
SQUAT: Stateful Quantization-Aware Training in
Recurrent Spiking Neural Networks

Sreyes Venkatesh
ECE, UC Santa Cruz

Santa Cruz, CA, USA
spvenkat@ucsc.edu

Razvan Marinescu
CSE, UC Santa Cruz

Santa Cruz, CA, USA
ramarine@ucsc.edu

Jason K. Eshraghian
ECE, UC Santa Cruz

Santa Cruz, CA, USA
jeshragh@ucsc.edu

Abstract—Weight quantization is used to deploy high-
performance deep learning models on resource-limited hardware,
enabling the use of low-precision integers for storage and compu-
tation. Spiking neural networks (SNNs) share the goal of enhanc-
ing efficiency, but adopt an ‘event-driven’ approach to reduce the
power consumption of neural network inference. While extensive
research has focused on weight quantization, quantization-aware
training (QAT), and their application to SNNs, the precision
reduction of state variables during training has been largely
overlooked, potentially diminishing inference performance. This
paper introduces two QAT schemes for stateful neurons: (i) a
uniform quantization strategy, an established method for weight
quantization, and (ii) threshold-centered quantization, which
allocates exponentially more quantization levels near the firing
threshold. Our results show that increasing the density of quanti-
zation levels around the firing threshold improves accuracy across
several benchmark datasets. We provide an ablation analysis of
the effects of weight and state quantization, both individually
and combined, and how they impact models. Our comprehensive
empirical evaluation includes full precision, 8-bit, 4-bit, and 2-
bit quantized SNNs, using QAT, stateful QAT (SQUAT), and
post-training quantization methods. The findings indicate that
the combination of QAT and SQUAT enhance performance the
most, but given the choice of one or the other, QAT improves
performance by the larger degree. These trends are consistent all
datasets. Our methods have been made available in our Python
library snnTorch: https://github.com/jeshraghian/snntorch.

I. INTRODUCTION

The development of low-power neural networks is crucial
for enabling operation on portable and edge devices [1]–
[3]. Techniques such as pruning [4], specialized data encod-
ing [5], model compression [6], early exiting [7], amongst
many others, can be used to reduce the computational cost of
running a neural network [8], [9]. In tandem with all these
approaches, most edge devices require low or fixed precision
model parameters. Quantized neural networks (QNNs) require
full precision weights to be approximated down to lower-
capacity representations which further reduces memory and
computation demands [10], [11].

Spiking neural networks (SNNs), drawing from models of
biological neurons, use binarized activations, enabling a neu-
ron to either emit a spike or remain inactive. This binary rep-
resentation allows neuromorphic processors to bypass certain
computations and memory accesses typical in conventional
deep learning, leading to significant power savings [12]–[15].
The hidden state of a spiking neuron is often governed by a

dynamical system, and is thought to encode information which
is then communicated through the firing pattern of the neuron.
These patterns can vary in spike timing, frequency, intervals
between spikes, amongst many other theories, offering a range
of encoding possibilities [16]–[19].

SNNs are often tailored for edge devices and have demon-
strated powerful computational capabilities even with consid-
erably small models [20]–[23], and larger-scale models are
also emerging [24]. Fixed-precision representations in SNN
accelerators are standard, and quantized SNNs (QSNNs) are
commonplace when deploying spike-based models on neuro-
morphic hardware [25]–[30].

By default, the most widely used deep learning Python
libraries train models with full precision parameters. Quan-
tizing a model after it has been trained in full precision is
known as ‘Post-Training Quantization’ (PTQ). Performance
can be enhanced further by using ‘Quantization-Aware Train-
ing’ (QAT), where weights are quantized during the forward-
pass but gradients are calculated in full precision. The quan-
tization step is ignored during error backpropagation as it is
a non-differentiable function. This process allows for the loss
from the model to account for truncation errors made during
quantization. This modification to the backpropagation process
takes more computational resources, but enhances accuracy.

To improve loss convergence, training QNNs and QSNNS
both benefit from modifying the training process [31]–[36]. In
general, noise has been regarded as an obstacle towards con-
vergence1 [40], [41]. Though it was suggested in Ref. [42] that
QSNNs are tolerant to truncation, provided that any rounding
errors do not trigger a threshold-crossing of the neuron state,
thus either hallucinating or eliminating a spike [43].

Most advances in low-precision neural networks apply
variations of QAT to learning fixed-precision weights [44]–
[46]. At one extreme, Ref. [47] demonstrated promising
performance in a ternary language model with over one
billion weights. These variants of QAT may involve alternative
distributions from which quantization levels are sampled from
(e.g., uniform quantization, exponentially distributed quantiza-
tion). The most common practice is to rely on full precision
simulators that emulate quantized weights. This is done by

1Note that targeted non-systematic noise has been demonstrated to assist
in convergence, due to the noise acting as a regularizer [37]–[39], and is not
included in this claim

ar
X

iv
:2

40
4.

19
66

8v
1 

 [
cs

.N
E

] 
 1

5 
A

pr
 2

02
4



restricting the permitted full precision levels of weights, and
then training such models with QAT (e.g., using the Brevitas
Python library [48]).

While it may be conceptually trivial to extend this practice
to the hidden state of neurons: e.g., quantizing states during
the forward-pass of training such that the loss accounts for
truncation error of states, it is not done in practice. There are
a variety of reasons why this is the case: i) an absence of
tools that simplify quantization of states; ii) applying QAT
to neuron states is computationally expensive: weights are
constant over sequence steps, whereas the state must be re-
quantized at every sequence step; iii) modern deep learning
is less reliant on stateful and sequential neural networks, and
iv) there are typically more weights than there are neurons, so
optimizing for weights may be thought of as more important
− i.e., it is just ‘easier’ to apply post-quantization to the states
once a QSNN is deployed.

This study analyzes two forms of stateful quantization aware
training (‘SQUAT’) for training QSNNs: ‘uniform quantiza-
tion’ and ‘exponential quantization’. Exponential quantization
allocates more states about the firing threshold of a neuron as
near-threshold activity of a neuron is likely to have a greater
impact on downstream neurons. Therefore, higher precision is
more useful at this point of criticality.

Beyond proposing SQUAT, we present an empirical analysis
evaluating how the quantization of weights and states compare
in both the post-quantization and quantization-aware training
regimes. A comprehensive evaluation is performed across three
different datasets of varying difficulty and modality: an image
dataset, FashionMNIST [49], an auditory dataset, Spiking
Heidelberg Digits (SHD) [50], and an event-based dataset, the
DVS Gesture Dataset [51]. Specifically, we test 2-bit, 4-bit,
and 8-bit QSNNs under the following cases:

• PTQ of states and weights, both together and separately,
for uniform quantization

• PTQ of states and weights, both together and separately,
for exponential quantization

• QAT and SQUAT, both together and separately, for uni-
form quantization

• QAT and SQUAT, both together and separately, for ex-
ponential quantization

• A high precision SNN baseline for each experiment

In total, we conduct 129 experiments across three trials
each culminating in insights about the impacts of quantization
across weights and states, and how to gain the ‘last mile’
of performance from an SNN. Our findings are summarized
below:

• 8-bit QSNNs perform competitively against their full pre-
cision counter parts for all tested quantization schemes:
i.e., PTQ vs. QAT and Exponential Distribution vs Uni-
form Distribution.

• 4-bit and 2-bit models are far more sensitive to quantiza-
tion and require more care during training.

• QAT (weights) and SQUAT (states) combined consis-
tently provided the best performance across all bit-widths

for fixed-precision performance.
• When using either SQUAT or PTQ, exponentially dis-

tributed levels centered about the threshold consistently
improved accuracy for all experiments.

• QAT-only consistently outperforms SQUAT-only. Given
a large computational budget, combining both is most
effective. Where there are limited training resources and
one technique must be prioritized, QAT is more important
than SQUAT.

Finally, we release code to assist other researchers to
train QSNNs using SQUAT in a straightforward and intuitive
manner.

II. BACKGROUND

A. Spiking Neuron Model

The spiking neuron model adopted is the leaky integrate-
and-fire neuron:

τm
dU

dt
= −U +RI, (1)

where τm is the time constant of membrane potential, U is
the membrane potential, R is the passive resistance of the
membrane of the neuron, and I is the input current [52]. The
above equation when governed by discrete time dynamics and
represented in a recurrent manner can be represented by:

uj
t+1 = βuj

t+1 +
∑
i

wijzjt − zjt θ (2)

zjt =

{
1, if uj

t+1 > θ

0, otherwise
(3)

where uj
t+1 is the membrane potential of neuron j at time t; β

is the inverse time constant of membrane potential; wij is the
synaptic weight between neurons i and j. The neuron is reset
by the threshold θ every time a spike zjt is emitted. Eq. (2)
shows how a spike emitted at each instance of time where the
membrane potential exceeds the firing threshold.

B. Hard Thresholds in QSNNs

There are two non-differentiable operations in SNNs: one
is from spike generation (Eq. (3)), and another is applied to
the weights during QAT and to the states during SQUAT.
Addressing these challenges is quite well-established:

• Spike Non-Differentiability: The non-differentiability of
spikes has been addressed by applying a step function
during the forward-pass as per (3), and smoothing it out
into a ‘surrogate gradient’ in the backward-pass [53].

• QAT: QAT follows a similar approach, though with
additional steps as the weight is a learnable parameter:

1) Quantized weights are used for computation during
the forward-pass, while the original full precision
representations are stored in memory.

2) A loss is calculated based on quantized weights.
3) Gradients are calculated while neglecting the gradi-

ent of the quantization operator.



Fig. 1. A graphical depiction of stateful quantization. On the left, a membrane potential trajectory is depicted in full precision. The state can be quantized
either via uniform or exponential quantization. A 3-bit (8 levels) quantization scheme is illustrated. In uniform quantization, the permissible levels are evenly
distributed. In exponential quantization, the permissible levels are closer about the threshold, and widely distributed moving further away from the threshold.
A ‘straight through estimator’ (STE) is also depicted to address the non-differentiability of quantization.

4) Weight updates are applied to the full precision
weights rather than the quantized weights.

5) The process is repeated.
The quantization operator is neglected during the gradient

calculation as it is non-differentiable and would otherwise
null the gradient signal. To remedy this, a ‘straight through
estimator’ (STE) is used to bypass the threshold operator
during QAT. The STE acts as an approximate gradient that
smooths the thresholding function during training [54]–[58].
More formally, the surrogate gradient of the quantized weight
wq with respect to the real weight wr is:

∂wq

∂wr
= 1 (4)

Alternatively, PTQ can be applied to a pre-trained model
where weights are quantized after training a full precision
model [59]. Whilst computationally cheaper, it also leads to a
drop in model performance.

SQUAT extends these principles by calculating a loss that is
aware of the quantization of states, while bypassing the non-
differentiability using a STE. The next section provides further
detail on the variants of SQUAT that we propose and test.

III. METHODS

A. Stateful Quantization-Aware Training
For n-bit quantization, the number of permitted levels Ql

with respect to the number of bits allocated n is Ql = 2n. We
implement SQUAT by distributing these Ql levels using two
different methods, both of which are illustrated in Fig. 1:

• Uniform Quantization: The permissible quantization
levels are uniformly distributed between the minimum
Umin and maximum Umax membrane potentials. Umin

and Umax are recalculated for each forward-pass.
• Exponential Quantization: Similar to uniform quanti-

zation, the maximum and minimum possible voltages

for the membrane potential are applied as the upper
and lower bound of permissible levels. However, ex-
ponentially more quantization levels are allocated for
the threshold. In deep learning, exponentially distributed
weights are applied about ‘0’. However, spiking neurons
only communicate with one another when the membrane
potential reaches the threshold. Intuitively, it stands to
reason that a neuron requires more precision about the
threshold as this is the regime where network activity is
determined.

1) Uniform SQUAT: More formally, in uniform quantiza-
tion, we divide the range between the minimum (Umin) and
maximum (Umax) membrane potentials into equal intervals.
Let’s denote the number of intervals as N = 2n − 1. The
quantized value Uq can be calculated as follows:

Uq = Umin +

[
U − Umin

∆U

]
·∆U

where ∆U = Umax−Umin
N is the size of each interval. The

operator [·] rounds the argument to the nearest integer. It is
assumed that Umin and Umax have been scaled and offset such
that Umin = 0 and Umax = N .

2) Exponential SQUAT: In this case, the quantization be-
comes finer as it approaches the threshold Uth. The quanti-
zation is described using a pair of exponential functions, one
for values below the threshold and another for values above
it, while being clipped at Umin and Umax. The quantized value
Uq can be expressed as:

Uq =

Umin +∆U ·
⌊
1−e−a(U−Umin)

∆U

⌋
, if U < θ

Umax −∆U ·
⌊
1−e−b(Umax−U)

∆U

⌋
, if U ≥ θ

where a and b are the exponents that determine the steepness of
the exponential curves below and above the threshold, respec-



tively. This formulation allows for exponential quantization
of the membrane potential while considering the resolution
implied by the number of bits N .

3) Straight-Through-Estimator: As with the STE from (4),
the same is applied to the membrane potential:

∂Uq

∂U
= 1 (5)

These equations provide a mathematical framework for
quantizing the membrane potential in both uniform and ex-
ponentially varying manners near the threshold.

B. Testing

We assess performance across three data sets: FashionM-
NIST, Spiking Heidelberg, and DVS Gesture. For each dataset:

• A full precision baseline is obtained on a lightweight
architecture.

• A PTQ baseline is obtained by converting the full pre-
cision baseline to 8-bits, 4-bits, and 2-bits for weights-
only, states-only, and both. For the case where- only the
weights are quantized, the states are left in full-precision
and vice versa.

• QAT-only results are obtained by retraining the model
across 8-bit, 4-bit, and 2-bit weights. States are left in
full precision.

• SQUAT-only results are obtained by retraining the model
across 8-bit, 4-bit, and 2-bit weights, for uniform quan-
tization and exponential quantization. Weights are left in
full precision.

• QAT and SQUAT are both applied across 8-bit, 4-bit, and
2-bit weights, for uniform quantization and exponential
quantization

C. Training

For all experiments, a threshold-shifted arc-tangent sur-
rogate gradient is used to deal with the spike non-
differentiability:

δz

δU
=

1

π

1

[1 + (πUα)2]
(6)

Each network is tested with a cosine annealing learning rate
scheduler and the Adam Optimizer [60], [61]. To maintain
the hardware benefits obtained from operating on lower-bit
variables, we intentionally expose the network to a discon-
tinuous loss landscape with flat surfaces and use the more
challenging task of using the total spike count per neuron as
the logits. Many state-of-the-art results opt to use a ‘read-out’
layer instead, where a standard artificial neuron node is applied
at the final layer instead of a spiking layer.

For the DVS-Gesture dataset we use the Mean-Squared
Error loss with respect to the spikes of each output neuron:
zjt and the target spike count cj . Each of those losses is then
summed over M output classes.

LMSE =

M∑
j

∑
t

(cj − zjt )
2, (7)

For the FashionMNIST and Spiking Heidelberg Digits
datasets we use the cross entropy loss as applied to the spike
count:

LCE =
1

C

M∑
j

C∑
t=0

N(log(pj [t]), Y j) (8)

where C is the number of time steps, pj [t] is the softmax
probability of the spike count of the output neuron j at time
step t, N is the negative log likelihood loss function, and Y j

is the target spike count of output neuron j .

D. Model Architecture

Given the notation CoutConvk and NinDenseNout, where
Cout is the number of output channels, k is the kernel
dimension, and Nin and Nout are the input-output dimensions
of a linear layer, the model architectures used were:

• FashionMNIST: 16Conv5-MP2-64Conv5-MP2-
1024Dense10. Batch normalization is applied to all
convolutional layers [62].

• DVS Gesture: 16Conv5-MP2-32Conv5-MP2-
8800Dense11. Dropout is applied during training.
Batch normalization is applied to all convolutional
layers.

• Spiking Heidelberg Digits: 700Dense1000-1000Dense20.
Each linear layer is followed by batch normalization
operation. Dropout is also applied.

IV. EXPERIMENTAL RESULTS

Brevitas was used to apply uniformly quantize the net-
work weight and bias parameters during training and testing;
snnTorch was used to instantiate the SNNs, and PyTorch 2.0
for training and testing. Each result shown is the average taken
across three trials.

The FashionMNIST and SHD dataset simulations were
limited to 100 epochs with early stopping of 20 epochs
applied. The DVS Gesture Dataset accuracy was obtained by
running 500 epochs. More details are given in the individual
sections of the datasets.

TABLE I
FULL PRECISION ACCURACY

Dataset Accuracy
FMNIST 90.87

SHD 79.78
DVS 86.24

A. FashionMnist

The FashionMNIST dataset contains ten classes of clothing
items and accessories [49]. The raw FashionMNIST dataset
was repeatedly passed to the network for 25 time steps of
simulation without encoding.

Table II displays the results of exponentially-distributed
states, Table III displays the results of uniformly-distributed
states, and Fig. 2 shows barplots of the same results organized
to provide easier visual comparisons. Quantizing weights to



Fig. 2. FashionMNIST performance. Top row: (i) 8/4/2-b uniformly distributed states across QAT (N-b weights, flt32 states), SQUAT (flt32 weights, N-b
states), SQUAT+QAT (N-b weights, N-b states), and PTQ-S (flt32 weights, N-b states), PTQ-W (N-b weights, flt32 states), PTQ-W+S (N-b weights, N-b
states). (ii) SQUAT vs PTQ uniformly and exponentially distributed states (SQUAT and QAT are both applied across N-b weights and states, and compared
against PTQ of N-b states and weights). Bottom row: (iii) 8/4/2-b exponentially distributed states across QAT (N-b weights, flt32 states), SQUAT (flt32
weights, N-b states), SQUAT+QAT (N-b weights, N-b states), and PTQ-S (flt32 weights, N-b states), PTQ-W (N-b weights, flt32 states), PTQ-W+S (N-b
weights, N-b states). (iv) Comparison between exponential and uniformly distributed states: SQUAT+QAT are used across N-b states and weights, then N-b
PTQ is used across N-b states and weights.

8-bits had negligible impact on accuracy, regardless of the
quantization configuration (SQUAT/QAT or PTQ). At 4-bits,
exponentially-distributed states using SQUAT significantly
outperforms uniformly-distributed states with SQUAT (Table
III) in all test cases by a significant margin. Finally, 2-
bit weights destroy performance when using PTQ, but the
model can be salvaged by combining QAT and SQUAT using
exponentially distributed levels centered about the threshold
(i.e., an accuracy boost from 16.81% to 67.82%).

Note PTQ and QAT of weights are the same between
uniform and threshold-centered quantization, as quantization
levels is only applied to states, and these two configurations
do not quantize the states. The same is true for all datasets,
but are included for ease of reference.

TABLE II
FMNIST EXPONENTIALLY CENTERED QUANTIZED PERFORMANCE

8-bit 4-bit 2-bit
QAT States 90.87 90.04 82.79

QAT Weights 90.43 89.79 87.77
QAT Weights and States 90.49 88.29 67.82

PTQ States 90.26 89.78 82.36
PTQ Weights 90.48 86.56 8.72

PTQ Weights and States 90.32 85.95 16.81

TABLE III
FMNIST UNIFORM QUANTIZED PERFORMANCE

8-bit 4-bit 2-bit
QAT States 89.91 83.50 36.76

QAT Weights 90.43 89.79 87.77
QAT Weights and States 90.31 83.21 47.58

PTQ States 89.22 68.72 67.06
PTQ Weights 90.48 86.56 8.72

PTQ Weights and States 89.11 61.87 17.87

B. Spiking Heidelberg Digits

The Spiking Heidelberg Digits is an audio based clas-
sification dataset of 20 possible output classes. There are
approximately 10,000 recordings of spoken digits from 0 to 9
in both English and German [50].

The SHD dataset was passed to the network for 25 time
steps during training and 30 time steps during testing. Table
IV displays the average test accuracy over 100 epochs across
3 trials each for exponentially-distributed states, Table V
displays the same data for uniformly-distributed states, and
Fig. 3 illustrates the same data as a barplot.

Similarly to the FashionMNIST dataset, 8-bit quantization
had little to no effect on accuracy, regardless of the quantiza-
tion configuration. At 4-bits, exponentially-distributed quan-
tization of states improved performance relative to PTQ. At
2-bits, there is significant variation across all configurations.
At this point, when both states and weights are quantized down



Fig. 3. SHD performance. Top row: (i) 8/4/2-b uniformly distributed states across QAT (N-b weights, flt32 states), SQUAT (flt32 weights, N-b states),
SQUAT+QAT (N-b weights, N-b states), and PTQ-S (flt32 weights, N-b states), PTQ-W (N-b weights, flt32 states), PTQ-W+S (N-b weights, N-b states).
(ii) SQUAT vs PTQ uniformly and exponentially distributed states (SQUAT and QAT are both applied across N-b weights and states, and compared against
PTQ of N-b states and weights). Bottom row: (iii) 8/4/2-b exponentially distributed states across QAT (N-b weights, flt32 states), SQUAT (flt32 weights, N-b
states), SQUAT+QAT (N-b weights, N-b states), and PTQ-S (flt32 weights, N-b states), PTQ-W (N-b weights, flt32 states), PTQ-W+S (N-b weights, N-b
states). (iv) Comparison between exponential and uniformly distributed states: SQUAT+QAT are used across N-b states and weights, then N-b PTQ is used
across N-b states and weights.

to 2-bits, these models are quite unstable. But using QAT
and SQUAT together nonetheless outperforms PTQ methods
by a significant margin. Exponentially distributed state levels
outperforms uniformly distributed levels by approximately 8%
at 2-bits.

TABLE IV
SHD EXPONENTIALLY CENTERED QUANTIZED PERFORMANCES

8-bit 4-bit 2-bit
QAT States 78.48 77.81 53.25

QAT Weights 78.72 78.98 71.88
QAT Weights and States 78.46 78.63 24.26

PTQ States 78.76 78.42 50.70
PTQ Weights 78.89 74.19 13.27

PTQ Weights and States 78.79 73.10 5.33

TABLE V
SHD UNIFORM CENTERED QUANTIZED PERFORMANCE

8-bit 4-bit 2-bit
QAT States 78.03 77.43 36.27

QAT Weights 78.72 78.98 71.88
QAT Weights and States 78.52 76.23 16.48

PTQ States 78.96 69.16 4.74
PTQ Weights 78.89 74.19 13.27

PTQ Weights and States 78.94 55.47 4.69

C. DVS Gesture

The DVS Gesture dataset is an event based dataset with
11 output classes consisting of various hand gestures [51].
The DVS dataset was passed to the network for 25 time steps
during training and 150 time steps during testing. Of all the
three datasets, the DVS gesture dataset was the most sensitive
to quantization. This may be because it has the largest number
of neurons and synapses in its architecture, and thus, the most
truncation error accumulated in the loss. With reference to
Table VI for exponentially distributed quantizations, Table VII
for uniformly distributed levels, and Fig. 4 for the correspond-
ing barplots, all PTQ training runs at 2-bits yielded rather
hopeless models despite our best hyperparamter sweep efforts.
However, the combination of exponentially-distributed levels,
together with QAT and SQUAT boosted performance back up
to 79.89%, as against 9.59% using PTQ (i.e., random chance),
and 28.03% when using uniform distributed SQUAT + QAT.
This highlights the significant importance of adopting better
distribution strategies in the extreme quantization regime.
The trends for all three datasets remain incredibly consistent,
with huge performance margins for exponentially-distributed
hidden state levels in the extreme quantization regime.

V. DISCUSSION

Deducing the optimal quantization scheme: For the 8-bit
experiments one can see that the performance of the model



Fig. 4. DVS Gesture Dataset performance. Top row: (i) 8/4/2-b uniformly distributed states across QAT (N-b weights, flt32 states), SQUAT (flt32 weights,
N-b states), SQUAT+QAT (N-b weights, N-b states), and PTQ-S (flt32 weights, N-b states), PTQ-W (N-b weights, flt32 states), PTQ-W+S (N-b weights, N-b
states). (ii) SQUAT vs PTQ uniformly and exponentially distributed states (SQUAT and QAT are both applied across N-b weights and states, and compared
against PTQ of N-b states and weights). Bottom row: (iii) 8/4/2-b exponentially distributed states across QAT (N-b weights, flt32 states), SQUAT (flt32
weights, N-b states), SQUAT+QAT (N-b weights, N-b states), and PTQ-S (flt32 weights, N-b states), PTQ-W (N-b weights, flt32 states), PTQ-W+S (N-b
weights, N-b states). (iv) Comparison between exponential and uniformly distributed states: SQUAT+QAT are used across N-b states and weights, then N-b
PTQ is used across N-b states and weights.

TABLE VI
DVS EXPONENTIALLY CENTERED QUANTIZED PERFORMANCE

8-bit 4-bit 2-bit
QAT States 85.35 85.35 65.78

QAT Weights 83.97 84.34 73.99
QAT Weights and States 84.22 84.85 79.89

PTQ States 85.48 86.36 36.95
PTQ Weights 9.09 9.09 9.09

PTQ Weights and States 9.09 9.09 9.59

TABLE VII
DVS UNIFORM CENTERED QUANTIZED PERFORMANCE

8-bit 4-bit 2-bit
QAT States 84.72 84.72 33.46

QAT Weights 83.97 84.34 73.99
QAT Weights and States 83.20 40.91 17.80

PTQ States 85.73 30.17 28.03
PTQ Weights 9.09 9.09 9.09

PTQ Weights and States 9.09 9.09 9.72

was independent of the given quantization scheme, which is
generally quite unsurprising [63]. Whereas for the 4-bit and
2-bit scenarios, it becomes increasingly clear that the quan-
tization method (i.e., PTQ/QAT/SQUAT/exponential/uniform-
distribution) is a major factor on the performance of the
network. Overall, performing QAT while also implementing
exponentially-distributed quantization about the threshold on
the hidden states of the neurons results in the least degradation

of accuracy across low-bit quantization schemata. This is in
line with our other findings of exponentially distributed levels
outperforming uniformly distributed states, along with QAT
performing better than PTQ.

Membrane potentials were reaching much higher val-
ues than previously anticipated: This strongly affected the
considerations that had to be taken when optimizing the
quantization of membrane potentials. A specific example being
that: it was expected that the reset mechanism would have
a strong influence on what the membrane potential is after
it exceeds the threshold. In practice, the optimal thresholds
tended to be between 0.5 < θ < 1, whereas the membrane
potential was reaching values as high as 20. Based on (2),
it is clear that the reset mechanism was having a negligible
effect on the membrane potential. Analyzing the membrane
potential traces meant an alternative approach to clipping was
required.

Clipping had a significant impact on the accuracy:
Quantization sets maximum and minimum bounds on the
membrane potential. Originally, it was believed that since
a spike is determined by the value of membrane potential
with respect to the threshold, it would be unnecessary to
store membrane potentials that exceed approximately twice the
threshold based on (1). However, we found that clipping must
encompass the maximum and minimum membrane potential
values that would be reached during the full precision training



process to optimize performance. This implies that allowing
membrane potentials to reach larger values allows the network
to better mitigate noise. Further investigation may allocate
less levels to negative hidden states, and act more closely to
rectification units as these values do not contribute to spiking
activity.

Threshold centering can mitigate a significant loss of
accuracy at lower bits: For 8-bit quantization there was
no significant difference as to whether the quantization was
uniform across the range of membrane potentials or whether
the quantization allocated more bits for values centered around
the threshold. This implies that the difference in membrane
potentials between time steps was larger than the smallest
difference between the allocated state-levels. However for 4-bit
quantization, threshold centering performed nearly as well as
8-bit across all datasets, whereas for 4-bit uniform quantization
of states, accuracy becomes significantly worse as compared to
8-bit uniform quantization. The variation of accuracy for 4-bit
uniform quantization was also much larger than the variation
of accuracy for 8-bit uniform quantization.

Future Asymmetric Quantizations: One can see that
neuron states are more robust to quantization during PTQ
whereas network weights are more adaptable to quantization
during QAT. This aligns with the knowledge that noise from
the quantization would be somewhat absorbed by the threshold
dynamics of the neuron. Whereas it is clear that noise brought
in to the weights after the network is finished training often
leads the algorithm to poor performance. Allocating additional
memory on certain parts of the network, for example, 3-bits for
weights and 5- bits for states with QAT or 6-bits for weights
and 2-bits for states, would allow the user to maximize the
networks capacity for quantization and performance.

VI. CONCLUSION

We have demonstrated the necessity of adopting both QAT
and SQUAT in enabling extreme-quantization regimes of
QSNNs to maintain some semblance of reasonable perfor-
mance. Our findings clearly indicate that threshold centering
of exponentially distributed states is better at mitigating the
performance degradation that comes with lower precision. We
have also demonstrated the differences in performance for
QAT and PQT occur at lower bit (ie. 4-bit and 2-bit) situations.
Enabling stateful quantization-aware training is effectively as
simple as passing a single argument to a leaky integrate-and-
fire neuron in snnTorch, simplifying the overall process of
obtaining additional accuracy. Both uniform and exponential
quantization schemes are available and paramterizable. Code
snippets demonstrating how to use it are provided.

1 import torch
2 import snntorch as snn
3 from snntorch.functional import quant
4

5 # neuron parameters
6 beta = 0.5
7 thr = 5
8

9 # random input
10 rand_input = torch.rand(1)
11

12 # uniform quantization
13 q_uni = quant.state_quant(num_bits=4,

uniform=True, threshold=thr)↪→

14 lif_1 = snn.Leaky(beta=beta,
threshold=thr, state_quant=q_uni)↪→

15

16 # forward-pass for one step
17 spk, mem = lif(rand_input, mem)
18

19 # exponential quantization
20 q_exp = quant.state_quant(num_bits=4,

uniform=False, threshold=thr)↪→

21 lif_2 = snn.Leaky(beta=beta,
threshold=thr, state_quant=q_exp)↪→

22

REFERENCES

[1] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric
Pétrot. Ternary neural networks for resource-efficient ai applications.
In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2547–2554, 2017.

[2] Eunhyeok Park, Dongyoung Kim, Soobeom Kim, Yong-Deok Kim,
Gunhee Kim, Sungroh Yoon, and Sungjoo Yoo. Big/little deep neural
network for ultra low power inference. In 2015 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ISSS),
pages 124–132, 2015.

[3] Okan Kopuklu, Neslihan Kose, Ahmet Gunduz, and Gerhard Rigoll.
Resource efficient 3d convolutional neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, Oct 2019.

[4] Steven A Janowsky. Pruning versus clipping in neural networks.
Physical Review A, 39(12):6600, 1989.

[5] Daniel Auge, Julian Hille, Etienne Mueller, and Alois Knoll. A survey
of encoding techniques for signal processing in spiking neural networks.
Neural Processing Letters, 53(6):4693–4710, 2021.

[6] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. Model compression
and acceleration for deep neural networks: The principles, progress, and
challenges. IEEE Signal Processing Magazine, 35(1):126–136, 2018.

[7] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung.
Branchynet: Fast inference via early exiting from deep neural networks.
In 2016 23rd international conference on pattern recognition (ICPR),
pages 2464–2469. IEEE, 2016.

[8] Song Han, Huizi Mao, and William J Dally. Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[9] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerat-
ing very deep neural networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), Oct 2017.

[10] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. Quantized neural networks: Training neural networks
with low precision weights and activations, 2016.

[11] Shu-Chang Zhou, Yu-Zhi Wang, He Wen, Qin-Yao He, and Yu-Heng
Zou. Balanced quantization: An effective and efficient approach to quan-
tized neural networks. Journal of Computer Science and Technology,
32:667–682, 2017.

[12] Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons:
Opportunities and challenges. Frontiers in neuroscience, 12:774, 2018.



[13] Mostafa Rahimi Azghadi, Corey Lammie, Jason K Eshraghian, Melika
Payvand, Elisa Donati, Bernabe Linares-Barranco, and Giacomo Indi-
veri. Hardware implementation of deep network accelerators towards
healthcare and biomedical applications. IEEE Transactions on Biomed-
ical Circuits and Systems, 14(6):1138–1159, 2020.

[14] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards
spike-based machine intelligence with neuromorphic computing. Nature,
575(7784):607–617, 2019.

[15] Samuel Schmidgall, Jascha Achterberg, Thomas Miconi, Louis Kirsch,
Rojin Ziaei, S Hajiseyedrazi, and Jason Eshraghian. Brain-inspired
learning in artificial neural networks: a review. arXiv preprint
arXiv:2305.11252, 2023.

[16] Balint Petro, Nikola Kasabov, and Rita M Kiss. Selection and optimiza-
tion of temporal spike encoding methods for spiking neural networks.
IEEE transactions on neural networks and learning systems, 31(2):358–
370, 2019.

[17] Shimul Kanti Nath, Sujan Kumar Das, Sanjoy Kumar Nandi, Chen Xi,
Camilo Verbel Marquez, Armando Rúa, Mutsunori Uenuma, Zhongrui
Wang, Songqing Zhang, Rui-Jie Zhu, et al. Optically tunable electrical
oscillations in oxide-based memristors for neuromorphic computing.
Advanced Materials, page 2400904, 2024.

[18] Kwabena Boahen. Dendrocentric learning for synthetic intelligence.
Nature, 612(7938):43–50, 2022.

[19] Jason Kamran Eshraghian, Kyoungrok Cho, Ciyan Zheng, Minho Nam,
Herbert Ho-Ching Iu, Wen Lei, and Kamran Eshraghian. Neuromorphic
vision hybrid rram-cmos architecture. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 26(12):2816–2829, 2018.

[20] Sumit B Shrestha and Garrick Orchard. Slayer: Spike layer error
reassignment in time. Advances in neural information processing
systems, 31, 2018.

[21] Alexander Henkes, Jason K Eshraghian, and Henning Wessels.
Spiking neural network for nonlinear regression. arXiv preprint
arXiv:2210.03515, 2022.

[22] Yikai Yang, Jason K Eshraghian, Nhan Duy Truong, Armin Nikpour, and
Omid Kavehei. Neuromorphic deep spiking neural networks for seizure
detection. Neuromorphic Computing and Engineering, 3(1):014010,
2023.

[23] Sami Barchid, José Mennesson, Jason Eshraghian, Chaabane Djéraba,
and Mohammed Bennamoun. Spiking neural networks for frame-
based and event-based single object localization. Neurocomputing,
559:126805, 2023.

[24] Rui-Jie Zhu, Qihang Zhao, Guoqi Li, and Jason K Eshraghian. Spikegpt:
Generative pre-trained language model with spiking neural networks.
arXiv preprint arXiv:2302.13939, 2023.

[25] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,
Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic manycore
processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[26] Garrick Orchard, E Paxon Frady, Daniel Ben Dayan Rubin, Sophia
Sanborn, Sumit Bam Shrestha, Friedrich T Sommer, and Mike Davies.
Efficient neuromorphic signal processing with loihi 2. In 2021 IEEE
Workshop on Signal Processing Systems (SiPS), pages 254–259. IEEE,
2021.

[27] Hannah Bos and Dylan Muir. Sub-mw neuromorphic snn audio
processing applications with rockpool and xylo. Embedded Artificial
Intelligence: Devices, Embedded Systems, and Industrial Applications,
page 69, 2023.

[28] Ole Richter, Yannan Xing, Michele De Marchi, Carsten Nielsen, Merk-
ourios Katsimpris, Roberto Cattaneo, Yudi Ren, Qian Liu, Sadique
Sheik, Tugba Demirci, et al. Speck: A smart event-based vision
sensor with a low latency 327k neuron convolutional neuronal network
processing pipeline. arXiv preprint arXiv:2304.06793, 2023.

[29] Jens E Pedersen, Steven Abreu, Matthias Jobst, Gregor Lenz, Vittorio
Fra, Felix C Bauer, Dylan R Muir, Peng Zhou, Bernhard Vogginger,
Kade Heckel, et al. Neuromorphic intermediate representation: a unified
instruction set for interoperable brain-inspired computing. arXiv preprint
arXiv:2311.14641, 2023.

[30] Mostafa Rahimi Azghadi, Ying-Chen Chen, Jason K Eshraghian, Jia
Chen, Chih-Yang Lin, Amirali Amirsoleimani, Adnan Mehonic, An-
thony J Kenyon, Burt Fowler, Jack C Lee, et al. Complementary
metal-oxide semiconductor and memristive hardware for neuromorphic
computing. Advanced Intelligent Systems, 2(5):1900189, 2020.

[31] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya,
Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi,

Nabil Imam, Shweta Jain, Yuyun Liao, Chit-Kwan Lin, Andrew Lines,
Ruokun Liu, Deepak Mathaikutty, Steven McCoy, Arnab Paul, Jonathan
Tse, Guruguhanathan Venkataramanan, Yi-Hsin Weng, Andreas Wild,
Yoonseok Yang, and Hong Wang. Loihi: A neuromorphic manycore
processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[32] Amar Shrestha, Haowen Fang, Daniel Patrick Rider, Zaidao Mei, and
Qinru Qiu. In-hardware learning of multilayer spiking neural networks
on a neuromorphic processor. In 2021 58th ACM/IEEE Design Automa-
tion Conference (DAC), pages 367–372, 2021.

[33] Emre O Neftci, Charles Augustine, Somnath Paul, and Georgios
Detorakis. Event-driven random back-propagation: Enabling neuromor-
phic deep learning machines. Frontiers in neuroscience, 11:324, 2017.

[34] Amar Shrestha, Haowen Fang, Qing Wu, and Qinru Qiu. Approximating
back-propagation for a biologically plausible local learning rule in
spiking neural networks. In Proceedings of the International Conference
on Neuromorphic Systems, pages 1–8, 2019.

[35] Steve K Esser, Rathinakumar Appuswamy, Paul Merolla, John V Arthur,
and Dharmendra S Modha. Backpropagation for energy-efficient neuro-
morphic computing. Advances in neural information processing systems,
28, 2015.

[36] Peter U. Diehl and Matthew Cook. Efficient implementation of stdp
rules on spinnaker neuromorphic hardware. In 2014 International Joint
Conference on Neural Networks (IJCNN), pages 4288–4295, 2014.

[37] Zhonghui You, Jinmian Ye, Kunming Li, Zenglin Xu, and Ping Wang.
Adversarial noise layer: Regularize neural network by adding noise. In
2019 IEEE International Conference on Image Processing (ICIP), pages
909–913, 2019.

[38] Kam-Chuen Jim, C.L. Giles, and B.G. Horne. An analysis of noise
in recurrent neural networks: convergence and generalization. IEEE
Transactions on Neural Networks, 7(6):1424–1438, 1996.

[39] Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han.
Regularizing deep neural networks by noise: Its interpretation and
optimization. Advances in neural information processing systems, 30,
2017.

[40] Gunhan Dundar and Kenneth Rose. The effects of quantization on
multilayer neural networks. IEEE Transactions on Neural Networks,
6(6):1446–1451, 1995.

[41] H. Djahanshahi, M. Ahmadi, G.A. Jullien, and W.C. Miller. Quantization
noise improvement in a hybrid distributed-neuron ann architecture. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal
Processing, 48(9):842–846, 2001.

[42] Jason K. Eshraghian, Corey Lammie, Mostafa Rahimi Azghadi, and
Wei D. Lu. Navigating local minima in quantized spiking neural
networks, 2022.

[43] Jason K Eshraghian, Xinxin Wang, and Wei D Lu. Memristor-based
binarized spiking neural networks: Challenges and applications. IEEE
Nanotechnology Magazine, 16(2):14–23, 2022.

[44] Nitin Rathi, Priyadarshini Panda, and Kaushik Roy. Stdp-based pruning
of connections and weight quantization in spiking neural networks for
energy-efficient recognition. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 38(4):668–677, 2019.

[45] Hin Wai Lui and Emre Neftci. Hessian aware quantization of spiking
neural networks. In International Conference on Neuromorphic Systems
2021, pages 1–5, 2021.

[46] Sayeed Shafayet Chowdhury, Isha Garg, and Kaushik Roy. Spatio-
temporal pruning and quantization for low-latency spiking neural net-
works, 2021.

[47] Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang,
Shaohan Huang, Li Dong, Ruiping Wang, Jilong Xue, and Furu Wei.
The era of 1-bit llms: All large language models are in 1.58 bits. arXiv
preprint arXiv:2402.17764, 2024.

[48] Alessandro Pappalardo. Xilinx/brevitas, 2023.
[49] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel

image dataset for benchmarking machine learning algorithms, 2017.
[50] Benjamin Cramer, Yannik Stradmann, Johannes Schemmel, and Friede-

mann Zenke. The heidelberg spiking data sets for the systematic
evaluation of spiking neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 33(7):2744–2757, 2022.

[51] Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McK-
instry, Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos,
Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz, Michael Debole,
Steve Esser, Tobi Delbruck, Myron Flickner, and Dharmendra Modha.
A low power, fully event-based gesture recognition system. In 2017



IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 7388–7397, 2017.

[52] Eric Hunsberger and Chris Eliasmith. Spiking deep networks with lif
neurons, 2015.

[53] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate
gradient learning in spiking neural networks, 2019.

[54] Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating
or propagating gradients through stochastic neurons for conditional
computation, 2013.

[55] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong
Qi, and Jack Xin. Understanding straight-through estimator in training
activation quantized neural nets, 2019.

[56] Alexander Shekhovtsov and Viktor Yanush. Reintroducing straight-
through estimators as principled methods for stochastic binary networks,
2021.

[57] Zechun Liu, Kwang-Ting Cheng, Dong Huang, Eric Xing, and Zhiqiang
Shen. Nonuniform-to-uniform quantization: Towards accurate quantiza-
tion via generalized straight-through estimation, 2022.

[58] Ting-Han Fan, Ta-Chung Chi, Alexander I. Rudnicky, and Peter J.
Ramadge. Training discrete deep generative models via gapped straight-
through estimator, 2022.

[59] Rachmad Vidya Wicaksana Putra and Muhammad Shafique. Q-SpiNN:
A framework for quantizing spiking neural networks. In 2021 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, jul 2021.

[60] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Junyuan Xie, and
Mu Li. Bag of tricks for image classification with convolutional neural
networks, 2018.

[61] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent
with warm restarts, 2017.

[62] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–
1958, 2014.

[63] Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii,
Ron Banner, Alex M Bronstein, and Avi Mendelson. Loss aware post-
training quantization. Machine Learning, 110(11-12):3245–3262, 2021.


	Introduction
	Background
	Spiking Neuron Model
	Hard Thresholds in QSNNs

	Methods
	Stateful Quantization-Aware Training
	Uniform SQUAT
	Exponential SQUAT
	Straight-Through-Estimator

	Testing
	Training
	Model Architecture

	Experimental Results
	FashionMnist
	Spiking Heidelberg Digits
	DVS Gesture

	Discussion
	Conclusion
	References

