CHARACTER SUMS AND THE RIEMANN HYPOTHESIS

BRIAN CONREY

Dedicated to Henryk on his semisesquicentennial

Abstract

We prove that an innocent looking inequality implies the Riemann Hypothesis and show a way to approach this inequality through sums of Legendre symbols.

Let

$$
f(x)=\sum_{n=1}^{\infty} \frac{\lambda(n) \sin 2 \pi n x}{n^{2}}
$$

where λ is the Liouville lambda-function 1 . Since $|\lambda(n)|=1$, this series is absolutely convergent for real x, so that f is continuous, odd and periodic with period 1 on \mathbb{R}. Here is a plot of $f(x)$ for $0 \leqslant x \leqslant 1$ using 1000 terms of the series defining f :

Theorem 1. If $f(x) \geqslant 0$ for $0 \leqslant x \leqslant 1 / 4$, then the Riemann Hypothesis is true.
Theorem 1 is deceptive in that it looks like it should be a a simple matter to prove that $f(x)$ is non-negative. A problem is that it is not clear whether $f(x)$ is differentiable or not, and even if it is it would be difficult to estimate the derivative. So, proving that $f(x)>0$ at some point doesn't immediately tell us about $f(x)$ at nearby points.
The " $1 / 4$ " in Theorem 1 can be replaced by any positive constant. So the real issue is trying to prove that $f(x)>0$ for small positive x.

[^0]Note that

$$
\left|\sum_{n=N+1}^{\infty} \frac{\lambda(n) \sin 2 \pi n x}{n^{2}}\right|<\int_{N}^{\infty} u^{-2} d u=\frac{1}{N}
$$

so that if for some x there is an N such that

$$
\begin{equation*}
\sum_{n=1}^{N} \frac{\lambda(n) \sin 2 \pi n x}{n^{2}} \geqslant \frac{1}{N} \tag{1}
\end{equation*}
$$

then, it must be the case that $f(x)>0$. We will use this idea a little later.
We can give an "explicit formula" for f in terms of the zeros $\rho=\beta+i \gamma$ of ζ :
Theorem 2. Assuming the Riemann Hypothesis,
$f(x)=-\frac{4 \pi^{2} x^{3 / 2}}{3 \zeta(1 / 2)}-\frac{8 \pi^{2}}{3} x^{3 / 2} \sum_{n \leqslant 4 x} \frac{\ell(n)}{\sqrt{n}}\left(1-\frac{n}{4 x}\right)^{3 / 2}+\pi \lim _{T \rightarrow \infty} \sum_{\substack{\rho=1 / 2+i \gamma \\|\gamma| \leqslant T}} \operatorname{Res}_{z=\rho-1} \frac{X(1-z) \zeta(2 z+2) x^{1-z}}{(1-z) \zeta(z+1)}$.
Here $\ell(n)$ is defined through its generating function

$$
\sum_{n=1}^{\infty} \ell(n) n^{-s}=\frac{\zeta(2 s-1)}{\zeta(s)}
$$

for $\Re s>1$. Also, $X(s)$ is the factor from the functional equation for $\zeta(s)$ which can be defined by

$$
X(s)^{-1}=X(1-s)=\frac{\zeta(1-s)}{\zeta(s)}=2(2 \pi)^{-s} \Gamma(s) \cos \frac{\pi s}{2}
$$

Note that if the zeros of $\zeta(s)$ are simple, then the term with the sum over the zeros of ζ becomes

$$
\pi \sum_{\rho} \frac{X(2-\rho) \zeta(2 \rho) x^{2-\rho}}{(2-\rho) \zeta^{\prime}(\rho)}
$$

Theorem 2 is nearly a converse to Theorem 1 in the sense that if RH is true and all the zeros are simple and

$$
\begin{equation*}
\sum_{\rho}\left|\frac{X(2-\rho) \zeta(2 \rho)}{(2-\rho) \zeta^{\prime}(\rho)}\right| \leqslant-\frac{4 \pi}{3 \zeta(1 / 2)} \tag{2}
\end{equation*}
$$

then $f(x) \geqslant 0$ for $0 \leqslant x \leqslant 1 / 4$. Note that

$$
-\frac{4 \pi}{3 \zeta(1 / 2)}=2.86834 \ldots
$$

and

$$
\sum_{|\gamma| \leqslant 1000}\left|\frac{X(2-\rho) \zeta(2 \rho)}{(2-\rho) \zeta^{\prime}(\rho)}\right|=0.264954 \ldots
$$

so that the inequality (2) seems plausible.

Finally we remark that the formula of Theorem 2 for $f(x)$ hides very well the fact that $f(x)$ is periodic with period 1 !

1. Prior results

There has been quite a lot of work connecting partial weighted sums of the Liouville and the Riemann Hypothesis. We refer to [BFM] for a nice description of past work. In this paper the authors prove that the smallest value of x for which

$$
\sum_{n \leq x} \frac{\lambda(n)}{n}<0
$$

is $x=72185376951205$.

2. Character sums

A possible approach to proving that $f(x)>0$ for small $x>0$ lies in the fact that λ is completely multiplicative and takes the values ± 1. This scenario resembles quadratic Dirichlet characters (for simplicity think Legendre symbols) except that Dirichlet characters can also take the value 0 . By the Chinese Remainder Theorem, for any N there is a prime number q such that $\lambda(n)=\left(\frac{n}{q}\right)$ for all $n \leqslant N$ where $(\dot{\bar{q}})$ is the Legendre symbo ${ }^{2} \bmod q$. As an example:

$$
\lambda(n)=\left(\frac{n}{163}\right)
$$

for all $n \leqslant 40$, but they differ at $n=41$.
Let

$$
f_{q}(x)=\sum_{n=1}^{\infty} \frac{\left(\frac{n}{q}\right) \sin 2 \pi n x}{n^{2}}
$$

be the Fourier sine series with $\lambda(n)$ replaced by $\left(\frac{n}{q}\right)$. If $f_{q}(x) \geqslant 0$ for $0 \leqslant x \leqslant 1 / 4$ for a sufficiently large set of q, then it must also be the case that $f(x) \geqslant 0$ for $0 \leqslant x \leqslant 1 / 4$. (The proof is that if $f\left(x_{0}\right)<0$ for some $0<x_{0}<1 / 4$, then we can find a q such that $\left(\frac{n}{q}\right)=\lambda(n)$ for all $n \leqslant N$ where N is chosen so large that $\left|f\left(x_{0}\right)\right|>1 / N$; then it must be the case by the analog of (11) for f_{q} that $f_{q}\left(x_{0}\right)<0$.) The same assertion but with q restricted to primes congruent to $3 \bmod 8$ is also valid, since the Legendre symbols for these q can also imitate $\lambda(n)$ for arbitrarily long stretches $1 \leqslant n \leqslant N$. We can express this as follows:
Theorem 3. If

$$
f_{q}(x) \geqslant 0
$$

for all $0 \leqslant x \leqslant 1 / 4$ and all primes q congruent to $3 \bmod 8$, then the Riemann Hypothesis is true.

[^1]Remark 1. We could just as well have stated this theorem for $q \equiv 3 \bmod 4$. However, the intention is that we are interested in q for which χ_{q} imitates λ. Insisting that $\chi_{q}(2)=-1$ leads to the condition that $q \equiv 3 \bmod 8$.

The sums $f_{q}(x)$ still have the same problem in that it is tricky to prove for sure that they are positive for small positive x. However, the analogue of Theorem 2 above is much simpler, is unconditional, and leads to a straightforward way to check, for any given fixed q, that $f_{q}(x) \geqslant 0$ for $0 \leqslant x \leqslant 1 / 4$.
Theorem 4. Let $x \geqslant 0$. Let $q \equiv 3 \bmod 8$ be squarefree. Then

$$
f_{q}(x)=2 \pi x L_{q}(1)-\frac{2 \pi^{2} x}{\sqrt{q}} \sum_{n \leqslant x q}\left(\frac{n}{q}\right)\left(1-\frac{n}{x q}\right)
$$

where

$$
L_{q}(1)=\sum_{n=1}^{\infty} \frac{\left(\frac{n}{q}\right)}{n} .
$$

Now Dirichlet's class number formula enters the picture. Let $K=\mathbb{Q}(\sqrt{-q})$ be the imaginary quadratic field obtained by adjoining $\sqrt{-q}$ to the rationals \mathbb{Q}. Let $h(q)$ be the class number ${ }^{3}$ of K. Dirichlet's formula is

$$
h(q)=\frac{\sqrt{q}}{\pi} L_{q}(1)
$$

for squarefree $q \equiv 3 \bmod 4$ and $q>3$; (see [D] or [IK]). Thus, the Theorem above can be rephrased in terms of $h(q)$. Moreover, we can express $L_{q}(1)$ as a finite character sum

$$
L_{q}(1)=-\frac{\pi}{q^{3 / 2}} \sum_{n=1}^{q} n\left(\frac{n}{q}\right) .
$$

Since $\left(\frac{n}{q}\right)$ is an odd function of q we also have

$$
L_{q}(1)=-\frac{2 \pi}{q^{3 / 2}} \sum_{n=1}^{\frac{q-1}{2}} n\left(\frac{n}{q}\right)
$$

and

$$
h(q)=S_{q}\left(\frac{q}{2}\right)
$$

where

$$
S_{q}(N):=\sum_{n \leqslant N}\left(\frac{n}{q}\right)\left(1-\frac{n}{N}\right) .
$$

[^2]Corollary 1. Let $q>3$ be squarefree with $q \equiv 3 \bmod 8$. Then

$$
f_{q}(x)=\frac{2 \pi^{2} x}{\sqrt{q}}\left(S_{q}\left(\frac{q}{2}\right)-S_{q}(q x)\right) .
$$

Here is a plot of $f_{163}(x)=\frac{2 \pi^{2} x}{\sqrt{163}}\left(S_{163}\left(\frac{163}{2}\right)-S_{163}(163 x)\right)$ for $0 \leqslant x \leqslant 1$ and a plot of the difference $f(x)-f_{163}(x)$:

We can use the corollary to prove that $f_{163}(x) \geqslant 0$ for $0 \leqslant x \leqslant 1 / 2$ and consequently that $f(x) \geqslant 0$ for $1 / 4>x \geqslant 0.043$ as follows.

$$
\begin{aligned}
f(x) & =\sum_{n=1}^{40} \frac{\lambda(n) \sin 2 \pi n x}{n^{2}}+\frac{\Theta}{40}=\sum_{n=1}^{40} \frac{\chi_{163}(n) \sin 2 \pi n x}{n^{2}}+\frac{\Theta}{40}=f_{163}(x)+\frac{\Theta}{20} \\
& =\frac{2 \pi^{2} x}{\sqrt{163}}\left(S_{163}\left(\frac{163}{2}\right)-S_{163}(163 x)\right)+\frac{\Theta}{20}
\end{aligned}
$$

where Θ denotes a number with absolute value at most 1 , not necessarily the same at each occurrence. Now for a an integer, $S_{163}(163 x)$ is constant for x in the interval $\left[\frac{a}{163}, \frac{a+1}{163}\right)$. Therefore, $f_{163}(x) \geqslant \min \left\{f_{163}\left(\frac{a}{163}\right), f_{163}\left(\frac{a+1}{163}\right)\right\}$ for x in this interval. We can tabulate these values:

a	1	2	3	4	5	6	7	8	9	10
$f_{163}\left(\frac{a}{163}\right)$	0.0095	0.0095	0.019	0.038	0.047	0.066	0.076	0.095	0.12	0.14

Since $\frac{\Theta}{20} \leqslant .05$ it follows from (1) that $f(x) \geqslant 0$ for $0.25 \geqslant x \geqslant \frac{7}{163}=0.043$.
Corollary 2. $f(x) \geqslant 0$ for $0.043 \leqslant x \leqslant 0.25$.
It seems clear that for any given $\epsilon>0$ we could replace 0.043 by ϵ in this inequality with enough computation time. Also, if we use Euler products instead of Dirichlet series we can show that $f(x) \geqslant 0$ for $1 / 4 \geqslant x \geqslant 0.011$.
The following conjecture seems surprising.
Conjecture 1. If $q \equiv 3 \bmod 8$ is squarefree, then $f_{q}(x) \geqslant 0$ for $0 \leqslant x \leqslant 1 / 2$.
Remark 2. J. Bober has checked that this inequality is true for all primes $q \equiv 3 \bmod 8$ up to 10^{9}.

Now we turn to the proofs.

3. Useful Lemmas

Lemma 1. For $y>0$ we have

$$
\frac{1}{2 \pi i} \int_{(c)} \frac{X(1-s) y^{1-s}}{1-s} d s=\frac{\sin 2 \pi y}{\pi}
$$

for any c satisfying $0<c<1$ where (c) denotes the path from $c-i \infty$ to $c+i \infty$
The integrand has simple poles at $s=0,-2,-4, \ldots$ with the residue at $s=-2 n$ equal to

$$
\frac{1}{\pi} \frac{(-1)^{n}(2 \pi y)^{2 n+1}}{(2 n+1)!}
$$

Summing these leads to the desired formula. See also $[\mathrm{T}]$; the above is the integral of the formula (7.9.5).

Lemma 2. If $c>0$ and $\Re a>0$, then

$$
\frac{1}{2 \pi i} \int_{(c)} \frac{\Gamma(s) \Gamma(a)}{\Gamma(s+a)} x^{-s} d s= \begin{cases}(1-x)^{a-1} & \text { if } 0<x<1 \\ 0 & \text { if } x \geqslant 1\end{cases}
$$

This formula is $(7.7 .14)$ of $[T]$.
Lemma 3. If $c>0$, then

$$
\frac{1}{2 \pi i} \int_{(c)} \frac{x^{s}}{s(s+1)} d s= \begin{cases}1-\frac{1}{x} & \text { if } x>1 \\ 0 & \text { if } 0<x \leqslant 1\end{cases}
$$

This lemma is well-known and is easy to verify.

4. Proofs of theorems

Proof of Theorem 1. This assertion is a consequence of Landau's Theorem: "If $g(n) \geqslant 0$ then the right-most singularity of $\sum_{n=1}^{\infty} g(n) n^{-s}$ is real." This is theorem 10 of [HR] and Theorem 1.7 of [MV1]. What we actually need is an integral version of this theorem: "If $g(x) \geqslant 0$ then the right-most singularity of $\int_{1}^{\infty} g(x) x^{-s} d x$ is real." The proof of this version is essentially the same as that of the first version (see Lemma 15.1 of [MV1]). The application to our situation is slightly subtle. We argue as follows. Since

$$
\sum_{n=1}^{\infty} \lambda(n) n^{-s}=\frac{\zeta(2 s)}{\zeta(s)}
$$

it follows from Lemma 1 that

$$
\frac{f(x)}{\pi}=\frac{1}{2 \pi i} \int_{(c)} \frac{X(1-s)}{1-s} \frac{\zeta(2 s+2)}{\zeta(s+1)} x^{1-s} d s
$$

where $0<c<1$. The integral is absolutely convergent for $0<c<1 / 2$. By Mellin inversion we have

$$
\frac{\pi X(1-s)}{1-s} \frac{\zeta(2 s+2)}{\zeta(s+1)}=\int_{0}^{\infty} f(x) x^{s-2} d x
$$

We split the integral into two integrals at $x=4$ so that

$$
\frac{\pi X(1-s)}{1-s} \frac{\zeta(2 s+2)}{\zeta(s+1)}=\int_{0}^{4} f(x) x^{s-2} d x+\int_{4}^{\infty} f(x) x^{s-2} d x=I_{1}(s)+I_{2}(s)
$$

say. The integral defining $I_{1}(s)$ is absolutely convergent for $\sigma>1$ and the second integral is absolutely convergent for $\sigma<1$. Using the periodicity of f we can show that the second integral converges for $\sigma<2$. Indeed, let

$$
F(x)=\int_{0}^{x} f(t) d t
$$

Then $F(n)=0$ for all integers n and F is bounded. Therefore,

$$
\begin{aligned}
I_{2}(s) & =\sum_{n=4}^{\infty} \int_{n}^{n+1} f(x) x^{s-2} d x=\sum_{n=4}^{\infty}\left(\left.F(x) x^{s-2}\right|_{x=n} ^{x=n+1}-(s-2) \int_{n}^{n+1} F(x) x^{s-3} d x\right) \\
& =-(s-2) \int_{4}^{\infty} F(x) x^{s-3} d x
\end{aligned}
$$

This integral converges for $\Re s<2$. So, we now have I_{2} analytic for $\Re s<2$. Clearly, $I_{1}+I_{2}$ is analytic for $\Re s>\max \{-1 / 2, \rho-1\}$ i.e. for $\Re s>0$. (The pole of $X(1-s)$ at $s=0$ is canceled by the zero of $1 / \zeta(s+1)$ at $s=0$.) It follows that $I_{1}(s)=\left(I_{1}(s)+I_{2}(s)\right)-I_{2}(s)$ is analytic for $\Re s>0$. It follows that $I_{2}(s)$ is also analytic for $\Re s>0$, and since we already knew it was analytic for $\Re s<2$ it follows that $I_{2}(s)$ is entire. Now, we can write I_{1} as

$$
I_{1}(s)=\int_{1 / 4}^{\infty} f(1 / x) x^{-s} d x
$$

Recall we have assumed that $f(1 / x) \geqslant 0$ for $x \geqslant 4$. Therefore, by Landau's theorem, the rightmost singularity of $I_{1}(s)$ is real. Since I_{2} is entire, it follows that the rightmost pole of $I_{1}(s)+I_{2}(s)$ must also be real. But the rightmost real pole of

$$
I_{1}(s)+I_{2}(s)=\frac{\pi X(1-s)}{1-s} \frac{\zeta(2 s+2)}{\zeta(s+1)}
$$

is at $s=-1 / 2$. This must be the rightmost pole. Therefore the poles at $\rho-1$ must all have their real parts less than or equal to $-1 / 2$. In particular, $\Re \rho \leqslant 1 / 2$, which is RH.
Proof of Theorem 2. We start again from

$$
\frac{f(x)}{\pi}=\frac{1}{2 \pi i} \int_{(c)} \frac{X(1-s) \zeta(2 s+2) x^{1-s}}{(1-s) \zeta(s+1)} d s
$$

where $0<c<1 / 2$. The integrand has poles only at $s=-\frac{1}{2}$ and at $s=\rho-1$ where ρ is a complex zero of $\zeta(s)$ and nowhere else in the s-plane. The residue at $s=-\frac{1}{2}$ is

$$
\frac{X\left(\frac{3}{2}\right)}{\frac{3}{2} \zeta\left(\frac{1}{2}\right)} x^{3 / 2}=-\frac{4 \pi}{3 \zeta\left(\frac{1}{2}\right)} x^{3 / 2}
$$

Assuming that the zeros are simple, the residue at $s=\rho-1$ is

$$
\frac{X(2-\rho) \zeta(2 \rho) x^{2-\rho}}{(2-\rho) \zeta^{\prime}(\rho)}
$$

We (carefully) move the path of integration to (c) where $-2<c<-1$. To do this we have to cross through a field of poles arising from the zeros of the zeta function. To do this we use Theorem 14.16 of [T1] (see also [R]) to find a path on which $1 / \zeta(s+1) \ll T^{\epsilon}$ where we can safely cross. Using the bounds $|X(1-s)| \ll T^{\sigma-1 / 2}$ and $\zeta(2 s+2) \ll T^{-\frac{1}{2}-\sigma}$ we can get the sum of the residues arising from the zeros up to height T together with an error term that tends to 0 as $T \rightarrow \infty$. Thus, assuming the zeros are simple,

$$
\frac{f(x)}{\pi}=-\frac{4 \pi x^{3 / 2}}{3 \zeta(1 / 2)}+\sum_{\rho} \frac{X(2-\rho) \zeta(2 \rho) x^{2-\rho}}{(2-\rho) \zeta^{\prime}(\rho)}+\frac{1}{2 \pi i} \int_{(c)} \frac{X(1-s) \zeta(2 s+2) x^{1-s}}{(1-s) \zeta(s+1)} d s
$$

If the zeros are not simple we modify the sum over zeros appropriately. We make the change of variable $s \rightarrow-s$ in the integral. Using the functional equation for the ζ-function and functional relations for the Γ-function, we see that the new integrand is

$$
\frac{X(1+s) \zeta(2-2 s) x^{1+s}}{(1+s) \zeta(1-s)}=-\pi^{3 / 2} 2^{2 s} \frac{\Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s+2)} \frac{\zeta(2 s-1)}{\zeta(s)} x^{1+s}
$$

By Lemma 2,

$$
\frac{1}{2 \pi i} \int_{(c)} \pi^{3 / 2} 2^{2 s} \frac{\Gamma\left(s-\frac{1}{2}\right)}{\Gamma(s+2)} \frac{\zeta(2 s-1)}{\zeta(s)} x^{1+s}=\frac{8 \pi}{3} x^{3 / 2} \sum_{n \leqslant 4 x} \frac{\ell(n)}{\sqrt{n}}\left(1-\frac{n}{4 x}\right)^{3 / 2} .
$$

Then Theorem 2 follows.

Proof of Theorem 4. We denote $\chi_{q}(n)=\left(\frac{n}{q}\right)$. By Lemma 1,

$$
\begin{equation*}
f_{q}(x)=\frac{\pi}{2 \pi i} \int_{(c)} L\left(s+1, \chi_{q}\right) X(1-s) x^{1-s} \frac{d s}{1-s} \tag{3}
\end{equation*}
$$

where $0<c<1$. Since χ_{q} is odd, we find that the integrand has a pole at $s=0$ and nowhere else in the complex plane. We move the path of integration to (c) where $c<-1$ to see that

$$
f_{q}(x)=2 \pi x L\left(1, \chi_{q}\right)+\frac{\pi}{2 \pi i} \int_{(c)} L\left(s+1, \chi_{q}\right) X(1-s) x^{1-s} \frac{d s}{1-s}
$$

Now let $s \rightarrow-s$ in the integral and use the functional equation (see [D], [IK] or [MV1])

$$
L\left(1-s, \chi_{q}\right)=2 q^{s-\frac{1}{2}}(2 \pi)^{-s} \Gamma(s) \sin \frac{\pi s}{2} L\left(s, \chi_{q}\right)
$$

After simplification, the integral above is

$$
\frac{-2 \pi^{2}}{2 \pi i} \int_{(c)} q^{s-\frac{1}{2}} x^{1+s} L\left(s, \chi_{q}\right) \frac{d s}{s(s+1)}
$$

By Lemma 3, this integral is

$$
\frac{-2 \pi^{2} x}{\sqrt{q}} \sum_{n \leqslant x q} \chi_{q}(n)\left(1-\frac{n}{x q}\right) .
$$

The proof of Theorem 4 is complete.
Remark 3. Note that the non-negativity, for $0<x<1 / 4$, of the right-hand side of (3) implies the Riemann Hypothesis. This condition only involves Dirichlet L-functions with quadratic characters. Thus, information solely about Dirichlet L-functions potentially gives the Riemann Hypothesis. This example shows that different L-functions somehow know about each other.

5. Further remarks

Since

$$
h(q) \gg_{\epsilon} q^{1 / 2-\epsilon}
$$

we see that

$$
f_{q}(x) \geqslant 0
$$

for $a \ll x \ll q^{-1 / 2-\epsilon}$. In particular,

$$
f_{q}(a / q) \geqslant 0
$$

for $a \ll q^{1 / 2-\epsilon}$. But this doesn't give information about $f(x)$.
Also, the Polya-Vinogradov inequality tells us that

$$
\max _{N}\left|\sum_{n=1}^{N} \chi_{q}(n)\right| \ll q^{1 / 2} \log q
$$

and the work of Montgomery and Vaughan [MV] shows that the Riemann Hypothesis for $L(s, \chi)$ implies that

$$
\max _{N}\left|\sum_{n=1}^{N} \chi_{q}(n)\right| \ll q^{1 / 2} \log \log q
$$

Moreover, it is known that the right hand side here can not be replaced by any function that goes to infinity slower. It is also known, assuming the Riemann Hypothesis for $L(s, \chi)$, that

$$
L(1, \chi) \ll \log \log q
$$

Our desired inequality can be expressed in terms of $L(1, \chi)$ as

$$
\begin{equation*}
\max _{N \leqslant \frac{q}{4}} \sum_{n=1}^{N} \chi(n)\left(1-\frac{n}{N}\right) \leqslant \frac{\sqrt{q}}{\pi} L(1, \chi) . \tag{4}
\end{equation*}
$$

It appears that both sides of this inequality can be as big as $\sqrt{q} \log \log q$.
A question is whether the converse of Theorem 1 is true. It might be possible to approach this by showing that the " $\frac{3}{2}$ " derivative of $f(x)$ is positive at $x=0$ so that there is a small interval to the right of 0 for which $f(x) \geq 0$. This method, or trying to prove (2) directly, would involve explicit estimates (assuming RH) for $1 / \zeta(s)$ in the critical strip; see [MV1] section 13.2 for a good approach to such explicit estimates.
Finally, we mention that $f(x)$ can be evaluated at a rational number $x=a / q$ as an average involving Dirichlet L-functions $L(s, \chi)$ where χ is a character modulo q.

6. Evaluation of $f_{q}(a / p)$.

Let $p<q$ and $(a, p)=1$. We explicitly evaluate $f_{q}(a / p)$ as a sum over characters modulo p as follows. We have

$$
\begin{aligned}
f_{q}(a / p) & =\sum_{n=1}^{\infty} \frac{\chi_{q}(n) \sin \frac{2 \pi a n}{p}}{n^{2}} \\
& =\sum_{n=1}^{\infty} \frac{\chi_{q}(n)}{n^{2}} \frac{1}{\phi(p)} \Im\left\{\sum_{\psi \bmod p} \tau(\psi) \bar{\psi}(a n)\right\} \\
& =\frac{1}{\phi(p)} \Im\left\{\sum_{\psi \bmod p} \tau(\psi) \bar{\psi}(a) \sum_{n=1}^{\infty} \frac{\chi_{q}(n) \psi(n)}{n^{2}}\right\} \\
& =\frac{1}{\phi(p)} \Im\left\{\sum_{\psi \bmod p} \tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)\right\} .
\end{aligned}
$$

Now, if ψ is even, then

$$
\begin{aligned}
\overline{\tau(\psi)} & =\sum_{n=1}^{p} \overline{\psi(n)} e(-a n / p)=\sum_{n=1}^{p} \bar{\psi}(-n) e(a n / p) \\
& =\sum_{n=1}^{p} \bar{\psi}(n) e(a n / p)=\tau(\bar{\psi})
\end{aligned}
$$

while if ψ is odd then

$$
\overline{\tau(\psi)}=-\tau(\bar{\psi})
$$

Thus, for even ψ

$$
\Im\left\{\tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)+\tau(\bar{\psi}) \psi(a) L\left(2, \chi_{q} \psi\right)\right\}=0
$$

and for odd ψ

$$
\Im\left\{\tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)+\tau(\bar{\psi}) \psi(a) L\left(2, \chi_{q} \psi\right)\right\}=2 \Im\left\{\tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)\right\}
$$

Therefore, using the fact that $\tau\left(\chi_{p}\right)=i \sqrt{p}$ when $p \equiv 3 \bmod 4$, we have
$f_{q}(a / p)=\frac{1}{\phi(p)} \sum_{\substack{\psi \text { mod } p \\ \psi(-1)=-1 \\ \psi^{2} \neq \psi_{0}}} \Im\left\{\tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)\right\}+\delta(p \equiv 3 \bmod 4) \frac{\sqrt{p}}{\phi(p)} \Re\left\{\bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)\right\}$.
We use this to prove that

$$
f_{q}(1 / 3)>0 \quad \text { and } \quad f_{q}(1 / 5)>0
$$

for any q. By the formula above we have

$$
f_{q}(1 / 3)=\frac{\sqrt{3}}{2} L\left(2, \chi_{q} \chi_{3}\right)>0
$$

and

$$
\begin{aligned}
f_{q}(1 / 5) & =\frac{2}{\phi(5)} \Im\left\{(-1.17557+1.90211 i) L\left(2, \chi_{q} \psi_{1}\right)\right\} \\
& =1.9 \alpha-1.17 \beta
\end{aligned}
$$

where $\psi_{1}=\{1, i,-i,-1,0\}$ with $\tau\left(\psi_{1}\right)=-1.17557+1.90211 i$ and

$$
\alpha+i \beta=L\left(2, \chi_{q} \psi_{1}\right)=1+\frac{\chi_{q}(2) i}{2^{2}}-\frac{\chi_{q}(3) i}{3^{2}}-\frac{\chi_{q}(4)}{4^{2}}+\ldots
$$

Now

$$
\alpha \geq 1-\frac{1}{4^{2}}-\frac{1}{5^{2}}-\cdots=0.716 \ldots
$$

and

$$
|\beta|<\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=0.64 \ldots
$$

Thus,

$$
f_{q}(1 / 5)>0.6 .
$$

A couple of formulas may help us move forward here. One is that if θ_{1} and θ_{2} are characters with coprime moduli m_{1} and m_{2} respectively, then (see [IK, (3.16)])

$$
\tau\left(\theta_{1} \theta_{2}\right)=\theta_{1}\left(m_{2}\right) \theta_{2}\left(m_{1}\right) \tau\left(\theta_{1}\right) \tau\left(\theta_{2}\right)
$$

The other is that

$$
L(1-r, \theta)=-\frac{m^{r-1}}{r} \sum_{b=1}^{m} \theta(b) B_{r}(b / m)
$$

for a character θ modulo m and a positive integer r where B_{r} is the r th Bernoulli polynomial (see [Wa,Theorem 4.2]). Recall the functional equation (see [D]) for a primitive character $\theta \bmod m$:

$$
L(1-s, \theta)=\left(\frac{m}{2 \pi}\right)^{s} \Gamma(s)\left(e^{\pi i s / 2}+\theta(-1) e^{-\pi i s / 2}\right) L(s, \bar{\theta}) / \tau(\bar{\theta})
$$

It follows that for an even $\theta=\chi_{q} \psi$, with $q \equiv 3 \bmod 4$ and ψ an odd character modulo p,

$$
\begin{aligned}
L(2, \chi \bar{\psi}) & =-\pi\left(\frac{p q}{2 \pi}\right)^{-1} L(-1, \theta) / \tau(\theta) \\
& =-\pi\left(\frac{p q}{2 \pi}\right)^{-1} L(-1, \chi \psi) /(\chi(p) \psi(q) \tau(\psi) i \sqrt{q})
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\Im\left\{\tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)\right\} & =\Re\left\{\frac{2 \pi^{2} \chi_{q}(p) \bar{\psi}(a q)}{p q^{3 / 2}} L\left(-1, \chi_{q} \psi\right)\right\} \\
& =-\Re\left\{\frac{\pi^{2} \chi_{q}(p) \bar{\psi}(a q)}{\sqrt{q}} \sum_{b=1}^{p q} \chi_{q}(b) \psi(b) B_{2}(b /(p q))\right\}
\end{aligned}
$$

We sum this equation over the odd characters modulo p using

$$
\begin{aligned}
\sum_{\substack{\psi \bmod p \\
\psi(-1)=-1}} \psi\left(\frac{b}{a q}\right) & =\frac{1}{2} \sum_{\psi \bmod p}\left(\psi\left(\frac{b}{a q}\right)-\psi\left(-\frac{b}{a q}\right)\right) \\
& =\frac{\phi(p)}{2}\left\{\begin{aligned}
1 & \text { if } b \equiv a q \bmod p \\
-1 & \text { if } b \equiv-a q \bmod p
\end{aligned}\right.
\end{aligned}
$$

This gives

$$
\begin{aligned}
& \sum_{\substack{\psi \text { mod } p \\
\psi(-1)=-1}} \Im\left\{\tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)\right\} \\
& \quad=-\frac{\phi(p)}{2} \frac{\pi^{2} \chi_{q}(p)}{\sqrt{q}}\left(\sum_{\substack{b \leq p q \\
b \equiv a \leq \bmod p}} \chi_{q}(a) B_{2}(b /(p q))-\sum_{\substack{b \leq p q \\
b \equiv-a q \bmod p}} \chi_{q}(a) B_{2}(b /(p q))\right)
\end{aligned}
$$

Note that

$$
B_{2}(x)=x^{2}-x+1 / 6 .
$$

Also,

$$
\sum_{\substack{b \leq p q \\ b \equiv a q \bmod p}} \chi_{q}(b)-\sum_{\substack{b \leq p q \\ b \equiv-a q \bmod p}} \chi_{q}(b)=0
$$

and

$$
\sum_{\substack{b \leq p q \\ b \equiv a q \bmod p}} b \chi_{q}(b)-\sum_{\substack{b \leq p q \\ b \equiv-a q \bmod p}} b \chi_{q}(b)=0 .
$$

Thus,

$$
\sum_{\substack{\psi \bmod p \\ \psi(-1)=-1}} \Im\left\{\tau(\psi) \bar{\psi}(a) L\left(2, \chi_{q} \bar{\psi}\right)\right\}=-\frac{\pi^{2} \chi_{q}(p)}{2 p^{2} q^{5 / 2}}\left(\sum_{\substack{b \leq p q \\ b \equiv a_{q} \bmod p}} b^{2} \chi_{q}(b)-\sum_{\substack{b \leq p q \\ b=-a q \bmod p}} b^{2} \chi_{q}(b)\right) .
$$

Thus, we have
Theorem 5. For primes p and q both congruent to 3 modulo 4 and $1 \leq a<p / 2$ we have

$$
f_{q}(a / p)=-\frac{\pi^{2} \chi_{q}(p)}{2 p^{2} q^{5 / 2}}\left(\sum_{\substack{b \leq p q \\ b \equiv a q \bmod p}} b^{2} \chi_{q}(b)-\sum_{\substack{b \leq p q \\ b \equiv-a q \bmod p}} b^{2} \chi_{q}(b)\right) .
$$

and
Corollary 3. If

$$
\begin{equation*}
\operatorname{test}_{\mathrm{a}}(\mathrm{p}, \mathrm{q}):=-\chi_{\mathrm{q}}(\mathrm{p})\left(\sum_{\substack{\mathrm{b} \leq \mathrm{pq} \\ \mathrm{~b}=\mathrm{aq} \bmod \mathrm{p}}} \mathrm{~b}^{2} \chi_{\mathrm{q}}(\mathrm{~b})-\sum_{\substack{\mathrm{b} \leq \mathrm{pq} \\ \mathrm{~b} \equiv-\operatorname{aq} \bmod \mathrm{p}}} \mathrm{~b}^{2} \chi_{\mathrm{q}}(\mathrm{~b})\right)>0 \tag{5}
\end{equation*}
$$

for all $p<q$ which are primes congruent to 3 modulo 8 and all $0<a<p / 2$, then the Riemann Hypothesis follows.

We note that by these techniques one can show

Theorem 6.

$$
f_{q}(a / q)=\frac{\pi^{2}}{2 \sqrt{q}}\left(\chi_{q}(a)-\frac{1}{q^{2}} \sum_{c=1}^{q-1} c^{2}\left(\chi_{q}(c-a)-\chi_{q}(c+a)\right)\right) .
$$

When this formula is compared with our earlier formula

$$
f_{q}\left(\frac{a}{q}\right)=\frac{2 \pi^{2}}{q^{3 / 2}}\left(\frac{a}{3} \sum_{n \leq \frac{q-1}{2}} \chi_{q}(n)-\sum_{n=1}^{a}(a-n) \chi_{q}(n)\right)
$$

we deduce the identity

$$
\frac{a}{3} \sum_{n \leq \frac{q-1}{2}} \chi_{q}(n)-\sum_{n=1}^{a}(a-n) \chi_{q}(n)=\frac{q}{4}\left(\chi_{q}(a)-\frac{1}{q^{2}} \sum_{c=1}^{q-1} c^{2}\left(\chi_{q}(c-a)-\chi_{q}(c+a)\right)\right)
$$

for $q \equiv 3 \bmod 4$.
Now we indicate another possible direction.
Proposition 1. If

$$
f_{q}(x)=0
$$

then x is a rational number.
Proof. By Corollary 1, $f_{q}(x)=0$ implies that $S_{q}(q / 2)-S_{q}(q x)=0$. But $S_{q}(q / 2)=h(q)$ is an integer. So $f_{q}(x)=0$ implies that $S_{q}(q x)$ is a rational number. Now

$$
S_{q}(q x)=\sum_{n \leq[q x]} \chi_{q}(n)\left(1-\frac{n}{q x}\right)=\sum_{n \leq[q x]} \chi_{q}(n)-\frac{\sum_{n \leq[q x]} n \chi_{q}(n)}{q x}
$$

This has the shape integer $-\frac{\text { integer }}{q x}$ which can only be rational if x is a rational number.
So, it suffices to show that $f_{q}(x)$ has no rational zeros; perhaps a congruence argument could work. However, Theorem 5 is not much use here because the hypothetical x for which $f_{q}(x)=0$ would likely have a denominator that is divisible by q, so the conditions of Theorem 5 don't hold.
We remark that there are rational values of x for which the numerator of $f_{q}(x)$ is congruent to 0 modulo q; for example

$$
f_{19}(25 / 76)=\frac{19}{25} \quad f_{19}(29 / 190)=\frac{19}{29} \quad f_{19}(30 / 209)=\frac{19}{30}
$$

These examples, which all seem to have an x with denominator divisible by q, might be worth studying further.

Here is one final formula that may or may not be useful. Suppose that $f_{q}(x)=0$. Let $y=x q$. Then either

$$
\sum_{n \leq y} \chi_{q}(n)=h(q) \quad \text { and } \quad \sum_{n \leq y} n \chi_{q}(n)=0
$$

or else y satisfies

$$
y=\frac{\sum_{n \leq[y]} n \chi_{q}(n)}{\sum_{n \leq[y]} \chi_{q}(n)-h(q)} .
$$

The first alternative seems unlikely as in that case there would be an interval on which $f_{q}(x)$ would be identically 0 .

7. Conclusion

Conjecture 1 has been checked for primes up to 10^{9} and it holds for those primes. However, probabilistic grounds call into question it's truth for all primes $q \equiv 3 \bmod 8$. Of course, one only needs it's truth for a set of characters χ_{q} for which $\chi_{q}(n)=\lambda(n)$ for all $n \leq N_{q}$ where $N_{q} \rightarrow \infty$ with q. Presumably something like this is correct (and should be equivalent to RH), but it is not clear how to proceed. But the results of section 6, suggest a slightly alternative way forward which may have a more arithmetic flavor.

References

[BFM] Peter Borwein, Ron Ferguson, and Michael J. Messinghoff. Sign Changes in sums of the Liouville function; Math. Comp. 77 (2008), no. 263, 1681-1694. https://www.wstein.org/simuw/misc/borwein-parity.pdf
[D] Harold Davenport. Multiplicative number theory. Third edition. Revised and with a preface by Hugh L. Montgomery. Graduate Texts in Mathematics, 74. Springer-Verlag, New York, 2000. xiv +177 pp .
[HR] G. H. Hardy and Marcel Riesz. The general theory of Dirichlet's series. Cambridge Tracts 18. Cambridge University Press, Cambridge, 1915.
[IK] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory. American Mathematical Society Colloquium Publications, 53. American Mathematical Society, Providence, RI, 2004. xii+615 pp.
[MV] H. L. Montgomery and R. C. Vaughan; Exponential sums with multiplicative coefficients, Inventiones Math. 1977, 43, pp. 69-82.
[MV1] H. L. Montgomery and R. C. Vaughan. Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007. xviii+552 pp.
[R] K. Ramachandra; On the frequency of Titchmarsh's phenomenon for $\zeta(s)$. J. London Math. Soc. (2) 8 (1974), 683-690.
[T] E. C. Titchmarsh. Introduction to the Theory of Fourier Integrals. Chelsea, New York, 1948, Second Edition.
[T1] E. C. Titchmarsh. The theory of the Riemann zeta-function. Second edition. Edited and with a preface by D. R. Heath-Brown. The Clarendon Press, Oxford University Press, New York, 1986. $\mathrm{x}+412 \mathrm{pp}$.
[Wa] Washington, Lawrence C. Introduction to cyclotomic fields. Second edition. Graduate Texts in Mathematics, 83. Springer-Verlag, New York, 1997. xiv+487 pp.

[^0]: Research supported by an FRG grant from NSF.
 ${ }^{1} \lambda$ is completely multiplicative and takes the value -1 on primes so that $\lambda\left(p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}\right)=(-1)^{e_{1}+\cdots+e_{r}}$.

[^1]: ${ }^{2}\left(\frac{n}{q}\right)=0$ if $(n, q)>1 ;\left(\frac{n}{q}\right)=+1$ if n is a square $\bmod q$; and $\left(\frac{n}{q}\right)=-1$ if n is not a square modulo q.

[^2]: ${ }^{3}$ The class number is a measure of how close to unique factorization the integers of K are; $h(q)=1$ means the integers of K can be factored into primes in only one way.

