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Abstract

It is known that the construction of the frame of ideals from a distributive lattice
induces a monad whose algebras are precisely the frames and frame homo-
morphisms. Using the Fakir construction of an idempotent approximation of a
monad, we extend B. Jacobs’ results on lax idempotent monads and show that
the sequence of monads and comonads generated by successive iterations of this
ideal functor on its algebras and coalgebras do not strictly lead to a new category.
We further extend this result and provide a new proof of the equivalence between
distributive lattices and coherent frames by showing that when the first inductive
step in the Fakir construction is the identity monad, then the ambient category is
equivalent to the free algebras.
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1 Introduction

The importance and pervasiveness of the ideal lattice functor, or simply the ideal
functor, in the study and history of Pointfree Topology are well-known, and its
presence can be appreciated from the fact that it is to distributive lattices what the
downset functor is to meet-semilattices ([1, Remark 6.6]). In particular, it is a cen-
tral tool in certain fundamental results: on one hand it provides a richer structure in
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the construction of compactifications of frames ([2–4]) and completions of uniform
frames ([5, 6]), and on the other it plays a pivotal role in the Stone representation
of distributive lattices ([7]) as well as in the theory of dualities1 as exemplified by
the dual adjunction that exists between distributive lattices and topological spaces
via a schizophrenic object ([7–9]). In general, functorial constructions from the ideal
lattice produce either a monad or a coreflector, i.e. an idempotent comonad, in
different parts of the existing literature. For instance, while P. Johnstone and H. Sim-
mons consider the monad generated by the dual adjunction between spaces and
lattices in [7] and [9] respectively, B. Banaschewski describes various reflective and
coreflective subcategories with the help of the ideal lattice in [2]. These seemingly
contradictory descriptions are not only a consequence of the change in the domain
and codomain categories, but more precisely from a much deeper reality: they arise
as successive iterations of the functor. This qualitative transformation between oppo-
sites can be understood as a dialectical process as explained by W. Lawvere in the
examples provided in the paper [10]. Here, the cylindrical model ([10, Section I])
of two sections united by a retraction (Cf. Lemma 2) qualitatively evolves into its
opposite after another (quantitative) iteration of the functor. We therefore concen-
trate our investigation on the monadic aspects of the ideal functor in relation to this
iteration. Generally, a monad T = (T, m, e) on a category C induces an alternating
chain of monads and comonads ([11]) on the various subcategories of algebras and
coalgebras:

. . . Alg (Tn) → Coalg (Kn) → · · · → Alg (T1) → Coalg (K) → Alg (T) → C.

The question naturally arises as to whether this sequence stops in a meaningful way
or continues indefinitely. M. Barr has provided a complete answer in [11] for the
category of sets, pointed sets and vector spaces over a field. In the category of dis-
tributive lattices endowed with the ideal functor, it actually follows from B. Jacobs’
results ([12, Theorem 4.5]) on Kock-Zöberlein monads, also called lax idempotent
monads, that Alg (T) and Alg (T1) are equivalent.

In this paper, we show that it is sufficient for C to have either equalizers or
coequalizers, for Alg (T) and Alg (T1) to be equivalent in the sense that Alg (T)
is monadic over Coalg (K). Thus we reproduce B. Jacobs’s result, but free of any
condition on the monad T. With an additional mild condition on T, we can lift this
equivalence to the level of C and the category of free T-algebras, hence generalising
the Stone representation theorem for distributive lattices.

The structure of the paper is very simple. We first introduce the necessary back-
ground in Section 2, and then give a brief representation of algebras and coalgebras
through split coequalizers and split equalizers in Section 3. This representation is
necessary to compensate for the absence of the chain of Galois connections used for
lax idempotent monads ([12–16]). The main results are then shown and discussed
in Section 4 together with a few illustrations. One key tool that we use is the Fakir
construction of an idempotent approximation of a monad [17, 18]. Its main idea
stems from the observation that there is a natural and intimate relationship between

1“Just as in ring theory, the concepts of elements and ideals are of utmost importance in lattice theory.” ([8])
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T-algebras and equalizers of pairs (TeX, eTX). The proofs then rely almost entirely
on the manipulation of split equalizers and split coequalizers. In the case of the
equivalence in Theorem 12, a split coequalizer is traced around the chain diagram
described above. We reproduce here a step of B. Jacobs’ proof of [12, Theorem 4.5],
and duly reference it, in order to properly separate it from the context of a lax idem-
potent monad and for the presentation to be self-contained. We end the paper with
a note on projectives in the category Alg (T); this is one categorical synthesis of the
characterisations given in the papers [19–22].

2 Preliminaries and background

Distributive lattices and frames.

A distributive lattice ([7, 9]) is a partially ordered set2 set admitting finite joins and
finite meets3, and for which the identity

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

and its order-dual hold. A homomorphism between distributive lattices is under-
stood as a function that preserves the operations ∧ and ∨, including the top element
∧∅ = 1 and the bottom element ∨∅ = 0. These form the category DLat.

A frame ([7, 23]) L is a complete lattice with the equational identity

a ∧
(

∨

S
)

=
∨

{a ∧ s | s ∈ S}

for all a ∈ L and any S ⊆ L. Frame homomorphisms or frame maps are functions
f : L → M that preserve finite meets and arbitrary joins. Frames and their homomor-
phisms form a category denoted by Frm. There is forgetful functor Frm → DLat.

Definition 1. A subset J ⊆ L is called an ideal if J is a downset, i.e. b ∈ J provided there is
a ∈ J with b ≤ a, and if it is closed under the formation of finite joins.
The set of all ideals on a frame L is denoted by IL. IL is a frame with the following
operations: meets are given by set-intersections and joins given by

∨

J =
⋃

{I1 ∨ I2 ∨ · · · ∨ In | I1, I2, . . . , In ∈ J and n ∈ N},

where I1 ∨ I2 ∨ · · · ∨ In = {i1 ∨ i2 ∨ · · · ∨ in | ik ∈ Ik for 1 ≤ k ≤ n}. Thus, if J is

a directed set, then
∨

J =
⋃

J . If f : L → M is a homomorphism between
distributive lattices, then the function I f : IL → IM given by

I f (I) = {b | b ≤ f (a) for some a ∈ I},

2In the context of the paper,“set” means small set.
3The lattice is then bounded.
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is a frame homomorphism. In particular I is an endofunctor on DLat. The frames of
the form ID, where D is a distributive lattice, are called coherent frames ([7, 24]). We
are interested in the way-below relation ≪ which is defined by

a ≪ b if for any S ⊆ L, if b ≤
∨

S then a ≤
∨

F for some finite F ⊆ S.

A frame L is said to be stably compact ([9, 25, 26]) if ≪ is a sublattice of L× L and if for
all a ∈ L, a =

∨

{b | b ≪ a}. The category of stably compact frames and frame homo-
morphisms that preserve4 ≪ is denoted by StKFrm. The category of coherent frames
and frame homomorphisms preserving compact elements, i.e. elements satisfying a ≪
a, is denoted by CohFrm. We have inclusion functors CohFrm → StKFrm → Frm.

Notations for natural transformations.

Given two pairs of functors F, G : C → D and H, K : D → E and two natural trans-
formations α : F → G and β : H → K, the horizontal composition β ◦ α : HF → KG
is defined by

(β ◦ α)X = βGX H(αX) = K(αX)βFX

for each X in C, for which we simply write β ◦ α = βG · Hα = Kα · βF. If L : C → D
is another functor and δ : G → L another natural transformation, then the vertical
composition δ · α : F → L is simply defined as δX · αX for each X ∈ C.

Lemma 1. (Middle-Interchange Law) Given natural transformations

C D E
α

α′

β

β′

we have (β′ ◦ α′) · (β ◦ α) = (β′ · β) ◦ (α′ · α). ([27, 28].)

Monads.

Recall that a monad ([27–30]) T on a category C is a triple (T, m, e), where m : TT → T
and e : 1 → T are natural transformations satisfying the identities

m · Tm = m · mT and m · eT = m · Te = 1T.

Example 1. The ideal functor I, together with the natural transformations provided by the
set-union5 ⋃

: II → I and the principal ideal map ↓: 1 → I, is a monad (Cf. [9, Section 2]
and [7, Exercise 4.6]).

4These are called proper maps or perfect maps. The condition is equivalent to the right adjoint of the frame map
preserving directed joins.

5An ideal on IL is by definition directed.
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A T-algebra (or an Eilenberg-Moore algebra) is a pair (X, a), where X ∈ C and
a : TX → X a morphism such that

a · Ta = a · mX and a · eX = 1X .

If (X, a) and (Y, b) are T-algebras, then a T-algebra homomorphism
f : (X, a) → (Y, b) is a morphism f : X → Y in C such that f · a = b · T f . The cate-

gory of T-algebras and T-algebra homomorphisms is denoted by CT or by Alg (T).

The forgetful functor GT : CT → C : (X, a) 7→ X admits a left adjoint FT : C → CT

defined by FT( f : X → Y) = T f : (TX, mX) → (TY, mY). The unit of this adjunction
is given by eX : X → GT FTX and the co-unit is provided by the algebra morphisms
ε(X,a) = a : FTGT(X, a) → (X, a). It is important to note in addition that GT reflects
isomorphisms.

Definition 2. ([27, 30]) The diagram

A
f //
g

// B

t

ZZ
q // C.

s

``

is said to be a split coequalizer if q · f = q · g, q · s = 1C, f · t = 1B and s · q = g · t.

Split coequalizers are absolute, i.e. they are preserved by any functor.
Any adjunction (F ⊣ G, η, ǫ) where G : A → C and F : C → A induces a monad

(GF, GǫF, η) on C ([29]). If the adjunction F ⊣ G induces the same monad T on C,

that is GF = T, GǫF = m and η = e, then there is a unique functor C : A → CT -
called comparison functor, such that CF = FT and GTC = G. We say that A is monadic
(resp. strictly monadic) over C if C is an equivalence (resp. isomorphism). Beck’s
monadicity criterion ([27, 30, 31]) implies in this case that G creates coequalizers of G-
split pairs: i.e. if f = Gu and g = Gv in Definition 2, then u and v admit a coequalizer
r in Alg (T) such that the G-image of the diagram r · u = r · v is isomorphic to the
split coequalizer. This relation of isomorphism is strict for GT.

The adjunction FT ⊣ GT induces a comonad K = (T, FTeGT , ε) on the cate-
gory of algebras Alg (T), where FTeGT = Te : (T, m) → (TT, mT). This generates an
alternating sequence of monads and comonads as follows:
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C

T

��

FT⊢

��

Alg(T1)

K1

��

GT1⊣

��

FK1

⊥ // Coalg(K1)

T2

��GK1
oo

��Alg (T)

K

WW

GT

OO

FK

⊥ // Coalg(K)

T1

WW

FT1

OO

GK

oo
. . .

OO

We have sequences of comparison functors FT
n : Alg (Tn−1) → Alg (Tn) and

CK
n : Coalg (Kn−1) → Coalg (Kn) for n ≥ 1, where T0 = T and K0 = K.

Definition 3. A category C is said to be order-enriched if each hom-sets Hom(X; Y) is a
partially ordered set for any pair X, Y ∈ C and the composition of morphisms preserves the
order. The monad T is said to be order-enriched if the underlying functor T preserves the
order.

Definition 4. ([27, 32]) An order-enriched monad T is said to be lax idempotent or a
Kock-Zöberlein monad if TeX ≤ eTX for any X ∈ C.

We will omit mentioning that T is order-enriched each time we consider a lax idem-
potent monad, as this is clear from the context6.

Lemma 2. ([27, Section II.4.9]) For a monad T, we have the following equivalences for any
X ∈ C:

TeX ≤ eTX ⇐⇒ TeX ⊣ mX ⇐⇒ mX ⊣ eTX .
In such a case, any morphism a : TX → X with a · eX = 1X necessarily satisfies a ⊣ eX and
this makes (X, a) a T-algebra.

We mention the following contribution by B. Jacobs.

Theorem 3. ([12]) For a lax idempotent monad T on a category C with equalisers, one has
Alg (T) ≃ Alg (T1).

3 Presentation of algebras and coalgebras

A T-algebra (X, a) can be presented as in the following split coequalizer ([27, 30]):

TTX
Ta //
mX

// TX

eT

]]
a // X.

e

bb

6Unlike in [27], we consider the order to be separated, i.e. x ≤ y and y ≤ x imply x = y.
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A K-coalgebra structure on (X, a) is then a T-algebra morphism
c : (X, a) → (TX, mX) that is part of the following split equalizer:

(X, a)
c // (TX, mX)

Tc //
Te

//

a

hh
(TTX, mTX).

mX

ee

We shall denote this K-coalgebra as an ordered triple (X, a, c). Thus a T1-algebra
structure on (X, a, c) is a K-coalgebra morphism b : (TX, mX , TeX) → (X, a, c) that is
a split coequalizer:

(TTX, mTX, TeTX)
Tb //
Ta

// (TX, mX , TeX)

Te

gg
b // (X, a, c).

c

jj

A T1-algebra as described above is denoted by (X, a, c, b). Thus free K-algebras and
free T1-algebras are given by (TX, mX , TeX) and (TX, mX, TeX , Ta) respectively so
that the functor FT restricts itself to the comparison functor FT

1 : Alg (T) → Alg (T1)
between the adjunctions that induce the monad T1. It is a restriction in a sense that

(GKGT1) · FT

1 = K = FT · GT.

For a lax idempotent monad, the description of the algebras and coalgebras can be
greatly simplified. In the table below, we list the identities characterising the alge-
bras and coalgebras for a lax idempotent monad.

(co)Monads (co)Algebras

T = (T, m, e) a ⊣ eX and a · eX = 1
K = (T, Te, a) c ⊣ a and a · c = 1
T1 = (T, Ta, c) b ⊣ c and b · c = 1
· · · · · ·

The simplification in the table is due to various work that can be traced back to
the work of R.-E. Hoffman on continuous posets [13], the papers by A. Kock ([32])
and V. Zöberlein ([33]) on lax idempotent monads. These characterisations are also
described by B. Jacobs in [12].

Remark 1. For a lax idempotent monad T, the fact that c : X → TX is as well a T-algebra
morphism is due to its being a left adjoint of a. This is given by [32, Proposition 2.5] and
[16, Proposition 3.8]. Split algebras (Cf. [16, Definition 3.6] and [14]) are then characterised
as coalgebras of the comonad K.

We mention the following:

7



Theorem 4. 1. A distributive lattice D is a frame if and only if ↓: D → ID admits a left

adjoint a such that a· ↓ = 1D. In this case, the left adjoint is given by the join
∨

.

2. A frame L is stably compact if and only if the join
∨

: IL → L admits a left adjoint c

such that
∨

· c = 1D. Here c(x) = {y ∈ L | y ≪ x}7.

With the help of Lemma 2, the above characterisation can be deduced from the facts
that Frm is the category of algebras for the ideal monad ([7, Exercise 4.6]), and that

StKFrm is the category of coalgebras of the comonad
(

I, I(↓),
∨

)

as shown in [25,

Section 3]. It is known since [32, Theorem 4.2] and [13] that the way below relation
≪ on a poset is directly linked to the condition of a certain join map admitting a left
adjoint. We refer the reader to the compendium [34], as well as the seminal paper
[35] by D. Scott and the paper [36] by Alan Day for a brief backgroound on continu-
ous lattices. We note that D. Scott was the first to introduce and systematically study
continuous lattices. The category of algebras of the induced monad (I, I(

∨

), c) is
also familiar to us:

Theorem 5. The algebras of the monad (I, I(
∨

), c) are characterised by those stably
compact L for which cL : L → IL admits a left adjoint b : IL → L such that b · cL = 1L.

Proof. This can be obtained by following an argument similar to [15, Theorem 3.4,
Lemma 3.6] and [13, Theorem 2.6].

We observe that b, being a left adjoint to c, is given by:

b(J) =
∨

{y ∈ J | y ≪ y}.

L then becomes a coherent frame, that is L = ID where D = {y ∈ L | y ≪ y}. How-
ever, not all coherent frames satisfy Theorem 5. The following result is at the heart
of the equivalence in Theorem 3.

Proposition 6. ([12]) Let T be a lax idempotent monad and let us assume that eX is the
equalizer of the pair (eTX, TeX) for a fixed X. It follows that X admits a T-algebra structure
if and only if TX admits a T1-algebra structure.

Proof. The necessary condition is obvious. Conversely, suppose that b · TeX = 1TX

exists. As shown in [12, Theorem 4.5], the sequence b ⊣ TeX ⊣ mX ⊣ eTX makes eX a
split monomorphism: we have

TeX · b · eTX = Tb · TeTX · eTX (b is a coalgebra map)

= Tb · eTTX · eTX

= eTX · b · eTX .

There is a unique morphism r : TX → X such that eX · r = b · eTX. Composing with
eX from the right gives eX · r · eX = b · TeX · eX = eX . One has r · eX = 1 ([12]).

7This expression is forced by the identities
∨

· c = 1D and c ·
∨

≤ 1ID .
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Remark 2. For a distributive lattice D, since DLat is monadic over Set ([7, Proposition
3.7]), ↓: D → ID is an equalizer of (↓ID, I(↓D)). Consequently, a coherent frame ID is an
algebra of the monad (I, I(

∨

), c) if and only if D is a frame. A similar situation is described
in [13, Corollary 2.7] for algebraic lattices, and subsequently discussed in [14, Section 8].

4 Natural equivalences

In order to show that under some mild conditions FT

1 is an equivalence, we shall

introduce a functor Φ : FT(C) → C that is provided by the Fakir construction of
idempotent approximation of a monad ([17]). For a given monad T = (T, m, e),
consider the equalizer

Tϕ
ϕ // T

Te //
eT

// TT .

Theorem 7. (Fakir [17]) The functor Tϕ underlies a monad IT = (Tϕ, mϕ, eϕ) where mϕ

is unique such that ϕ · mϕ = m · (ϕ ◦ ϕ) and eϕ is unique such that ϕ · eϕ = e.

We mention the following results which are of interest to us.

Proposition 8. ([17, Proposition 3]) eϕT : T → TϕT is an isomorphism, and the following
are equivalent:

• IT is idempotent;
• Teϕ : T → TTϕ is an isomorphism;

Now consider the category FT(C) of free T-algebras and morphisms FT f where
f is in C. We consider the functor θT : C → FT(C) so that if ET is the inclusion
functor FT(C) → Alg (T), then ET · θT = FT. In a similar manner, we consider
θT

1 : Alg (T) → FT

1 (Alg (T)), where FT

1 (Alg (T)) is the category of free T1-algebras

with morphisms of the form FT

1 f , as well as the inclusion ET

1 : FT(C) → Alg (T).
We have

C
θT

// FT(C)
ET

// Alg (T)

Alg (T)
θT

1 //

OO

FT

1 (Alg (T))
ET

1 //

OO

Alg (T1)

OO

where vertical functors are forgetful.

Definition 5. We define Φ : FT(C) → C by Φ(FT f ) = Tϕ f for all f in C. In par-
ticular Φ · θT = Tϕ. This gives two natural transformations eϕ : 1 → Φ · θT and
θTeϕ : 1 → θT · Φ.

Theorem 9. If IT is an idempotent monad, then θT(eϕ) is a natural isomorphism. In par-
ticular if IT is the identity monad, then we have an equivalence between the category of free
T-algebras and the ambient category C.

9



Proof. We note that θTeϕ = Teϕ : (T, m) → (TTϕ, mTϕ). Since GT reflects isomor-
phisms, Teϕ is an isomorphism if and only if θTeϕ is. The result easily follows form
Proposition 8.

We shall restrict Φ to FT

1 (Alg (T)) → Alg (T). We first give a strengthening of the
fact that eϕT is an isomorphism.

Lemma 10. For a T-algebra (X, a), e
ϕ
X is an isomorphism.

Proof. If (X, a) is a T-algebra, then we have a split equalizer

X
e // TX

Te //
eT

//

a

bb TTX,

Ta

]]

which makes e
ϕ
X an isomorphism.

This allows us to define the restriction Φ1 : FT

1 (Alg (T)) → Alg (T) of Φ by

Φ1(TX, mX, Te, Ta) = (X, a) and Φ1(FT

1 f ) = f .

Lemma 11. Suppose that C has either equalizers or coequalizers. If (X, a, c, b) is a T1-
algebra, then we have the following split coequalizer and split equalizer

TX
b //
a

// X

e

[[
r // Xc

κ

aa
κ // X

c //
e

//

r

cc TX

b

[[

Proof. The identities a · e = 1 and b · c = 1 hold as (X, a, b, c) is a T1-algebra. Suppose
that C has equalizers8 and denote by κ the equalizer of (c, e). As shown in the proof
of [12, Theorem 4.5]: c · b · e = Tb · Te · e = Tb · eT · e = e · b · e; there is a unique r
such that κ · r = b · e. One shows that k · r · k = b · c · k = k and so r · κ = 1. We
have a split equalizer on the right. It remains to show that r · a = r · b to have a split
coequalizer on the left. We have

κ · r · b = b · e · b

= b · Tb · eT

= b · Ta · eT (b coequalizes Ta and Tb)

= b · e · a

= κ · r · a.

Since κ is a monomorphism, the identity r · a = r · b follows.

Theorem 12. If C admits either coequalizers for T-algebra morphisms or equalizers for any
parellel pair of morphisms, then FT

1 is an equivalence.

8The case where it has coequalizers is treated analogously.
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Proof. First, since the restriction of IT on Alg (T) is essentially the identity monad,
we have Φ1 · θT

1
∼= 1 and θT

1 · Φ1
∼= 1. Now, let (X, a, c, b) be a T1-algebra and

consider the split coequalizer from Lemma 11:

TX
b //
a

// X

e

[[
r // Xc

κ

aa

As an absolute coequalizer, this is preserved by the comparison functor from C to
Coalg (K) which arises from the adjunctions inducing the comonad K on Alg (T).
Thus we have a split coequalizer

(TTX, mTX, TeTX)
Tb //
Ta

// (TX, mX , TeX)

Te

gg
Tr // (TXc, mXc , Tec).

Tκ

jj

in Coalg (K). Now, both Ta and Tb are morphisms of (free) T1-algebras. By Beck’s
monadicity theorem, since Alg (T1) is monadic over Coalg (K) in the strict sense,
there is a T1-algebra structure γ on (TXc, mXc , Tec) and Tr becomes a T1-algebra
morphism. The universality of the coequalizer b in Alg (T1) shows that

(TXc, mXc , Tec, γ) ∼= (X, a, c, b) and Tr ∼= b ∼= γ.

Finally since Alg (T) is monadic over C, Xc admits a T-algebra structure ac, as both
a and b are T-algebra morphisms. The isomorphism TXc

∼= X implies that r ∼= ac

as morphisms of T-algebras. If f : (X, a, c, b) → (X′, a′, c′, b′) is a T1-algebra mor-
phism, then we form the (split) equalizers κ, κ′ and (split) coequalizers r, r′. There is a
unique morphism fc such that fc · r = r′ · f and f · κ = κ′ · fc. Thus fc is a T-algebra
morphism and θT

1 fc
∼= f . It follows that the inclusion ET

1 is an equivalence.

Corollary 13. With the assumption of Theorem 12, FK is monadic, FT1 is comonadic and
the action of K1 on Alg (T1) is equivalent to that of K on Alg (T).

We note that B. Jacobs’ result in [12] requires that certain equalizers exist in C
in order to construct the object Xc. The identification of the algebra (X, a, c, b) with
(TXc, mXc , Tec, Tac) proceeds from the fact that for a lax idempotent monad, the
adjoints a ⊣ c ⊣ b coincide with mXc ⊣ Tec ⊣ Ta due to the property of universality
of Galois connections. The verification of the equivalence in Theorem 3 then requires
one to check that the relevant diagrams commute. The absence of the Galois connec-
tions has been remedied here by the use of the characterisation of algebras through
split coequalizers, reaffirming their importance in the theory of monads.

Example 2. We are mostly interested in the ideal functor and the down set functor. Similar
examples that are treated by Bart Jacobs in [15] and [12] are assumed to be known. These
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functors have the common property that they are lax idempotent, and so the results in [15]
apply. Here, we augment these results with the equivalence from Theorem 9.

(i) In the category DLat, the first inductive step (Iϕ,
∨ϕ, ↓ϕ) of Fakir construction is essen-

tially the identity monad (Cf. Remark 2). The equivalence between DLat and the category
CohFrm then follows from Theorem 9. This is part of the Stone representation for dis-
tributive lattices ([7, Section 3.3], [24]). We emphasize the fact that DLat is complete
and so Theorem 12 applies as well. A case that is analogous to this is that of the category
σFrm ([37]) of σ-frames with the monad H taking a σ-frame L to the frame H L of its
σ-ideals . This establishes an equivalence between σFrm and the category σCohFrm of
σ-coherent frames via Theorem 9. The functor Φ (Definition 5) is given by the functor
Lind that extracts the Lindelöf elements from the free algebras H L.

(ii) Consider the category MLat of meet-semilattices and meet-semilattice homomorphisms
with the downset functor D : MLat → MLat. This form a monad T with the nat-
ural transformations given by set-theoretic unions

⋃

: DD → D and downset maps
↓: 1 → D. The category of algebras Alg (T) is Frm and the category Coalg (K) is the
category of supercontinuous frames with their corresponding homomorphisms ([1, 20]).
Here (Dϕ,

∨ϕ, ↓ϕ) is essentially the identity. Theorem 9 shows that MLat is equivalent
to the category SCohFrm of supercontinuous frames (Cf. [20, Remark 3] and [1, Propo-
sition 6.2]).

(iii) In [21], Z. Dhongsheng considers the functor Z : MLat → MLat which is a submonad
T of D from the previous example9. From this follow three subcategories: the category of
Z-frames, the category of stably Z-continuous semilattices, and the category of coherent
Z-frames. These are respectively the category Alg (T), the category Coalg (K) and the
category of free T- algebras. Theorem 9 applies here as well.

Example 3. The following classical examples trivially satisfy the condition of Theorem 12:
the category of topological spaces and continuous maps with the ultrafilter monad or with
the prime open filter monad (([9, 38])), the category of T0-spaces and continuous maps with
the open filter monad ([16, 39, 40]). For those which are lax idempotent, B. Jacobs’ result
applies to these instances. Theorem 12 allows for the extension of the results to arbitrary
monads. However, for those classical instances we do not know if the first inductive step of
the Fakir idempotent approximation reduces to the identity monad.

Example 4. M. Barr considers the following examples in [11]: Set, the category (1, Set) of
pointed sets, and the category VK of vector spaces over a field K and looks at an arbitrary
monad T. It is shown that - up to constants - C is equivalent to Coalg (K) through the
comparison functor ([11, Theorem 11]). Since Set is complete, Theorem 12 applies, con-
firming the general result that the sequence stabilises. However, in this case our result is
weaker than the one obtained in [11] by M. Barr. Indeed he showed that FT is essentially
comonadic as well, whereas Theorem 12 does not necessarily imply this, as illustrated by
Example 2. At the same time, Example 2 indicates that it is not easy, if not impossible, to

9That this is a submonad is straightforward, given the requirements of Definition 1.1 in [21]
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borrow the assumptions and method used by M. Barr and adapt them for categories enriched
over partially ordered sets.

5 Projectives in the category of algebras

One of the most interesting aspects of Example 2 is the characterisations of pro-
jectives in the ambient category as shown in [20, Proposition 5], [22, Proposition
2.2] and [21, Theorem 3.2]. These characterisations actually depend on the pair of
forgetful-free functors as a parameter that renders the ambient category a category
of algebras. However this is not explicitly mentioned. Indeed, J. Madden writes
in [22] with regard to the characterisations of stably compact frames as retracts of
coherent frames ([19]) that I am sure Johnstone himself has long been aware of this inter-
pretation of his result, but it seems to have escaped many others. We give here a definition
of projectives that varies according to the monad T and that specialises into the
specific results obtained in the above-mentioned sources. This definition is an easy
dualisation of the notion of injective spaces in the sense of Escardó ([39, 40]).

Definition 6. Let T be a monad on a category C. An algebra (X, a) is projective in Alg (T)
or simply projective if (X, a) is projective with respect to the (co)free functor FK .

The above definition subsumes Definition 2.1 of [22], the definition of E-projective
Z-frames in [21] and the definition of projective frames in [20]. With regard to lax
idempotent monads, we have the following equivalences.

Theorem 14. ([16, 39, 40]) Let T be a lax idempotent monad on a category C. The following
are equivalent:

1. (X, a) is projective with respect to {α : (TA, mA) → (A, α) | (A, α) ∈ Alg (T)}.
2. (X, a) has a structure of a K-coalgebra.
3. (X, a) is a retract in Alg (T) of free T-algebras.
4. (X, a) is a T-split algebra. (Cf. [16, Definition 3.6])

K-coalgebras are therefore projectives. In the absence of the condition of lax
idempotency, we only have the following characterisation.

Theorem 15. Projectives are precisely the retracts in Alg (T) of free T-algebras.

Example 5. The projectives in the particular instances of Example 2 are respectively: the
stably compact frames ([19, 22, 24]) and the stably continuous σ-frames ([22, 37]), the sta-
bly supercontinuous frames ([20, Proposition 5]), the stably Z-continuous semilattices ([21,
Theorem 3.2]).

Example 6. (Gleason, 1958) [7, 29, 41] If T is the monad generated by the forgetful func-
tor from the category KHaus of compact Hausdorff spaces to Set and the free functor
β : Set → KHaus - which is the Stone-Čech compactification of a discrete space, then the
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projectives with respect to T are exactly the extremally disconnected spaces in KHaus.
Indeed, these are precisely the retracts of spaces of the form βX.
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