally bounded for every » > 0. Fix r > 0 and € > 0. Choose N so
that Z?izv 27t < g and 2V > r + 1. For each n < N, there exists a subset {wiﬁn}iT:”1 C X,, such that
Dx,(px,,r +1) € U™ Dx, (win,e). Weset W = {[wi,] | n=1,2,...,N,i=12,....,T,,} C Z.
Fix [zy] € Z satistying d(pz, [x,]) < r and x, € X,,. If n < N, then there exists w; ,, € X,, such that
dXr (2, w; ) < &, which implies that d?([w; ], [z,]) < e. Suppose n > N. Since x,, € x\" c X,SS"),
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by B3), we can find z,_1 € X,,_1 satisfying d¥—1(f,_1(2n_1),gn_1(x,)) < 27"FL. Since it holds
that

d* = (px, gy @a—1) = A (py, s fam1(n-1))
< d'r (PY_1s Gn—1(z0n)) + d"n (gn—1(zn), fr—1(2n-1))
< d*(px, ) +27"F
<427

—n+1
it is the case that z,,_1 € Xf:_"rl2 ). Inductively, we obtain a sequence xxy € Xp,...,T, € X, such

that d¥(f,(z1), gi(w141)) <2 ' foreachl € {N,N+1,...,n—1} and xx € X](\;JFTN). We choose w; n
such that dX¥ (w; y,7n) < e. We deduce that

d™ (wi v, xn) < dM(win, o) +dY 2y, @)
n—1
<dN (winsan) + Y A (filw), gi(@ig1))
I=N
< 2¢,

which implies that d?([w; ], [xn]) < 2¢. Therefore, Dz(pz,r) is totally bounded. Let (Z*,d?") be
the completion of (Z,d?). Then, (Z*,d?") is boundedly compact and we define the root of Z* by
setting pz+ = pz. Note that we regard (Z,d?) as a subspace of (Z*,d?").

Let ¢y, : X;, — M be the inclusion map and ¢ : M — Z C Z* be the quotient map (i.e., ¢(x) = [z])
and define h,, : X,, — Z* by setting h,, = qo t,. It is easy to check that h,, is root-and-distance-
preserving. Recall that we have Y,, = f,(X,) U gn(Xn+1). Define a map &, : Y, — Z by setting
En(fru(zn)) = [zn] and &, (gn(2nt1)) = [Tn41], which is well-defined by B4). It then holds that
& o fn = hy and &, 0 g, = hyp41. Moreover, &, is root-and-distance-preserving. Therefore, from
Proposition 232 and ([3.2)), it follows that

ng*’pZ* (hn(Xn)a hn+1(Xn+1)) = dIZ;,pZ* (fn ° fn(Xn); gn °© gn(Xn+1))
= dgnﬁpyﬂ (fn(Xn)7 gn(Xn+1))

< 2_"6_2n,
and similarly dZ"#7* (13, (ax, ), Th, 11 (ax,.,,)) < 27 "e~2". Therefore, we obtain the desired result. [

Theorem 3.23. Assume that a functor T is continuous. Then di,(X,Y) = 0 if and only if X is
T-equivalent to Y. Moreover, di; is a metric on (7).

Proof. By the definition of dfy, if X' is T-equivalent to ), then dj;(X,)) = 0. Conversely, assume
that d,(X,Y) =0 for X = (X,d™,px,ax) and Y = (Y.d", py,ay). Define Z,, = (Z,,,d?", pz,,az,)
by setting Z5,_1 = X and 25, = Y. By Lemma .22 there exist a rooted boundedly-compact metric
spaces (W, d"V, pw) and root-and-distance-preserving maps f,, : Z, — W such that

dVHV,pW (fn(Zn)afn-i-l(Zn-i-l)) < 2_n6_2n’ d7W7pW (Tfn (a’Zn)’Tfn+1 (aZn+1)) < 2_n6_2n' (35)

Since the sequence (f,(Z))n is a Cauchy sequence in C(W), by Theorem 230 there exists a closed
subset Z C W such that
W,
dﬁ] o (fn(Zn)vz) — 0. (36)

Since each fa,,—1 : X — W is distance-preserving, the family (fo,—1)» is equicontinuous. Moreover, for
every € X, we have that sup,, dV (pw, fan—1(2)) = d* (px,z). Hence, by the Arzeld-Ascoli theorem,
(fan—1)n is compact in C(X, W) equipped with the compact-convergence topology. Similarly, (fon)n
is compact in C(Y, W). Thus, we can choose a subsequence (ny)x such that fa,,—1 — ¢ in C(X, W)
and fap, — hin C(Y,W). It is easy to check that g and h are root-and-distance-preserving. By
Assumption and (35), we obtain that d¥"*W (1,(ax), 7 (ay)) = 0, which implies that

Tg(ax) = mn(ay). (3.7)
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We show that Z = g(X) = h(Y). Fix z € Z. Then, by [B.6) and Theorem 2.28 we can find » > 0

and (2z2n,—1)n C Zgz);rl satisfying fon,—1(22n,—1) — 2. Since zop,—1 € Zé:l))rl =X, (if necessary,
by choosing a further subsequence) we may assume that zo,, -1 — 2 for some z € X. It is then the

case that

dV (2, fanp—1(2)) < dV (2, fanp—1(220,-1)) + d" (fong—1(22n—1); fone—1(2))
= d" (2, fany—1 (220, 1)) + 4™ (220, -1, T),

which implies that fa,,—1(z) — z. Thus Z C g(X). Fix x € X. Then, by (8.6), we can find a sequence
(22n,—1)k C Z such that d" (fan, —1(), 22n,—1) — 0. If necessary, by choosing a subsequence, we may
assume that z9,,_1 — z € Z. This yields that g(z) = z € Z. Therefore, we obtain Z = ¢g(X) and
similarly Z = h(Y).

We define root-preserving isometries ¢’ : X — g(X) and b’ : Y — h(Y) by restricting the codomains
of g and h. We then obtain the root-preserving isometry (h')"1og' : X — Y. Let ¢ : Z — W be the
inclusion map. It then holds that g = tog’ and h = toh’. Since 7, : 7(Z) — 7(W) is injective, it follows
from @B.1) that 74 (ax) = 7w (ay). This yields that 7(,/)-104 (ax) = ay. Hence, X is 7-equivalent to
Y (via (h)"tog’).

The symmetry of dgy is obvious. To prove the triangle inequality, assume that dj; (X1, X2) < r and
din (KXo, X3) < s for X; = (X;,d%, px,,ax,), i = 1,2,3. By a similar argument to the proof of Lemma
B.22 it is possible to show that there exist a rooted boundedly compact metric space (Y, dY, py) and
root-and-distance-preserving maps f; : X; — Y, ¢ = 1,2, 3 such that

™ (f1(X1), fo(X2)) <7 dp™ (fa(Xa), f3(Xa)) <5,
d‘rywy (Tfl (a’Xl )7 Tfo (aX2 )) <, d}rlﬁpy (Tf2 (a’Xz )’ Tfs (a’Xs )) <s.
This yields that djy (X1, X3) < r+ s, which implies that df; satisfies the triangle inequality. (|

Theorem 3.24 (Convergence in 9M(7)). Fiz a continuous functor 7. For each n € N U {oo}, let
X, = (X,,,d%", px,,ax,) be an element of M°(7). Then, X, converges to X with respect ot dfy if
and only if there exist (Z*, dZ*,pZ*) € M and root-and-distance-preserving maps hy, : X, — Z* such
that

A7 7 (hn(X0), hoo(Xo0)) = 0, 2707 (1, (ax,), T (ax..)) = 0. (3.8)

Proof. If (X;)nenu{so} are embedded into a common rooted boundedly-compact metric space in such
a way that ([B.8)) holds, then it is easy to check that dj; (X, X&) — 0.

Assume that ¢, = df; (X, X) — 0. Then there exist a rooted boundedly-compact metric space
(Ya, dY",pyn) and root-and-distance-preserving maps f, : X, — Y, and g, : Xoo — Y}, such that

A (fu(Xn), gn(Xoo)) < en+n7t,  di"P (14 (ax,), 74, (ax.)) <en+n"'  (3.9)

We define a pseudometric dZ on Z = l—lnENU{oo} X, by setting d?|x, xx,, = d~*",

dZ((En, (Eoo) = dYn (fn(xn)7 gn(fﬂoo))

for z, € X, Too € Xoo, n # 00 and

dZ(xn, xm) = inf{dyn(fn(xn),gn(xoo)) +d" (gm($<>O)v fm(xm)) | Too € Xoo}

for z, € X,,, xn € X, n# m, n,m € N. We use the equivalence relation ~ on Z given by
r~y e d(e,y) =0 (3.10)

to obtain the quotient space Z* = Z/ ~. Let ¢ : Z — Z* be the quotient map. The metric
d?" is given by d? (q(x),q(y)) = d?(x,y). Tt is not difficult to check that (Z*,d?") is boundedly
compact and ¢(py,) = q(py,,) for all n,m. We define the root pz~ of Z by setting pz« = q(py;)-
We write ¢,, : X, — Z for the inclusion map and set h,, == qo ¢, : X,, — Z*, which is root-and-
distance-preserving. Define a map X,, U X — Y, by setting &,|x, = fn, &nlx.. = gn. Then, by
the definition of the equivalence relation given in (B.I0), we obtain a map & : ¢(X, U Xx) — Y,
such that & o q|x, ux.. = &.. We equip the set ¢(X,, U X) C Z* with the root pz- and the metric
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obtained by restricting the metric d?”. It is then the case that &, is root-and-distance-preserving. Let
gn 2 Xn = ¢(Xn U Xoo) and ¢7 1 Xoo — ¢(X, U Xo) be the be the corestriction of g o ¢, and ¢ o too,
respectively. In addition, we let £, : ¢(X,, U Xs) — Z be the inclusion map. Then, it follows that

7Pz (m, (ax, ) The (ax,.)) = d7 P2 (T, 07, (ax, ), T, © Tag (ax..)

= d?l'(XnuXOO)7pZ* (TQn (aXn )’ quo (aXoo ))

Y0¥
= d:""" (1y 07, (ax.,), Te;, © Tqp (ax.))

1. (ax, ) Tt (ax.))

< En Jrn*l,

_ dz_/mpyn (

where we use ([B.9)) at the last inequality. Similarly, we obtain that
Z* pgx -1
dy " (hn(Xn), hoo(Xoo)) < &n+n77,
which completes the proof. (|

The following is an immediate consequence of Theorem [3.24]

Corollary 3.25. Fiz a continuous functor 7. The map M(7) > (X,d¥, px,ax) — (X,d¥, px) € M
s continuous.

For compactness and separability, we consider additional conditions. For X = (X,d*X,px), Y =
(Y,d¥, py) € M°, we write X < Y if and only if X C VY, d¥ |xxx = d¥ and px = py.

Assumption 3.26. Let X,, = (X,,,d*",px,), n € NU{oo} and Z = (Z,d?,pz) be elements in IM°
such that X, = Z for all n € NU {oo} and X,, converges to X with respect to dZH’pZ. We write
tn : Xn — Z for the inclusion map.

(i) If b € 7(Z) and a,, € 7(X,,) are such that d%*7 (7, (ax,),b) — 0, then there exists a € T(X)
satisfying b =71, (a).

(ii) For every a € 7(Xo), there exists a sequence ay, € 7(X,) such that 7, (an) = 7, (a).

Assumption m and are related to the completeness and the separability of the metric dgy,
respectively. For example, for the functor 7™ (recall it from Example B.I6]), the condition says that
if measures u, on X, converges to a measure y as measures on Z, then pu is supported on X, and the
condition says that any measure p on X is approximated by measures on X,,, where X,, assumed
to converge to X in the local Hausdorff topology as subsets of Z. (See Section 4] for details.)

Definition 3.27 (Complete, separable functor). A functor 7 is said to be complete (resp. separable)
if and only if it satisfies Assumption Bﬂiﬂ (resp. [(ii)) and, for each (X,dX,px) € IM°, the metric
space (7(X),dX*X) is complete (resp. separable).

Theorem 3.28 (Completeness of diy). Suppose that T is complete and continuous. Then, dfy is a
complete metric on (7).

Proof. Let X, = (X,,,d*",px,,ax,) € M, n € N be a Cauchy sequence in (7). We choose a
subsequence (X, )r>1 satisfying df, (X, , Xn,,,) < 2%¢=2" By Lemma B2 there exist a rooted

boundedly-compact metric space (Z,d?,pz) and root-and-distance-preserving maps f : X,, — Z
such that

Z, _ L _9k , 1. _ok
A (X ), frr1(Xnyyy)) <27Fe7, d2P7 (rp (ax,, ), Thep (ax,,, ) <27 %72

It is then the case that (fi(Xn,))r>1 is a Cauchy sequence in C(Z) and hence f,(X,) converges to a
closed subset Y C Z in C(Z). Similarly, it follows that 7y, (ax,,, ) converges to an element a € 7(2)
in 7(Z). We equip Y with the metric d¥ := d?|y«y and the root py := pz. Let 1 : Y — Z be the
inclusion map. By Assumption B28(i)} there exists ay € 7(Y) satisfying 7,(ay) = b. Therefore, by
Theorem [3.24, we obtain that X, converges to (Y,d", py,ay), which completes the proof. O

Theorem 3.29 (Separability of M(7)). Suppose that T is separable and continuous. Then, (M(7), diy)
s separable.
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Proof. Let o/ be a countable collection of elements in 9t which is dense in 91 in the local Gromov-
Hausdorff topology. For each (X,d*,px) € 9M, we choose a countable dense subset D(X) C 7(X).
We write

2° ={(X,d*,px,ax) | (X,d*, px) € &, ax € D(X)}.

We then define a countable subset & by setting
9 ={Y € M(7) | Y is T-equivalent to some X € 2°}.

Fix X = (X, d¥, px,ax) € M(r). We choose (X,,,d*", px,) € & such that (X,,,d ", px,) converges
to (X,d%X, px) in the local Gromov-Hausdorff topology. Then, there exist a rooted boundedly-compact
metric space (Y,dY, py) and root-and-distance-preserving maps f,, : X, — Y and f : X — Y such
that f,,(X,) converges to f(X) in C(Y). By Assumption we can find ax, € 7(X,) such that
71, (ax, ) converges to Tf(ax) in 7(Y'). Since D(X,,) is dense in 7(X,,), we may assume that ax, is an
element of D(X,,). By Theorem .24, we obtain that X,, = (X,,,d* ", px, ,ax,) € Z° converges to X.
Since (1) is the collection of T-equivalence classes, there exists ), € 9M(7) which is 7-equivalent to
X, By definition, ), is an element of 2 and hence 2 is dense in (7). O

The following is a summary of the results so far.

Corollary 3.30. If a functor T is complete, separable and continuous, then (IMM(7), dfy) is a complete,
separable metric space.

We provide a method to compare Gromov-Hausdorff-type topologies via functors.

Definition 3.31 (Topological subfunctor). Let 7 and 7 be functors. We say that 7 is a topological
subfunctor of 7 if and only if the following conditions are satisfied.

(T1) For every (X,dX,px) € 9M°, there exists a topological embedding of 7(X) into 7(X), that is,
there exists a homeomorphism from 7(X) to a subset of 7(X). Using this map, we always regard
7(X) as a subspace of 7(X).

(T2) For every (X;,d%i px,), i = 1,2 and root-and-distance-preserving map f : X; — Xa, it holds
that 7y = 7~—f|-r(X1)-

The following results are immediate consequences of Definition B.31] and Theorem [3.24] and hence
we omit the proofs.

Proposition 3.32. Let 7 be a topological subfunctor of 7. If T is continuous, then so is T.

Proposition 3.33. Let 7 be a topological subfunctor of T and assume that T is continuous. Then, the
following map is a homeomorphism onto its image:

M(T) > (X,d¥, px,ax) — (X,d¥, px,ax) € M(7).

By Proposition and Proposition B33 we always regard M(7) as a subspace of MM(7) when 7
is a topological subfunctor of a continuous functor.

We next provide a method to check the Polishness of 0(7) for a functor 7 that is not necessarily
complete. This method will be used in Section 17

Definition 3.34 (Polish functor). We say that a functor 7 is Polish if there exist a functor 7 and,
for each (X,d*X,px) € M°, a sequence (7,(X))?, of open subsets in 7(X) satisfying the following
conditions.

(P1) The functor 7 is complete, separable and continuous.
(P2) The functor 7 is a topological subfunctor of 7.

(P3) For every (X,d¥, px) € M°, it holds that 7(X) = ;5 7 (X).
(P4)

P4) Let f: X; — X» be a root-and-distance-preserving map between (X;,d%i, px,) € M°, i = 1,2.

?

Then, %Jc_l(’f'k(Xg)) = 7, (X1) for each k > 1. In particular, 7~‘f_1(7'(X2)) =7(X1).

We call (7, (Tx)k>0) a Polish system of 7.
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The intuition for the above conditions is as follows: |[(P1)| and [(P2) say that the space () is
topologically embedded into a Polish space D(7); |(P3)|implies that 7(X) is Polish; |(P4)|is a condition
on the consistency of 7 (X) with respect to morphisms of 7.

Remark 3.35. When (7, (7 )x>0) of 7 is a Polish system, then by setting o (X) = ﬂle 7(X) for each
(X,d¥,px) € 9M°, we obtain another Polish system (7, (0k)k>1) of 7. Thus, we can always assume
that (7%(X))r>1 is a decreasing sequence.

Theorem 3.36. If 7 is a Polish functor, then the topology on 9MM(7) is Polish. (N.B. The metric diy
is not necessarily a complete metric.)

Proof. Define
M(7) = {(X,d¥, px,ax) € M(F) | ax € 7(X)}.

Then, we have that (1) = (N, M(7x). Since M(7) is Polish by Corollary B30 and it suffices
to show that 9(7) is open in M(7). Let (X, d ", pn,ax,))n>1 be a sequence of M(7)¢ converging
to some (X,dX, px,ax) in 9M(7), where we recall that - denotes the complement. By Theorem [3.24
there exist a rooted boundedly-compact metric space (Z,d?,pz) and root-and-distance-preserving
maps fn, : X;, = Z and f : X — Z such that f,(X,) — f(X) in C(Z) and 7y, (ax,) — Tf(ax) in

7(Z). By|(P4)| we have that 7¢, (ax, ) € Tx(Z)°. Since 7%(Z)° is closed, we obtain that 7¢(ax) € Tx(Z)°.
Using [(P4)| again, we deduce that ax ¢ 7x(X), which implies that (X,d*X, px,ax) € 9M(7x)°. Hence,
OM(7y;) is open. O

In this framework, it is fairly easy to consider multiple objects.

Definition 3.37 (The product functor). Fix N € NU {oo} Let (7)) be a sequence of functors.
The product functor T = chvzl 7(F) is defined as follows:

(i) For every (X,dX, px) € 9MM°, we set 7(X) = HkN:1 7F)(X). If N < oo, then we equip 7(X) with
the max product metric. Otherwise, we equip 7(X) with the metric given by

a2 ()R, (b)) = D027 (LA 70 (ans b))
k=1

(i) For every (X;,dXi px,), i = 1,2 and root-and-distance-preserving map f : X; — Xo, we set
Tf = Hl]cvzl T}k), that is, 77 : 7(X1) — 7(X2) is a distance-preserving map given by

7 (a)i) = (P (@),

The following results are straightforward, so we omit the proof.

Proposition 3.38. Fiz N € NU{oco} Let (7'(k))kN:1 be a sequence of functors. If each 7 is continuous
(resp. complete, separable, Polish), then so does the product functor chvzl (k)

Proposition 3.39. Fiz N € NU{co}. Let (t®)N_ (FF)N_| be functors such that 7*) is a topological
subfunctor of %) for each k. Then, H,chzl 7(8) is a topological subfunctor of chvzl 7k

4 Examples of functors

Recall the definitions of a functor 7 and the resulting metric space (9(7), df;) from SectionZ2 In this
section, we give examples of functors T by defining a metric space (7(X), dX*x) for each (X,dX, px) €
9M°, and defining a distance-preserving map 7¢ : 7(X1) — 7(X2) for each (X;,d%i, px,) € M°, i =1,2
and root-and-distance-preserving map f : X7 — Xo, where we recall that 91° is the collection of rooted
boundedly-compact metric spaces.
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4.1 The functor for a fixed structure

We begin with a very simple example, which is perhaps not interesting by itself, but it enables us to
consider a rich variety of additional structures through product functors or the functor introduced in

Section 4.8

Fix a complete, separable metric space (Z,d%). Define a functor 7= as follows.
e For (X,d¥,px) € M°, set 7=(X) := = and dfg’px = d=.
e For each (X;,d%i, px,) € M°, i = 1,2 and root-and-distance-preserving map f : X; — Xo, set
T]? = id=.
The following result is straightforward and thus we omit the proof.
Proposition 4.1. The functor 7= is continuous, complete and separable.
Corollary 4.2. The function d'{mE is a complete, separable metric on M(T%).

Proof. This is an immediate consequence of Corollary [3.30) (|

The following result provides a precompactness criterion for 9t(7=). Since it is proven easily by
using Theorem B.24] we omit the proof (c.f. the proof of Theorem (.6 below).

Theorem 4.3 (Precompactness in 9M(75)). A non-empty subset {X, = (Xa,d%, pa,&a) | @ € '} of
M (7=) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xa,d%, pa) | @ € &} of M is precompact in the local Gromov-Hausdorff topology.
(i) The set {&q | o € &/} is precompact in =.

4.2 The functor for points

In |14, Section 8.3], a Gromov-Hausdorfl-type topology was introduced on a set of equivalence classes
of measured compact metric spaces equipped with points. The topology is useful for discussing con-
vergence of glued spaces (e.g. [3, Section 4]) and fused spaces (e.g. [I4, Section 8.3]). In this section,
we provide a functor that gives a natural generalization of that topology.

Define a functor 7P as follows.

d FOI' (Xa anpX) S mo’ set Tpt(X) = X and dvaX — dX

TPt
e For each (X;,d%i, px,) € M°, i = 1,2 and root-and-distance-preserving map f : X; — Xo, set
b
T (x) = f(x).
The following result is straightforward and thus we omit the proof.
Proposition 4.4. The functor % is continuous, complete and separable.

Corollary 4.5. The function d'&npt is a complete, separable metric on IM(TP?).

Theorem 4.6 (Precompactness in M(7P)). A non-empty subset {Xo = (Xo,d®, pa,va) | @ € '} of
M(7P) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xq,d®, pa) | @ € '} of M is precompact in the local Gromov-Hausdorff topology.

(ii) For some r > 0, it holds that v, € x{ foralla € .
Proof. Assume that {X, | a € &/} is precompact. From Corollary 325 we obtain If is

not satisfied, we can find an increasing (r,)n>1 with r, 1 co and a sequence (vq, Jn>1 With v,, €

Xg;") such that v,, ¢ Xg;") for all n. If necessary, by choosing a subsequence, we may assume
that (Xo,,d*", pa, , Va, ) converges to some (X, dX, px,vx) € M(7P*). By Theorem [3.24] there exist
a rooted boundedly-compact metric space (Z,d?,pz) and root-and-distance-preserving maps f,, :
Xa, = Z and f : X — Z such that f,(X,,) — f(X) in the local Hausdorff topology in Z and
fn(va,) = f(vx) in Z. Tt is then the case that, for some r > 0, vy, € Xéﬁ? for all n, which is a
contradiction. Therefore, we obtain |(ii))

Conversely, assume that and are satisfied. From Theorem [B.24] it is easily proven that
any sequence in {X, | @ € &/} has a convergent subsequence, which implies that {X, | a € &} is
precompact.
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For n € N, we define 7P% to be the n-product functor of 7Pt. Then, I (7™P*) is the collection of
equivalence classes of rooted boundedly-compact metric spaces equipped with additional n points and
n,pts . )
the metric dgy " induces a suitable topology on M(7Ps).

4.3 The functor for subsets

In [29] Section 6.4], a Gromov-Hausdorff-type topology was introduced on a set of equivalence classes
of measured compact metric spaces equipped with subsets. In this section, we provide a functor that
gives a natural generalization of that topology. Recall from Section 2221l that, for each (S, d°, p) € I°,

C(S) denotes the collection of closed subsets in S and dSH’p denotes the local Hausdorff metric on C(S).
Define a functor 7 as follows.

e For (X,d*,px) € M°, set 7'(X) = C(X) and difs,tpx — dg,px.

e For each (X;,d%i, px,) € M°, i = 1,2 and root-and-distance-preserving map f : X; — Xo, set
T3'(4) = f(A).

The following results are straightforward and thus we omit the proofs.
Proposition 4.7. The functor ™% is continuous, complete and separable.
Corollary 4.8. The function dg;t is a complete, separable metric on IM(75Y).

Theorem 4.9 (Precompactness in MM(75")). A non-empty subset {Xo = (Xo,d®, pa, Aa) | @ € '} of
M(75) is precompact if and only if the subset {(Xq,d*, pa) | @ € &} of M is precompact in the local
Gromov-Hausdorff topology.

Proof. Using Theorem [3.24] and Theorem 230, one can prove the desired result in a similar way to the
proof of Theorem O

For n € N, we define 7% to be the n-product functor of 7¢. Then, 9(775%) is the collection of
equivalence classes of rooted boundedly-compact metric spaces equipped with n boundedly-compact
n,sts .
subsets and the metric df;”  induces a suitable topology on Dt(7"-%).

Remark 4.10. If one wants to consider spaces equipped with compact subsets (not closed subsets),
using the Hausdorff metric instead of the local Hausdorff metric, one obtains a suitable functor.

4.4 The functor for measures

The local Gromov-Hausdorff-vague topology (recall it from Section [[LT]) is commonly used for study-
ing random measured spaces. In this section, we recover this topology by introducing a functor for
measures. Recall from Section that, for each (S,d°,p) € 9M°, M(S) denotes the set of Radon
measure on S and di’p denotes the vague metric on M(S).

Define a functor 7™ as follows.

e For (X,d¥, px) € M°, set 77(X) == M(X) and dF* = dp?X.

e For each (X;,d%i, px,) € M°, i = 1,2 and root-and-distance-preserving map f : X; — Xo, set
T (p) = po f

Proposition 4.11. The functor 7™ is complete, separable and continuous.

Proof. The continuity follows immediately from the definition of the vague topology and the dominated
convergence theorem. Let X, = (X,,d*",px,), n € NU{oo} and Z = (Z,d?, pz) be elements in IM°
such that X,, < Z for all n € NU{oo} and X, converges to X with respect to dgpz. Let pn, € M(X5,)
be such that p,, converges to some p € M(Z) with respect to d‘Z,’pZ. Fix x € Z\ X. Since Z \ X is
open, there exists € > 0 such that Bz(z,e) N X = (. Choose r > 0 such that Bz(x,e) C Dz(pz,r),
X,S’”) — X with respect to d% and usf — u) with respect to d4. Then, X,, N Bz(x,&) =  for all
sufficiently large n, and so we obtain
w(Bz(w,e)) = p") (Bz(x,¢)) < liminf pu{) (B (z,¢)) =0,

n—oo
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which implies supp(p) € X. This proves that 7™ is complete. Next, let pu be a finite measure with
finite atoms in X. By approximating the atoms by atoms in X, it is not difficult to construct a finite
measure [, with atoms in X, such that u, converges to u in the vague topology. Since such measures
1 are dense in the set of measures with support in X, we obtain the separability of 7. O

Corollary 4.12. The function dg; is a complete, separable metric on M(T™).

We check that the topology on 9t(7™) coincides with the local Gromov-Hausdorff-vague topology
introduced in [I, 22]. Recall that, for X = (X,d¥,px,ux) € M(r™) and r > 0, we define X" =

(X, ax"” , pg:), ng) by setting

(r)

X" = Dx(px,r), dX"7 = d¥|xorxm. Y =px, 1Y () = px (N XO).

Theorem 4.13. For each n € NU {oo}. let X, = (X, d*", px,,, px,, ) be an element of M(7™). The
following statements are equivalent.

(i) The elements X, converge to X with respect to df”);tn,

(ii) The elements X,, converge to X in the local Gromov-Hausdorff-vague topology,

(iii) The elements Xy) converge to X(@ in the Gromov-Hausdorff-Prohorov topology for all but count-
ably many r > 0.

(iv) There exist a boundedly-compact metric space (Z,d?) and distance-preserving maps fn : Xpn — Z
and foo : Xoo — Z such that, for all but countably many r > 0, fn(pgzi) — foo(pggc) in Z,
fn(Xff)) — foo(XC(XTD)) in the Hausdorff topology in Z and ,ugg)z ofil— ,ugzzo o fx! weakly as
measures on Z.

Proof. See Appendix [Al O

Theorem 4.14 (Precompactness in the local Gromov-Hausdorff-vague topology). A non-empty subset
{Xo = (Xa,d%, pa, lia) | @ € '} of M(T™) is precompact in the local Gromov-Hausdor{f-vague topology
if and only if the following conditions are satisfied.

(i) The set {(Xa,d*, pa) | @ € &} is precompact in the local Gromov-Hausdor(f topology.
(ii) For every r >0, it holds that sup,¢ ua(Xg)) < 0.

Proof. If {X,, | a € o/} satisfies[(i)] and[(ii)} then by Theorem BI3 [I, Theorem 2.6] and [22, Theorem
3.28], {X, | @ € &7} is precompact in the local Gromov-Hausdorf{f-vague topology. Conversely, assume
that {X, | « € &/} is precompact in the local Gromov-Hausdorff-vague topology. Then, by Corollary
and Theorem [£.13] holds. Assume that is not satisfied. Then, for some r > 0, there exists
a sequence (o)n>1 in &7 such that g, (Xg;)) — 00. Choose a subsequence (an,)r>1 so that X,
converges to some X = (X, d™, px, pux) € M(7™). By Theorem [3.24] it is possible to embed Xa,, and
X rooted-isometrically into a common rooted boundedly-compact metric space (Z,d?, pz) in such a
way that p Xap, 7 H vaguely as measures on Z, which is a contradiction. Therefore, we obtain O

4.5 The functor for cadlag curves

A stochastic process with cadlag paths is a random cadlag curve and is a fundamental object of interest
in probability theory. In this section, we define a functor for cadlag curves. This functor, combined
with a functor introduced in Section .8 gives a suitable topological setting for studying stochastic
processes living on different spaces.

Given a separable complete metric space (S, d”), we denote by D(R ., S) the set of cadlag functions
f: Ry — S. We equip D(R4,S) with the usual J;-Skorohod topology and write di for a complete,
separable metric inducing the usual J;-Skorohod topology (see [10] or [33] for such metrics).

Define a functor 77t as follows.

e For (X,d¥,px) € M°, set 771(X) = D(Ry, X) and df}f’( =dj.
e For each (X;,d%i, px,) € M°, i = 1,2 and root-and-distance-preserving map f : X; — Xo, set

TI(E) = fok.
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Proposition 4.15. The functor 7/t is complete, separable and continuous.

Proof. Checking the continuity is straightforward. Let &, = (X,,d%",px, ), n € NU{co} and Z =
(Z,d?,pz) be elements in M° such that &, < Z for all n € NU {co} and X,, converges to X with
respect to dZH’pZ. Let &, € D(R4, X,,) be such that &, — £ in the usual J;-Skorohod topology for some
¢ € D(Ry,Z). Then, for each ¢t > 0, there exists t,, > 0 such that &, (t,) — £(¢) in Z. Choose r > 0 so

that &,(t,) € Z") for all n and d% (X,(f), X)) — 0. Then, one can check that £(t) € X (7). Therefore,
we obtain that & € D(R, X), which implies the completeness of 7/*. To obtain the separability, note
that every function in D(R, X) is approximated by a sequence of step functions, where a step function
is a function that can be written in the following form:

E(t) _ {ak te [tk—la tk) (4-1)

mt1  tE [tm,00)

for some ap, € X, k= 1,2,....m+1and 0 = tg < t; < t2 < --- < t,, < 00. Using the conver-
gence dZH’p 7(Xpn,X) = 0, for every step function & in D(R,, X), one can construct step functions in
D(R,, X,,) approximating &. Therefore, 771 is separable. O

Corollary 4.16. The function d'rg:nJ1 is a complete, separable metric on M(T71).

Let us prepare to describe a precompactness criterion. For ¢ € D(Ry, S), where (S, d”) is a metric
space, we define

wg(&, h,t) == inf max sup ds(é(r),é(s)), t,h >0,
Ikl k  rsely

where II; denotes the set of partitions of the interval [0,¢) into subintervals I, = [u,v) with v —u > h
when v < t. We recall a precompactness criterion on the usual J;-Skorohod topology.

Lemma 4.17 ([21, Theorem A5.4]). Let (S,d°, ps) be a rooted boundedly-compact metric space. Fix
a dense set T C Ry. A subset {&o | o € &} of D(Ry4,S) is precompact in the usual Jy-Skorohod
topology if and only if the following conditions are satisfied.

(i) For each t € T, there exists 7 > 0 such that £,(t) € S for all a € o .

(ii) It holds that lim sup ws(&y,h,t) =0 for allt > 0.
h—0 ncor

In that case, it follows that {£4(s) | @ € &7, s < t} is precompact in S for all t > 0.
It is easy to obtain a precompactness criterion for the topology on 9(77/t) from Lemma ETT

Theorem 4.18 (Precompactness in MM(77/1)). Fiz a dense set T C Ry. A non-empty subset {X, =
(Xa,d®, pa,&a) | a € o} of M(771) is precompact if and only if the following conditions are satisfied.

(i) The set {(Xa,d*, pa) | @ € &} is precompact in the local Gromov-Hausdor(f topology.

(ii) For each t € T, there exists r > 0 such that &,(t) € X8 for all o € o

(i) It holds that lim sup wx, (€q,h,t) =0 for all t > 0.
h—0 ncor

In that case, the following result stronger than holds.
(iv) For each t > 0, there exists r > 0 such that {u(s) € X for all o€ o and s < t.
Proof. Assume that and are satisfied. Fix a sequence (ay,),>1 in &/. By if neces-

sary, by choosing a subsequence, we may assume that X, converges to some (X,d*,px,&x) in the
local Gromov-Hausdorff topology. By Theorem [3.24] there exist a rooted boundedly-compact metric
space (Z,d?,pz) and root-and-distance-preserving maps f, : Xo, — Z and f : X — Z satisfying
dgpz(fn(Xan), f(X)) — 0. Tt follows from and Lemma [L17 that, for some subsequence
(atn, )k>1, the sequence (f,, o fank)kz1 converges to some £ € D(Ry,Z) in the usual J;-Skorohod
topology. Since 77! satisfies Assumption mm we can find {x € D(R4, X) such that foéx = &.
Therefore, we deduce that X, converges to (X,d™, px,&x) in M(771), which completes the proof.
Conversely, assume that {X, | @« € &} is precompact in &/. From Corollary B:228] we obtain
If is not satisfied, then we can find ¢ > 0, an increasing sequence (r,,)p>1 with 7, T oo, a
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sequence (an)n>1 in &7, and a sequence (Sp)n>1 With s, < ¢ such that &, (sn) ¢ Xg;") for all n. If
necessary, by choosing a subsequence, we may assume that X, converges to some (X,d~,px,&x)
in the local Gromov-Hausdorff topology. By Theorem [3:24] there exist a rooted boundedly-compact
metric space (Z,d?, pz) and root-and-distance-preserving maps f, : X, — Z and f : X — Z such
that f,(Xs,) — f(X) in the local Hausdorff topology in Z and f, 0 &,, — f o&x in the usual J;-
Skorohod topology. By Lemma [T it is the case that {f, 0, (s) | n € N, s <t} is precompact in Z.
Therefore, for some 7 > 0, we have that f, o &, (s,) € Z() for all n. This yields that &, (s,) € XC(J;
for all n, which is a contradiction. Hence, we obtain By a similar argument, we also obtain

i) O

4.6 The functor for continuous curves

In [18], a Gromov-Hausdorff-type topology on a set of equivalence classes of metric spaces equipped
with continuous curves was introduced, where a continuous curve is used to capture the boundary of
a space. However, the focus was on length spaces for technical reasons. In this section, we define a
functor which gives a natural generalization of that topology.

Fix a non-empty boundedly-compact metric space (7,d?). Recall that, for another boundedly-
compact metric space (S, d®), we denote by C (T, S) the set of continuous functions & : 7' — S equipped
with the compact-convergence topology. It is known that C(T,S) is Polish (see [2I, Lemma A5.1]),
and one can construct a complete metric dg(T) on C(T,S) as follows: choose an increasing sequence

(Kn)n>1 of compact subsets in T such that J,,~, K, = T; we then define

gy (&m) =D 271 A sup d°(£(t),n(t)), V& € C(T,S).

1 teK,

Define a functor 7€) as follows.
e For (X,d~, px) € M°, set 7¢(1)(X) := C(T, X) and dfc”fq’f) = déf(T).

e For every root-and-distance-preserving map f : X1 — X between (X;,d%, px,) € M°, i = 1,2,
C(T) ¢y .
set 7, (§) = fo&.

By a similar argument to the proof of Proposition 215 one can check that the functor 7
continuous and complete. However, the separability cannot be proven similarly because in general
there is no natural discretization of continuous functions as in the way we have step functions for
cadlag functions (see [@I])). To prove that the topology on M(7¢(T)) is separable, we introduce a
larger functor 7¢(T) defined below. Note that we fix an element o € T, which we set to be the root of
T.

e For (X,d¥, px) € M°, set 7TV (X) == C(T, X) and df_(c’f;‘) = dg’OX.

(T ig

e For every root-and-distance-preserving map f : X1 — X between (X;,d%, px,) € M°, i = 1,2,
set T?(T) (E) = (idr x f)(E).

Proposition 4.19. The functor 7¢T) is continuous and complete, and the functor 7¢T) is complete,
separable and continuous. Moreover, 7€) is a topological subfunctor of 7¢(T).

Proof. As we mentioned, one can check that 7¢T) is continuous and complete in a similar way to the

proof of Proposition It is not difficult to obtain the continuity of 7¢(T) by using Theorem
Let X, = (X,,,d*", px,), n € NU{oo} and Z = (Z,d?,pz) be elements in 9M° such that X, < Z for
all n € NU{oo} and X,, converges to X with respect to dZH’pZ. Let B, € C(T, X,,) be such that E,, - E

with respect to dg’oz for some F € C(T,Z). Fix (t,z) € E C T x Z and choose (t,,x,) € E, such
that (t,,z,) — (t,&c). Using the convergence X,, — X, we deduce that x € X. Thus, it follows that
E € C(T, X), which implies the completeness of 7¢(7). Let D be a countable dense subset in T x X.
Using the convergence X,, — X, one can check that every finite subset in D is approximated by a
sequence of finite subsets in T' x X,,. Since the set of finite points in D is dense in C(T, X ), we deduce
that 7¢(T) is separable. By Corollary 254 and Corollary 260, the map g : 7¢(1)(X) — 7¢(T)(X),
which carries a function to its graph, is a topological embedding. Hence, we deduce that 7¢(T) is a
topological subfunctor of 7¢(7). O
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Corollary 4.20. The metric df";t(T) s a complete, separable metric on DJY(TC(T)).
Proof. By Corollary B30, Proposition and Proposition [£19] we obtain the desired result. O

Let us prepare to describe a precompactness criterion. For & € C (T, S), where (S,d%) is a metric
space, we define

ws (&, h, K) = sup{d®(&(s),&(r)) | 7, s € K such that d” (r,s) < h}, K € Cepi(T), h >0,
where we recall that Cept(7') denotes the set of compact subsets in (7', dT).

Theorem 4.21. (Precompactness in MM(7CT))) Fiz a dense set T' C T. A non-empty subset {X, =
(X0, d®, pa,&0) | o € 7} of M(7CT)) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xa,d%, pa) | @ € &} of M is precompact in the local Gromov-Hausdorff topology.

(ii) For each t € T', there exists r > 0 such that £, (t) € X for alla € o .
(it1) It holds that lim sup wx, (€a,h, K) =0 for all K € Cops(T).
h—0 qecor

Proof. Using a precompactness criterion for the compact-convergence topology (see [2I, Theorem A5.2)
for example), one can prove the desired result in a similar way to the proof of Theorem T8 O

Remark 4.22. When T is a connected subset of R, by chaining arguments, one can check that the
condition [(ii)] is implied by and the following condition (c.f. [I0, Theorem 7.2]).

(ii”) For some to € T, there exists r > 0 such that £,(to) € X forall a € o7

It is known that the restriction of the usual J;-Skorohod topology to the set of continuous functions
is the compact-convergence topology (c.f. [I9, Chapter VI. Proposition 1.17]). The following result is
a generalization of this fact.

Proposition 4.23. In the above setting, define T = R, (equipped with the Euclidean metric). Then,
the functor T¢®+) s a topological subfunctor of 77 defined in Section {3 As a consequence, the
following map is a topological embedding:

M(r9ED) 5 (X, d¥, px, x) = (X,d%, px, Ex) € M(r7).

Proof. Fix (X,dX, px) € M°. By [19, Chapter VI. Proposition 1.17], the inclusion map from 7¢®+) =
C(Ry,X) to 771(X) = D(Ry, X) is a topological embedding. Therefore, we deduce that 7¢®+) is a
topological subfunctor of 77/1. The last assertion immediately follows from Proposition O

Example 4.24. In the setting of [I8], T is the one-dimensional Euclidean metric space (R, d®). If one
sets T := [0,1]/{0,1}, then C(T,5) is a set of loops in S. By taking the countably many products of
copies of 7¢(T) | one obtains a functor for spaces equipped with countably many loops, which might be
useful for studying random loop soups (e.g. [25]).

4.7 The functor for space-domain continuous maps

In [15], a Gromov-Hausdorff-type topology on a set of equivalence classes of compact metric spaces X
equipped with heat-kernel-type functions was introduced, where a heat-kernel-type function f means a
continuous function f: I x X x X — R with a fixed compact interval I C (0,00). In [8 4], a Gromov-
Hausdorff-type topology on a set of equivalence classes of real trees X equipped with embedding maps,
where an embedding map means a continuous map from X to some fixed metric space. In this section,
we define a functor for space-domain continuous maps, which include the above-mentioned examples.
Moreover, the functor, combined with a functor introduced in Section 8], gives a suitable topological
setting for studying local times of stochastic processes living on different spaces, which is in used in
[31].

For (X,dX,px) € M° and k € N, we define (Xk,ka,pxk) € IM° by setting (Xk,ka) be the
product space equipped with the max product metric and px« := (px,...,px) € X*. Note that X*
is not the k-neighborhood of X. Although this is abuse of notation, there is no confusion as we never
use the notion of e-neighborhood in this section. Given a map f : X — Y, we simply write f* for
the k-product function f x --- x f : X* — Y*. We remark the following basic property of the local
Hausdorff metric. The proof is omitted as it is an easy exercise regarding the Hausdorff metric.

33



R. Noda

Lemma 4.25. Fiz (Z,d?,pz) € M°. Then, for any k € N, it holds that

dZ% (A, B) = d% (A*, B*), VA,B € Copi(2),
k
4407 (X,Y) = doy "7 (X5, YY), VXY € C(2).

Fix a separable and complete metric space (Z,d~) and a natural number k. Define a functor 7%=
as follows.

- ~ k N
o For X = (X,d¥,px) € M, set 7"E(X) == C(X*,Z) and d2° = dg:’px’“.

e For each (X;,d%i, px,) € M°, i = 1,2 and root-and-distance-preserving map f : X; — Xo, set
EE, N . _
7 (g) =go (ff)7h

k=

To prove that 7= is Polish, we define a Polish system (7, (7);>1).

k
e For X = (X,d¥, px) € M, set 7(X) == C(X*,Z) and df’px = dgg’pxk.

e For each (X;,d%

( ,Px;) € M°, i = 1,2 and root-and-distance-preserving map f : X1 — Xo, set
#(B) = (f* x idz)

(E).
e For X = (X,d¥,px) € Mand [ > 1, set 7(X) == C)(X*, ).

Lemma 4.26. The functor T is complete, separable and continuous.

Proof. Tt is not difficult to check the continuity of 7 by using Theorem 250l Let X, = (X,,,d*", px,)
with n € NU {oo} and Z = (Z,d?, pz) be elements in 9° such that &,, < Z for all n € NU {oc} and
X, converges to X with respect to dIZEI’pZ. From Lemma [£25] it follows that X* — X* in the local
Hausdorff topology in Z*. Let E,, € C(XF, =) be such that E,, — E with respect to d

n»=—

%kyﬁzk
H,E

E € C(Z*,2). Fix (z,a) € E C Z* x Z and choose (z,,,a,) € E, such that (x,,a,) — (z,a). By the
convergence X¥ — X* we deduce that z € X*. Thus, it follows that E € C(X*,Z), which implies the
completeness of 7. Let D be a countable dense subset in X* x =. Using the convergence X* — X%
one can check that every finite subset in D is approximated by a sequence of finite subsets in X* x E.
Since the set of finite points in D is dense in C(X*, =), we deduce that 7 is separable. O

for some

k=

Proposition 4.27. The functor 7= is a Polish functor with a Polish system (7, (71);>1) defined above.

Proof. The conditions and [(P2)| are immediate from Lemma 26 and the definition of 7%= and
7, respectively. The condition |(P3)| is also immediate from Lemma 257 and Lemma 258 One can

check |(P4)| by Definition O
Proposition [£27, combined with Theorem .36, immediately yields the following result.
Corollary 4.28. The topology on M(7%=) is Polish.

Remark 4.29. To consider spaces X equipped with heat-kernel-type functions, we identify a con-
tinuous function f : (0,00) x X x X — R with a continuous function X x X 3 (z,y) — f(-,z,y) €
C((0,00),R). Then, by setting k := 2 and = = C((0,00),R), the metric space IM(7%=) becomes a
proper space for studying spaces equipped with heat-kernel-type functions.

Theorem 4.30 (Precompactness in M(7%=)). A non-empty subset {Xy = (X0, d%, pa, fa) | @ € &'}
of M(T%E) is precompact if and only if the following conditions are satisfied.

(i) The subset {(Xa,d%, pa) | @ € &} of M is precompact in the local Gromov-Hausdorff topology.
(i) For every r >0, {fa(z) | x € dom(f,)"), a € &} is relatively compact in =.

(iii) For every r >0,

lim sup sup d*(fa(z), fa(y)) = 0.
60 aed g yedom(fo )"
d*(z,y)<s
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Proof. Basically, using the precompactness criterion in C (S, Z) given by Theorem 2.62] one can prove
the desired result in a similar way to the proof of Theorem I8 However, the part where we use
Assumption in that proof needs a slight modification because the functor 7%= is not complete.
Therefore, we explain how to modify that part. Assume that and are satisfied. Fix
a sequence (ap)p>1 in &. Then, one can show that there exist a subsequence (o, );>1, a rooted
boundedly-compact metric space (Z,d?, pz), and root-and-distance-preserving maps Fj : Xan,, = 24
and F: X — Z such that f,, o (F}¥)~! converges to some f € C(Z*,Z). Since the functor 7 satisfies
Assumption mm we can find fx € C(XF,E) satisfying f = 7r(fx). Using we deduce that
fx e C (X* Z). The remaining part can be proved by following the proof of Theorem ZI8l O

4.8 The functor for laws of additional structures

In this section, we define a functor which provides a topological setting suitable for studying random
objects in different spaces.
Let 7 be a functor. Define a functor o7(7) as follows.

e For X = (X,dX,px) € M°, set o7 (M (X) = P(7(X)) and df,;’ff) = d;(X)’pX to be the Prohorov
metric on P(7(X)) defined by the metric dX*X on 7(X).

e For each (X;,d%i, px,) € M°, i =
O’;)(T) (P) = POT;l, that is, O’;)(T) (P) is the pushforward measure of P by the distance-preserving
map 7y : 7(X1) = 7(Y2).

1,2 and root-and-distance-preserving map f : X; — X, set

Theorem 4.31. Let 7 be a separable functor. Then, the functor oF (™) is also separable. In addition
to the separability of T, if T is continuous (resp. complete), then so is oP ),

Proof. Note that, since 7 is assumed to be separable, the metric space (7(X),dX*X) is separable for
each (X,d~, px) € M°.

Suppose that 7 is continuous. Let f, : X — Y, n € NU{oco} be root-and-distance-preserving maps.
If f, = foo in the compact-convergence topology, then we have that 74, (a) — 7¢(a) in 7(Y") for all
a € 7(X). Using the dominated convergence theorem, one can see that ¢7(™) is continuous.

Fix (Z, d?, pz) € M. Assume that closed subsets X,, C Z converge to a closed subset X C Z in the
metric dIZEI’p ?. Let P, be a probability measure with supp(P,,) C 7(X,,) such that P,, converges to some

probability measure P on 7(Z) with respect to d;(z)’p ?. By the Skorohod representation theorem,

there exists a probability measure space (2, F, Q) and random elements &, of 7(X,,) and & of 7(2)
such that Q(&, € ) = P,, Q€ € -) = P and &, — £ in (1(Z),d?*?) almost-surely. Assume that 7 is
complete. Then we have that £ € 7(X) almost-surely. This yields that supp(P) C 7(X). Moreover,
since d2*# is a complete, separable metric on 7(Z), we deduce that d;(Z)’p Z is complete and separable.
Hence, 0”(7) is complete. Finally, we prove that o”(7) is separable. Let P be a probability measure
with finite atoms in 7(X). By the separability of 7, such atoms are approximated by points in 7(X,,),
and thus one can construct probability measures with support in 7(X,,) which converges to P. Since
such probability measures P are dense in the set of probability measures with support in 7(X), the
separability of ¢7(7) is verified. O

Theorem 4.32. If T is a Polish functor, then so is o¥ (7).

Proof. Let (7, (7k)k>1) be a Polish system of the Polish functor 7. Set a functor ¢ := oP(®) | which is
a complete, separable continuous functor by Theorem 31l For each k > 1, we define &, by setting,
for each (X,d™, px) € M°,

(X)) ={Pca(X)| P(f(X))>1—k '}

We will show that (&, (5)r>1) is a Polish system of ¢7(7). Firstly, we check that &4(X) is open in
&(X). Suppose that a sequence (P,),>1 in 65 (X)° converges to P € 6(X). Since 7,(X) is open in
7(X), we deduce that

P(7(X)) < liminf P, (7(X)) <1—- k™1,

n—oo
which implies that P € &,(X)°. Hence, 65(X) is open in 6(X). Let f : X3 — X3 be a root-and-
distance-preserving map between (X;,d*, px,) € 9°, i = 1,2. For any P € 5(X), we have that

57 (P)(7(Y)) = Po 7 H(7(Y)) = P(7r(X)),
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which implies that 6;'(64(Y)) = 64(X). Fix P € (Mi>1 0x(X). Since we may assume that 75 (X)
is decreasing to 7(X 5‘ (see Remark B3H), it follows that P(7(X)) = limg—eo P(7x(X)) = 1, which
implies that P € o7(7)(X). Therefore, we deduce that Nis1 0k(X) = oP(T)(X), which completes the
proof. O

Proposition 4.33. Let 7 and T be functors such that 7 is a topological subfunctor of 7. Then, the
functor a7 is a topological subfunctor of oF (7).

Proof. Fix (X,d%,px) € M. Let ¢ : 7(X) — 7(X) be the associated topological embedding that
appears in [[T1)} Then, we have a topological embedding 07(")(X) > P — Po:™ ! € 07 (X). One
can check that this embedding satisfies and therefore we obtain the desired result. (|

Corollary 4.34. Let 7 be any one of the functors defined from Section [{.1] to[{.4 Then, the space
M(aP (7)) is Polish.

Remark 4.35. It is possible to define a functor ¢ (7) for Radon measures on additional structure, that
is, oM7) is given by setting oM () (X) := M(7(X)) equipped with the vague metric and oF (T)( )=
s Tf_l. In this case, one can establish the same results as above in a similar way (with slight
modification to the parts where we use properties of the weak convergence). For example, one can use
this functor to obtain a topological setting for studying spaces X equipped with a measure on X x [
with some fixed complete, separable metric space, which is considered in [24]. (Note that the topology
introduced in [24] focuses on the metric structure of the supports of measures, while our topology takes
into account the entire underlying spaces.)

If one has a nice tightness criterion for random elements of 7(X), then it is not difﬁcult to obtain
a precompactness criterion for im(ap(T)) We demonstrate how to do it in the case 7 = 77/1. Firstly,
we recall a tightness criterion for probability measures on cadlag functions. Note that given a random
element we denote by P its underlying probability measure.

Lemma 4.36 (Tightness in D(Ry,S), [2IL Theorem 23.4]). Fiz a dense set T C Ry and a rooted
boundedly-compact metric space (S,d°,ps). A sequence (£n)n>1 of random elements of D(R,., S) is
tight if and only if the following conditions are satisfied.

(i) For each t € T, it holds that lim limsup P («fn( ) ¢ S(T)) =0.

=0 n—oco

(ii) For each t > 0, it holds that, for all e >0, hm limsup P(wg (&, h,t) > ¢) = 0.

n—oo

In that case, the following result stronger than holds.

(iii) For each t > 0, it holds that lim hmsupP( w(s) ¢ 87, s < t) 0.
T n—oo
Theorem 4.37 (Precompactness in M(c” ")), Fiz a dense set T C R, Let (Xn)n>1 be a sequence

in M(o P(r’h) )). Write X, = (X, d"™, pn, Py). For each n, we set &, to be a random element whose law
coincides with P,. Then, the sequence (X, )n>1 is precompact if and only if the following conditions
are satisfied.

(i) The sequence (X, d"™, pn)n>1 in M is precompact in the local Gromov-Hausdorff topology.

(i) For each t € T, it holds that lim hmsupP( En(t) ¢ X(T)) =0.

=0 noco

(iii) For each t > 0, it holds that, for all € > 0, hm limsup P(wx, (&n, h,t) >€) =0

n—oo

In that case, the following result stronger than holds.

(iv) For each t > 0, it holds that lim limsup P (fn( ye XD Vs < t) =0.
r—00 p—oo
Proof. Assume that and are satisfied. Fix a sequence (ng)r>1. From |(i)} if necessary,
by choosing a subsequence, we may assume that X, converges to some (X,d~,px,{x) in the lo-
cal Gromov-Hausdorff topology. By Theorem [B.24] there exist a rooted boundedly-compact metric
space (Z,d?,pz) and root-and-distance-preserving maps f : X,,, — Z and f : X — Z satisfying
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dIZEI’pZ(fk(Xnk), f(X)) — 0. It follows from and Lemma that, for some subsequence
(nk@))i>1, the sequence (fr() o Eniqy Jiz1 converges to some random element € of D(R,, Z) in distribu-

tion. By Proposition E-I5 and Theorem E31] the functor o”(™”") satisfies Assumption B26(1)] which
implies that there exists a random element £x of D(R4, X) such that £ 4 fo&x. Therefore, we deduce

that X, , converges to (X,dX,px,P(¢{x €-)) in Sﬁ(UP(TJl)). One can prove the reverse direction in
the same way as the proof of Theorem [LI8 using Lemma [£30] O

Appendix

A Omitted proofs
A.1 Lemma[2.36]

In this appendix, we prove that the restriction system introduced in Definition 235 satisfies Assumption
m which is a part of Lemma 2.36

Recall that we fix a rooted boundedly compact metric space (S, d®, p). We prepare some notation.
For a set A C S and ¢ > 0, we write

A ={zecA|d@x,y) <e = yec A, VyeS}

Note that
(A7%)° C A

For p,v € Mgn(S), we define the total variation distance of them by setting
[ — vl = sup{|u(A) —v(A)| | A € B(S)},
where B(S) dentotes the set of Borel sets in S.

Lemma A.1. Let u,v be elements of Mgn(S). Suppose that d3(u,v) < e. Fizr > s> e arbitrarily.
Then for any i’ € Mgy (S) with p® < p' < p("), there exists V' € Mgn(S) such that 16=°) </ <
vrte) and d3(p/,v') < e.

Proof. Set E = {(x,y) € S x S | d°(z,y) > €}. By [22, Theorem 2.1], there exists a finite Borel
measure « on S x S such that

I = mrall + v = moval + a(B) <&, ma<p, ma <y, (A1)
where 7; : S x S — S is the projection of the i-th coordinate and m;.« is the pushforward of a. Set

d(m*oz).

fla) =9, o) = L

=
Write
F={zeS|glx) < fl@)}, Fso={zes|[f(z)>0}, G={zrecS|g(x)>[f(x)}

Observe that
G® C (F)S, (A.2)

where - denotes the complement of a set. Since we have that u(®) < p/ < u("), we may assume that
lgi < f < 1gem. By (AJ), we may assume that 0 < g < 1. Tt is then the case that

S(s) CF, S(s) C Fug C S(r).

Thus, it follows that
Se=e) c e, g+ ¢ ey C S, (A3)

. 1, zeF,
) = {f@)/g(x), e

Set
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We then define

V(A)=v(ANFS,NF~%) + / h(z) a(dzdy),
SX(ANFE  (F~<)°)

From (A3), we have that v(5=%) < /. Moreover, (A3) and (A1) yield that
VI(A) <v(ANFS,NF™®) + / a(dzdy)
Sx(ANF2 N (F~<)°)
VANFSGNF ) +v(ANFSy N (F79)9)
v(ANFS)
< p(r+e) (A).

<
<

Thus, it holds that v(5=%) </ < p("+¢), Fix a Borel set A C S. We deduce from (AT and (A2) that
W)= [ ()
[ hegwntn s [ @)
ANGNFso

ANFNFso

< / h(z) miva(dz) + p(ANF N Fyo)
ANGNFsg

</ a)aldody) + [ a(dady) + |1 — mr.al
(ANGNF5o)x S (ANFNFs0)xS

< h(z) a(dzdy) +/ a(dzdy)
(ANGNF50)x (A*NGENFE ) (ANFNFs0)x (ASNFEAFS )

+ i = mel + a(E)
< h(z) a(dzdy) +/ a(dzdy)

(ANG) X (ASNFE  N(F~=)°) (ANF)x(AsNFeNFE N(F~¢)°)

+ / a(dxdy) + ¢
(ANF)x (AsNF2,NF~<)

h(z) a(dzdy) + / h(z) a(dxdy)

Fx(AsNFE N(F~<)e)

+ / a(dzdy) + €
Sx(AsNFz,NF~<)

<)
GX(ATNFE N (F~<)°)

< / h(z) a(dzdy) + mora(A*NFSGNF ™) + ¢
SX(ASNFE,N(F—<))
< V(A +e,
and
VI(A)=v(ANFSoNF~) + / h(z) a(dzdy)
Sx(ANFE,N(F-¢)<)

< |lmpva — v] + /

a(dzdy) + / h(z) a(dzdy)
Sx(ANFE,NF <)

Sx(ANFE N(F~<)e)

< lrza = vl + a(E) + [
(ANF)x (ANFE,NF—<)

<e+ /(Asmp)x(Ame) h(z) a(dzdy) + /AEX(AH(FE)C) h(z) a(dxdy)
<ct [ hayma()

e+ /A h(a)g(@) p(da)

s+/A€ f(z) pldz)

a(dzdy) + / h(x) a(dzdy)
Ae X (ANFE N (F=<)e)

IN
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=+ p'(4%).

Therefore, we obtain that d(u/,v') < e. O

A.2 Theorem [4.13

In this appendix, we provide a proof of Theorem T3l We first prove a general result about restriction
systems. Recall the setting of Section 21 The following result gives a characterization of convergence
of a sequence in ® in terms of convergence of a sequence restricted by a sequence of restriction systems.
The result can be viewed as a generalization of [23] Theorem 3.19] (see also Theorem [.T3).

Proposition A.2. For each n € N, let R = ( 5"))T>0 be a restriction system. Assume that
dis(R("),R) — 0. We equip © with the topology induced from R. (Note that the topology coincides
with the topology induced from R™ by Theorem [Z12.) For elements a,a1,as,... of ©, the following
statements are equivalent.

(i) The elements a, converge to a in .

(i1) It holds that d@(R,(«") (an), Rr(a)) — 0 for all but countably many r > 0.

(iii) There exists a non-decreasing sequence (ry)n>1 With r, — 0o satisfying dg(R,(«Z) (an), Ry, (a)) —
0.

Proof. Let R C (0,00) be the collection of r > 0 satisfying

inf{dg(R,(a),a’) | Rr_s(a) < a’ < Rpys(a)} 225 0.

Note that (0,00) \ R is countable by Assumption 2:6(ii)} Assume that[(i)| holds. Fix r € R and € > 0.
Choose § € (0,¢) satisfying

inf{d¢(R;(a),a’) | Ry—s(a) <@’ < Ryys(a)} < e. (A.4)

Choose ' € R with v’ > r+ § and N € N such that, for all n > N, it holds that

dis(R™, R) < §/2, (A.5)
de(Ry(an), Ry (a)) < 4/2. (A.6)

Since R(™ satisfies Assumption (A6) implies that there exists a’ € € such that
R,y 0 Ry(a) 2 d' 2RI 0 Ryia), de(R™ o Rys(an),a') < §/2. (A7)

By [(RS1)| [[RS2)] and ([A.5]), we deduce that
R o Ry = R("(ay),

Rf‘ri)(;/g o RT’(a) = Rr—5 o Rffi)(;/g o Rr’ (a) = Rr—5 o Rr’ (a) = Rr—é(a)a
R, o Ry(a) = R\"; ) 0 Ry 0 Ryr(a) X Ryys 0 Ro(a) = Ryys(a)

It then follows from (A8) that
R,_s(a) = a' =< Ryys(a), de(R™(ay),a’) < /2.
Therefore, the triangle inequality and (A4 yield that de(R'™ (ay), Ry(a)) < 2¢ for all n > N, which
implies
It is not difficult to check that implies Thus, it remains to prove the implication |(ii1)| =

()} We assume that [(iii)| holds. Fix r € R and ¢ > 0. We choose § € (0, ¢) satisfying (A8). Let N € N
be such that, for all n > N, it holds that

ro>71+6, dis(R™,R) <6, de(R™(an), R, (a)) <.
Since R satisfies Assumption m there exists a’ € € such that

R,_s0R, (a) Xd 2 Ri50R, (a), de(R,o Rg’;)(an), a') < d. (A.8)

39



R. Noda

By a similar argument as before, we obtain that
Ry_s(a) 2 a' X Rrys(a), de(Re(an),a’) <.
Thus, we deduce that, for all n > N,
de(Ry(ay), Rr(a)) < de(Ry(ay),a’) +de(d’, Ry(a)) < 2¢,
which implies (|
Now, it is possible to prove Theorem [£.13] Recall the setting of Section .4l

Proof of Theorem[.13 By [22, Theorem 3.24], and are equivalent. The implications (i) =
(iii)| and |(1)| = |(iv)| are easily obtained from Theorem Thus, it suffices to show the implications
(ii1)| = |(iv)| an We begin with proving the first implication. Assume that holds.
Choose a non-decreasmg sequence (ry,)n,>1 satisfying r, — oo and &, = dgup(Xn x ) , X)) = 0.
By the definition of the Gromov-Hausdorff-Prohorov metric (see (L3)), we can find a compact metric

space (Z,,d?") and distance-preserving maps g, : Xr(f") — Ty by XC(XT;") — Z, such that

A% (gu (X)), B (XE)) V dZr (™) 0 gt ulem) 0 ') v dZ (g (0% B (057))) (AL9)
<€n—l—7f1

We may assume that Z,, = gn(X,(f”')) U hn(XZ2). Let d™ be a pseudometric on the disjoint union
X, U X oo satisfying d”|x, xx, = d*", d"|x_xx.. = d*>= and

dn(zna zoo) =d” (gn(xn)v hn(zoo))

for all x,, € Xr(f"), Too € XC(XTD"). We then define a pseudometric d% on Z := UneNu{oo} X, that extends
every d” by setting

A (T, ) = I {d™ (T, Zoo) + A" (Zoo, Tn) | Too € Xoo}

for all z,,, € Xy, T, € X,, with n,m € N and n # m. We use the equivalence relation ~ on Z given
by
r~yed(zy) =0 (A.10)

to obtain the quotient space Z* := Z/ ~. Let q : Z — Z* be the quotient map. The metric d? " is given
by d? (q(z), q(y)) = d?(x,y). It is not difficult to check that (Z*,d%") is boundedly compact. For each
n € NU {oo}, we let ¢, : X;, = Z be the inclusion map and f,, : X,, = Z* be the distance-preserving
map given by f, == qo,. By the definition of d and the equivalence relation (AI0), there exist a
(unique) distance-preserving map &, : Z, — Z* satisfying «fn oGy = fn|X<rn) and &, o h,, = foo|X;gn>
for each n € NU {oo}. Therefore, by Lemma 2:31] Lemma 240 and (A29), we deduce that

A% (fa (XS, foo (XN VA (1§ 0 i ) o f2) v dZ " (Fu(p™)), foo (05)))
<en+nt. (A.11)

We define a restriction system R of (Cept(Z*),C(Z*), C) by setting

Rgn)(A) =ANDgz- (fn(an)ar)'

It is then the case that

fn(Xr(zT)) = Rfd")(fn(Xn)), fOO(Xc(xT:)) = Rsﬂm)(fOO(XOO))-
Moreover, we have that )
dis(R™, R©)) < d% (fu(px,.)s foo(px.. ))-

These, combined with Proposition A2 and (ALL), yield that dZ (f,(X{"), foo( )) —> 0 for all but

countably many r > 0. By a similar argument, we also deduce that dIZD (e (T) o fi1, M X ofzl) —

Thus, we obtain
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Assume that [(iv)] holds. Define a metric d* on M := UneNU{oo} X, by setting d|x, x x, = d*~ for
each n € NU {oo} and

d(xna$"J:::dZ(fn(pXﬁ)afm(pXm))*’dz(f%(xn)afm(xm))

for each z,, € X,,, z,,, € X,,, with n # m. Let ¢,, : X;, = M be the inclusion map. Then, one can
check that, for every r > 0,

di (1 (X)), 100 (X)) < dZ(fu(X (D), foo<X<T>>>+dZ<fn<an>,foo<pxm>>, (A.12)
dp(py) ot i) 0ty < dA(S) o fr 1Y) o F2) + dZ (falpx, ). folpx)).  (A13)

We define a pseudometric d™ on M by setting
d™ (z,y) = inf{d(x, px,,) + d(px,,, px,,) + - +dlpx, ., ,px. ) +dpx, v)}, (A.14)

where the infimum is taken over all finite sequence (n;)%_; in N including the empty sequence, which
corresponds to d(x,y). Since we have that, for m # n,

d(znﬂpXm) = dZ(fn(an); fm(pXm)) + dZ(fn(zn); fm(pXm))
2 dZ(fn(‘rn)vfn(an)) = d(‘rn’pxn)’

we deduce that dM|x, «x, = dX» for all n € NU{co}. We use the equivalence relation ~ on M given
by
r~y e d(ey) =0 (A.15)

to obtain the quotient space M* := M/ ~. We write ¢ : M — M* for the quotient map and d™” for
the associated metric on M*. It is not difficult to check that (M*,d™ *) is boundedly compact. We
define the root pps+ of M* by setting par- = q(px, ), which is independent of n by (A1) and (AT5H).
Set g, == qot,. Note that g, is a root-and-distance preserving map from X,, to M*. By the definition
of dM, it is obvious that d™ (q(z,,), ¢(2e0)) < d(2n, Too) for all x, € X, Too € Xoo. This, combined
with (A.12) and (A.13), yields that, for every r > 0,

A (90X, goo (X)) < dZ (fu(X D), Foo(XD)) + dZ (Fulpx, ), Foo(px)),
dM (1) 0 g7t iy 0 g3t < A o £ i) o FXN) + dZ (falpx,): fro(pxo)):

Xn

From these inequalities and it follows that
aif (9a(X) 90 (X)) = 0, d} (u§) 0 9,7 1Y) 0 92) = 0, (A.16)

for all but countably many » > 0. Since g, : X,, — M"* is root-and-distance-preserving, it holds
that gn(X(T)) = gn(X,)") and ,u( Do g7t = (ux, o g;")"). Therefore, from (AI6]), Theorem
and Theoremm we deduce that gn (X,,) converges t0 goo(Xoo) in the local Hausdorff topology and
px, © gyt converges to ux_ o gl in the vague topology, which implies |
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