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Abstract. We construct a relative version of the Crane–Yetter topological quantum field theory

in four dimensions, from non-semisimple data. Our theory is defined relative to the classical G-
gauge theory in five dimensions – this latter theory assigns to each manifold M the appropriate

linearization of the moduli stack of G-local systems, called the character stack. Our main result

is to establish a relative invertibility property for our construction. This invertibility echoes – re-
covers and greatly generalizes – the key invertibility property of the original Crane–Yetter theory

which allowed it to capture the framing anomaly of the celebrated Witten–Reshetikhin–Turaev

theory. In particular our invertibilty statement at the level of surfaces implies a categorical,
stacky version of the unicity theorem for skein algebras; at the level of 3-manifolds it equips

the character stack with a canonical line bundle. Regarded as a topological symmetry defect of

classical gauge theory, our work establishes invertibility of this defect by a gauging procedure.
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2 PATRICK KINNEAR

1. Introduction

In [Wit89Wit89], Witten gave a description of the Jones polynomial of a link by quantizing Chern-
Simons theory. Soon after, Reshetikhin and Turaev [RT90RT90; RT91RT91] gave a mathematical description
of the associated 3-manifold invariants using the semisimplification of the representation category
Repuq of the small quantum group at a root of unity. This category is finite, semisimple, and
modular. The construction can be naturally extended to vector space invariants of surfaces, yet the
Witten–Reshetikhin–Turaev (WRT) invariants do not quite form a topological quantum field the-
ory (TQFT) in the mathematical sense. For instance, the theory does not produce representations
of mapping class groups of surfaces, as would be expected, but rather projective representations.
Just as projective representations are defined up to an extension by invertible scalars, the failure
of the WRT invariants to form a TQFT is captured by an invertible 4-dimensional TQFT known
as Crane–Yetter [CY93CY93; Wal06Wal06; BFG07BFG07; FT14FT14]. This assigns invertible scalars to 4-manifolds, and
1-dimensional vector spaces for 3-manifolds, and is called the anomaly of WRT.

Since the work of [Lyu95aLyu95a; Lyu95bLyu95b], there has been interest in extending the techniques of
WRT theory to non-semisimple categories. See [Hen96Hen96; GPT09GPT09; DGGPR22DGGPR22] for a selection of
some developments in this direction. In [BJSS21BJSS21] it was shown that the non-semisimplified category
Repuq is Morita invertible as a braided tensor category, which can be seen as a fully local statement
of the invertibility of the non-semisimple version of Crane–Yetter.

There is a non-semisimple analogue of the WRT invariant [CGP14CGP14; CGP15aCGP15a; CGP15bCGP15b] defined
using the representation theory of a larger Hopf algebra called unrolled quantum SL2, which is non-
semisimple and non-finite. The so-called CGP invariant which results is defined for 3-manifolds
equipped with a flat Z/2Z-connection. Similarly, one can study skein algebras and skein modules
defined using the representation category Repq(G) of Luztig’s quantum group at a root of unity,
which is non-semisimple and also non-finite. Using the quantum Frobenius map of [Lus90bLus90b],
the works [BW16BW16; FKL18FKL18] show that the resulting skein algebra defines a sheaf of algebras on the
moduli space of flat G-connections. The unicity theorem, conjectured in [BW16BW16] and proved across
the papers [FKL18FKL18; GJS24GJS24; KK22KK22] says that this sheaf is Morita invertible (i.e. is Azumaya) on
an open dense locus of the moduli space.

Manifolds equipped with flat connections on a principal bundle arise naturally in semiclassical
limits of quantum field theories. In a semiclassical approximation one fixes a critical point of the
action functional (a classical solution) and expands around this. In gauge theory, which is the
study of manifolds with principal bundles equipped with connections, the classical solutions are
the flat connections. Therefore it is natural to consider invariants of manifolds equipped with flat
connections, or to consider invariants which vary over the moduli of flat connections. We call a
TQFT organizing information about flat connections a classical gauge theory.

In this paper we define a 4-dimensional TQFT Z based on the category Repq(G). By restriction
along the quantum Frobenius map, this category has an action of Rep(G) at good odd roots of
unity (or of Rep(GL) at good even roots of unity). This allows us to view Z as a theory for
manifolds equipped with flat G- (resp. GL-) connections. Equivalently Z is a theory varying
over the moduli stack of flat connections, called the character stack. By results of [AG03AG03; Neg21Neg21;
Neg23aNeg23a], de-equivariantizing the Rep(G)-action recovers the invertible braided tensor category
Repuq underlying non-semisimple Crane–Yetter. Our central result is as follows.

Theorem 1.1. The theory Z is invertible relative to 5-dimensional classical G-gauge theory.

Hence Z varies the invertibility of non-semisimple Crane–Yetter over the character stack. To
3-manifolds Z assigns a line bundle on this stack, where Crane–Yetter assigns a complex line.

More generally, it follows from the invertibility we establish that Z assigns (higher) line bundles
on the character stack in all dimensions. In dimension ≤ 2, taking global sections recovers skein
theory. The invertibility of Z allows us to lift the unicity theorem for skein algebras to the
categorical and stacky setting, and to extend it to groups beyond the previously studied case of
G = SL2. Where Z is viewed as a G-relative version of Crane–Yetter, it should be regarded
as the anomaly of an as-yet-undefined non-semisimple theory similar to that of [BCGP16BCGP16] which
underpins the CGP invariants, again extending beyond SL2 to higher rank groups. To give yet
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another perspective: in the philosophy of [FMT23FMT23] on topological symmetry in QFT, Z defines
a symmetry defect of classical gauge theory which we show here is invertible. In this language,
de-equivariantizing is also called gauging, and the general tools developed in this paper allow us
to check invertibility of a defect by checking invertibility of the gauged symmetry.

We do not prove Thm 1.11.1 as it is stated here, but rather a fully local version (Thm. 1.21.2) which
is equivalent under the cobordism hypothesis. To prove the fully local statement we develop a
general theorem for checking relative Morita invertibility of braided tensor categories (Thm. 1.31.3).
In the remainder of the introduction, we explain the precise mathematical statement of the main
theorem and elaborate on its corollaries and applications in studying non-semisimple TQFTs, skein
theory, and topological symmetry.

1.1. Main results. We use the cobordism hypothesis to construct TQFTs valued in Morita cat-
egories Algn(S), of the unpointed kind defined in [Hau17Hau17]. When A is a locally presentable sym-
metric tensor category, we can form the (∞, 4)-category Alg2(ModA(Pr)), the Morita theory of
braided tensor categories with a background A-action. The objects of this higher category are
braided tensor categories C internal to A-module categories, or equivalently, braided tensor cate-
gories equipped with a symmetric tensor functor A → Z2(C), where Z2(C) is the Müger centre of
C. That is, the subcategory

Z2(C) = {x ∈ C | ∀y ∈ C, σy,x ◦ σx,y = Idx⊗y}
of objects having trivial double braiding with all other objects. Since A is an E∞-algebra in
the background category Pr of locally presentable categories, we can consider it as an object in
the Morita theory Algn(Pr) for any n. In particular, as we explain in this paper, objects in
Alg2(ModA(Pr)) can be transported to the (n − 2)-fold endomorphism space of A in Algn(Pr).
This mechanism allows us to produce A-relative data, ripe for the application of a relative version
of the cobordism hypothesis.

We study the object Repq(G) ∈ Alg2(ModZ2(Repq(G))(Pr)), defined by considering representa-

tions of Lusztig’s quantum group at a root of unity U̇q, introduced in [Lus90aLus90a; Lus90bLus90b]. The central
result underlying our constructions is the following.

Theorem 1.2 (4.34.3). Suppose that Z2(Repq(G)) admits a fibre functor to Vect and that the au-
tomorphism group of the fibre functor is reductive. Then the object Repq(G) is invertible in
Alg2(ModZ2(Rep(G))(Pr)).

The assumption that Z2(Repq(G)) admits a fibre functor to Vect is the assumption that it is

Tannakian, and it is known that such a category can be reconstructed as Rep(Ǧ) for an affine
group scheme Ǧ given as the automorphism group of the fibre functor.

• Where q is odd and G is semisimple and of adjoint type [AG03AG03], or is a product of simple
groups (not necessarily of adjoint type) [GJS24GJS24], then assuming q is coprime to the lacing
number and Cartan determinant of G, the conditions of Thm. 1.21.2 are satisfied. In this
case Ǧ ∼= G.
• Where q is even and G is a simply-connected semisimple group whose lacing number divides
q, then the conditions of Thm. 1.21.2 are satisfied. In this case Ǧ ∼= GL is the Langlands
dual group of G [Neg23aNeg23a].

To prove Thm. 1.21.2, we develop a criterion under which invertibility of a braided tensor category
C considered as an object in Alg2(ModZ2(C)(Pr)) can be reduced to a related invertibility statement
in Alg2(Pr). If Z2(C) is Tannakian, then we can define the Müger fibre

B = C ⊠Z2(C) Vect

which is uniquely defined up to braided tensor equivalence. If the Müger fibre B is finite and
compact-rigid, then its invertibility as an object of Alg2(Pr) follows from the characterization of
[BJSS21BJSS21] because by construction it has trivial Müger centre. The invertibility of C is related to
the invertibility of B as follows.

Theorem 1.3 (3.53.5). Let C be a braided tensor category and A = Z2(C) its Müger centre. Suppose
that C satisfies the following conditions:
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Rep(Ǧ) Rep(Ǧ)

Rep(Ǧ)

Rep(Ǧ)

Repq(G)

Figure 1. An invertible 2-morphism in Alg4(Pr) defined by the data of Thm.
1.21.2.

(1) C is cp-rigid,
(2) A is Tannakian and semisimple,
(3) B = C ⊠A Vect is a finite, compact-rigid braided tensor category.

Then C is invertible in Alg2(ModA(Pr)).

In the situation of Thm. 1.21.2, there is an identification

(1) Repq(G)⊠Rep(Ǧ) Vect ≃ Repuq

of the Müger fibre with the category of representations of a finite-dimensional Hopf algebra uq.
This algebra is constructed in the most general setting in [Neg23aNeg23a], which recovers and generalizes
previous constructions [AG03AG03; Neg21Neg21]. The algebra uq is the so-called small quantum group, first
introduced in [Lus90aLus90a; Lus90bLus90b].

1.2. Non-semisimple Ǧ-relative Crane–Yetter. The cobordism hypothesis [BD95BD95; Lur08Lur08]
says that fully extended framed TQFTs are determined fully locally by their value on a point,
which must be a fully dualizable object. The related tangle hypothesis says that homomorphisms
of TQFTs are determined by fully dualizable 1-morphisms in the target. It is expected that the
work of [BJS21BJS21] can be extended to say that cp-rigid objects of a Morita theory Algn(Pr) are
(n + 1)-dualizable, and so Rep(Ǧ) should define a 5-dualizable object of Alg4(Pr), and hence a

TQFT Q : Bordfr5 → Alg4(Pr). It is expected [Lur08Lur08; Sch14Sch14] that such a TQFT can be computed
in dimension ≤ 4 by factorization homology, which is characterized by a property called excision
[AF15AF15].

Through work of [Ste23Ste23] (giving an underived version of some results of [BFN10BFN10]), it is known
that for M a closed, framed manifold, the assignment

(2) M 7→ QCoh(ChǦ(M))

satisfies excision, where the right hand side is the category of quasicoherent sheaves on the Ǧ-
character stack of M . That is, the moduli stack

ChǦ(M) = Map(Π1(M), BǦ)

of Ǧ-local systems on M . There is a corresponding coarse moduli space obtained as the GIT
quotient

ChǦ(M) = Hom(π1(M), Ǧ) � Ǧ

known as the character variety, and there is canonically a surjection π : ChǦ(M) −→ ChǦ(M).
It follows from the excision property of the assignment (22) that

Q(M) = QCoh(ChǦ(M)).

We call Q the 5-dimensional classical Ǧ-gauge theory, since Ǧ-local systems are the combinatorial
data of a flat Ǧ-connection, i.e. a solution to the equations of motion in Ǧ-gauge theory. We can
transport the invertible data of Thm. 1.21.2 to Alg4(Pr) for a 2-morphism as in Fig. 11.

In the setup of [JS17JS17], dualizable morphisms in the target define oplax natural transformations
of theories, also called twisted field theories. The 1-morphisms of Fig. 11 define the identity (Q,Q)-
twisted field theory IdQ, and the 2-morphism is a (IdQ, IdQ)-twisted (Q,Q)-twisted field theory Z.
One can expect (and we will show) that such a relative theory produces structures which vary in
relation to the character stack. Moreover, by (11) we expect that the data assigned by Z will be
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related, on de-equivariantization, to the 4-dimensional theory defined locally by Repuq as an object
of the (∞, 4)-category Alg2(Pr). We call this theory the non-semisimple Crane–Yetter theory.

Remark 1.4. There is a semisimplified category (Repuq)
s.s. which is 4-dualizable (indeed, in-

vertible) in Alg2(Pr), hence defines a fully extended 4-dimensional TQFT. In dimensions 3 and 4,
this theory is expected to recover the framed version of the (4, 3)-TQFT known as Crane–Yetter.
Hence our terming the theory for Repuq the non-semisimple Crane–Yetter theory.

We note that both semisimple and non-semisimple Crane–Yetter theories are defined by in-
vertible objects of Alg2(Pr), hence they are invertible theories: assigning invertible data in all
dimensions. In particular the state space assigned to a 3-manifold will be 1-dimensional. For the
Ǧ-relative theory Z, we have the following corollary of Thm. 1.21.2 in dimension 3.

Corollary 1.5 (§4.2.24.2.2). For M a closed, framed 3-manifold, the theory Z defines a quasicoherent
sheaf L ∈ QCoh(ChǦ(M)) which is a line bundle L on the character stack.

In this sense the theory Z can be thought of as varying non-semisimple Crane–Yetter over the
character stack. This is of physical interest, since it allows us to consider a version of non-semisimple
Crane–Yetter with Ǧ-background fields, where a Ǧ-background field is a Ǧ-local system.

1.3. Skein theory of surfaces and 3-manifolds. At the level of framed surfaces, the theory Z
is related to skein theory as follows.

Theorem 1.6 (4.134.13). Z(Σ) defines an invertible sheaf of categories Z̃(M) on ChǦ(Σ), with global
sections given by the free cocompletion of the skein category of Σ.

The skein category of Σ was first introduced in [Wal06Wal06; Joh21Joh21]. This category has a distinguished
object 1, and the endomorphisms of this object are the G-skein algebra SkAlgG(Σ) of the surface.

Since QCoh(ChǦ(Σ)) acts on Z(Σ) (see §4.2.34.2.3), we may denote by End(1) the internal algebra
of endomorphisms with respect to this action. This is a sheaf of algebras on ChǦ(Σ). We have
canonical maps

ChǦ(Σ)
π−→ ChǦ(Σ)

p−→ pt.

Recall that pushing forward to a point is to take the global sections of a sheaf; in this case we have
that p∗π∗End(1) is SkAlgG(Σ). Then π∗End(1) is a sheaf on ChǦ(Σ) with global sections being
the skein algebra. This sheaf of algebras has been studied for G = SL2 [BW16BW16; FKL18FKL18], and it is
known to have the following invertibility property due to [FKL18FKL18; GJS24GJS24; KK22KK22].

Theorem 1.7 (Unicity Theorem). The SL2-skein algebra at an odd root of unity defines a sheaf of
algebras on ChSL2(Σ) which is Azumaya on an open dense locus, namely the locus of non-central
representations.

Recalling that a sheaf of algebras is Azumaya if the corresponding sheaf of categories given
by taking representation categories is invertible, we can regard Thm. 1.61.6 as a stacky version of
the unicity theorem for skein algebras, realizing the expectations sketched in [GJS24GJS24, Rmk. 1.5].
Note that Thm. 1.61.6 defines a sheaf of categories on ChǦ(Σ) directly; and says that this sheaf is
everywhere invertible, not just on an open dense locus; and that this holds for a more general class
of reductive groups than SL2. It would be interesting to understand in more detail how to pass
from Thm. 1.61.6 to Thm. 1.71.7 by pushing forward along π.

The appearance of skein theory on taking global sections is to be expected. Taking global sections
is equivalent to passing from the bulk Crane–Yetter theory to its WRT boundary [BFG07BFG07; FT14FT14],
and skein-theoretic descriptions of WRT theory have been known since the work of [BHMV95BHMV95].
We would therefore like to be able to recover skein theory in dimension 3 by taking global sections
of our theory Z.

Conjecture 1.8. For M a closed 3-manifold, and L the line bundle assigned by Z(M), then

SkG,q(M) ∼= H0(ChǦ(M),L).
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Repq(G) Rep(Ǧ)

Rep(Ǧ)

Rep(Ǧ)

Vect Repuq

Figure 2. A sandwich picture in the style of [FMT23FMT23] of the domain wall Repq(G)
being gauged. The figure shows a small neighbourhood of a point in a manifold
(the Rep(Ǧ) boundary and Repuq line) which on the left is crossed with an inter-
val.

This is a root-of-unity analogue of a conjecture of Gunningham and Safronov, who conjecture
that for q generic the skein module can be recovered as global sections of the sheaf of vanishing
cycles, which is a (derived) version of our line bundle L for generic q. The root-of-unity skein
module requires some renormalization techniques such as those developed for the CGP invariants,
and was defined in [CGP23CGP23]. An answer to this conjecture would open up TQFT approaches to a
unicity theorem for skein modules.

1.4. A domain wall symmetry defect. One can also interpret Thm. 1.21.2 in terms of the recently
elucidated perspective of [FMT23FMT23] on topological symmetry in QFT. Summarizing for the case of
interest to us: symmetries of an n-dimensional (fully extended, framed) TQFT F are understood

via an (n + 1)-dimensional TQFT σ : Bordfrn+1 → T , such that σ has a right boundary ρ and a

left boundary F̃ and on dimensional reduction ρ ⊗σ F̃ ≃ F . Here F : Bordfrn → ΩT is valued
in the looping of the target, and dimensional reduction amounts to regarding F : 1 =⇒ σ, ρ :
σ =⇒ 1 as homomorphisms of theories, or equivalently, as 1-morphisms in T . The theory σ may
support various defects which implement symmetry on dimensional reduction, including domain
wall symmetry defects, corresponding to endomorphisms δ : σ → σ in T . Moreover if σ has an
augmentation ϵ in a suitable sense, then these symmetries can be gauged by taking the dimensional
reduction ϵ⊗σ δ ⊗σ F̃ .

The 3-dimensional classical Ǧ-gauge theory valued in Alg2(Pr) = ΩAlg3(Pr) has itself as a
symmetry theory. The data of Thm. 1.21.2 can be transported to define an invertible 1-morphism

Rep(Ǧ)
Repq(G)
−−−−−→ Rep(Ǧ)

in Alg3(Pr), hence an invertible domain wall symmetry defect of the 3-dimensional classical Ǧ-
gauge theory. By (11), the result of gauging this symmetry defect is the non-semisimple Crane–
Yetter theory: see Fig. 22. The main argument of Thm. 1.21.2 could then be summarized in the
following terms: because the gauged symmetry is an invertible theory, the symmetry defect was
itself invertible. We remark that anomaly theories have been explored in this perspective on
topological symmetry in the recent paper [Van23Van23].

1.5. Layout of the paper. Section 22 is devoted to preliminary definitions and background. In
§2.12.1 we introduce the Morita theories where we work, and prove a necessary functoriality property
(§2.1.32.1.3) which allows us to transport data between categorical settings. We also recall (§2.1.42.1.4) the
known results and setup of [BJSS21BJSS21] on invertibility in Alg2(Pr), which we use in our proof of Thm.
1.31.3. In §2.22.2 we recall some of the setup for defining and computing with (relative) TQFTs via the
cobordism hypothesis and factorization homology, and in §2.32.3 we introduce character stacks and
explain their excision property.

In §33 we prove Thm. 1.31.3. In §44 we apply this in the case of Repq(G) to prove Thm. 1.21.2. We go
on to transport this data to an appropriate setting to apply a version of the cobordism hypothesis,
yielding the relative 4d theory Z. We analyze the data assigned by Z in all dimensions in §4.24.2.
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We conclude by discussing how to interpret our arguments in terms of gauging a domain wall
symmetry (§4.34.3).

1.6. Acknowledgements. The author would like to thank his advisors David Jordan and Pavel
Safronov for their support and guidance throughout the project. The author also thanks Cris
Negron for useful comments on an earlier version of this manuscript. The author was supported
by the Carnegie Trust for the Universities of Scotland for the duration of this research.

2. Preliminaries

At all times we work over an algebraically closed field k of characteristic 0.

2.1. Algebra. He we give an overview of the construction and terminology of Morita categories,
which will be required for our later work.

Notation 2.1. Given a monoidal (∞, n)-category S, we denote by Alg(S) the category of algebra
objects in S. For A,B ∈ Alg(S), we denote by RModA(S),LModA(S) the categories of right and
left A-module objects in S respectively, and by Bimod(A,B)(S) the category of (A,B)-bimodule
objects. We denote by CAlg(S) the category of commutative algebra objects in S, and for A ∈
CAlg(S) we denote by ModA(S) the monoidal category of A-module objects in S.

2.1.1. Higher categories. By ∞-category we mean (∞, 1)-category. We denote by Ĉat∞ the ∞-
category of large ∞-categories. Let ∆ denote the simplicial indexing category.

Definition 2.2. Let S be an ∞-category with finite limits. A functor X• : ∆op → S is called a
category object in S if the Segal condition is satisfied: for every n ≥ 2 the natural morphism

Xn → X1 ×X0 · · · ×X0 X1

is an isomorphism. A category object in Ĉat∞ is called a double ∞-category. Where S = Sp is the
∞-category of∞-groupoids (often called spaces due to the presentation of Sp by a model structure
on topological spaces), a category object in Sp is called a Segal space.

Denote by Seg∆op(S) ⊂ Fun(∆op,S) the full subcategory of category objects. There is also
a notion of n-uple category object, recursively defined as Seg∆n,op(S) := Seg∆op(Seg∆n−1,op(S)),
with the underlying functor from (∆op)

n
denoted X•⃗.

Definition 2.3. Let S be an∞-category with finite limits. A 1-fold Segal object in S is a category
object in S. For n > 1 we define inductively an n-fold Segal object in S to be an n-uple category
object X in S such that

(1) the (n− 1)-uple category object X0,•,...,• is constant,
(2) for all k, the (n− 1)-uple category object Xk,•,...,• is an (n− 1)-fold Segal object.

Where S = Sp, n-fold Segal objects are called n-fold Segal spaces.

We denote by Segn−fold
∆n,op (S) the category of n-fold Segal objects in S. It is established in [Hau18Hau18,

Prop. 4.12] that the inclusion Segn−fold
∆n,op (S) ↪→ Seg∆n,op(S) has a right adjoint Un : Seg∆n,op(S)→

Segn−fold
∆n,op (S).

Remark 2.4. Recall that (∞, n)-categories can be modelled as complete n-fold Segal spaces, i.e.

as a particular subcategory of Segn−fold
∆n,op (Sp) [Bar05Bar05]. Then the inclusion Ĉat∞ ↪→ Seg∆op(Sp)

induces a functor in : Seg∆n,op(Ĉat∞) ↪→ Seg∆n+1,op(Sp). Where Ln : Segn−fold
∆n,op (Sp)→ ̂Cat(∞,n) is

the left adjoint to the inclusion Segn−fold,complete
∆n,op (Sp) ↪→ Segn−fold

∆n,op (Sp) (see [Lur09aLur09a, Thm. 1.2.13],
or [Rez00Rez00, Thm. 7.7] for the n = 1 case), we can pass from n-uple categories to (∞, n+1)-categories
by

Ln+1Un+1in : Seg∆n,op(Ĉat∞)→ ̂Cat(∞,n+1)

which we call taking the underlying (∞, n+ 1)-category.
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C1 D1 C1 C2

C2 D2 D1 D2

c d

c

d

Figure 3. Morphisms c, d in T define objects in the arrow categories T ↓, T →.
Left: a commutative square defining a 1-morphism in T ↓. Right: a commutative
square defining a 1-morphism in T →.

The∞-category of (∞, n)-categories is cartesian closed, so that given (∞, n)-categories S, T we
can form the (∞, n)-category [S, T ] of functors between them. The notion of natural transformation
here is what is called a strong natural transformation. In [JS17JS17], the authors define (∞, n)-
categories T →, T ↓ with objects 1-morphisms in T morphisms (op)lax natural transformations,
that is, square diagrams commuting up to a (possibly non-invertible) 2-morphism: see Fig. 33.
These categories have natural source and target functors s, t to T .

Definition 2.5 ([JS17JS17]). For functors F,G : S → T , a lax natural transformation F =⇒ G is a
functor α : S → T ↓ with sα = F, tα = G. Similarly an oplax natural transformation is a functor
into T →. The (∞, n)-categories of functors and lax/oplax natural transformations will be denoted

Funlax(S, T ),Funoplax(S, T ) respectively.

There are moreover categories T oplax
(k) and T lax

(k) for all k ≥ 0, with objects being k-morphisms of

T and morphisms given by diagrams generalizing those of Fig. 33, see [JS17JS17].
A related notion to that of an (∞, n)-category is that of n-category, which for us means weak

n-category. In this paper we will only consider n-categories for n ≤ 2, although we will encounter
(∞, n)-categories for n > 2. The case n = 2 is called a bicategory.

Definition 2.6. Let S be an (∞, n)-category. We define hS to be its homotopy category, having
the same objects as S and the morphisms given by isomorphism classes of 1-morphisms in S.
Similarly, the 2-category h2S has the same objects and 1-morphisms as S, and its 2-morphisms
are isomorphism classes of 2-morphisms in S, and more generally there is a truncation hN (S) to
an N -category.

Remark 2.7. Truncation hN possesses a left adjoint which allows us to regard an N -category as
an (∞, N)-category with only identity k-morphisms for k > N . We may pass from N -categories
to (∞, N)-categories in this way without further comment.

Definition 2.8. Given a monoidal (∞, n)-category S, we can form an (∞, n + 1)-category BS
which has a single object and EndBS(∗) ≃ S. Conversely we can form the monoidal (∞, n − 1)-
category ΩXS := EndS(X) for any object X ∈ S.

Dualizability and invertibility.

Definition 2.9. Let B be a bicategory. Given 1-morphisms f : X ⇆ Y : g and 2-morphisms
η : 1X → g ◦ f, ϵ : f ◦ g → 1Y . We say that η, ϵ are the unit and counit of an adjunction if

f ≃ f ◦ 1X
Id×η−−−→ f ◦ g ◦ f ϵ×Id−−−→ 1Y ◦ f ≃ f

g ≃ 1X ◦ g
η×Id−−−→ g ◦ f ◦ g Id×ϵ−−−→ g ◦ 1Y ≃ g

both coincide with the identity. In this case we say that g is the right adjoint of f , and that f is
the left adjoint of g. If f : X → Y is such that there exist fR : Y → X and η, ϵ as above, then
we say that f is right-adjunctible, and η, ϵ witness the adjunctibility. Similarly f is left-adjunctible
if there exists a left adjoint fL. We call f very adjunctible if f is both left and right-adjunctible,
with fL left adjunctible, and (fL)L, and ((fL)L)L and so on also left adjunctible, and fR, (fR)R

and so on right adjunctible. Very adjunctible morphisms were called simply adjunctible in [JS17JS17].
A k-morphism in an (∞, N)-category T is called right/left/very adjunctible if it is so in the

appropriate homotopy bicategory. Inductively we say a k-morphism is n-times right/left/very
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adjunctible if it is (n−1)-times right/left/very adjunctible and the (k+n−1)-morphisms witnessing
the adjunctibility are right/left/very adjunctible.

Definition 2.10. An object of a symmetric monoidal category C is called 1-dualizable if the
corresponding morphism in BC is right- (or equivalently left-) adjunctible. An object of a sym-
metric monoidal (∞, N)-category S is called 1-dualizable if it is so in the homotopy category of S.
Inductively, we call an object in a symmetric monoidal (∞, N)-category n-dualizable if it is (n−1)-
dualizable and the (n− 1)-morphisms witnessing the (n− 1)-dualizability are very adjunctible.

Definition 2.11. Let S be an (∞, n)-category and 1 ≤ k ≤ n. A k-morphism f : A → B is
called invertible if there is another morphism g : B → A such that fg ∼= IdB , gf ∼= IdA up to
some invertible (k + 1)-morphisms. An object in a symmetric monoidal (∞, n)-category is called
invertible if the corresponding morphism in BS is invertible.

2.1.2. The Morita construction. We denote by Ĉat∞
sc
⊆ Ĉat∞ the full subcategory of∞-categories

admitting geometric realizations (i.e. colimits of shape ∆op). The cartesian symmetric monoidal

structure on Ĉat∞ restricts to Ĉat∞
sc

so that a monoid in Ĉat∞
sc

is a monoidal ∞-category with
geometric realizations such that the tensor product preserves these in each argument. We denote

the ∞-category of such by Mon(Ĉat∞
sc
).

The Morita construction of [Hau17Hau17] defines a functor

Mor : Mon(Ĉat∞
sc
)→ Seg∆op(Ĉat∞

sc
)

(which in [Hau17Hau17] is denoted ALG1). For any S ∈ Mon(Ĉat∞
sc
), this construction produces

a double ∞-category Mor(S). The Morita category Alg1(S) is then defined as the underlying
(∞, 2)-category of Mor(S), i.e. as L2U2i1(Mor(S)).

There is an alternative functorial construction

MorLur : Mon(Ĉat∞
sc
)→ Seg∆op(Ĉat∞

sc
)

of a double category, described in [Lur17Lur17, §4.4]. It is shown in [Hau23Hau23, Cor. 5.14] that the two
constructions are equivalent, and so we will use them interchangeable and usually use the notation
Mor. We note that another construction of the Morita category using locally constant factorization
algebras is given in [Sch14Sch14, §3], although we do not use this model since it does not admit the
dualizability we require due to the presence of pointings (see [GS18GS18, §6]).

Let us describe some of the data of the double ∞-category Mor(S).
• Mor(S)0 is the ∞-category Alg(S) of algebra objects in S, i.e. algebras over the little
1-disks operad or E1 operad.
• Mor(S)1 is the ∞-category Bimod(S) whose objects are triples (A,M,B) where A,B ∈
Alg(S) and M ∈ Bimod(A,B)(S). This captures that morphisms in the Morita category
are bimodules. We may sometimes write AMB for the triple (A,M,B).
• Mor(S)2 is the ∞-category of tuples (A0,M0,1, A1,M1,2, A2) where A0, A1, A2 ∈ Alg(S)
and Mi,i+1 ∈ Bimod(Ai,Ai+1)(S). We think of these as pairs of composable morphisms.
• Mor(S)n is similarly the ∞-category of strings of composable bimodules of length n.
• The functor Mor(S)2 → Mor(S)1 over the unique endpoint-preserving morphism [1]→ [2]
in ∆ sends (A0,M0,1, A1,M1,2, A2) to (A0,M0,1⊗A1 M1,2, A2) where M0,1⊗A1 M1,2 is the
geometric realization of the Bar construction.
• For n ≥ 2, the functor Mor(S)n → Mor(S)1 over the unique endpoint-preserving morphism
[1]→ [n] in ∆ sends a string of n composable bimodules to their composition as computed
by geometric realization.
• There are two maps [0]→ [1] in ∆, corresponding to the two functors Mor(S)1 → Mor(S)0
which are the source and target maps.
• There is a unique map [1]→ [0] in ∆, which corresponds to the functor Mor(S)0 → Mor(S)1
which sends an algebra A to AAA.

The Mor construction can be iterated due to the following.

Lemma 2.12. The functor Mor : Mon(Ĉat∞
sc
)→ Seg∆op(Ĉat∞

sc
) preserves products.
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Proof. This is [Hau23Hau23, Cor. 7.5]. □

It follows that Mor preserves monoids internal to Mon(Ĉat∞
sc
). Then given an E2-monoidal

(∞, 1)-category S, by Dunn-Lurie additivity we can regard S as an object of Mon(Mon(Ĉat∞
sc
)).

Then, by Lemma 2.122.12, there is an induced functor

Mon(Mon(Ĉat∞
sc
))→ Mon(Seg∆op(Ĉat∞

sc
))

≃ Seg∆op(Mon(Ĉat∞
sc
))

→ Seg∆op(Seg∆op(Ĉat∞
sc
))

≃ Seg∆2,op(Ĉat∞
sc
)

where each arrow involves an application of Mor. We call this functor Mor2. Iteratively, there is
a functor

(3) Morn : MonEn(Ĉat∞
sc
)→ Seg∆n,op(Ĉat∞

sc
).

We denote by Algn(S) the (∞, n+ 1)-category Ln+1Un+1in(Morn(S)).

Even higher Morita theories. In [JS17JS17], the construction of [Hau17Hau17] is extended: given an En-
monoidal (∞,m)-category S, a construction is given for an (∞, n + m)-category Algn(S). The
first n levels of morphisms are given by iterating the Morita construction, and the remaining m
levels are given by the morphisms in S which respect the iterated algebra and bimodule structures.

In [JS17JS17, Def. 5.1], the authors describe for any k⃗ ∈ Nm
>0 an m-category Θk⃗ which describes

diagrams of the shape of a string of composable m-morphisms in a higher category. For any
(∞, n) category, the authors define the (∞, 1)-category Sk⃗ which is the 1-truncation of the (∞, n)-

category of functors [Θk⃗,S]. The object S•⃗ is called ⊗-GR-cocomplete if it defines an n-fold

simplicial diagram in Ĉat∞
sc
.

Now suppose that S is an En-monoidal (∞,m)-category and S•⃗ is ⊗-GR-cocomplete. We notice

that Sk⃗ is an En-monoidal (∞, 1)-category (since [Θk⃗,−] is a functor which preserves products),
so that inMorn(Sk⃗) is an object of Seg∆n+1,op(Sp). Denoting by τ≤n the truncation of a (n +
1)-uple Segal object to a n-uple object (by fixing the final coordinate to be 0), we have that
Unτ≤ninMorn(Sk⃗) is a n-fold Segal space. Moreover, it is established in [JS17JS17, Thm. 8.5] that
Unτ≤ninMorn(S•⃗)•⃗ is a n-fold Segal object internal to complete m-fold Segal spaces. We denote

Algn(S) := LnUnτ≤ninMorn(S•⃗)•⃗
the underlying (∞, n+m)-category.

The reason for the truncation step is that, on applying in, we pick up a level of morphisms
which are 1-morphisms in S which respect the iterated algebras and bimodules produced by Morn.
But these are already accounted for by the level 0 part of S•⃗, so we need to discard them from
inMorn(S) to avoid duplicating this data.

2.1.3. Functoriality of the Morita construction. Here we give a functoriality property for the Morita
construction, beginning with a construction which is lax functorial. The morphisms between

objects of Seg∆op(Ĉat∞
sc
) are given by natural transformations of functors, which in turn induce

functors of (∞, 2)-categories under L2U2i1. To discuss lax functors we need to understand the
correct notion of a lax natural transformation of double ∞-categories.

Given a double category X : ∆op → Ĉat∞, the ∞-categories Xn represent length n strings
of composable morphisms. The endpoint-preserving maps [1] → [n] in ∆ induce functors Xn →
X1 which represent composition. It is over these maps that we would like to relax our natural
transformations, and we need a way to single out these maps.

Definition 2.13. A morphism f : [m] → [n] in ∆ is called active if it preserves endpoints, i.e.
f(0) = 0 and f(m) = n. A morphism f : [m] → [n] in ∆ is called inert if it is the inclusion of a
subinterval, i.e. f(i) = f(0) + i for all i ∈ [m].
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Definition 2.14. Let C be a category and E and M two classes of morphisms in C. The pair
(E,M) is called an orthogonal factorization system, or simply a factorization system, if every
morphism f in C factors as f = m ◦ e where e ∈ E and m ∈M , and moreover:

(1) the factorization is unique up to unique isomorphism,
(2) both E and M are closed under composition and contain all isomorphisms.

Lemma 2.15. The classes (inert, active) form a factorization system in ∆.

Proof. This can be checked by hand or follows from [Bar18Bar18, Lemma 7.3]. □

Then we define the category Seglax∆op(Ĉat∞
sc
) ⊂ Funlax(∆op, Ĉat∞

sc
) to be the subcategory of

double ∞-categories and lax natural transformations between them which are strict over the inert
morphisms in ∆. This is the correct notion of a lax functor between double ∞-categories: on

applying U , the morphisms of Seglax∆op(Ĉat∞
sc
) become lax functors of (∞, 2)-categories.

Lemma 2.16. Denote by Monlax(Ĉat∞
sc
) the ∞-category of monoids in Ĉat∞

sc
and lax monoidal

functors. Then the Morita construction extends to a functor

Mor : Monlax(Ĉat∞
sc
)→ Seglax∆op(Ĉat∞

sc
).

Proof. See [Hau23Hau23, Rmk. 5.15]. □

Functoriality in semistrong monoidal functors. Let A,B ∈ Mon(Ĉat∞
sc
) and F : A → B a lax

monoidal functor. Then F preserves monoid objects and (bi)modules over them so fits into a
diagram

Bimod(1,1)(A) Bimod(F (1),F (1))(B)

A B
F

where the top functor is induced by F and the vertical functors are the forgetful functors. The left
vertical functor is an equivalence [Hau17Hau17]. So we have a lax monoidal functor

A → Bimod(F (1),F (1))(B)

induced by F .

Lemma 2.17. Let F : A → B be a lax monoidal functor. Then the following are equivalent.

(1) The induced functor A → Bimod(F (1),F (1))(B) is strong monoidal.
(2) The natural morphism

F (x)⊗F (1) F (y)→ F (x⊗ y)

is an isomorphism for every x, y ∈ A.
(3) Consider B as a left A-module category where a▷ b := F (a)⊗F (1) b. Then F : A → B is

a strong functor of A-module categories.

Proof. It is clear that (1) and (2) are equivalent. For (3), we see that a priori F is a lax functor of
A-module categories by the natural transformation

(4) F (a)⊗F (1) F (a′)⊗F (1) b→ F (a⊗ a′)⊗F (1) b.

Then (2) implies that this is an isomorphism, so F is a strong A-module category functor. Con-
versely if F is a strong A-module category functor, then the fact that the morphism (44) is an
isomorphism entails (2) by taking b = 1. □

Definition 2.18. A lax monoidal functor F : A → B is called semistrong if it satisfies the

equivalent conditions of Lemma 2.172.17. The ∞-category of monoids in Ĉat∞
sc

and semistrong

monoidal functors will be denoted Monss(Ĉat∞
sc
).
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Example 2.19. Let S be a symmetric monoidal ∞-category admitting geometric realizations
whose tensor product preserves these, and A any commutative algebra object in S. Then the
functor of restriction along the unit inclusion u : 1→ A is semistrong. This is because the relative
tensor products u∗(x)⊗u∗(A)u∗(y) and x⊗A y are each computed as colimits of simplicial diagrams
in S, i.e. on underlying objects, so that under the forgetful functor u∗ : ModA(S) → S they are
isomorphic.

Proposition 2.20. The Morita construction defines a symmetric monoidal functor

Mor : Monss(Ĉat∞
sc
)→ Seg∆op(Ĉat∞

sc
).

Proof. Prop. 2.162.16 says that Lurie’s definition of the Morita double ∞-category is lax-functorial:
it defines a functor

Mor : Monlax(Ĉat∞
sc
)→ Seglax∆op(Ĉat∞

sc
)

where the target is the category of double ∞-categories and lax natural transformations between
them which are strict over inert morphisms.

We need to show that, for F : A → B semistrong, then Mor(F ) : Mor(A)→ Mor(B) is a strict

functor, i.e. that the induced natural transformation of functors ∆op → Ĉat∞ is strict. By the
Segal condition, this amounts to showing that Mor(F ) is strict over the unique active morphisms
[1]→ [0] and [1]→ [2] in ∆op.

For the first condition, we must show that the lax commuting diagram

Alg(A) Bimod(A)

Alg(B) Bimod(B)

F F

commutes strictly. The horizontal functors send an algebra A to the identity (A,A)-bimodule.
Then it is clear that the square commutes strictly, since F applied to AAA is F (A)F (A)F (A).

For the second condition, we must show that the lax commuting diagram

Bimod(A)×Alg(A) Bimod(A) Bimod(A)

Bimod(B)×Alg(B) Bimod(B) Bimod(B)

commutes strictly. Here the horizontal functors are composition of bimodules: they send (AMB ,B NC)
to M ⊗B N . Then, where

L : RModB(A)× LModB(A)→ B
(M,N) 7→ F (M)⊗F (B) F (N)

and

R : RModB(A)× LModB(A)→ B
(M,N) 7→ F (M ⊗B N)

we must show that the natural transformation L =⇒ R is an isomorphism for any B ∈ Alg(A).
Regard B as an (A,A)-bimodule category in the same way as in Lemma 2.172.17. By this proposi-

tion, both L and R are functors of (A,A)-bimodule categories.
By assumption F preserves geometric realizations. Moreover, the relative tensor product pre-

serves geometric realizations in each argument, since it factors as

RModB(A)× LModB(A)
Bar−−→ Fun(∆op,A) colim−−−→ A.

The functor colim is cocontinuous. So is the functor Bar: it sends the colimit Mc×Nc of a diagram
{Mi × Ni}I indexed by I to ([n] 7→ Mc ⊗ Bn ⊗ Nc). Clearly for any n this is the colimit of the



NON-SEMISIMPLE CRANE–YETTER THEORY VARYING OVER THE CHARACTER STACK 13

diagram {Mi ⊗Bn ⊗Ni}I in A, but since colimits are computed pointwise in a functor category,
this says that Bar(Mc ×Nc) = ([n] 7→Mc ⊗Bn ⊗Nc) is the colimit of {Mi ⊗Bn ⊗Ni}I . So Bar
preserves colimits.

Therefore we have that L and R each preserve geometric realizations in each entry. So it follows
from [Lur17Lur17, Thm. 4.8.4.1] that the natural transformation L =⇒ R is an isomorphism if and
only if L(B)→ R(B) is an isomorphism, i.e. if the natural morphism

F (B)⊗F (B) F (B)→ F (B ⊗B B)

is an isomorphism. This morphism fits into a commutative triangle

F (B)⊗F (B) F (B) F (B ⊗B B)

F (B)

given by multiplication on the algebras B and F (B). The downward arrows are each isomorphisms
by [Lur17Lur17, Prop. 4.4.3.16], which concludes the proof. □

Let us denote by ̂Cat(∞,m)

sc+
the subcategory of ̂Cat(∞,m)

sc
consisting of objects S such that

S•⃗ is ⊗-GR-cocomplete.

Corollary 2.21. For any n,m ∈ N there is a symmetric monoidal functor

Algn : MonssEn
( ̂Cat(∞,m)

sc+
)→ ̂Cat(∞,n+m)

sc

where the source is the ∞-category of En-monoidal ∞-categories admitting geometric realizations
and whose tensor product preserves these, and semistrong En-functors.

Proof. Firstly let us observe that [Θk⃗,−] preserves products and therefore strong and lax monoidal
functors, so any semistrong En-monoidal functor S → T induces a semistrong En-monoidal functor

Sk⃗ → Tk⃗ for any k⃗ ∈ Nm
>0.

Then using Prop. 2.202.20, and the fact that Mor can be iterated (33) we have a functor

Morn : MonssEn
( ̂Cat(∞,m)

sc+
)→ Segn−fold

∆n (Segm−fold,complete
∆m (Sp))

S 7→ Unτ≤ninMorn(S•⃗)•⃗

where we use [JS17JS17, Thm. 8.5]. Then applying the localization functor Ln completes the proof. □

Lemma 2.22. Let S be a symmetric monoidal (∞,m)-category admitting geometric realizations
whose tensor product preserves these, with S•⃗ being ⊗-GR-cocomplete, and A ∈ S any commutative
algebra object in S. Then for any n ≤ k there is an Ek-monoidal functor

Algn−k(ModA(S))→ Ωk
AAlgn(S)

induced by restriction along the unit inclusion u : 1→ A.

Proof. Since colimits in ModA(S) are computed in the underlying category S, it follows that
ModA(S)•⃗ is ⊗-GR-cocomplete. The restriction along the unit inclusion is semistrong as in Ex-
ample 2.192.19. Then by Cor. 2.212.21, this gives a functor of (∞, n+ 1)-categories

Algn(ModA(S))→ Algn(S).

This is the k = 0 case of the statement. The k > 0 case follows by taking k-fold endomorphisms
of A and applying the delooping result of [Hau23Hau23, Cor. 5.51]. □
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2.1.4. Morita theories of locally presentable categories. Let us introduce the setting of our main
theorems.

Definition 2.23. Let C be a k-linear category. An object c ∈ C is called

• compact if Hom(c,−) commutes with filtered colimits, and
• compact-projective if Hom(c,−) commutes with arbitrary (small) colimits.

If C has all small colimits, we say C
• is locally finitely presentable if it is generated under filtered colimits by a small subcategory
of compact objects, and
• has enough compact projectives if it is generated under small colimits by a small subcategory
of compact projectives.

Definition 2.24. Denote by Pr the 2-category of locally finitely presentable categories, cocontin-
uous functors, and natural transformations.

Recall that the 2-category of k-linear categories is symmetric monoidal, with the category C ⊗
D having objects the pairs of objects in C,D and morphism spaces given by the linear tensor
product. The 2-category Pr is not closed under this monoidal product, but there is an appropriate
replacement.

Definition 2.25. The Deligne-Kelly tensor product of two categories C,D ∈ Pr is a category
C ⊠D ∈ Pr with a linear functor π : C ⊗D → C ⊠D, cocontinuous in each variable, such that any
bi-cocontinuous functor C ⊠D → E factors uniquely through π up to natural isomorphism.

Lemma 2.26. The Deligne-Kelly tensor product exists and is locally finitely presentable.

Proof. See [BJS21BJS21, Prop. 2.9]. □

Recall the En operad is the ∞-operad whose space of arity k operations are parameterized
by rectilinear embeddings of k disjoint n-dimensional disks into another n-dimensional disk. An
algebra over En in S is an object V ∈ S and a morphism of operads En → EndV where the
endomorphism operad has EndV (k) = HomS(V

⊗k, V ). In the 2-category Pr equipped with the
Deligne-Kelly tensor product, we can make the data of En-algebras precise: see [Lur17Lur17; Fre17Fre17] for
textbook references containing more details.

In the discussion sketched below we assume basepoints to have been chosen in the configuration
spaces defining the En operad, though the spaces of such choices are contractible (see the discussion
at [Fre17Fre17, §5.1.7]). We note that Pr is a 2-category, so has no k-morphisms for k > 2, or, the
corresponding (∞, 2)-category of Rmk. 2.72.7 has only identity k-morphisms for k > 2. Then En-
algebras En → EndV in Pr are implicitly factored through the 2-truncation of the En operad, c.f.
Def. 2.62.6.

(1) In the setting S = Pr (see Def. 2.242.24), an E1-algebra is a locally presentable tensor category
C with cocontinuous tensor product, which we will simply term a tensor category henceforth
(note we do not require any rigidity, as in [EGNO15EGNO15, Ch. 4]). The embedding of two disks
into one defines the tensor product functor TC : C⊠C → C, and there is an obvious isotopy
of embeddings which defines the associativity constraint. The pentagon axiom follows from
an isotopy of isotopies in E1(3), which specifies an equality of natural isomorphisms in Pr
since the E1-algebra structure factors through a truncation. We denote by c⊠ d an object
of C ⊠ C, and denote c⊗ d = TC(c⊠ d).

(2) Given a tensor category C, then a C-module object in Pr is equivalent to the data of a
C-module category (see, e.g., [EGNO15EGNO15, §7.1]). Where we denote the action functor by
actM : C⊠M→M, we will denote actM(c,m) by c▷C m forM a left C-module category,
and for M a right C-module category we use the notation m ◁C c. Where the acting
category is clear from context we will omit the subscripts. When m ∈M is an object, we
denote by actm : C →M the functor c 7→ c▷m.

(3) Similarly, an E2-algebra in Pr is a braided tensor category, and an Ek-algebra for k ≥ 3
is a symmetric tensor category. In this setting, the tensor multiplication of a braided
tensor category is induced by embedding two disks into one along the x-direction, and
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the braiding σ is induced by the isotopy in E2(2) which is π-rotation anticlockwise. The
hexagon axioms come from natural isotopies of isotopies in E2(3). These conventions follow
[BJS21BJS21]. Notice the stabilization at k = 3, because Ek-algebras must factor through the
2-truncation, so that higher isotopies of embeddings cannot be witnessed other than by
equality.

Given a reflection of the n-dimensional disk, this induces an automorphism of the En operad.

Notation 2.27. Any E1-algebra (X , F : E1 → EndX ) has an opposite E1-algebra denoted X⊗ op

given by precomposing F with the automorphism induced by reflection of a standard interval. In
Pr this is the usual notion of ⊗ op. An E2-algebra (C, G : E2 → EndC) has two opposites C⊗ op and
Cσ op, where we precompose G with the automorphisms induced by a reflection along the y-axis and
the x-axis respectively. There are canonically two equivalences C⊗ op ≃ Cσ op given by a π-rotation
anticlockwise and clockwise respectively.

Definition 2.28. Let C be a tensor category. The Drinfeld centre of C, denoted Z1(C), is a braided
tensor category with

(1) as objects, pairs (Y, β) where β : −⊗ Y → Y ⊗− is a natural isomorphism;
(2) as morphisms (Y, β) → (Y ′, β′), a morphism f : Y → Y ′ that intertwines the natural

isomorphisms:

(f ⊗ 1X)βX = βX(1X ⊗ f)

for all X;
(3) as the tensor product of (Y, β) and (Y ′, β′), the object (Y ⊗ Y ′, β̃) where β̃ is defined by

the hexagon axiom for C;
(4) as the braiding, σ(Y,β),(Y ′,β′) = β′

Y .

Definition 2.29. Let C be a braided tensor category. The full subcategory of objects X ∈ C such
that σY,XσX,Y = IdX⊗Y for all Y ∈ C is called the Müger centre of C, denoted Z2(C). Clearly
Z2(C) is a symmetric tensor category.

Geometric realizations in Pr are given by the balanced Deligne-Kelly tensor product.

Definition 2.30. Let A be a tensor category and M,N be right and left A-module categories.
A functor F : M ⊠ N → E is called A-balanced if it is equipped with a natural transformation
f : F ◦ actM → F ◦ actN called an A-balancing, making the obvious diagrams commute. The
balanced Deligne-Kelly tensor product ofM and N , if it exists, is the categoryM⊠AN equipped
with a functorM⊠N →M⊠AN satisfying the universal property that any A-balanced functor
M⊠N → E factors uniquely throughM⊠A N .

Remark 2.31. It is easy to check that the above definition implies thatM⊠AN is the colimit of
the relative tensor product diagram. Then the balanced tensor product exists by cocompleteness
of Pr [BBJ18aBBJ18a, Def. 3.14, Rmk. 3.15]. It was constructed in some specific situations in [EGNO15EGNO15;
DN13DN13; DSS19DSS19].

Notice that the iterative definition of Algn(S) makes sense since the category of E1-modules for
an En-algebra is monoidal for n ≥ 2 so one can sensibly define Ek-algebras internally. Spelling out
these details for the case S = Pr gives the following.

Proposition 2.32. Let (A,⊗, σ) be a braided tensor category. Then every left A-module category
M is a right A-module category with the action given by m◁a := a▷m and associativity constraint
given by

m◁ (a⊗ b) = (a⊗ b)▷m
σa,b−−→ (b⊗ a)▷m ∼= b▷ (a◁m) = (m◁ a)◁ b.

Given two left A-modules M,N , then equipping M with the above right A-module structure, the
relative tensor product M ⊠A N is a left A-module and this makes the 2-category of A-module
categories into a monoidal 2-category.

Proof. This is shown in detail in [BJS21BJS21, Prop. 2.36]. □
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This allows us to define En-algebras internal to ModA(Pr) where A is a symmetric tensor
category.

Proposition 2.33. Given a symmetric tensor category A, the following notions are equivalent:

• An E2-algebra in the monoidal 2-category ModA(Pr) of A-module categories equipped with
the balanced tensor product over A, and
• A braided tensor category C, together with a symmetric tensor functor

ϕA : A → Z2(C)

to the Müger centre of C.

Proof. Given an E2-algebra C in A-modules, this specifies the data of a braided tensor structure
on the underlying category C, where all the braided tensor data is A-linear. In particular, the
A-action on C is by endomorphisms of C as an E2-algebra i.e, as a module over its E2-enveloping
algebra UE2

C [BJSS21BJSS21, Def 2.5]. But it is known that End
U

E2
C

(C) ≃ Z2(C) via f 7→ f(1).

Conversely, given a functor A → Z2(C) ≃ End
U

E2
C

(C), this specifies an A-module structure

which commutes with the braided tensor structure, so that C can be regarded as an E2-algebra
internal to A-modules. □

The invertible objects of Alg2(S) are characterized in [BJSS21BJSS21]. In the case S = ModA(Pr),
where A is a symmetric tensor category, the theorem is as follows.

Notation 2.34. Let A be a symmetric tensor category, and C be an object of Alg2(ModA(Pr)),
i.e. a braided tensor category equipped with a symmetric tensor functor A → Z2(C). We define
the A-relative enveloping algebra

CeA := C ⊠A C⊗ op

and the A-relative Harish-Chandra category

HCA(C) := C ⊠C⊠ACσ op C⊗ op.

We also use the notation Ce = Ce
1
and HC(C) = HC1(C).

Theorem 2.35 ([BJSS21BJSS21, Thm. 2.30]). Let A be a symmetric tensor category, and C be an
object of Alg2(ModA(Pr)). Then C is invertible as an object of Alg2(ModA(Pr)) if and only if
C is dualizable as a module over A, CeA, C ⊠A Cσ op,HCA(C) and moreover the following maps are
isomorphisms:

(1) (relative cofactorizability) HCA(C)→ HomA(C, C).
(2) (relative factorizability) C ⊠A Cσ op → HomCe

A
(C, C).

(3) (relative nondegeneracy) A → HomHCA(C)(C, C).

Proof. This is a restatement of [BJSS21BJSS21, Thm. 2.30], where we have carefully spelled out the
objects appearing there using the fact that the tensor product on ModA(Pr) is the relative tensor
product over A. □

2.2. Topology.

2.2.1. TQFTs. Let T be a symmetric monoidal (∞, n)-category. A topological quantum field
theory, or TQFT, valued in T is a symmetric monoidal functor

Z : Bordfrn → T

where Bordfrn is the (∞, n)-category of framed bordisms.

Remark 2.36. For a rigorous construction of Bordfrn as a complete Segal space, see [Sch14Sch14, §2].
Symmetric monoidal functors from Bordfrn are usually called framed, fully extended TQFTs. Other
flavours of TQFT are available, but in this work we only construct framed, fully extended TQFTs,
so we will usually leave out the adjectives framed and fully extended. We note that Bordfrn contains

closed, compact, framed n-manifolds as Ωn
∅Bord

fr
n .
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The objects and morphisms in Bordfrn have strong dualizability properties, which impose con-
ditions on the data which can be assigned by a TQFT. It was hypothesized that in fact such a
functor is defined fully locally by its value on a framed point, with the value on higher bordisms
being recovered by cutting and gluing. This is the cobordism hypothesis, which was conjectured in
[BD95BD95] and whose proof was sketched in [Lur08Lur08].

Remark 2.37. Where the dimension n of the bordism category Bordfrn is understood, then n-
dualizable objects of T are sometimes called fully dualizable, though we note that in the setup of
this paper we may work with T an (∞, N)-category with N ≥ n.

The target of the TQFTs in this paper will be a Morita theory. The question of k-dualizability
(Def. 2.102.10) in a Morita theory Algn(S) is generally understood to be a topological phenomenon
for k ≤ n. It was shown in [Lur08Lur08] that any E1-algebra is 1-dualizable. This was extended in
[GS18GS18] to show that the entire pointed Morita category Algn(S) is n-dualizable, a result that was
shown for objects in [Sch14Sch14]. It is remarked in [GS18GS18] that the presence of pointings prevents
(n + 1)-dualizability. In particular it prevents invertibility, and it is for this reason we must use
the unpointed model of [Hau17Hau17].

Assumption 2.38. In [BJS21BJS21] it is shown that cp-rigidity is a sufficient condition to obtain n+1-
dualizability in the unpointed Morita theory Algn(Pr). While the results of [BJS21BJS21] are only stated
for n = 1, 2, it is expected that the same methods can be applied for arbitrary n, and we make
this an assumption in this paper.

Twisted field theories. Our main application in this paper will not be a TQFT but rather a relative
field theory, defined in relation to classical gauge theory. In the perspective advanced in [FT14FT14], a
relative n-dimensional field theory should be understood as a natural transformation F : 1 =⇒ T
of symmetric monoidal functors Bordfrn+1 → T , where T is a suitable target (∞, n + 1)-category.

We assume in particular that Ωn−1
1
T ≃ Vect. Where T is itself invertible, it is called the anomaly

or twist of F . At the level of closed n-manifolds, then it is clear that F (M) is a choice of vector
in the vector space T (M).

This perspective is made more detailed in [JS17JS17], where a theory relative to T is defined more
specifically as an oplax natural transformation (Def. 2.52.5). Then if T is the target of theories

S, T : Bordfrn → T , an oplax natural transformation of theories S =⇒ T is a functor Bordfrn → T →,
and this makes precise the idea of a “homomorphism of theories” or of a relative theory. An oplax

natural transformation is also called an (S, T )-twisted field theory, and a functor Bordfrn → T
oplax
(k)

is called a k-times twisted field theory. Denoting by Funoplax⊗ (Bordfrn , T ) the (∞, N)-category of

symmetric monoidal functors Bordfrn → T and oplax natural transformations, we have the following.

Theorem 2.39 ([JS17JS17, Cor. 7.7]). Let T be an (∞, N)-category, possibly with N ≥ n. Then there
is an equivalence of (∞, N)-categories between

(1) The (∞, N)-category Funoplax⊗ (Bordfrn , T ) of fully extended framed topological field theories,
and k-times twisted field theories.

(2) The sub-(∞, N)-category T nd of T consisting of n-dualizable objects, n-times right-adjunctible
1-morphisms, and in general with k-morphisms being n-times right-adjunctible k-morphisms
between allowed (k − 1)-morphisms (see Def. 2.92.9).

Proof. Assuming the cobordism hypothesis, there is an equivalence between k-times twisted field

theories Bordfrn → T
oplax
(k) and n-dualizable objects of T oplax

(k) . The result follows from [JS17JS17, Thm.

7.6], where such objects are identified with objects of T oplax
(k) whose source and target are n-

dualizable and which are themselves n-times right-adjunctible as a k-morphism in T . □

Notice that in the above, N and n may be different. This is in contrast to the cobordism
hypothesis, and its version with singularities [Lur08Lur08, Thm. 4.3.11], which require the point data
for a TQFT to be N -dualizable (see [JS17JS17, Rmk. 7.8]). It is for this reason that we cannot use the
cobordism hypothesis with singularities, and instead use Thm. 2.392.39 in this paper. A fully extended
theory of the type given in Thm. 2.392.39 would be called categorified in the terminology of [FMT23FMT23,
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Rmk. 2.3(1)], though we do not use that terminology here. Such theories will not in general assign
numbers to closed n-dimensional bordisms, but objects of higher category number. In the case
of interest to us, we will have N − n = 1 and closed n-dimensional bordisms are assigned vector
spaces, assuming Ωn−1

1
T ≃ Vect. Then in physical terms the theories we consider define dynamics

for n-dimensional bordisms, seen through the assignment of state spaces, despite the fact that we
cannot give a well-defined partition function.

2.2.2. Factorization homology. Let S be a closed symmetric monoidal (∞, N)-category. Denote

by Mfldfrn the (∞, 1)-category with objects n-dimensional framed manifolds and morphism spaces
given by spaces of embeddings, which is symmetric monoidal under disjoint union. Denote by
Diskfrn the subcategory of finite disjoint unions of the standard open disk (0, 1)n and rectilinear
embeddings.

Definition 2.40 ([AF15AF15]). Let A : Diskfrn → S a symmetric monoidal functor. Then factorization

homology with coefficients in A is the left Kan extension of A along Diskfrn ↪→ Mfldfrn , and is denoted∫
−
A : Mfldfrn → S.

Factorization homology in some sense generalizes ordinary homology. We recall that ordinary
homology for topological spaces is characterized by the Eilenberg–Steenrod axioms. In [AF15AF15],
these axioms are reformulated so that ordinary homology is regarded as a symmetric monoidal

functor Sp
∐
fin → Ch⊕, satisfying an excision property. The work of Ayala and Francis shows that

factorization is similarly characterized by an excision property.

Definition 2.41. A collar-gluing for a manifold M is a continuous map f : M → [−1, 1] such
that the restriction to (−1, 1) is a manifold bundle. Given a collar gluing f can be written as the
pushout

M0 × I M1

M0 M1

∐
M0×I M2

where M0 = f−1(0),M1 = f−1([−1, 1)),M2 = f−1((−1, 1]).

Definition 2.42. We say that a symmetric monoidal functor F : Mfldfrn → S satisfies the excision
property if, for each collar-gluing M ∼= M1

∐
M0×I M2, the canonical map

F (M1)
⊗

F (M0×I)

F (M2)→ F (M)

is an equivalence in S.

Let us denote by H(Mfldfrn ,S) the category of symmetric monoidal functors Mfldfrn → S satisfying
excision. Then the following theorem characterizes factorization homology. (For this theorem,
certain technical requirements are placed on the category S which easily hold in all cases concerning
us, called ⊗-presentability: see [AF20AF20, Def. 2.3.1].)

Theorem 2.43 ([AF15AF15, Thm. 1.2]). Let S be a symmetric monoidal (∞, N)-category which is
⊗-presentable. There is an equivalence∫

: Fun⊗(Diskfrn ,S) ⇄ H(Mfldfrn ,S) : evRn

given by factorization homology from the left and evaluation on Rn from the right.

In §2.1.22.1.2 we introduced Morita categories, whose objects are En-algebras in S. The following is
well-known.

Lemma 2.44. There is an equivalence between En-algebras in S and symmetric monoidal functors
Diskfrn → S.
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Proof. We recall that a PROP P is a symmetric monoidal category generated under the monoidal
product by a single object, and containing the symmetric group in its endomorphism sets. Given
any operad O one can associate a unique PROP Ô with Ô(n, 1) ≃ O(n) (see [Mar08Mar08, Example 60]).
This is left adjoint the the forgetful functor Forget from PROPs to operads, where Forget(P)(n) =
P(n, 1). Since a PROP is generated by a single object ∗, symmetric monoidal functors F : P → S
land in the subcategory generated by V = F (∗), which is a PROP denoted EndPROP(V). Then
noticing Forget(EndPROP(V)) = EndV is the endomorphism operad, we have by the adjunction
property that

(5) HomPROP(P̂,EndPROP(V)) ≃ HomOperad(P,EndV ).

It is easy to check that Diskfrn is the PROP generated by the En operad, and so by (55) algebras

over this operad are equivalent to maps from Diskfrn to an endomorphism PROP, or equivalently,

symmetric monoidal functors Diskfrn → S. □

Given an object A of the Morita theory Algn(S), this should be n-dualizable and therefore
defines a TQFT ZA. It is an expectation going back at least to [Lur08Lur08, Thm. 4.1.24] that this
TQFT can be computed by factorization homology. SinceA is an En-algebra, it defines a symmetric
monoidal functor Diskfrn → S, also denoted A, and the expectation is that for a k-bordism M we
have

ZA(M) ≃
∫
M×Rn−k

A.

Where the pointed Morita theory is considered, a rigorous proof of this was given in [Sch14Sch14].

Assumption 2.45. In this paper we assume that factorization homology computes TQFTs valued
in the unpointed model of Morita theory of [Hau17Hau17], and moreover that k-times twisted TQFTs
can be computed in dimensions ≤ n− k by factorization homology.

Finally, we introduce a notion which we will need for our applications.

Definition 2.46 ([Bro13Bro13; Enr08Enr08]). Let C a braided tensor category with braiding σ. A braided
C-module category is a C-module category with a natural automorphism β of the action actM :
M⊠ C →M such that for all m ∈M and x, y ∈ C the diagrams

m◁ x⊗ y m◁ x⊗ y

m◁ y ⊗ x m◁ y ⊗ x

βm◁x,y

Id⊗σx,y

βm,y⊗Id

Id⊗σy,x

and
m◁ x⊗ y

m◁ x⊗ y m◁ x⊗ y

βm,x⊗Id βm◁x,y

βm,x⊗y

commute (associator and categorical action data have been omitted).

Lemma 2.47. Braided C-module categories are equivalent to HC(C)-module categories.

Proof. Recall that a braided tensor category is an E2-algebra in Pr. We recall from [BBJ18bBBJ18b, Thm.
3.11] that braided module categories are equivalent to E2-modules for a braided tensor category.
On the other hand, it has been established that E2-modules for an E2-algebra are given by modules
for factorization homology over the annulus ([Gin15Gin15, Cor. 13], first appeared in [Fra13Fra13]). Using
the excision property of the annulus we can write

∫
Ann
C = C ⊠C⊠Cσ op C⊗ op = HC(C). Therefore,

we see that C-braided module categories are equivalent to HC(C)-module categories. □

2.3. Geometry.
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2.3.1. Stacks. We treat stacks as functors Y : Affop → Grpd satisfying descent, where Aff is the
site of affine schemes with a chosen topology and Grpd is the 2-category of groupoids, functors
and natural isomorphisms. Functors Affop → Grpd not necessarily satisfying descent are called
prestacks, and the inclusion St ↪→ PSt of stacks into prestacks admits a left adjoint, stackification.
The categories St,PSt have all colimits and have internal Hom given by the mapping prestack

Map(Y,Z)(S) = Mor(Y × S,Z)
where on the right hand side we take the groupoid of natural transformations of functors.

Example 2.48. Let G be a smooth affine group scheme acting on a scheme U . The quotient stack
[U/G] is defined for an affine scheme T as the groupoid of diagrams

P U

T

where P → T is a principal G-bundle and P → U is a G-equivariant morphism of schemes, with
morphisms given by cartesian squares between the G-bundles with the obvious commutativity
property.

Example 2.49. The classifying stack of G is the quotient stack BG = [Spec(k)/G].

Notice that for T a scheme, the k-points of Map(T,BG) are given by principal G-bundles over
T . The value of BG over a point is the groupoid of free G-torsors and intertwining maps (note
that this requires k to be an algebraically closed field of characteristic 0).

Definition 2.50. Consider the functor

QCoh : CAlg(Vect) = Affop → CAlg(Ĉat)

R 7→ ModR

given on ring homomorphisms R → S by extension of scalars. Then, as explained in e.g. [Alp24Alp24,
Prop. 2.1.4], QCoh satisfies fpqc descent, so we can define the category QCoh(Y) by right Kan
extending along the inclusion Affop ↪→ PStop and this definition is affine-local for any stack.

Example 2.51. Let U be an affine scheme with an action of a smooth affine group scheme G.
Then there is a diagram of stacks indexed by G and [U/G] is the colimit of this. It follows that

QCoh([U/G]) = lim
g∗:QCoh(U)→QCoh(U)

QCoh(U)

and this limit is given by the category QCohG(U) of G-equivariant quasi-coherent sheaves on U .
In particular if U = Spec(k), we have that QCoh(BG) ≃ Rep(G).

2.3.2. Character stacks. The character stack is the moduli stack of G-local systems on a manifold.
These are fundamental objects of study in gauge theory, which is the study of principal G-bundles
equipped with a connection. The equations of motion for gauge theory specify the G-bundles with
flat connection, which up to homotopy amounts to a G-local system. So we can think of G-local
systems as the homotopy-invariant, combinatorial data of a classical solution in G-gauge theory.

Definition 2.52. Let X be a topological space. A G-local system on X is a principal G-bundle
P → X together with parallel transport isomorphisms ∇[γ] : Pγ(0) → Pγ(1) for all homotopy classes
of paths γ : [0, 1]→ X.

For any topological space X, denote by Π1(X) the fundamental groupoid of X. Then G-local
systems are equivalent to groupoid homomorphisms from Π1(X) to the groupoid with a single point
and End(∗) = G. We can capture this description in the language of stacks as follows, denoting
by XB the stackification of the constant prestack on Π1(X).

Definition 2.53. For G a smooth affine group scheme, the G-character stack of X is the mapping
stack

ChG(X) = Map(XB , BG).
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Assume X is path-connected. Choosing a basepoint x0 ∈ X and a trivialization of a G-local
system P at x0, the parallel transport data amounts to a group homomorphism π1(X) → G.
Since changing the choice of basepoint and changing the trivialization are both implemented by
conjugation by G, we should be able to describe G-local systems by the quotient stack

[HomGroup(π1(X), G)/G]

where HomGroup(π1(X), G) is considered as an affine scheme with G acting by conjugation. The
next lemma says that this is an equivalent description of the character stack. This fact is well-
known, see e.g. [TV03TV03] for a (derived) statement appearing in the literature.

Lemma 2.54. For X a path-connected topological space, there is an equivalence of stacks

ChG(X) ≃ [HomGroup(π1(X), G)/G].

Proof. Let us begin by explaining the equivalence for k-points in detail. The groupoid of k-points of
ChG(X) is the groupoid Mor(XB , BG) ≃ Mor(Π1(X), BG). Observe that objects of this groupoid
are given by natural transformations, i.e. for every affine scheme T a groupoid homomorphism
fT : Π1(X)→ BG(T ), such that the diagram

Π1(M)

BG(T1) BG(T2)

fT1

BG(ϕ)

fT2

commutes up to a 2-cell for any morphism ϕ : T2 → T1 of affine schemes. Then such a family of
groupoid homomorphisms is specified by the homomorphism Π1(X)→ BG(∗). So we have that

Mor(Π1(X), BG) ≃ Grpd(π1(X), BG(∗))
≃ HomGroup(π1(X), G) � G

where the double slash denotes the action groupoid of G acting on HomGroup(π1(X), G) or, equiv-
alently, the groupoid of orbits for this action. The second equivalence is a standard looping result
for connected groupoids, see [nLa23nLa23].

On the other hand, by definition we have that the k-points of [HomGroup(π1(X), G)/G] are the
groupoid of free G-torsors P equipped with a G-equivariant map ϕP : P → HomGroup(π1(X), G).
But by G-equivariance of the maps ϕP , each such picks out a G-orbit in HomGroup(π1(X), G), and
isomorphisms between different ϕP correspond to G acting freely on an orbit. So we have that the
k-points of [HomGroup(π1(X), G)/G] are given by HomGroup(π1(X), G) � G. This establishes the
equivalence of k-points.

For the more general statement, we recall that May’s recognition theorem ([May72May72] and [Lur09bLur09b,
Lemma 7.2.2.11]) says that for a 2-topos T , there is an equivalence

Group(T ) ≃ T ∗/
≥1

of group objects in T and pointed, connected objects in T . Both XB and BG are connected and
can be canonically pointed, so that under the above equivalence we have that

Map∗/(XB , BG) ≃ HomGroup(π1(X), G).

We observe that a pointed morphism of stacks Y → BG is a stack morphism Y → BG such that
the diagram

∗

Y BG

commutes up to a modification. Modifications of maps ∗ → BG are given by endomorphisms of
BG itself, i.e. are given by the action of G. So passing from the pointed to unpointed setting is
equivalent to taking the quotient by the action of G. □
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Lemma 2.55. Let

(6)

M0 × I M1

M2 M

i1

i2

be the pushout diagram for a presentation of a connected manifold M as a collar-gluing. Then the
induced diagram

Π1(M0 × I) Π1(M1)

Π1(M2) Π1(M)

is a pushout in the category of groupoids.

Proof. This is a groupoid version of van Kampen’s theorem, as worked out in e.g. [Bro67Bro67, Thm.
3.4] at the 1-categorical level. □

Proposition 2.56. The assignment M 7→ ChG(M) satisfies excision.

Proof. The 2-category PSt has pushouts. The stackification of a pushout prestack is the pushout
of the stackifications since stackification is a left adjoint and so preserves colimits. Finally, since
stacks form a 2-topos, then colimits are universal [Lur09bLur09b, Thm. 6.4.1.5], so that colimits are
stable under pullback. Altogether this says that given a collar-gluing as in (66) we have that

MB × S = (M1)B × S
∐

(M0×I)B×S

(M2)B × S.

Finally, the functor Mor(−, BG) is contravariant: it turns pushouts into pullbacks. Then we have

Mor(MB × S,BG) = Mor((M1)B × S,BG)×Mor((M0×I)B×S,BG) Mor((M2)B × S,BG)

from which it follows that

ChG(M1

∐
M0×I

M2) = ChG(M1)×ChG(M0×I) ChG(M2).

□

Lemma 2.57. The character stack is quasi-compact and has affine diagonal.

Proof. By [Alp24Alp24, Thm. 3.1.10] the character stack, as described in Lemma 2.542.54, is an algebraic
stack admitting a surjective smooth morphism from the affine scheme Hom(π1(M), G). Then by
[Sta22Sta22, Lemma 100.6.2], the character stack is quasi-compact. Moreover, any affine scheme has
affine diagonal, so by [Alp24Alp24, Lemma 3.3.11], the character stack also has affine diagonal. □

Proposition 2.58. The assignment M 7→ QCoh(ChG(M)) satisfies excision.

Proof. Let M = M1

∐
M0×I M2 be a collar-gluing. By Prop. 2.562.56, it suffices to show that

QCoh(ChG(M1)×ChG(M0×I) ChG(M2)) = QCoh(ChG(M1))⊠QCoh(ChG(M0×I)) QCoh(ChG(M2)).

This follows from [Ste23Ste23, Thm. 1.0.6 (3)], which applies since character stacks are quasi-compact
and have affine diagonal (Lemma 2.572.57). □

Remark 2.59. The fact that QCoh satisfies excision was proven in the ∞-categorical setting
for perfect stacks in [BFN10BFN10]. The result was shown in the 1-categorical setting in [Sch18Sch18, Thm.
1.1] for the functor QCohfp of finitely presented quasi-coherent sheaves, where the stacks involved
are Adams stacks: i.e. quasi-compact geometric stacks with affine diagonal having the resolution
property. In the case of character stacks where G is a group scheme of finite type over a field k,
then the description of character stacks of Lemma 2.542.54 together with [Tot04Tot04, Thm. 1.1 (3)] shows
that character stacks are Adams stacks. However we prefer the result of [Ste23Ste23], which does not
constrain the group to be of finite type and is not limited to the case of finitely presented sheaves.
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Remark 2.60. The paper [Ste23Ste23] is phrased in terms of geometric stacks, agreeing with the
notion of geometric stack given in [TV08TV08]. The conditions of being quasi-compact and having
affine diagonal of Prop. 4.104.10 are what is defined in [Lur18Lur18, §III.9.3] as a geometric stack. These
are derived versions of the notion of stack, but any quasi-compact algebraic stack with affine
diagonal can be regarded as a geometric stack in Lurie’s sense [Lur18Lur18, §III.9.1], see also [TV08TV08,
§2.2.4]. By Lemma 2.572.57, this includes the character stack of any manifold. Therefore, in this paper
we phrase things in underived language.

3. Lifting invertibility of the Müger fibre

In this section, we prove that a certain class of braided tensor categories are invertible relative
to their Müger centre, i.e. in Alg2(ModZ2(C)(Pr)). Roughly speaking, these are braided tensor
categories whose Müger centre is Tannakian and whose Müger fibre C ⊠Z2(A) Vect is finite, and
under some rigidity assumptions we show how to lift invertibility of the fibre to invertibility of the
category.

Definition 3.1. Recall from Def. 2.232.23 the notions of compact and compact-projective object. We
say a tensor category C is cp-rigid if it has enough compact projectives and all compact projective
objects are left and right dualizable. We say C is compact-rigid if it has enough compact projectives
and all compact objects are left and right dualizable.

Remark 3.2. We recall from [BJS21BJS21, Def.-Prop. 1.3] that the following are equivalent, for a
tensor category C with enough projectives:

(1) All compact projective objects are left and right dualizable
(2) A generating collection of compact projective objects are left and right dualizable
(3) The tensor product functor TC : C ⊠ C⊗ op → C has a cocontinuous right adjoint and the

canonical lax bimodule structure on TR
C is strong.

Definition 3.3. A symmetric tensor category A is called Tannakian if it admits a symmetric
tensor functor to Vect (also called a fibre functor).

Tannakian categories were introduced in [Riv72Riv72]. If (A, F ) is a Tannakian category together
with a fibre functor, it is known that there is an affine algebraic group Π := Aut(F ) and that
A ≃ Rep(Π) [Riv72Riv72; DM82DM82].

Remark 3.4. Where A is rigid with EndA(1) ≃ k (as will be the case in all our examples) then the
fibre functor is unique up to natural isomorphism (see [DM82DM82, Thm. 3.2]). Then for A Tannakian,
we assume that a fibre functor A → Vect has been chosen, defining an A-module category structure
on Vect up to natural isomorphism.

If A = Z2(C) is Tannakian, we can form the braided tensor category C ⊠A Vect (defined up to
braided tensor equivalence) which we call the Müger fibre of C. The main theorem is as follows.

Theorem 3.5. Let C be a braided tensor category and A = Z2(C) its Müger centre. Suppose that
C satisfies the following conditions:

(1) C is cp-rigid,
(2) A is Tannakian and semisimple,
(3) B = C ⊠A Vect is a finite, compact-rigid braided tensor category.

Then C is an invertible object of Alg2(ModA(Pr)).

Proof. We need to check the conditions of Thm. 2.352.35. The dualizability conditions are established
in Prop. 3.223.22. Relative nondegeneracy is established in Prop. 3.313.31. Relative factorizability is
established in Prop. 3.393.39, and relative cofactorizability is established in Prop. 3.463.46. □

In the remainder of this section, we give proofs for the propositions supporting Thm. 3.53.5.
Central to our proofs are objects called the FRT and reflection equation algebras. To define them
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X YX∨ Y ∨

(a) Multiplication

X∨

X∨X∨

X

XX

(b) Comultiplication

X∨ X

X∨(X∨)∨

(c) Antipode

Figure 4. Hopf data and a Hopf pairing for the canonical coend, defined com-
ponentwise.

we note that, since C is cp-rigid by assumption, then TC possesses a right adjoint TR
C . A formula

for the right adjoint to TC is given in [KS22KS22, Prop. 1.8]:

TR
C (y) =

∫ x∈Cc.p.

(y ⊗ x∨)⊠ x

Reshetikhin- where here the integral symbol denotes the coend (see [Lor21Lor21] for an overview) over
a family of compact projective generators, and is not to be confused with factorization homology.

Definition 3.6. We define the Faddeev–Reshetikhin–Takhtadjan algebra or FRT algebra as the
object

FFRT
C = TR

C TC(1) =

∫ x

x∨ ⊠ x ∈ C ⊠ C⊗ op

and the reflection equation algebra or canonical coend for C as the object

FC = TC(FFRT
C ) =

∫ x

x∨ ⊗ x ∈ C.

The FRT algebra is an algebra under componentwise multiplication in C ⊠ C⊗ op. The canonical
coend is a Hopf algebra object in C, with multiplication, comultiplication, and antipode depicted
in Fig. 44. The figure is in the diagrammatic calculus for C.

There are also corresponding objects FFRT
A ,FA where the coend is now only over objects of

the Müger centre. Finally, there are objects FFRT
C/A = TR

relTrel(1),FC/A = Trel(FFRT
C/A ) = FC ⊗FA 1,

where Trel : C ⊠A C⊗ op → C is the relative version of the tensor product functor (we justify its
right-adjointability in Rmk. 3.143.14).

Remark 3.7. We note that, as described in [GJS23GJS23], the algebras FC ,FA and FC/A are equipped
with a so-called field goal transform, allowing us to turn left modules into right modules and vice
versa. This allows us to define tensor structures on categories of module objects for FA,FC ,FC/A.

There are two possible field goal transforms: that given on components of the coend by σ−1
x∨,−◦σx,−

(depicted in Fig. 5a5a) and the opposite given by σx∨,− ◦σ−1
x,− as in [GJS23GJS23]. Both transforms appear

in this paper. There is also a canonical Hopf pairing on the coend, depicted in Fig. 5b5b.

Remark 3.8. For non-American readers, we note that the field goal transform is named for its
resemblance to the goalposts in American football, with the football passing between. It is not a
reference to fields in any mathematical or physical sense.

Lemma 3.9. Under the conditions of Thm. 3.53.5, the Müger fibre B is invertible in Alg2(Pr).

Proof. We assume that A is a Tannakian category, so there is an equivalence A ≃ Rep(Π) for some
affine algebraic group Π, which is the group of tensor automorphisms of any choice of fibre functor.
Since we assume B is a tensor category, we are in the situation of [Neg21Neg21, Thm. 8.1], so we have
that B is nondegenerate. We recall from [BJSS21BJSS21, Thm. 3.20] that modularity is equivalent to
invertibility in Alg2(Pr) in the compact-rigid and finite case. □
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XX∨ V

(a) Field goal transform

XX∨ YY ∨

(b) Hopf pairing

Figure 5. The Hopf pairing and field goal transform for the canonical coend.

In sections 3.43.4, 3.53.5, we restate the (co)factorizability conditions of the Thm. 2.352.35 in terms of
the nondegeneracy of a certain pairing on the coend FC/A, which we can relate to the canonical
coend for B. This is the mechanism by which we lift invertibility of B to invertibility of C.

3.1. Monadic reconstructions. Here we collect the various necessary monadic reconstructions.
The monads which induce these reconstructions will be those coming from the tensor product
adjunction TC ⊣ TR

C and its relative versions. If we establish a monadic reconstruction for TC :

C ⊠ C⊗ op → C, then we also have a reconstruction based on C ⊠ Cσ op ∼−→ C ⊠ C⊗ op → C, with the
first arrow given by the natural isomorphism of Notation 2.272.27. In the following sections we will
often require both versions of the monadic reconstruction, so in this section we simply write Cop
to mean either C⊗ op or Cσ op, depending on the context in which the theorem will be used.

In our proofs, we will use the following important fact.

Lemma 3.10. Let C ∈ Pr be dualizable over Ce, andM a left or right C-module, dualizable in Pr,
and A ∈ C an algebra object. Then we have that

FunC(LModA(C),M) ≃ RModA(M)

and

M⊠C RModA(C) ≃ RModA(M).

Proof. This follows from [BJS21BJS21, Prop. 5.3, Cor. 5.5, Lemma 5.7]. □

Now, to begin with, we will present some of the categories in play as (co)module categories.

Lemma 3.11. There is an equivalence of A⊠Aop-module categories,

A ≃ RModFFRT
A

(A⊠Aop)

and of C ⊠ Cop-module categories,

C ≃ RModFFRT
C

(C ⊠ Cop).

The functor RModFFRT
C

(C ⊠ Cop)→ C is given by taking FFRT
C -invariants and applying TC.

Proof. In both cases, we apply [BBJ18aBBJ18a, Thm. 4.6]. In this setting, for the first equivalence,
the rigid abelian category is A ⊠Aop, acting on A with the action given by left and right tensor
product, and 1 ∈ A a progenerator. We note that internal endomorphisms of the progenerator are
given by the action monad actR

1
◦ act1(1). Clearly act1(1) = 1, and then from rigidity of A, we

have

actR
1
(1) =

∫ x

x∨ ⊠ x ∼= FA

which proves the first equivalence.
The second equivalence is similar, except in the last step we use cp-rigidity of C and that in this

case

actR
1
(1) =

∫ x∈Cc.p.

x∨ ⊠ x ∼= FC .
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Another way to say this is that the tensor product functor C ⊠ Cop → C has a right adjoint,
x 7→ (x⊠ 1)⊗FFRT

C , and this adjunction is monadic: so the comparison functor

x 7→ (x⊠ 1)⊗FFRT
C

is an equivalence of categories. The inverse of the comparison functor will be taking FFRT
C invari-

ants. The reason is that, for TC , T
R
C the adjunction, the functor back from TR

C TC-algebras will take
a TR

C TC-algebra (A,α) to the coequalizer of the diagram

TCT
R
C TCA TCA

ϵTCA

TCα

but when A is itself of the form TR
C (x) = (x⊠1)⊗FFRT

C then it is easy to see that TCT
R
C (x)

ϵx−→ x
coequalizes, since in this case α = TR

C ϵx. (See e.g. [Rie16Rie16, §5.5] for more details of the inverse to the
comparison functor.) Then we see that on any free FFRT

C -module, and hence on any FFRT
C -module,

the inverse to the comparison functor is given by taking FFRT
C -invariants and applying TC . □

Remark 3.12. A similar argument to that which will be given in §3.23.2 shows that C is dualizable
over C ⊠ Cop, using Lemma 3.113.11.

Proposition 3.13. There is an equivalence

C ⊠A Cop ≃ RModFFRT
A

(C ⊠ Cop)
such that the tensor product functor Trel : C ⊠A Cop → C is equivalent to the functor

a⊠ b 7→ TC((a⊠ b)⊗FFRT
A

1)

Proof. Notice that A⊠Aop acts on C ⊠ Cop by

(x⊠ y)▷ (u⊠ v) = (u⊗ x)⊠ (y ⊗ v)

and this is an action because A is a symmetric monoidal category. Also, A⊠Aop acts on A by

(x⊠ y)▷ z = x⊗ y ⊗ z.

Now, it is easy to check that the map

C ⊠ Cop → (C ⊠ Cop)⊠A⊠Aop A
u⊠ v 7→ u⊠ v ⊠ 1

is well-defined, and equips (C ⊠ Cop) ⊠A⊠Aop A with the universal property for the colimit of the
diagram

C ⊠ Cop C ⊠A⊠ C C ⊠A⊠Aop ⊠ C . . .

We therefore have an equivalence

C ⊠A Cop ≃ (C ⊠ Cop)⊠A⊠Aop A.
But notice that by Lemma 3.113.11, we then have

C ⊠A Cop ≃ (C ⊠ Cop)⊠A⊠Aop RModFFRT
A

(A⊠A)
≃ RModFFRT

A
(C ⊠ Cop).

□

Remark 3.14. The situation is summarized in the diagram of Fig. 66. We will abuse notation and
refer to the functor corresponding to Trel under the equivalence of Prop. 3.133.13 by Trel also. Since C
is cp-rigid, TC has a right adjoint, and so by composing adjoints we see that Trel has a right adjoint
TR
rel = triv ◦ TR

C .
The epic functor C ⊠ Cop → C ⊠A Cop exists by definition, and is equivalent to a functor

C⊠ Cop → RModFFRT
A

(C⊠ Cop). It is clear from the the diagram of Fig. 66 that this functor should

take objects of C⊠Cop to free modules. We then have the diagram of Fig. 77. Passing to the adjoint
direction, we can see that the object corresponding to FFRT

C/A ∈ RModFFRT
A

(C⊠Cop) is simply FFRT
C

regarded as an FFRT
A -module via the obvious map FFRT

A → FFRT
C .
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C ⊠ Cop

RModFFRT
A

(C ⊠ Cop) C ⊠A Cop C

RModFFRT
C

(C ⊠ Cop)

TC

triv

−⊗FFRT
A

1

∼ Trel

−⊗FFRT
A

FFRT
C

∼

Figure 6. The relative tensor product functor in terms of module categories.
Note that we do not claim that triv forms part of the commuting diagram here:
we merely indicate it as the right adjoint to taking invariants. Excluding this
arrow, the diagram commutes.

C ⊠ Cop

RModFFRT
A

(C ⊠ Cop) C

Free

Trel

TC

TR
C

Forget

TR
rel

Figure 7. The free-forgetful adjunction relates the adjunctions for Trel and TC :
the diagram of straight arrows (left adjoints) commutes, and so does the diagram
of right adjoints (curved arrows).

Lemma 3.15. There is an isomorphism FC/A = TrelT
R
rel(1)

∼= FC ⊗FA 1.

Proof. Notice from the diagram of Fig. 66 that TR
C (1) = Forget(TR

rel(1)) so that FFRT
C is simply

FFRT
C/A with its FFRT

A -module structure forgotten, or in other words FFRT
C/A = TR

rel(1) is FFRT
C with

its natural FFRT
A -module structure. Then, by Fig. 77 we see that Trel is naturally isomorphic to

TC ◦ − ⊗FFRT
A

1. We then have that TrelT
R
rel(1)

∼= TC ◦ TR
rel(1)

∼= FC ⊗FA 1. □

Corollary 3.16. There is an equivalence

C ≃ RModFFRT
C/A

(C ⊠A Cop)

where on the right hand side we regard C ⊠A Cop as RModFFRT
A

(C ⊠ Cop) by Prop. 3.133.13.

Proof. The map FFRT
A → FFRT

C is a map of bialgebras. Whenever there is a map A → B of
bialgebras, we always have an equivalence of categories

RModB(RModA(C)) ≃ RModB(C)
by some straightforward arguments. Using Lemma 3.113.11 and the notation of Rmk. 3.143.14 that FFRT

C
with its FFRT

A -module structure is FFRT
C/A , the result follows. □

Remark 3.17. We can describe an action of C ⊠A Cop on C. Recall that C ⊠ Cop acts on C, and
that up to a natural isomorphism given by the braiding, this action is just given by taking the
tensor product:

(x⊠ y)▷ z ∼= (x⊗ y)⊗ z = TC(x⊠ y)⊗ z.

Notice that this action is A-balanced, so we have a factorization

C ⊠ Cop → C ⊠A Cop → End(A)
where the first map is the free FFRT

A -module functor by Rmk. 3.143.14. Since we are working in Pr and
free modules generate all modules under colimits, then by colimit extending this defines an action
of RModFFRT

A
(C ⊠ Cop) ≃ C ⊠A Cop, that is, a tensor functor F : RModFFRT

A
(C ⊠ Cop) → End(C).
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But then from Fig. 66, we can see that up to natural isomorphism we must have F ∼= Trel, so
RModFFRT

A
(C ⊠ Cop) ≃ C ⊠A Cop acts on C via the relative tensor product.

Proposition 3.18. We have an equivalence

C ⊠A Cop ≃ RCoModFC/A(C).

Proof. We can try to use the crude co-monadicity theorem. This says that, if Trel has a right
adjoint, reflects isomorphisms, and the source has and Trel preserves equalizers of co-reflexive
pairs, then Trel is comonadic.

As observed above, Trel has a right adjoint. It suffices to show that Trel is conservative and
preserves equalizers. From the diagram of Fig. 66, to show that Trel is conservative and preserves
equalizers, it suffices to show this for the functor − ⊗FFRT

A
FFRT

C does. Here, we regard FFRT
C

as an object in C ⊠ Cop, its FFRT
A -module structure coming from the map FFRT

A → FFRT
C . In

this context, the property of being conservative and preserving equalizers is equivalently known as
saying that FFRT

C is faithfully flat as an FFRT
A -module. This means that tensoring with FFRT

C is
an exact functor and reflects exact sequences. The module structure map FFRT

A → FFRT
C is a map

of Hopf algebras. Then, since FFRT
A is commutative, it follows from [AG03AG03, Prop. 3.12] that FFRT

C
is a faithfully flat FFRT

A -module.
This establishes that Trel is co-monadic, and then the claim follows from the crude co-monadicity

theorem and the fact that the functors in the TrelT
R
rel-comonad are module functors. By this we

mean that, where the categories C ⊠ Cop and C have left actions of C via (x ⊠ 1) ⊗ − and x ⊗ −
respectively, then the functors Trel and TR

rel are module functors. This is immediate for Trel and is
clear for TR

rel when it is written as TR
rel = triv ◦ TR

C as in Fig. 66. Clearly triv is a module functor,
and writing TR

C in the form y 7→ (y ⊠ 1)⊗FFRT
C as in the proof of Lemma 3.113.11 this is also clearly

a module functor.
Then we observe that a TrelT

R
rel-coalgebra Trel(x) → TrelT

R
relTrel(x) is equivalent to a map

Trel(x)→ TrelT
R
rel(Trel(x)▷1) ≃ Trel(Trel(x)▷TR

rel(1)) ≃ Trel(x)⊗TrelT
R
rel(1) defining the structure

of a right comodule for TrelT
R
rel(1) = FC/A. Any right FC/A-comodule c can be assumed to have

underlying object of the form Trel(x), by taking x = c⊠1. So we see that coalgebras for the TrelT
R
rel

comonad are equivalent to FC/A-comodules. □

Proposition 3.19. There is an equivalence

EndC⊠ACop(C) ≃ RModFC/A(C).

Proof. Since C ⊠A Cop is cp-rigid, an argument as pointed out in Rmk. 3.123.12 shows it is dualizable
over its enveloping algebra. It was argued in Lemma 3.213.21 that C is dualizable in Pr. We can then
apply Lemma 3.103.10, which we combine with Cor. 3.163.16 to see that

FunC⊠ACop(C, C) ≃ FunC⊠ACop(LModFFRT
C/A

(C ⊠A Cop), C)

≃ RModFFRT
C/A

(C).

In the last line here, C is being regarded as a module category for C⊠ACop, and we consider module
objects for the algebra FFRT

C/A ∈ C ⊠A Cop via the categorical action. This action was described in

Rmk. 3.173.17, and from this it follows that

RModFFRT
C/A

(C) ≃ RModTrel(FFRT
C/A )(C) = RModFC/A(C)

where on the left we have modules defined by a categorical action and on the right we have modules
internal to C. □

3.2. Relative dualizability. Here we show that C satisfies the necessary dualizability conditions
relative to A. We recall the following.

Proposition 3.20 ([Gai15Gai15, Prop. D.5.4]). Let A be a cp-rigid semisimple tensor category. Then
a A-module category is dualizable over A if and only if it is dualizable as a plain category.
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Proof. This is shown in [Gai15Gai15] in the derived setting, in which case the condition of being semisim-
ple means that the category is cp-rigid with compact projective unit. However, a cp-rigid category
with compact-projective unit is simply a cp-rigid semisimple tensor category. □

Lemma 3.21. Any cp-rigid tensor category C is dualizable as a plain category.

Proof. Recall from the definition that C has enough compact projectives. Then given any object
x = colimxi∈Cc.p xi, we define a functor xinv = colimHom(1, xi).

We claim that inv◦TC and τ◦TR
C ◦U give evaluation and coevaluation data for C, for U : Vect→ C

the unit inclusion and τ : C ⊠ C⊗ op → C⊗ op ⊠ C the flip map. Let us check the snake diagram:

C Id⊠(τ◦TR
C ◦U)−−−−−−−−−→ C ⊠ C⊗ op ⊠ C (inv◦TC)⊠Id−−−−−−−−→ C.

This takes

y 7→
∫ x∈c.p.

y ⊠ x∨ ⊠ x

7→
∫ x∈c.p.

colimHom(1, (y ⊗ x∨)i)⊠ x

=

∫ x∈c.p.

colimHom(1, yi ⊗ x∨)⊠ x

= colim

∫ x∈c.p.

Hom(1, yi ⊗ x∨)⊠ x

= colim

∫ x∈c.p.

Hom(x, yi)⊠ x

= colim yi

= y.

In the penultimate equality, we have used [KS22KS22, Prop. 1.4]. Along the way we used that the
tensor product is assumed to preserve colimits and the tensor product of compact-projectives is
again compact-projective, so that y⊗x∨ = (colim yi)⊗x∨ = (colim yi⊗x∨) = colim(y⊗x∨)i. □

Proposition 3.22. Under the assumptions of Thm. 3.53.5, then C satisfies the dualizability condi-
tions of Thm. 2.352.35.

Proof. We need to show dualizability over A, over C ⊠A C⊗ op, over C ⊠A Cσ op, and over HCA(C).
Dualizability over A follows from Lemma 3.213.21 and Prop. 3.203.20, and that C is cp-rigid and A is

semisimple by assumption (note that A is automatically cp-rigid since it is Tannakian so can be
written A ≃ Rep(Π)).

Dualizability over C ⊠A C⊗ op follows from Cor. 3.163.16, which shows that C ≃ RModFFRT
C/A

(C ⊠A

C⊗ op). From [BJS21BJS21, Prop. 5.8], it is known that the category RModFFRT
C/A

(C⊠AC⊗ op) is dualizable

over C ⊠A C⊗ op with dual LModFFRT
C/A

(C ⊠A C⊗ op). Dualizability over C ⊠A Cσ op is similar.

For dualizability over HCA(C), we have that there are functors

C ⊠A C⊗ op EndC⊠ACσ op(C)

C

ρ

eval1
act1

Here, ρ is the action of C ⊠A C⊗ op on C: up to an interchange of opposites it is the relative
factorizability functor.

As we describe in Cor. 3.163.16 and Rmk. 3.173.17, the functor act1 is right-adjointable and the
adjunction is monadic. But we will explain in §3.43.4 why ρ is an equivalence. Then it is clear that
eval1 is monadic, and so we see that

C ≃ RModρ(FFRT
C/A )(EndC⊠ACσ op(C))
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and again, dualizability over EndC⊠ACσ op(C) follows from [BJS21BJS21, Prop. 5.8]. But also by the
above, C is self-dual (up to taking some opposites) over C⊠ACσ op, so we have that EndC⊠ACσ op(C) ≃
HCA(C), and the desired dualizability is established. □

3.3. Relative nondegeneracy. In this section we prove the relative nondegeneracy condition,
i.e. that the canonical functor A → EndHCA(C)(C) is an equivalence. We make use of some
constructions from [Lau20Lau20].

Definition 3.23. Let X a braided tensor category and C a tensor category. We say that C is
X -augmented if it is equipped with tensor functors

F : C ⇆ X : T

and natural isomorphisms

τ : FT =⇒ IdX

and

σ : TC ◦ (IdC ⊠T ) =⇒ T op
C ◦ (IdC ⊠T )

such that F (σ) recovers the braiding on X . We require that σ, τ are coherent with the structures
of C and X as spelled out in detail in [Lau20Lau20, Def. 3.12].

Example 3.24. Let C be a cp-rigid braided tensor category, then from Lemma 3.113.11, we have a
diagram

C ⊠ Cσ op C

RModFFRT
C

(C ⊠ Cσ op)

TC

≃

−⊗FFRT
C

1

triv

with the diagram of straight arrows commuting. Then we see that C is C⊠Cσ op-augmented, where
T is the functor of taking the trivial FFRT

C -module, equivalent to the tensor functor, and F is the
functor of taking FFRT

C -invariants, and σ is given by the braiding on C.

Example 3.25. Let C,A be as in the setup of Thm. 3.53.5. Then from 3.163.16, Example 3.243.24 and Fig.
66, we have a diagram

C ⊠A Cσ op C

RModFFRT
C

(C ⊠A Cσ op)

Trel

≃

−⊗FFRT
C/A

1

triv

where the straight arrows form a commutative diagram. From this we see that C is C ⊠A Cσ op-
augmented, where T is the functor of taking the trivial FFRT

C/A -module, equivalent to the tensor

functor, and F is the functor of taking FFRT
C/A -invariants, , and σ is given by the braiding on C.

Definition 3.26. Let C be an X -augmented tensor category. Then we can form the the tensor
category C ⊠X C⊗ op, and the relative monoidal centre of C with respect to X is the category

ZX (C) := EndC⊠XC⊗ op(C).

A different definition is given in [Lau20Lau20, Def. 3.28], shown to be equivalent to Def. 3.263.26 in
[Lau20Lau20, Thm. 3.27]. As shown in [Lau20Lau20, Thm. 3.29], the relative monoidal centre is a braided
tensor category.

Example 3.27. In the situation of Example 3.243.24 we have that

ZC⊠Cσ op(C) = EndHC(C)(C) ≃ Z2(C)

where the final equivalence is [BJSS21BJSS21, Prop. 3.7].
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Example 3.28. In the situation of Example 3.253.25, we have that

ZC⊠ACσ op(C) = EndHCA(C)(C).

Definition 3.29. Let C be an X -augmented tensor category. The category Isom⊗
X (C⊗IdC , IdC ⊗C)

has as objects pairs (V, c) with V ∈ C and c : V ⊗ IdC =⇒ IdC ⊗V a natural isomorphism, such
that

(1) for any M,N ∈ C, the diagram

V ⊗M ⊗N M ⊗N ⊗ V

M ⊗ V ⊗ Y

cM⊗N

cM⊗IdN IdM ⊗cN

commutes, and
(2) for any X ∈ X , we have

cT (X) = σV,T (X).

Morphisms (V, c)→ (W,d) are morphisms f : V →W in C such that the diagram

V ⊗M M ⊗ V

W ⊗M M ⊗W

cM

f⊗IdM

dM

IdM ⊗f

commutes for any M ∈ C.

Lemma 3.30. The category Isom⊗
X (C ⊗ IdC , IdC ⊗C) is a braided tensor category, and is braided

tensor equivalent to ZX (C).

Proof. This is [Lau20Lau20, Prop. 3.33, Prop. 3.34]. □

Proposition 3.31. The relative nondegeneracy property holds for C,A as in Thm. 3.53.5.

Proof. By Examples 3.273.27, 3.283.28, and Lemma 3.303.30, it suffices to give an equivalence

(7) Isom⊗
C⊠Cσ op(C ⊗ IdC , IdC ⊗C) ≃ Isom⊗

C⊠ACσ op(C ⊗ IdC , IdC ⊗C).

We recall the equivalence of Prop. 3.133.13 and the diagram of Fig. 77. Then clearly if (V, c) is a pair
satisfying condition 22 of Def. 3.293.29 for C ⊠A Cσ op, then it satisfies the same condition for C ⊠ Cσ op.

For the converse, suppose that (V, c) satisfies condition 22 of Def. 3.293.29 for C⊠ Cσ op. Noting that
any category of modules is generated under colimits by free modules, we let X = colimFree(Xi)
be any object of C ⊠A Cσ op. Then, using that TC ≃ Trel ◦Free and that natural transformations of
colimit-preserving functors commute with colimits, we have:

cTrel(X) = cTrel(colim(Free(Xi)))

= ccolim(Trel(Free(Xi)))

= ccolim(TC(Xi))

= colim cTC(Xi)

= colimσV,TC(Xi)

= σV,colimTC(Xi)

= σV,colim(Trel(Free(Xi)))

= σV,Trel(colim(Free(Xi)))

= σV,Trel(X).

So we see that (V, c) satisfies condition 22 of Def. 3.293.29 for C ⊠A Cσ op if and only if it does so for
C ⊠ Cσ op. This establishes the equivalence (77), completing the proof. □
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3.4. Relative factorizability. We are interested in showing the functor

C ⊠A Cσ op → EndC⊠AC⊗ op(C)

given by acting on the left and right, is an equivalence. Let us sketch our approach.
We saw in §3.13.1 that C ⊠A Cσ op ≃ RCoModFC/A(C), and that EndC⊠AC⊗ op(C) ≃ RModFC/A(C).

Then it suffices to consider the induced functor RCoModFC/A(C) → RModFC/A(C) and show this
is an equivalence.

We recall that a functor RCoModA(C) → RModA(C) is equivalent to a bialgebra pairing Ω :
A⊗A→ 1, and that the functor is an equivalence if and only if the pairing is nondegenerate. The
functor F : RCoModA(C)→ RModA(C) corresponds to the pairing

A⊗A
∇F−−→ A

ϵ−→ 1

where ∇F is the module structure obtained under F from the standard comodule structure on A.
See Lemma A.6A.6 for details. To write the pairing down on FC/A, we will work in the non-relative
setting and write down a pairing on FC (§3.4.13.4.1). This will descend to the pairing on FC/A, which
we will show is already known to be nondegenerate (§3.4.23.4.2).

3.4.1. The non-relative setting. Let us consider the non-relative factorizability functor

C ⊠ Cσ op → EndC⊠C⊗ op(C)

given by left and right action. Analogously to the relative case, we will show that this is equivalent
to a functor RCoModFC (C) → RModFC (C), and hence to a pairing on FC . The pairing we would
like, in order that this descends to a nondegenerate paring on FC/A, should come from the FC-action
on itself by multiplication: see Fig. 44.

Lemma 3.32 ([Lyu99Lyu99; Shi19Shi19; Shi23Shi23]). There is an equivalence C ⊠ Cσ op ≃ RCoModFC (C), which
sends x⊠ y to x⊗ y with the comodule structure given by

x⊗ y
1⊗coevy ⊗1−−−−−−−→ x⊗ y ⊗ y∨ ⊗ y →

∫ z

x⊗ y ⊗ z∨ ⊗ z.

In particular, FFRT
C is sent to FC with its standard coproduct.

Proof. We claim that the tensor product functor TC : C ⊠ Cσ op → C is comonadic. Recall from
Lemma 3.113.11 that C ≃ RModFFRT

C
(C⊠Cσ op) and that under this equivalence TC is equivalent to the

free FFRT
C -module functor. Regarding C⊠Cσ op as the category of right modules over its unit 1, we

have that the free module functor is −⊗1FFRT
C . We regard 1 as a trivial, and hence commutative,

Hopf algebra. Then by [AG03AG03, Prop. 3.12], FFRT
C is a faithfully flat module, which is to say that

the above functor is comonadic. So we have shown that TC is comonadic.
The comparison functor for this comonadic equivalence is given by

x⊠ y 7→ TC(x⊠ y)
TCηx⊠y−−−−−→ TCT

R
C TC(x⊠ y) = TC(

∫ z∈C
x⊗ y ⊗ z∨ ⊠ z).

Note that the unit ηx⊠y is an element of

Hom(x⊠ y,

∫ z∈C
x⊗ y ⊗ z∨ ⊠ z) ∼=

∫ z∈C
Hom(x⊠ y, x⊗ y ⊗ z∨ ⊠ z)

∼=
∫ z∈C

Hom(x, x⊗ y ⊗ z∨)⊗Hom(y, z)

∼= Hom(x, x⊗ y ⊗ y∨)

where the last isomorphism is the co-Yoneda lemma [Lor21Lor21, Prop. 2.2.1]. There is a distinguished
element 1⊗ coevy of this space which under the co-Yoneda lemma becomes included in the z = y
component, hence gives the unit ηx⊠y = ιy ◦ 1 ⊗ coevy ⊠1y, for ιy the inclusion to the z = y
component of the coend. Applying TC gives the claimed comodule structure on x⊗ y. □
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M X∨ X

M

∇

MX∨ X

M

∇′∼←→

Figure 8. The equivalence of modules for FFRT
C and FC .

Now we deal with the target of factorizability, EndC⊠C⊗ op(C). We recall that objects of this
category are triples (F, l, r) where lx,y : x⊗F (y)→ F (x⊗y), ry,x : F (y)⊗x→ F (y⊗x) are natural
isomorphisms. The category is monoidal under composition: (G, l′, r′)◦ (F, l, r) = (GF, l◦ l′, r ◦r′).

Lemma 3.33. There is an equivalence

EndC⊠C⊗ op(C) ≃ RModFFRT
C

(C)

under which F 7→ F (1).

Proof. We can write the equivalence as

FunC⊠C⊗ op(C, C) ∼−→ FunC⊠C⊗ op(LModFFRT
C

(C ⊠ C⊗ op), C)
∼−→ RModFFRT

C
(C).

The first map is induced by the free FFRT
C -module functor C → LModFFRT

C
(C ⊠ C⊗ op), which is

a left-sided version of the equivalence of Lemma 3.113.11: so it sends F 7→ F ◦ (1 ⊗FFRT
C
−). The

second map is from Lemma 3.103.10, which applies since C ⊠ C⊗ op is cp-rigid so is dualizable over its
enveloping algebra, c.f. Rmk. 3.123.12. The second map sends F 7→ F (FFRT

C ), so that in total we
have a functor F 7→ F (1).

The module structure is given by

F (1)⊗FFRT
C

≃−→ F (FFRT
C )

F (ϵ)−−−→ F (1)

where the first arrow comes from the fact that F is a functor of C ⊠ C⊗ op-modules. Given on
components of the coend, we have that the first arrow is

x∨ ⊗ F (1)⊗ x
lx,1◦r1,x−−−−−−→ F (x∨ ⊗ 1⊗ x)

∼−→ F (x∨ ⊗ x).

□

Lemma 3.34. There is an equivalence

RModFFRT
C

(C) ≃ RModFC (C).

Proof. Let M be a module in the sense of the action of C ⊠ C⊗ op on C, for FFRT
C . So there will be

maps X∨ ⊗M ⊗X
∇−→ M for any X ∈ Cc.p.. Then one can check that M has the structure of a

right module for FC under the action

M ⊗X∨ ⊗X
TC(∇)◦σM,X∨
−−−−−−−−−→M.

Conversely, precomposing the maps for an action internal to C with σ−1
M,X∨ gives the inverse functor.

See Fig. 88.
□
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Y ∨ X∨ Y X

(a) The self-action of FFRT
C defined via the left-right

coherence maps.

X YX∨ Y ∨

(b) The pairing on FC coming from this action.

Figure 9. Defining the pairing via the self-action from the factorizability map.

EndC⊠C⊗ op(C) RModFFRT
C

(C)

Z1(C)

Figure 10. The module identification factoring through Z1.

Under Lemmas 3.323.32, 3.333.33 and 3.343.34 we have that the factorizability map is equivalent to the
functor below.

C ⊠ Cσ op EndC⊠C⊗ op(C)

RCoModFC (C) RModFC (C)

We know from Lemma 3.323.32 that the first arrow sends FC 7→ FFRT
C . Under the factorizability

functor, we have that x ⊠ 1 maps to (x ⊗ −, σ−1
x,−, α), and 1 ⊠ x maps to (− ⊗ x, α, σ−1

−,x). Here

we use α to denote associators. Then, the functor associated to FFRT
C under factorizability gives

a copy of FFRT
C when applied to 1, and by Lemma 3.333.33 the associated self-action is given in Fig.

9a9a.
Now, a functor RCoModFC (C) → RModFC (C) is equivalent to a pairing on FC which can be

computed as described in Rmk. A.7A.7. Then, under the identification of Lemma 3.343.34, together with
the self-action of FC given above, we can see that the pairing is as given in Fig. 9b9b.

Remark 3.35. We can see the above argument as factoring through the Drinfeld centre. Consider
the diagram in Fig. 1010.

The functor EndC⊠C⊗ op(C) → Z1(C) sends (F, l, r) to the object (F (1), l−1 ◦ u ◦ r) where u is
some composition of unitors, i.e.

F (1)⊗ x
r−→ F (1⊗ x)

∼−→ F (x)
∼−→ F (x⊗ 1) l−1

−−→ x⊗ F (1).

Under the factorizability functor, we have that x⊠ 1 maps to (x⊗−, σ−1
x,−, α), and 1⊠ x maps

to (− ⊗ x, α, σ−1
−,x). Here we use α to denote associators. Then, up to suppression of associators

and unitors, we have that x⊠ y maps to (x⊗ y, σx,− ◦ σ−1
−,y) ∈ Z1(C).

Now we consider the functor Z1(C) → RModFFRT
C

(C). Given (x, β) ∈ Z1(C), a FFRT
C -module

structure on x is defined by considering the collection of maps βx,y under the isomorphism Hom(x⊗
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X

βX,Y

X

YY ∨

(a) The diagram for the duality isomorphism for
Hom-spaces.

XX∨ YY ∨

X∨ X

(b) The self-action of FFRT
C is from dualizing σX∨,Y ◦

σ−1
X,Y .

Figure 11. Defining the action on FFRT
C using duality.

XX∨ YY ∨

Figure 12. The pairing obtained on FC .

y, y ⊗ x) ∼= Hom(y∨ ⊗ x ⊗ y, x) given by taking left duals (shown diagrammatically in Fig. 11a11a),
and this defines the functor.

It is easy to see that the diagram of Fig. 1010 commutes, at least on the image of the factorizability
functor. Moreover it is clear that under the description we have given here, that we have the action
of FFRT

C on itself as depicted in Fig. 11b11b. From this, we see that the pairing on FC will be given
as in Fig. 1212.

Note that to ensure this functor corresponds to a pairing under Lemma A.6A.6, we need to check
that it is a functor of left C-module categories, and that it commutes with the forgetful functor to
C.

Lemma 3.36. The functor RCoModFC (C) → RModFC (C) here described commutes with the for-
getful functor to C and is a functor of left C-module categories.

Proof. The first part of the functor is given by comonadicity of TC : C⊠Cσ op → C. By Lemma 3.323.32
the comparison functor T̂C sends x⊠y to a particular comodule structure on x⊗y. Notice that since
T̂C is an equivalence it suffices to consider comodules of this form. Then relative factorizability
sends x ⊠ y to x ⊗ − ⊗ y, and the final monadic equivalence sends this to a particular module
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z ⊗ F (y) z ⊗G(y)

F (z ⊗ y) G(z ⊗ y)

Idz ⊗βy

l

βz⊗y

s

(a)

F (y)⊗ z G(y)⊗ z

F (y ⊗ z) G(y ⊗ z)

βy⊗Idz

r

βy⊗z

t

(b)

Figure 13. Commutative diagrams defining morphisms in EndC⊠C⊗ op(C).

z c x y d z c x y d

≃

(a)

zc x y d zc x y d

≃

(b)

Figure 14. String diagrams for the compatibility of the balancing on nonrelative
factorizability.

structure on x ⊗ y. So we see that the functor RCoModFC (C) → RModFC (C) commutes with
forgetful functors to C.

It remains to check the functor is a functor of left module categories. This is clear for relative
factorizability, since C acts on EndC⊠C⊗ op(C) by z ▷ (F, l, r) = (z ⊗ F, σ−1

z,− ◦ l, α ◦ r) meanwhile

factorizability applied to z ▷ (x ⊠ y) = z ⊗ x ⊠ y yields (z ⊗ x − ⊗y, σ−1
z⊗x,−, α ◦ σ−1

−,y), which is

isomorphic to z ▷ (x⊗−⊗ y, σ−1
x,−, σ

−1
−,y) since σ−1

z⊗x,− = σ−1
z,− ◦ σ−1

x,− by the braiding axioms. □

3.4.2. The pairing on FC/A. Now we will compute the pairing on FC/A by relating non-relative
factorizability to relative factorizability.

In the previous section, we computed a pairing on FC corresponding to non-relative factoriz-
ability. However, we notice that the pairing came from an FC-module structure on itself, and that
FA ⊆ FC acts trivially here since it is made up of transparent objects. Therefore, this module object
is actually a module for FC/A, i.e. is in the image of the inclusion RModFC/A(C) ↪→ RModFC (C).
So we see that non-relative factorizability factors through RModFC/A(C) ≃ EndC⊠AC⊗ op(C).

We claim that nonrelative factorizability also factors through C⊠A Cσ op: it suffices to show that
the functor is A-balanced. Recall that a morphism (F, l, r) → (G, s, t) in EndC⊠C⊗ op(C) will be a
natural transformation β : F → G such that the diagrams of Figures 13a13a and 13b13b commute. To
give a A-balancing we need to be able to specify such a natural transformation

β : (c⊗ x⊗−⊗ d, σ−1
c⊗x,−, σ

−1
−,d)→ (c⊗−⊗ x⊗ d, σ−1

x,−, σ
−1
−,x⊗d).

for c⊠d ∈ C⊠C⊗ op. Taking Idc⊗σ−1
−,x⊗Idd will clearly make diagram 13b13b commute: see Fig. 14b14b.

Then commutation of diagram 13a13a will come down to the assertion of Fig. 14a14a, which holds since x
is in the Müger centre. So we can exhibit an A-balancing, and we have that relative factorizability
factors through C ⊠A Cσ op.

This factorization defines a functor C ⊠A Cσ op ≃ RModFFRT
A

(C) → EndC⊠C⊗ op(C) which on

free modules factors through EndC⊠AC⊗ op(C). Indeed, on free modules this is simply relative
factorizability, so by colimit extending we have the relative factorizability functor. In other words,
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C ⊠ Cσ op C ⊠A Cσ op EndC⊠AC⊗ op(C) EndC⊠C⊗ op(C)

RCoModFC (C) RCoModFC/A(C) RModFC/A(C) RModFC (C)

Figure 15. Overview of passing from the non-relative to the relative case.

non-relative factorizability factors as the top row in Fig. 1515 where the middle functor is relative
factorizability.

Now the whole bottom row is equivalent to a pairing on FC . Since this functor factors through
RModFC/A(C), we see that the pairing descends to a pairing on FC ⊗ FC/A. By symmetry of the
FC pairing, it descends to a pairing on FC/A, which will correspond to the relative factorizability
functor.

Consider the canonical conservative functor F : C → C ⊠A Vect = B. We argue that under F ,
we have simply the pairing of [BJSS21BJSS21], with nondegeneracy of the latter implying nondegeneracy
of the former.

Lemma 3.37. We have F (TrelT
R
rel(1))

∼= TBT
R
B (1), where TB is the tensor product functor for B.

Proof. Notice that the functors

C ⊠A C⊗ op C
Trel

TR
rel

are A-linear, and so we can take the A-relative tensor product with Vect to obtain the diagram:

(C ⊠A C⊗ op)⊠A Vect C ⊠A Vect .

Then recall that the fibre functor A → Vect is symmetric monoidal and defines a monoidal functor
−⊠A Vect : ModA(Pr)→ Pr, and so by a base change argument ([Lur17Lur17, §4.5.3]) we have

(C ⊠A C⊗ op)⊠A Vect ≃ (C ⊠A Vect)⊠ (C⊗ op ⊠A Vect)

and the tensor product functor on the right hand side can be defined as Trel ⊠A Vect. Then we
have that F (TrelT

R
rel(1))

∼= TBT
R
B (1). □

Lemma 3.38. There is an isomorphism F (FC/A) = F (FC⊗FA 1)
∼= TBT

R
B (1), such that a pairing

on FC/A is nondegenerate if and only if the corresponding pairing on TBT
R
B (1) is.

Proof. Firstly, note by Lemma 3.153.15 that FC/A = TrelT
R
rel(1)

∼= FC ⊗FA 1, and so F (FC/A) ∼=
F (TrelT

R
rel(1)). Then by Lemma 3.373.37, we have that F (TrelT

R
rel(1))

∼= TBT
R
B (1), and so we have

the claimed isomorphism. Then we have that a pairing on FC/A is nondegenerate if and only if

the corresponding pairing on TBT
R
B (1) is, since the functor F is monoidal and conservative and so

preserves nondegeneracy. □

Proposition 3.39. The relative factorizability functor for the data C,A of Thm. 3.53.5 is an equiv-
alence.

Proof. The relative functor is an equivalence if and only if the pairing on FC/A is nondegenerate,

by Lemma A.6A.6. By Lemma 3.383.38 this holds if and only if the pairing on TBT
R
B (1) is nondegenerate.

But TBT
R
B (1) is the canonical coend for B which by Lemma 3.93.9 is invertible in Alg2(Pr). Then as

described in [BJSS21BJSS21, Thm. 2.30] this is equivalent to the given pairing on the canonical coend of
B being nondegenerate. □

3.5. Relative cofactorizability. In this section we are interested in the functor

HCA(C)→ HomA(C, C).
The target consists of pairs (F, α), where F : C → C is a functor and α is a family of natural
isomorphisms αa : F (−⊗ a)→ F (−)⊗ a for a ∈ A, where C is viewed as a right module category
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here. Morphisms (F, α)→ (G, β) in EndA(C) are given by natural transformations ζ : F → G such
that the diagram of Fig. 1616 commutes.

F (−⊗ a) G(−⊗ a)

F (−)⊗ a G(−)⊗ a

ζ−⊗a

βa

ζ⊗a

αa

Figure 16. The data of a morphism in EndA(C).

The relative cofactorizability functor then takes

c⊠ d 7→ (v 7→ c⊗ v ⊗ d, σ−1
d,−).

As before, we will interpret the source and target in terms of (co)modules. Indeed by the results
of §3.23.2, we can write the target category as C⊠AC⊗ op, and then Prop. 3.183.18 gives the interpretation
of the target as a category of comodules. For the source we have the following.

Proposition 3.40. There is an equivalence

HCA(C) ≃ RModFC/A(C).

Proof. Using Cor 3.163.16 we have that C⊗ op ≃ C ≃ RModFFRT
C/A

(C ⊠A Cσ op), the first equivalence of

tensor categories coming from the braiding on C. Also recall from Lemma 3.103.10 that

M⊠X RModA(X ) ≃ RModXA (M)

where M is an X -module category for X some tensor category, and on the right hand side we
understand modules through the X -action.

Here, we let X = C ⊠A Cσ op ≃ RModFFRT
A

(C ⊠ Cσ op), M ≃ C and A = FFRT
C/A . Lemma 3.103.10

applies since C ⊠A Cσ op is cp-rigid hence dualizable over its enveloping algebra (Rmk. 3.123.12),
and C is dualizable in Pr. Then the left hand side above becomes HCA(C), and we see that this is

equivalent to RModC⊠ACσ op

FFRT
C/A

(C). This can be further identified with the category of honest modules

for T (FFRT
C/A ) = FC/A as in Lemma 3.343.34, so the result follows. □

In light of these equivalences, we would like to understand the functor below.

HCA(C) EndA(C)

RModFC/A(C) RCoModFC/A(C)

We first try to understand the functor given by the first two arrows, Φ : RModFC/A(C) →
EndA(C). We will make a claim for this functor and check that the composition Φ ◦Ψ is relative
cofactorizability, where Ψ : HCA(C)→ RModFC/A(C) implements the equivalence of the first arrow.

Lemma 3.41. The functor Ψ is given on objects by

c⊠ d 7→ c⊗ d⊗FC/A.

Proof. We know that this functor breaks down as

HCA(C) = C ⊠C⊠ACσ op C⊗ op

→ C ⊠C⊠ACσ op RModFFRT
C/A

(C ⊠A Cσ op)

→ RModC⊠ACσ op

FFRT
C/A

(C)

≃ RModFC/A(C).
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c d v a c

≃

d v a

Figure 17. The isotopy showing that we have a morphism in EndA(C).

The first arrow comes from a monadicity theorem, and sends

c⊠ d 7→ c⊠ (

∫ x∈c.p.

x∨ ⊠ (d⊗ x)).

The second arrow sends v ⊠m 7→ v ▷m (categorical action), and by the discussion of the action
sketched in Rmk. 3.173.17, and the final equivalence as in Lemma 3.343.34, we have that Ψ : c ⊠ d 7→
c⊗ d⊗FC/A. □

Given an object V ∈ C, we denote by trivr(V ) the trivial right FC/A-module, i.e. V with the

right action of FC/A given by the counit. Under the field goal transform σ−1
X∨,− ◦σX,− (Rmk. 3.73.7),

this also defines a left FC/A-module structure.

Lemma 3.42. The functor Φ is given up to natural isomorphism by

M 7→ (V 7→M ⊗FC/A trivr(V ) = M inv ⊗ V, α)

where α is simply the associator.

Proof. To check this, we would like to show that the composition of the equivalence Ψ : HCA(C)→
RModFC/A(C) with Φ is relative cofactorizability.

We claimed above that c⊠ d maps to c⊗ d⊗FC/A under Ψ, that is, a free object. A morphism
f ⊠ g will become the morphism f ⊗ g ⊗ 1 in RModFC/A(C).

Under Φ the object c⊗ d⊗FC/A becomes the map

v 7→ c⊗ d⊗ v.

Note that morphisms f : M → N of FC/A-modules will induce a morphism of diagrams

M ⊗FC/A ⊗ V M ⊗ V M ⊗FC/A V

N ⊗FC/A ⊗ V N ⊗ V N ⊗FC/A V

actM

f⊗1⊗1

actN

f⊗1

actV

actV

and hence a unique morphism of colimits. This defines the functor Φ on morphisms.
In particular, if M = M ′ ⊗ FC/A, N = N ′ ⊗ FC/A are free modules, then one can check that

the top and bottom coequalizers are given by actV . Then if f = f ′ ⊗ 1 is in the image of the free
FC/A-module functor, we have that the right vertical arrow is given by f ′ ⊗ 1.

Therefore, a map f ⊠ g : c⊠ d→ c′ ⊠ d′ in HCA(C) will become f ⊗ g⊗ 1 in RModFC/A(C), and
under Φ will become the natural transformation given by f ⊗ g ⊗ 1.

Then this composition of Φ◦Ψ is identified with relative factorizability via the braiding 1⊗σd,v :
c⊗ d⊗ v → c⊗ v ⊗ d. This is a natural transformation because σ is. It is easy to check that this
is a morphism in EndA(C): the isotopy of Fig. 1717 makes the diagram of Fig. 1616 commute. Hence
up to natural isomorphism we have given the correct functor. □

Now we would like to compose Φ with the equivalence EndA(C) → RCoModFC/A(C). This
factors as a composition

EndA(C)
A−→ C ⊠A C⊗ op B−→ RCoModFC/A(C).

Lemma 3.43. The functor A is given by

F 7→
∫ x

F (x∨)⊠ x.
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XX∨ V

(a)

XX∨ Y ∨ Y

(b)

Figure 18. The field goal transform and the pairing obtained.

Proof. This is effectively shown in §3.23.2. Here, we saw that C is dualizable as a A-module category,
with the coevaluation being essentially just TR

C . Then under the standard identification EndA(C) ≃
C ⊠A C∨ the result follows. □

Lemma 3.44. The functor B is given on underlying objects by Trel : C ⊠A C⊗ op → C, the relative
tensor product.

Proof. The functor B comes from the comonadicity theorem, applied to the comonad induced by
Trel ⊣ TR

rel. Then the comparison functor is, on underlying objects, simply Trel. The comodule
structure will be as in Lemma 3.323.32. □

Putting everything together so far, we have a functorB◦A◦Φ : RModFC/A(C)→ RCoModFC/A(C)
which takes M to the object M inv ⊗ FC/A. This is clearly a functor of left C-module categories,
and therefore it sends free modules to cofree comodules. Such a functor F is specified by a certain
pairing on FC/A. As detailed in Appendix A.1A.1, the pairing is given by ϵ ◦ F (m), and F is an
equivalence if and only if this pairing is nondegenerate.

Therefore, we must ask where the multiplication map FC/A ⊗ FC/A → FC/A , considered as a
map of FC/A-modules, is sent by the composition B ◦ A ◦ Φ. This will then give us a pairing on
postcomposing with the counit ϵ which we will show is nondegenerate.

Lemma 3.45. The functor Φ sends the multiplication map FC/A ⊗ FC/A → FC/A to the natural
transformation given by the left action FC/A ⊗ V → V , mapping FC/A ⊗− → Id.

Proof. We know that the natural transformation will be given by the unique vertical map making
the diagram

FC/A ⊗FC/A ⊗FC/A ⊗ V FC/A ⊗FC/A ⊗ V FC/A ⊗ V

FC/A ⊗FC/A ⊗ V FC/A ⊗ V V

1⊗m⊗1

m⊗1⊗1

m⊗1

m⊗1

1⊗1⊗actV

actV

commute. Consider the bottom row of this diagram. We claim that the map in this coequalizer
is actV . It is clear that this is a cofork. Moreover, given any cofork map ϕ : FC/A ⊗ V → V , this

factors uniquely as ϕ̃ ◦ actV , where ϕ̃ : V → V : v 7→ ϕ(1⊗ v). So actV has the universal property.
Similarly, the coequalizer for the top row of the diagram is 1 ⊗ actV . By the definition of what
it means to have a module structure, putting the map actV at the right vertical arrow makes the
diagram commute. By uniqueness of the maps induced under colimits, this must be the image of
the multiplication map under Φ. □
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Proposition 3.46. The relative cofactorizability functor for the data C,A of Thm. 3.53.5 is an
equivalence.

Proof. In the setup of Lemma A.8A.8, we need to check what happens to the pairing coming from the
multiplication map FC/A ⊗FC/A → FC/A, under cofactorizability. In Lemma 3.453.45 we argued this
is sent by Φ to a natural transformation FC/A⊗− → Id which is given by FC/A-action for objects
in the image of Φ. Then clearly the composition B ◦ A sends this natural transformation to the
map ∫ x

FC/A ⊗ x∨ ⊗ x→
∫ x

x∨ ⊗ x

given on each component by the left FC/A-action on each x, which is considered as a trivial right
module. Then recall that the left action on a trivial right module is given diagrammatically by
Fig. 18a18a, and so the pairing on FC/A will be given by Fig. 18b18b. But we have already shown this
pairing to be nondegenerate in §3.43.4. So by Lemma A.9A.9, the relative cofactorizability functor is an
equivalence. □

4. TQFTs from quantum groups at roots of unity

Now we turn to a specific example of Thm. 3.53.5, namely the category Repq(G) of representations

of a quantum group at a root of unity. We will use this to define data relative to Rep(Ǧ) in a
Morita theory (as explained below, Ǧ is a dual group depending on G and q), which we regard as
local data, and which we will show is invertible. We will integrate this to produce a TQFT relative
to 5d classical Ǧ-gauge theory with invertibility properties.

In §4.14.1, we introduce the data and prove a precise invertibility property in Alg2(ModRep(Ǧ)(Pr)).
In §4.24.2 we apply the cobordism hypothesis to produce a relative theory, we explain what this theory
yields in all dimensions. In §4.34.3 we reinterpret these statements in terms of gauging in the sandwich
picture of topological symmetry.

4.1. An invertible object in Alg2(ModRep(Ǧ)(Pr)). Let G be a semisimple algebraic group,
and denote by Λ ⊇ Φ ⊇ ∆ the weight lattice, root system and a choice of simple roots of G
respectively, with the Killing form denoted (−,−), normalized so that short roots have length
2. Any semisimple group is uniquely a product of almost-simple groups (groups with simple Lie
algebra), and the lacing number of G is the least common multiple of the lacing numbers of its
almost-simple factors.

For q a primitive root of unity of order ℓ, we denote by U̇q the restricted form of the quantum
group at q. This is defined using Lusztig’s integral form ULus

t introduced in [Lus90aLus90a; Lus90bLus90b]
(see [CP94CP94; Lus10Lus10] for textbook references), which is the Z[t±1]-subalgebra of the Drinfeld-Jimbo
quantum group Ut over C(t) generated by the Cartan generators {K±1

α : α ∈ ∆} and the divided
powers of the Serre generators

E(r)
α :=

Er
α

[r]!
, F (r)

α :=
F r
α

[r]!

for α ∈ ∆. We also consider the redundant toral generators[
Kα; 0
ℓ

]
=

ℓ∏
s=1

Kαt
1−s
α −K−1

α ts−1
α

tsα − t−s
α

where tα = t(ρ,α) for ρ the half-sum of the positive roots.
Then U̇q is defined as ULus

t ⊗Z[t±1] C using the map t 7→ q. We denote by Repq(G) the category

of locally finite representations V of U̇q graded by the weight spaces

Vλ =

{
v ∈ V | Kαv = q(λ,α)v,

[
Kα; 0
ℓ

]
v =

[
(λ, α)

ℓ

]
v, α ∈ ∆

}
.

As discussed in [CP94CP94, §10.D], the ribbon quasitriangular structure on the Drinfeld-Jimbo quantum
group restricts to ULus

t , so that specializing to a root of unity endows Repq(G) with the structure
of a (ribbon) braided tensor category. We would like to deal with data such that we can apply
Thm. 3.53.5 to Repq(G).
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Definition 4.1. The pair (G, q) will be called admissible if Z2(Repq(G)) is Tannakian (Def. 3.33.3).
In this case there is a fibre functor F : Z2(Repq(G)) → Vect which is unique up to natural

isomorphism, and there exists an affine algebraic group Ǧ = Aut(F ) such that Z2(Repq(G)) ≃
Rep(Ǧ).

Example 4.2. (1) Where G is semisimple of adjoint type and q is of odd order coprime to the
lacing number of G and the determinant of its Cartan matrix, then (G, q) is admissible,
and Ǧ ∼= G. This is well-known in the literature, see e.g. [AG03AG03].

(2) Where G is a product of simple groups and q is of odd order coprime to the lacing number
of G and the determinant of its Cartan matrix, then (G, q) is admissible, and Ǧ ∼= G. This
is shown in [GJS24GJS24, Thm. 3.2]. (We omit factors of type GLN considered there as we
require semisimplicity to apply Prop. 4.44.4.)

(3) Where G is simply-connected and semisimple, and q is of even order divisible by the lacing
number of G, then (G, q) is admissible, and Ǧ ∼= GL is the Langlands dual group of G.
This is shown in [Neg23aNeg23a, Thm. 10.1].

As pointed out in [Neg23aNeg23a, Rmk. 10.6], there exist other examples of admissible pairs, but
in generic settings it is more difficult to describe the dual group Ǧ. The inclusion Rep(Ǧ) ≃
Z2(Repq(G)) ↪→ Repq(G) is related to the so-called quantum Frobenius homomorphism (see e.g.
[Neg23aNeg23a, §8 - 9]).

In [Neg23aNeg23a, §14], Negron constructs a finite-dimensional quasitriangular quasi-Hopf algebra uq

so that

Repuq ≃ Repq(G)⊠Rep(Ǧ) Vect

as braided tensor categories. In general the construction of uq depends on further choices, but the
resulting category Repuq is independent of these choices up to braided tensor equivalence. In the
case where (G, q) is as in Example 4.24.2.11, the algebra uq is the small quantum group as originally
defined by Lusztig [Lus90aLus90a; Lus90bLus90b].

Theorem 4.3. Let (G, q) be an admissible pair, where G is semisimple and Ǧ reductive. The
braided tensor category Repq(G) defines an invertible object in Alg2(ModRep(Ǧ)(Pr)).

For this we need to know that Repq(G) is cp-rigid. This holds whether or not the pair (G, q) is
admissible.

Proposition 4.4. Let q be a root of unity and G semisimple. Then Repq(G) is cp-rigid.

Proof. It is known that Repq(G) ≃ RCoModOq(G)(Vect) and Repf.d.q (G) ≃ RCoModf.d.Oq(G)(Vect)

(see [Abe80Abe80, equation (3.3)] and [Tak02Tak02, Thm. 7.9]). It is easy to show that any category of
comodules is the ind-completion of the category of finite-dimensional comodules (this is [Wat79Wat79,
§3.3], or [Swe69Swe69, Chapter II]), and moreover that if a category has enough projectives then its

ind-completion has enough compact-projectives. The proof that Repf.d.q (G) has enough projectives
is [Neg23bNeg23b, Lemma 11.1] for the general case (originally shown for q of odd order in [APK91APK91, Thm.
9.12]), from which we see that Repq(G) has enough compact projectives.

Now let us observe, by the above discussion or from [Wis75Wis75], that a generating collection for
Repq(G) ≃ RCoModOq(G)(Vect) is the finite-dimensional (co)modules. These are all dualizable
since they are dualizable as objects in Vect. So it follows that Repq(G) is cp-rigid by the second
characterization. □

Proof of Thm. 4.34.3. By Prop. 4.44.4, Repq(G) is cp-rigid. The assumption that (G, q) is admissible

implies that Z2(Repq(G)) ≃ Rep(Ǧ), which is clearly semisimple since Ǧ is a reductive group.
Finally, the Müger fibre is finite, as established in [Neg23aNeg23a, Thm. 13.1]. Then Thm. 3.53.5 applies. □

Note that Thm. 4.34.3 applies to the admissible pairs of Example 4.24.2.
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Alg2(ModRep(Ǧ)(Pr)) Ω2
Rep(Ǧ)

Alg4(Pr)

Alg2(Pr) ΩRep(Ǧ)Alg3(Pr)

S4

W1

W2

D S3

Figure 19. The diagram of monoidal functors of Lemma 4.64.6.

4.2. Non-semisimple Crane–Yetter with Ǧ-background fields. In this section we apply a
version of the cobordism hypothesis to produce, from Repq(G), a 4-dimensional field theory relative

to the theory defined by Rep(Ǧ). We use Thm. 4.34.3 to make invertibility statements about this
relative theory, and we analyze what this means in all dimensions.

Proposition 4.5. For any n ∈ N, the object Rep(Ǧ) ∈ Algn(Pr) is (n + 1)-dualizable, hence
defines an (n+ 1)-dimensional theory Q. This theory assigns

Q(M) = QCoh(ChǦ(M))

for M an m-manifold, m ≤ n, where on the right hand side the category of quasicoherent sheaves
on the Ǧ-character stack of M is considered at the appropriate category number. We call the theory
Q the classical (n+ 1)-dimensional Ǧ-gauge theory.

Proof. Recall that Rep(Ǧ) is an E3 algebra in the 2-category Pr, hence it is E∞ and so is En for
any n. In particular Rep(Ǧ) defines a cp-rigid object of Algn(Pr), which under Assumption 2.382.38
is (n+ 1)-dualizable. Then by Thm. 2.392.39, Rep(Ǧ) defines an (n+ 1)-dimensional field theory Q.

By Prop. 2.582.58 the assignment M 7→ QCoh(ChǦ(M)) satisfies excision, which means that
QCoh(ChǦ(−)) can be computed by factorization homology. Then Assumption 2.452.45 asserts that
factorization homology computes fully extended TQFTs valued in the unpointed Morita theory in
dimension ≤ n. Since QCoh(ChǦ(pt)) = Rep(Ǧ) (see Example 2.512.51) it follows from Thm. 2.392.39
that the TQFT computed by the assignment QCoh(ChǦ(−)) is the theory Q. □

Lemma 4.6. The monoidal functors of Fig. 1919 exist and the diagram is commutative. Moreover,
the functors Sn restricted to the subcategory of invertible objects have their essential image in the
subcategory of n-dualizable objects.

Proof. The functor D is induced under functoriality of the Morita construction by the symmetric
monoidal functor −⊠Rep(Ǧ) Vect. The functors Sn exist by applying Lemma 2.222.22 (this applies in

our case since Pr•⃗ is ⊗-GR-cocomplete [JS17JS17, Example 8.9]).
The functor W1 is whiskering on the left by Rep(Ǧ) : Vect −→ Rep(Ǧ), and on the right by

Rep(Ǧ) : Rep(Ǧ) −→ Vect. The functor W2 is pre-composition by Rep(Ǧ) : Vect −→ Rep(Ǧ) and
post-composition by Vect : Rep(Ǧ) −→ Vect, where Rep(Ǧ) acts on Vect by the fibre functor. It is
clear that the diagram commutes.

Finally, the identity morphisms which appear in the deloopings in the diagram are clearly
fully right-adjunctible. Since any invertible object is fully dualizable, and dualizable objects are
preserved by monoidal functors, the restriction of Sn to the invertible objects has essential image
in the n-dualizable subcategory. □

Notation 4.7. Denote by Q : Bordfr5 → Alg4(Pr) the classical Ǧ-gauge theory of Prop. 4.54.5, and

by T : Bordfr5 → Alg4(Pr)
→ the twisted theory Q =⇒ Q defined by the identity 1-morphism of

Rep(Ǧ) in Alg4(Pr). Then there is an invertible 2-morphism IdRep(Ǧ) =⇒ IdRep(Ǧ) in Alg4(Pr)

defined by S4(Repq(G)), where S4 is as in Lemma 4.64.6. This defines an invertible twice-twisted

theory Z : Bordfr4 → Alg4(Pr)
oplax
(2) with source and target T .

We now describe the data assigned by the twice-relative theory Z in dimensions 4, 3, 2 and
1. We call Z non-semisimple Crane–Yetter with Ǧ-background fields. By non-semisimple Crane–
Yetter, we mean the fully extended 4-dimensional framed theory valued in Alg2(Pr) defined by the
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invertible object Repuq = D(Repq(G)). Where (G, q) is as in Example 4.24.2.11, the algebra uq is the
familiar small quantum group. In this case, the semisimplification (Repuq)

s.s. has been studied:
it is also invertible and defines a 4-dimensional theory, thought to recover in dimensions 3 and 4
the framed version of the (4, 3)-TQFT known as Crane–Yetter. As will become clear here, Z is a
version of this theory varying over the character stack (the stack of Ǧ-background fields).

In dimensions 1 and 2, Z can be computed by factorization homology and is related to skein
theory.

Proposition 4.8. For M a 1- or 2-manifold, there is an equivalence of categories

Z(M) ≃ ̂SkCatRepq(G)(M)

where the right hand side is the free cocompletion of the skein category of M .

Proof. Under Assumption 2.452.45, Z(M) can be computed by factorization homology with coefficients
in Repq(G). By [Coo23Coo23], this is equivalent to the free cocompletion of the skein category, i.e. the
category

̂SkCatRepq(G)(M) = Fun(SkCatRepq(G)(M)op,Vect).

□

4.2.1. A nonvanishing function for 4-manifolds. To a 4-manifold W , theory Q assigns the category
QCoh(ChǦ(W )) as a plain category, and T (W ) is the identity functor. Then Z(W ) is some
invertible natural transformation Id =⇒ Id. Restricting this natural transformation to the
distinguished object OChǦ(W ) gives a morphism OChǦ(W ) → OChǦ(W ). Since morphisms are

Ǧ-equivariant maps of OChǦ(W )-modules, this is given as multiplication by some element f ∈
OChǦ(W ). This is invertible (i.e. nonvanishing) because Z(W ) is a natural isomorphism.

4.2.2. A line bundle for 3-manifolds. By Prop. 4.54.5, for a closed 3-manifold Q assigns the category
QCoh(ChǦ(M)) of quasicoherent sheaves on the Ǧ-character stack of M , considered as a tensor
category. Then T (M) = QCoh(ChǦ(M)) is the same category considered as the identity bimodule
over itself. The 2-morphism Z(M) is then an autoequivalence of T (M) as a bimodule category.
It is well-known that such functors are given by tensoring with an object, e.g. by writing Q =
QCoh(ChǦ(M)) and recalling the equivalence

End(Q,Q)(Q) ≃ Z1(Q)
F 7→ − ⊗ F (1).

Then Z(M) selects a particular quasicoherent sheaf L. This is invertible (i.e. a line bundle)
because Z(M) is an equivalence.

4.2.3. An invertible sheaf of categories for surfaces. The data attached by Z to a surface is an
invertible sheaf of categories (or line 2-bundle) on the character stack. The notion of sheaf
of presentable stable ∞-categories was introduced by Gaitsgory in [Gai15Gai15], and the notion for
Grothendieck abelian categories was introduced in [Lur18Lur18]. We recall the basic notions here.

Recall that a Grothendieck abelian category is an abelian category which is cocomplete, has a
generator, and whose filtered colimits are exact. We denote by Groth the bicategory of Grothendieck
abelian categories and colimit preserving functors. Sheaves of Grothendieck abelian categories
are introduced in [Lur18Lur18, Chapter X]. For any commutative ring R, ModR(Vect) is Grothendieck
abelian and we define GrothR = ModModR(Vect)(Groth). As shown in [Lur18Lur18, Prop. X.D.2.2.1], this
is closed under−⊠ModR(Vect)−, so inherits a symmetric monoidal structure fromModModR(Vect)(Pr).
Moreover, any morphism R → S of commutative rings there is an induced monoidal functor
ModR(Vect)→ ModS(Vect) given by extension of scalars, which yields a functor

GrothR → GrothS

C 7→ C ⊠ModR(Vect) ModS(Vect)
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which is also called extension of scalars [Lur18Lur18, §X.D.2.4]. Then the assignment R 7→ GrothR
defines a functor CAlg(Vect) = Affop → CAlg(Ĉat) which satisfies fpqc descent [Lur18Lur18, Cor.
X.D.6.8.4]. We denote by

ShvCat : PStop → CAlg(Ĉat)

the right Kan extension of Groth− along the inclusion Affop ↪→ PStop. Given a prestack Y, objects
of ShvCat(Y) are called quasicoherent sheaves of Grothendieck abelian categories on Y. This
definition captures the notion that a quasicoherent sheaf of categories C should be a functorial
assignment, for any morphism S → Y from an affine scheme, of an object Γ(S, C) of the category
ModQCoh(S)(Groth).

Given a morphism f : X → Y of prestacks, we denote by f∗ : ShvCat(Y) → ShvCat(X ) the
functor ShvCat(f) and call this the pullback along f . It can be shown that f∗ admits a right
adjoint f∗ called the pushforward along f [Ste23Ste23, Prop. 5.3.8]. Denote by π : Y → Spec(k), then
there is a functor

π∗ : ShvCat(Y)→ ShvCat(Spec(k)) ≃ Groth.

Observing that QCoh(Y) is the unit object of ShvCat(Y), we have a functor

Γ(Y,−) : ShvCat(Y) = ModQCoh(Y)(ShvCat(Y))→ ModQCoh(Y)(Groth)

induced by π∗.

Definition 4.9. A stack Y is called 1-affine if Γ(Y,−) is an equivalence.

The following result gives a sufficient condition for 1-affineness.

Proposition 4.10. Let Y be a quasi-compact stack with affine diagonal. Then Y is 1-affine.

Proof. This is [Ste23Ste23, Thm. 1.0.4]. □

Corollary 4.11. For any compact manifold M , and smooth affine group scheme Ǧ, the character
stack ChǦ(M) is 1-affine.

Proof. The character stack is the quotient stack

[Hom(π1(M), Ǧ)/Ǧ].

By Lemma 2.572.57, the character stack is quasi-compact with affine diagonal, so Prop. 4.104.10 applies.
□

Let Σ be a closed, compact, framed surface. By Prop. 4.54.5, Q(Σ) = QCoh(ChǦ(Σ)), the

category of quasi-coherent sheaves on the Ǧ-character stack of Σ, now considered as a braided
tensor category. Moreover T (Σ) = QCoh(ChǦ(Σ)) considered as a tensor category internal to
bimodules over itself.

Lemma 4.12. There is a symmetric monoidal equivalence between endo-2-morphisms of T (Σ) in
Alg4(Pr) and braided QCoh(ChǦ(Σ))-module categories.

Proof. To ease notation we write Q = QCoh(ChǦ(Σ)), so that

T (Σ) = Q ∈ ModQ⊠Qσ op(Pr).

Endomorphisms of T (Σ) in Alg4(Pr) are (Q,Q)-bimodule objects in ModQ⊠Qσ op(Pr). Since the
tensor product in ModQ⊠Qσ op(Pr) is the relative tensor product over Q⊠Qσ op, we have that these
are equivalent to Q⊠Q⊠Qσ op Q⊗ op-module categories. But Q⊠Q⊠Qσ op Q⊗ op ≃ HC(Q), so these
are equivalent to HC(Q)-module categories. Then by Prop. 2.472.47, these are equivalent to braided
module categories for Q. The composition of endomorphisms in Alg4(Pr) is given by the relative
tensor product of braided module categories over Q, which is the natural monoidal structure on
the bicategory of braided Q-module categories. □

Theorem 4.13. Z(Σ) defines an invertible sheaf of categories Z̃(M) on ChǦ(Σ), with global
sections the free cocompletion of the skein category.
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Proof. By Cor. 4.114.11, ChǦ(Σ) is 1-affine, so any Grothendieck abelian QCoh(ChǦ(Σ))-module
category defines a sheaf of Grothendieck abelian categories. The category of functors from any
small category to any Grothendieck abelian category is again Grothendieck abelian since (co)limits
are computed pointwise. Since Vect is Grothendieck abelian and SkCatRepq(G)(Σ) is small, then

by Prop. 4.84.8,

Z(Σ) ∈ ModQCoh(ChǦ(Σ))(Groth).

Then 1-affinity implies that Z(Σ) defines a sheaf of categories with global sections given by Z(Σ).
We observe that invertibility of Z(Σ) as a braided module category implies invertibility in the
monoidal category ModQCoh(ChǦ(Σ))(Groth), and invertibility as a braided module category follows
from the invertibility of Z and Lemma 4.124.12. □

4.2.4. A line 3-bundle on Ǧ
Ǧ

for the circle. The character stack of S1 is [Ǧ/Ǧ], which we denote
Ǧ
Ǧ
. We have Q(S1) = QCoh( Ǧ

Ǧ
) as a symmetric tensor category, and T (S1) = QCoh( Ǧ

Ǧ
) as a

braided tensor category internal to bimodules for QCoh( Ǧ
Ǧ
). Then, arguing similarly to §4.2.34.2.3,

Z(S1) is a tensor category internal to braided module categories for QCoh( Ǧ
Ǧ
), and by Thm. 4.34.3

it is invertible.
Where we think of tensor categories as 2-categories with one object, then assuming a higher

affinity property such as Prop. 4.104.10, we see that Z(S1) defines an invertible sheaf of 2-categories

on Ǧ
Ǧ
. Equivalently, such data could be said to define a line 3-bundle on Ǧ

Ǧ
. The global sections of

this higher bundle are Z(S1), which as in Prop. 4.84.8 can be calculated by factorization homology
to be the free cocompletion of the G-skein category of the annulus. This category is known to be
recovered as modules forOq(G) internal to Repq(G), whereOq(G) is the reflection equation algebra,
and has played a key role in skein-categorical constructions: see [BBJ18aBBJ18a; BBJ18bBBJ18b; GJS23GJS23].

4.3. Non-semisimple Crane–Yetter as a gauged symmetry. In §4.24.2 we transported the
data of Thm. 4.34.3 via the functor S4 of Lemma 4.64.6 and using the cobordism hypothesis produced
a twice-relative theory Z. Here we instead apply the functor S3, to give an interpretation of
the invertibility statement of Thm. 4.34.3 in terms of the perspective of [FMT23FMT23] on topological

symmetries of QFT. We denote by T : Bordfr4 → Alg3(Pr) the 4-dimensional classical Ǧ-gauge

theory valued in symmetric tensor categories, and by R : Bordfr3 → Alg2(Pr) the 3-dimensional
classical Ǧ-gauge theory valued in braided tensor categories, each defined by Prop. 4.54.5. We denote
by Z : T =⇒ T the relative theory induced under Thm. 2.392.39 by S3(Repq(G)).

Remark 4.14. The names of T and Z are chosen so that they correspond to the theories of §4.24.2
under the whiskering functor W1 of Lemma 4.64.6.

Definition 4.15. Let T be a symmetric monoidal (∞, n + 1)-category. An (n + 1)-dimensional

quiche is a pair (σ, ρ) where σ is a TQFT Bordfrn+1 → T , and ρ is a right topological boundary

theory. An n-dimensional QFT F is called a (σ, ρ)-module if there exists a QFT F̃ which is a left

boundary theory for σ, and an isomorphism θ : ρ ⊗σ F̃
∼−→ F of theories, where ρ ⊗σ F̃ is the

n-dimensional theory obtained by dimensional reduction, also called the sandwich: see Fig. 2020.
The data (F̃ , θ) are called the module structure.

Definition 4.16. Given topological theories σ1, σ2, and a topological theory δ which is a left
σ2-module and a right σ1-module, a domain wall δ : σ1 → σ2 is a topological defect which locally
of the type depicted in the interior of the bulk in Fig. 2020. We can think of a right boundary as a
domain wall from σ → 1, and a left boundary as a domain wall from 1→ σ.

The sandwich may support defects (embedded submanifolds), which may meet the F̃ boundary
non-topologically, and the ρ-boundary topologically. As explained in [FMT23FMT23], on dimensional
reduction these defects implement symmetries: the general philosophy is that a quiche is abstract
symmetry data like an algebra of symmetries, and defects are like elements of this algebra. Domain
walls from σ to itself are specific examples of defects.
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ρ F̃ F

θ

σ

Figure 20. Symmetry in the setup of [FMT23FMT23]. The figure represents a small
neighbourhood of an n-dimensional manifold, crossed with a horizontal interval,
for the purposes of dimensional reduction. The σ bulk supports defects (green),
one of which is a domain wall.

Remark 4.17. In the case we are interested in, where F and F̃ will themselves be topological,
then the data of a (σ, ρ)-module is easy to describe by the cobordism hypothesis: σ corresponds

to a fully dualizable object in T . Then F is a theory valued in ΩT , while F̃ corresponds to a fully
dualizable morphism 1→ σ(pt), and ρ to a fully dualizable morphism σ(pt)→ 1. More generally,
domain walls are given by morphisms σ1 → σ2. Clearly domain walls admit a composition law,
and in the fully topological setting the sandwich ρ⊗σ F̃ is simply defined by composition in T .

Suppose T = Algn(S), then domain walls will be given by bimodules (with suitable further
structures).

Definition 4.18. If T = Algn(S) and ρ is a right boundary theory given locally by ρ(pt) the right
regular σ(pt)-module, then ρ is called the Dirichlet boundary condition.

Example 4.19. The 3-dimensional classical Ǧ-gauge theory R is a (T, ρ)-module, where ρ is the

Dirichlet boundary condition for T . The (T, ρ)-module structure is given by the theory R̃ defined
by the regular self-action of Rep(Ǧ). Its 3-dualizability follows from regarding it as induced by
the cp-rigid E2-algebra Rep(Ǧ) ∈ Alg2(Bimod(Vect,Rep(Ǧ))(Pr)) and applying results similar to

[BJS21BJS21]. The isomorphism θ can be given fully locally by the equivalence

(ρ⊗T R̃)(pt) = Rep(Ǧ)⊠Rep(Ǧ) Rep(Ǧ) ≃ Rep(Ǧ) = R(pt).

This sandwich supports a symmetry defect given by the relative theory Z.

Definition 4.20. Let T = Algn(S) and A an object. If M : A→ 1 is a morphism given by a right
module structure on the tensor unit, then we call M an augmentation. If A = σ(pt) is the local
data of a TQFT σ, then M = ϵ(pt) defines a right boundary theory ϵ for σ, called a Neumann
boundary condition.

Definition 4.21. Let F have (σ, ρ)-module structure (F̃ , θ), and suppose σ admits a Neumann
boundary condition ϵ. Then the quotient of F by the symmetry σ with augmentation ϵ (or the

gauging of F by σ) is the theory ϵ⊗σ F̃ .

The quotient of a defect which does not meet the ρ boundary is defined by dimensional reduction:
for a domain wall δ the quotient is defined as ϵ⊗σ δ ⊗σ F̃ .

Example 4.22. The morphism Vect : Rep(Ǧ) −→ Vect is an augmentation in Alg3(Pr) and is
3-dualizable by the same argument that the morphism Rep(Ǧ) : Rep(Ǧ) −→ Vect is (see Example
4.194.19). So the corresponding theory V is a Neumann boundary condition for T . Then the quotient
of R by the symmetry defect Z with augmentation V is the non-semisimple Crane–Yetter theory,
since

Vect⊠Rep(Ǧ) Repq(G)⊠Rep(Ǧ) Rep(Ǧ) ≃ Vect⊠Rep(Ǧ) Repq(G) ≃ Repuq.
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Then we see that we have re-interpreted Thm. 4.34.3 as saying that the 3-dimensional classical
Ǧ-gauge theory has an invertible symmetry defect Z, and the non-semisimple Crane–Yetter theory
is obtained by gauging this symmetry: see Fig. 22. One way to re-phrase the proof of Thm 4.34.3 by
lifting of the Müger fibre is to say that Repq(G) defines a symmetry defect for the 3-dimensional

classical Ǧ-gauge theory, and because it is invertible upon gauging, then the symmetry defect itself
is invertible.

A. Functors and pairings

In this section, we will establish equivalences{
Bialgebra pairings
Ω : A⊗A→ 1

}
1:1←→

 Functors RCoModA(C)→ RModA(C)
of left C-module categories which

commute with forgetful functors to C


and {

Pairings
Ω : A⊗A→ 1

}
1:1←→

 Functors RModA(C)→ RCoModA(C)
of left C-module categories such that
the diagram in Fig. 2121 commutes


assuming A is a bialgebra object of a tensor category C which is left and right dualizable. Then
given a bialgebra pairing Ω, it corresponds to a functor RCoModA(C)→ RModA(C) and a functor
RModA(C)→ RCoModA(C). We will show that when Ω is nondegenerate, then these two functors
are each equivalences.

We denote by (A,∇,∆, η, ϵ) the bialgebra data for A. We denote the left dual of A by A∨

with evaluation and coevaluation morphisms ev, coev. The right dual and its (co)evaluation data
are denoted ∨A, ev′, coev′. We assume that C is a category of representations for some Hopf
algebra (as will be the case in all our applications), so it will make sense to discuss elements of
A. Under this assumption, C admits a forgetful functor to Vect, and we will use this without
comment: for instance in describing dualizable objects as finite-dimensional and in checking maps
are isomorphisms by checking this under the forgetful functor.

Definition A.1. A bialgebra pairing is a pairing Ω : A⊗A→ 1 such that the diagrams

A⊗A⊗A A⊗A

A⊗A⊗A⊗A A⊗A 1

∇⊗Id

Id⊗ Id⊗∆

Id⊗Ω⊗Id Ω

Ω

A⊗A⊗A A⊗A

A⊗A⊗A⊗A A⊗A 1

Id⊗∇

∆⊗Id⊗ Id

Id⊗Ω⊗Id Ω

Ω

A A⊗A

A⊗A 1

η⊗Id

ΩId⊗η

Ω

ϵ

commute.

When A is right dualizable, then to any pairing Ω one can associate a map

ωr : A→ ∨A : a 7→ Ω(−, a)
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with the property that ev′ ◦(Id⊗ωr) = Ω. Similarly, for A left dualizable, we denote by

ωl : A→ A∨ : a 7→ Ω(a,−)
the homomorphism such that ev ◦(ωl ⊗ Id) = Ω.

Lemma A.2. Let A be right (respectively left) dualizable, and Ω : A ⊗ A → 1. The pairing Ω is
a bialgebra pairing if and only if ωr (resp. ωl) is a homomorphism of algebras. Moreover, Ω is
nondegenerate if and only if ωr (resp. ωl) is an isomorphism.

Proof. We give the proof for A right dualizable, the proof for A left dualizable is similar. The first
claim is clear once it is understood that the multiplication on ∨A is given by

θ · ϕ = (θ ⊗ ϕ) ◦∆.

For the second claim, if Ω is nondegenerate then ωr is injective, and an injective map of finite-
dimensional vector spaces is an isomorphism; if ωr is an isomorphism then it is injective, so that
Ω(−, a) is nonzero for all nonzero a ∈ A and Ω is nondegenerate. □

Lemma A.3. There is an equivalence

RMod∨A(C) ≃ RCoModA(C)
(V,∇V ) 7→ (V, (∇V ⊗ Id) ◦ (Id⊗ coev′))

(V, ev′ ◦(∆V ⊗ Id))← [ (V,∆V )

Proof. This is straightforward on drawing the appropriate diagrams in the diagrammatic calculus
and applying the snake identity. □

A.1. Comodules to modules.

Lemma A.4. Let B be an algebra object in C and F : RModB(C)→ C the forgetful functor. There
is an isomorphism

EndC(F ) ∼= B.

Proof. Consider an element α ∈ EndC(F ). For any b ∈ B, we have that acting by b defines a
morphism B → B in RModB(C). Then naturality of αmeans that we require αB : B → B commute
with all such endomorphisms, so αB is B-linear. Therefore it corresponds to multiplication by
some element of B, specifically the element αB(1B). Moreover, for any B-module M , we have
that the action map M ⊗ B → M is a map of right B-modules. Then we have, using that α is
an endomorphism of F as a functor of C-modules, that αM⊗B = IdM ⊗αB . Putting this into the
naturality square for the action map, we have that the following commutes:

M M ⊗B M

M ⊗B M

act

IdM ⊗αB

act

αM

IdM ⊗ηB

where one route round the diagram is αM , and the other direction is given by acting by the
element αB(1B). This says that the entire natural transformation α is determined by αB , which
is equivalent to an element of B. □

Lemma A.5. There is an equivalence{
Algebra homomorphisms

φ : A→ B

}
1:1←→

 Functors RModB(C)→ RModA(C)
of left C-module categories which

commute with forgetful functors to C

 .

Proof. Let us first consider functors F : RModB(C) → RModA(C). These are equivalent to the

data of a functor F̂ : RModB(C) → C together with a homomorphism A → End(F̂ ). That is,
specifying F is equivalent to specifying the underlying objects of F , and then coherently specifying
the A-module structures. Suppose moreover that F is a functor of left C-module categories, then
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RModA(C) RCoModC(C)

C
Free Cofree

Figure 21. Functors of interest.

such functors are equivalent to a functor F̂ : RModB(C)→ C and a homomorphism A→ EndC(F̂ ).

Finally, assuming that F commutes with forgetful functors to C, we then have that F̂ must be
the forgetful functor RModB(C)→ C, and it suffices to specify the homomorphism A→ EndC(F̂ ).
This is equivalent to a homomorphism A→ B on applying Lemma A.4A.4. □

Lemma A.6. Let A be a bialgebra object in C which is right dualizable. There is a correspondence{
Bialgebra pairings
Ω : A⊗A→ 1

}
1:1←→

 Functors RCoModA(C)→ RModA(C)
of left C-module categories which

commute with forgetful functors to C

 .

Moreover if Ω is nondegenerate, it follows that the induced functor is an equivalence.

Proof. The equivalence follows from applying Lemma A.3A.3, and using Lemma A.5A.5 with B = ∨A
to see that the functors under consideration are equivalent to homomorphisms ωr : A → ∨A.
By Lemma A.2A.2, this is equivalent to a pairing Ω, which is nondegenerate if and only if ωr is an
isomorphism. When ωr is an isomorphism it is clear that the corresponding functor RMod∨A(C)→
RModA(C) is an equivalence. □

Remark A.7. Given a functor F : RCoModA(C)→ RModA(C), we can compute the correspond-
ing pairing as follows. The functor F must factor through a functor RMod∨A(C) → RModA(C),
which corresponds to ωr : A→ ∨A and the pairing is ev′ ◦(Id⊗ωr), where ωr specifies the A-action
on ∨A, so ωr(a) = 1∨A ◁ a. Notice that this can be re-written as

ev′(a, ωr(b)) = ev′(ϵ(a(1))a(2), ω
r(b)) = ϵ(a(1)) ev

′(a(2), ω
r(b)) = ϵ(a(1) ev

′(a(2), ω
r(b)))

using linearity of ev′, ϵ and the coalgebra axioms. This is simply ϵ applied to a(1) ev
′(a(2), ω

r(b)),
but this is by definition the A-action obtained on applying F to the object A ∈ RCoModA(C)
which is A as a coalgebra over itself. It follows that to compute Ω, it suffices to understand this
new action of A on itself, and then postcompose with ϵ.

A.2. Modules to comodules. It is notationally convenient in the next lemma to work with A an
algebra object in C and C a coalgebra object in C (though in our applications we will have A = C
is a bialgebra object). We recall that a free module has the property that

HomA(M ⊗A,X) ∼= Hom(M,X)

f 7→ f ◦ (Id⊗η)
actX ◦ (g ⊗ Id)← [ g

and a cofree comodule has the property that

HomC(Y,N ⊗ C) ∼= Hom(Y,N)

f 7→ (Id⊗ϵ) ◦ f
(g ⊗ Id) ◦ coactY ←[ g.

Lemma A.8. For A an algebra object and C a coalgebra object in C, there is a correspondence

Θ :

{
Pairings

Ω : A⊗ C → 1

}
1:1←→

 Functors RModA(C)→ RCoModC(C)
of left C-module categories such that
the diagram in Fig. 2121 commutes

 : Π.
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Proof. To obtain a pairing from a functor F , we use the image of the identity map A→ A ∼= 1⊗A
under the composite

Hom(A,A) ∼= HomA(A⊗A,1⊗A)
F−→ HomC(A⊗ C,1⊗ C) ∼= Hom(A⊗ C,1).

So F produces the pairing ϵ ◦ F (∇), denoted ΠF .
Conversely, given a pairing Ω : A⊗ C → 1, this induces a functor on free modules given by

HomA(M ⊗A,N ⊗A)→ Hom(M,N ⊗A)→ Hom(M ⊗ C,N)→ HomC(M ⊗ C,N ⊗ C)

f 7→ f ◦ (Id⊗η) 7→ Ω ◦ (f ◦ (Id⊗η)⊗ Id) 7→ (Ω ◦ (f ◦ (Id⊗η)⊗ Id)⊗ Id) ◦ coactM⊗C .

This defines the functor
ΘΩ : RModA(C)→ RCoModC(C)

by colimit-extending, since free modules generate the category RModA(C) under colimits. Since
the action of C is cocontinuous (we work at all times in Pr), ΘΩ is clearly a functor of left C-module
categories.

Let us check that ΠΘ = Id. Given a pairing Ω, the pairing ΠΘ(Ω) is

(Id⊗ϵ) ◦ (Ω ◦ (∇ ◦ (Id⊗η)⊗ Id)⊗ Id) ◦ coactA⊗C = (Id⊗ϵ) ◦ (Ω⊗ Id) ◦ coactA⊗C .

Notice that if the pairing Ω has the property that

(8) (Id⊗ϵ) ◦ (Ω⊗ Id) ◦ coactA⊗C = Ω

then we have shown ΠΘ(Ω) = Ω. However this is always true: we can write (88) as

(Id⊗ϵ) ◦ (Ω⊗ Id) ◦ coactA⊗C = (Ω⊗ Id) ◦ (Id⊗ Id⊗ϵ) ◦ coactA⊗C = Ω

using that C is a tensor category for the first equality, and using the comodule axioms for the
second.

It remains to check that ΘΠ = Id. On free objects, the functor ΘΠ(F ) takes f : M⊗A→ N⊗A
to the map

M ⊗ C
coactM⊗C−−−−−−→M ⊗ C ⊗ C

Id⊗η⊗Id⊗ Id−−−−−−−−−→M ⊗A⊗ C ⊗ C

f⊗Id⊗ Id−−−−−−→ N ⊗A⊗ C ⊗ C

Id⊗F (∇)⊗Id−−−−−−−−→ N ⊗ C ⊗ C

ϵ⊗Id−−−→ N ⊗ C.

Notice that for M = A,N = 1, f = ∇ then the chain of inner arrows is just F (∇), and moreover
this is a comodule map so that

ϵ ◦ F (∇) ◦ coactA⊗C = ϵ ◦ coactC ◦ F (∇) = F (∇).
In other words, ΘΠ(F ) sends ∇ to F (∇).

More generally, let f : M⊗A→ N⊗A be a map of free A-modules. Notice that the composition

M ⊗A M ⊗A⊗A M ⊗A

N ⊗A⊗A N ⊗A

Id⊗η⊗Id Id⊗∇

f⊗Id f

Id⊗∇

is simply f . Also note that, since F makes the diagram in Fig. 2121 commute, and since the (co)free

(co)module functor sends M
g−→ N to g ⊗ Id, we have that F (g ⊗ Id) = g ⊗ Id, so that applying F

to the above diagram gives that F (f) factors as follows.

M ⊗ C M ⊗A⊗ C M ⊗ C

N ⊗A⊗ C N ⊗ C

Id⊗η⊗Id F (Id⊗∇)

f⊗Id F (f)

F (Id⊗∇)
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Then, since F is a functor of left C-module categories, we have that F (Id⊗∇) = Id⊗F (∇). Then
ΘΠ(F ) sends f to

ϵ ◦ F (f) ◦ coactM⊗C = ϵ ◦ coactM⊗C ◦ F (f) = F (f).

This establishes that ΘΠ(F ) = F on free modules, hence ΘΠ(F ) = F on all modules. □

Lemma A.9. Let A be a bialgebra object in C which is right and left dualizable, Ω : A ⊗ A → 1

a bialgebra pairing and Θ as in Lemma A.8A.8. Then Θ(Ω) is an equivalence if and only if Ω is
nondegenerate.

Proof. Since A is dualizable it is finite-dimensional, and there are non-canonically isomorphisms
A ∼= A∨ ∼= ∨A of bialgebras. Then by a modified version of Lemma A.3A.3, there is an equivalence
RMod∨A(C) ≃ RCoModA(C) which sends free modules to cofree comodules. It follows that any
comodule is a colimit of cofree comodules. Then since Θ(Ω) is a cocontinuous functor making the
diagram in Figure 2121 commute, it must be essentially surjective.

To check that Θ(Ω) is fully faithful it suffices to check that the function

Hom(M,N ⊗A)→ Hom(M ⊗A,N)

f 7→ (Id⊗Ω) ◦ (f ⊗ Id)

is a bijection. We notice that this factors as

Hom(M,N ⊗A)→ Hom(M,N ⊗A∨)
∼=−→ Hom(M ⊗A,N)

f 7→ (Id⊗ωl) ◦ f 7→ (Id⊗ ev) ◦ (((ωl ⊗ 1) ◦ f)⊗ Id).

Clearly the above function is a bijection if and only if ωl is an isomorphism, which is true if and
only if Ω is nondegenerate, by Lemma A.2A.2. □
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