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Quantum fluctuations in frustrated systems can lead to the emergence of complex many-body
phases. However, the role of quantum fluctuations in frustration-free lattices is less explored and
could provide an interesting avenue for exploring new physics, and perhaps easier to realize compared
to frustrated lattice systems. Using Rydberg atoms with tunable interactions as a platform, we
leverage strong van der Waals interactions and obtain a constrained model in one dimension with
non-local fluctuations given by dipolar interactions alongside local fluctuations. The combined effect
of such processes leads to intrinsically quantum-ordered Rydberg crystals through the order-by-
disorder mechanism. Finite-size analyses indicate that combined fluctuations drive the transition
from disordered to ordered phases, contrary to the expected direction. We provide a theoretical
description to understand the physics of order-by-disorder in one-dimensional systems, which are
typically seen only in higher dimensions.

Introduction.—Quantum fluctuations give rise to di-
verse phenomena ranging from spin fluctuations induced
superfluidity of helium-3 [1, 2] to superconductivity in
metals [3]. In the case of frustrated systems, quantum
fluctuations lift the macroscopic classical ground-state
degeneracy [4–8] and stabilize exotic many-body phases
such as the quantum spin liquids [6, 7], quantum spin ne-
matics [9–11], long-range ordered states through order-
by-disorder without any classical analog [12–18], as well
as lead to complex phase transitions [19–21]. However, it
can often be hard to realize these phases in frustrated ma-
terials that involve non-trivial geometries such as kagome
[19, 20, 22], honeycomb [15, 23, 24], triangle [25, 26], and
pyrochlore [27, 28] lattices. Further issues arise from en-
vironment noise, inherent disorder in the system and the
limited control of competing interactions [18, 29].

Platforms based on neutral Rydberg atoms have
proven to be highly controllable quantum simulators [30–
35] as their large dipole moments provide tunable strong
interactions with different ranges and characters such as
van der Waals (vdW) and dipolar interactions [36–39].
For example, the quantum spin liquid phase was observed
in a recent study involving vdW interacting Rydberg
atoms [40, 41]. However, fluctuation-driven phenomena
were not explored using both vdW and dipolar interac-
tions, and there is a growing interest in studying the
combined effects of these processes [42–46]. Especially, a
question arises on whether the flexibility of tuning both
vdW and dipolar interactions can be leveraged to observe
such phenomena in simple frustration-free setups such as
a one-dimensional (1D) lattice.

In this Letter, we address this question by studying
a 1D system of vdW and dipolar interacting Rydberg
atoms and reveal the relationship between the system
geometry and competing fluctuations. In the limit of
strong vdW interactions, a constrained model where local
and non-local quantum fluctuations are driven by single-

and two-site processes is derived. Having such different
melting processes simultaneously leads to a phase with
long-range order via the order-by-disorder mechanism,
which has not been shown previously in frustration-free
systems in 1D. We identify the phase as a form of Ry-
dberg crystal without any classical analog since it does
not arise by minimizing the vdW energy, differing from
earlier results on Rydberg crystals [47–49]. We present
an intuitive physical picture of the underlying physics by
providing a theoretical analysis of the model. This helps
explain the long-range order and motivates a variational
ansatz that describes both the disordered and ordered
regimes. The nature of the quantum phase transition
(QPT) is examined by finite-size scaling analyses. We
reveal that the combination of local and non-local quan-
tum fluctuations drives a phase transition that proceeds
in the disordered-to-ordered direction, which convention-
ally occurs the other way around.

Theory.—We consider a 1D system of trapped neu-
tral atoms that are modeled as two-level systems with a
pair of Rydberg states coupled by a microwave laser with
the Rabi frequency Ωµw and detuning ∆µw as shown in
Fig. 1(a). These distinct highly excited Rydberg states
represent the hard-core bosonic degree of freedom given
by {|◦⟩ , |•⟩} where |◦⟩ (|•⟩) denotes the absence (pres-
ence) of a boson [Fig. 1(b.i)]. This encoding leads to ex-
pressing the vdW and dipolar interacting Rydberg atoms
by an extended Bose-Hubbard model (EBHM) [42–44] as
given in the following,

ĤRyd =
∑
i<j

tij(b̂
†
i b̂j + h.c.) +

∑
i<j

Vij n̂in̂j −∆µw

∑
i

n̂i

+Ωµw

∑
i

(b̂†i + b̂i), (1)

where b̂†i (b̂i) is the bosonic creation (annihilation) oper-

ator at site i with (b̂†i )
2 = 0, and n̂i = b̂†i b̂i is the number
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FIG. 1. (a) Schematic of a 1D system of vdW (Vij) and dipo-
lar (tij) interacting Rydberg atoms. Coupling of the levels
|r⟩ ↔ |r′⟩ by a microwave laser with Rabi frequency Ωµw

and detuning ∆µw corresponds to the creation (annihilation)

of a boson with b̂†(b̂). (b.i) Single-site degrees of freedom
are denoted by the empty |◦⟩ → ◦ and boson-occupied sites
|•⟩ → •. (b.ii) Constrained local fluctuations generated by
single-site processes as creation/annihilation of bosons sur-
rounded by empty sites. (b.iii) Constrained non-local fluc-
tuations provided by two-site processes as hopping of bosons
surrounded by empty sites. (c.i) Dimer degrees of freedom
are given by combining two sites into one, which makes up
a single dimer site. Auxiliary fermions are attached to links
connecting dimer sites to ensure the occupation constraint
(see the text). Right dimer |R⟩ and left dimer |L⟩ states are
given by right and left occupied two-sites with fermions at-
tached (green dot) to the right and left links (black line). Pro-
cesses involving (c.ii) left/right dimer creation/annihilation
and (c.iii) dimer flipping at a given dimer site are depicted.
(c.iv) Dimer exchange between different dimer sites is shown.

operator. vdW interactions give rise to long-range den-
sity interaction with strength Vij > 0 with 1/|i−j|6 scal-
ing. The detuning ∆µw term corresponds to the chemi-
cal potential which controls the density of excitations |r′⟩
(bosons). Differing from other EBHMs, Eq. (1) includes
both local and non-local quantum fluctuations that are
provided by the Rabi term and the dipolar interactions
involving singe-site and two-site processes, respectively.
The Rabi term Ωµw introduces particle fluctuations at
a site with creation/annihilation processes. The dipo-
lar interactions encode particle exchange involving two
sites with strength tij > 0 with 1/|i − j|3 scaling. Such
single- and two-site processes lead to the local and non-
local melting of crystalline phases into a disordered and
Luttinger liquid phase [42], respectively.

In the classical limit (Ωµw, t → 0) of Eq. (1) with only
nearest-neighbor interactions and ∆µw = 0, all the con-

figurations without nearest-neighbor boson occupation
are degenerate with energy E = 0 and the degeneracy
scales exponentially as eL lnα with the system size L and
α = (

√
5 + 1)/2 [50, 51]. This can form the required

degenerate classical ground-state manifold in the limit
of strong nearest-neighbor interactions (Vi,i+1 → ∞)
where the Hilbert space is constrained such that con-
figurations with boson occupation in nearest-neighbor
sites such as |· · · • • . . .⟩ are excluded. Therefore, the
degenerate manifold is provided by the occupation con-
straint, differing from the models with frustration. The
resulting model in this projected subspace is obtained
perturbatively [52]. With vanishing longer-range terms
(ti,i+k, Vi,i+k = 0, k > 1) and detuning (∆µw = 0), the
Hamiltonian up to first order is expressed as,

Ĥ = Ωµw

∑
i

P̂i−1(b̂
†
i + b̂i)P̂i+1

+ t
∑
i

P̂i−1(b̂
†
i b̂i+1 + h.c.)P̂i+2, (2)

where P̂i = |◦⟩i ⟨◦| is the projector operator to the ab-
sence of a boson. In the first term, dressing the local
fluctuations with the projectors leads to the well-studied
PXP Hamiltonian [53–58]. It involves single-site pro-
cesses [Fig. 1(b.ii)] where creation/annihilation at a given
site is allowed if empty sites surround it. Configura-
tions with different particle numbers are coupled, there-
fore, U(1)-symmetry is violated. In the second term,
dressing the non-local fluctuations [Fig. 1(b.iii)] with the
projectors gives rise to constrained hoppings [59, 60]
where empty sites must surround the two sites involved
in the particle exchange. Such processes preserve U(1)-
symmetry since the particle number is conserved. The
interplay between local and non-local fluctuations dic-
tates the ground state properties of the model. Thus,
Eq.(2) essentially describes the onset of the competing
local and non-local fluctuations for determining which
states from the degenerate manifold are to be favored.
Differing from previous models, this aspect will play a
crucial part in stabilizing long-range order in 1D, which
has been previously reported to exist only in higher di-
mensional constrained/frustrated models [61, 62].

We consider a theoretical description of the model
where we split the lattice into interacting dimers consist-
ing of two sites. This artificial partitioning into dimers
will prove to be important in explaining the physics of the
disordered and ordered regions. With this partitioning,
a single dimer site j consists of two sites as j ≡ (i, i+ 1)
and encodes the dimer degrees of freedom with the al-
lowed configurations given by {|◦◦⟩ , |◦•⟩ , |•◦⟩}. We at-
tach a fermion to the left (right) link of the configu-
ration |•◦⟩ (|◦•⟩) which we denote as left(right)-dimer
|L⟩ (|R⟩), and the configuration |◦◦⟩ corresponds to the
empty dimer |E⟩ [Fig. 1(c.i)]. Fermionic links naturally
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implement the occupation constraint where the configu-
rations of the form |. . . RL . . .⟩ are excluded due to the
Pauli exclusion principle. Representing the system in
terms of dimer degrees of freedom can be considered as
distinguishing even and odd site boson occupations in
the form of a mapping P̂i−1b̂

†
i P̂i+1 → d̂†R,j f̂

†
j,j+1 with

i = 2j and P̂i−1b̂
†
i P̂i+1 → d†L,j f̂

†
j−1,j with i = 2j − 1.

This mapping is discussed in detail in [52]. In terms of
dimer states, the Hamiltonian (2) is rewritten as,

Ĥdim = Ωµw

∑
j

(d̂†L,j f̂
†
j−1,j + d̂†R,j f̂

†
j,j+1 + h.c.)

+ t
∑
j

(d̂†L,j f̂
†
j−1,j d̂R,j f̂j,j+1 + h.c.)

+ t
∑
⟨j,k⟩

(d̂†R,j f̂
†
j,j+1d̂L,kf̂k,k−1 + h.c.), (3)

where left d̂†L,j (d̂L,j) and right d̂†R,j (d̂R,j) are dimer
creation (annihilation) operators at a dimer site j and

f̂†
j,j+1 (f̂j,j+1) creates (annihilates) fermions at the links
between dimer sites (j, j + 1). The first term above
is the creation/annihilation of left and right dimers
[Fig. 1(c.ii)]. The second term encodes a local dimer flip-
ping where |L⟩j is coupled to |R⟩j [Fig. 1(c.iii)]. The
third term corresponds to a dimer exchange between
nearest-neighbor sites ⟨j, k⟩ where |L⟩j is exchanged with
|R⟩k [Fig. 1(c.iv)]. Motivated by this formulation, we
propose an ansatz to describe the ground state in the
following form,

|Ψ⟩ = 1

N
∏
j

(u+ vd̂†L,j f̂
†
j−1,j + wd̂†R,j f̂

†
j,j+1) |E · · ·E⟩

(4)

which can be written in terms of dimer states as

|Ψ⟩ = 1

N
∑
Λ

uNΛ
EvN

Λ
LwNΛ

R |Λ⟩ , (5)

where NΛ
E,L,R denotes the number of empty, left and

right dimers in the many-body configuration |Λ⟩ of dimer
states. The variational parameters are u, v, w and N is
the normalization constant. The chosen ansatz is well-
suited to capture the ground state properties as it ad-
dresses various aspects of the system: i) Configurations
|Λ⟩ automatically satisfy the occupation constraint. ii)
The coherent superposition form of the ansatz can res-
onate a subset of classical configurations |Λ⟩ which may
be favored by the quantum fluctuations. iii) The super-
position can include configurations with different num-
bers of left/right dimers. Therefore, the ansatz can in-
terpolate between U(1)-preserving/violating regions ac-
counting for the effects of both local and non-local fluc-
tuations. iv) The weights of the configurations |Λ⟩ in the

FIG. 2. (a) CDW order parameter OCDW and the (b) bipar-
tite von Neumann entanglement entropy SvN as a function
of ϵ = t/Ωµw is depicted. (c) The expectation value of the
density operator n̂i for a system size L = 121 with ϵ = 0.5
is shown. (d) The schematic of the ground state with CDW
order is displayed. The unit cell is given by the equal super-
position of |E⟩ and |L⟩ as |L̃⟩ = (|E⟩ − |L⟩)/

√
2.

superposition are determined according to the number of
dimer types therein. Therefore, the correlations emanat-
ing from the fluctuations of the dimer densities in a given
|Λ⟩ can be captured.

Results.— We demonstrate that even in a simple 1D
lattice, the combination of local- and non-local quantum
fluctuations helps stabilize long-range order, even though
they do not promote order individually. The order for-
mation is elucidated using the theoretical description in-
volving interacting dimers and the variational ansatz.
The nature of the QPT is examined by performing finite-
size-scaling analyses. Numerical results are obtained by
employing density-matrix-renormalization-group [63–67]
simulations.

We start discussing two different regimes of ϵ = t/Ωµw

with the charge-density-wave (CDW) order parameter
OCDW and entanglement entropy SvN. In the limit ϵ → 0,
local quantum fluctuations become dominant and lift the
degeneracy by resonating classical configurations. In this
mechanism, the classical configurations from the degen-
erate manifold are selected such that their superposi-
tion state can have low-energy fluctuations when acted
upon by the Ωµw term. For example, the configuration
|• ◦ • · · · • ◦⟩ is not favored since Ωµw term creates high-
energy fluctuations in the form |• • • · · · • ◦⟩ by violat-
ing the occupation constraint. Therefore, the classical
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configurations with a high density of low-energy mode
are favored when acted upon by the Ωµw term. In 1D,
this stabilizes a disordered phase exhibiting homogeneous
density without long-range order. This can be seen in
Fig. 2(a) with vanishing OCDW = (1/L)

∑
i(−1)i ⟨n̂i⟩

which measures the staggered density. To gain more in-
sight into the superposition, we compute the overlap of
the ansatz |Ψ⟩ in Eq. (5) with the exact ground state
|ΨED⟩ and obtain | ⟨Ψ|ΨED⟩ | ∼ 0.99 with the variational
parameters u = 0.92, v = −0.58, w = −0.58 [52]. Equal
weight given to the left/right dimer state demonstrates
no preference for selecting either side. We find that the
optimized ansatz |Ψ⟩ can be composed by

⊗
i |D⟩i with

|D⟩i = [(|E⟩i /
√
2) − (|L⟩i + |R⟩i)/2] and i denoting a

single dimer site [52]. This implies that each dimer site
has an equal probability of being in |L⟩ or |R⟩. In light
of this, the role of the geometry becomes apparent when
the state selection mechanism from the degenerate man-
ifold is considered. Due to the low connectivity in 1D,
both the left and right dimer dominant |Λ⟩ configura-
tions have low-energy fluctuations due to the Ωµw term,
thereby, the disordered phase with equal favoring of |L⟩
and |R⟩ is promoted. Compared to 2D lattices where
order-by-disorder has been extensively studied, configu-
rations that equally favor |L⟩ and |R⟩ are not seen as in
our 1D case. For example, the square lattice limits the
accessible |Λ⟩ configurations from the degenerate mani-
fold due to the occupation constraint and increased con-
nectivity. The system cannot facilitate having a super-
position of |L⟩ and |R⟩ in the form |D⟩ in each dimer
site since this leads to configurations with high-energy
fluctuations. Considering the square lattice as stacked
1D chains, Ωµw term gives rise to configurations of the

form |LL ⟩ or |
R
R ⟩ in the neighboring rows where the occu-

pation constraint is violated. This leads to spontaneous
symmetry breaking with Neel (checkerboard) order with
a square lattice configuration with alternating rows of
|R̃⟩ = (|E⟩ − |R⟩)/

√
2 and |L̃⟩ = (|E⟩ − |L⟩)/

√
2.

In the regime ϵ ∼ 0.5 − 1, both fluctuation terms are
comparable in magnitude. This results in a crystalline
phase with long-range order. In Fig. 2(a), finite val-
ues of OCDW imply that the unit cells double and the
translational symmetry is spontaneously broken. This is
also corroborated by the behavior of the bipartite von
Neumann entanglement entropy SvN ≡ −Tr(ρr ln ρr) of
the ground state as a function of ϵ, where ρr is the re-
duced density matrix of half of the chain. As seen in
Fig. 2(b), SvN makes a peak near the quantum critical
point (QCP) and drops in the ordered phase. This van-
ishing of SvN around ϵ ∼ 0.5 [Fig. 2(b)] implies that the
ordered phase becomes an exact product state. As ϵ → 1,
the ordered state becomes entangled yet still stays close
to a product state form. CDW character is also reflected
in the alternating density oscillations which imply that
the bosons occupy every alternating site on the chain as

FIG. 3. (a) The fidelity susceptibility per site χF /L exhibits
a peak around the critical point. The peak becomes more
pronounced as the system size L gets larger. (b) Rescaled χF

displays a data collapse for the critical point ϵc = 0.429 and
the critical exponent ν = 1.011 for different system sizes. Fi-
delity susceptibility at pseudocritical points χm

F as a function
of system size in logarithmic scale is shown in the inset.

shown in Fig. 2(c). Differing from conventional CDW
phases, the unit cell is given by |L̃⟩ or |R̃⟩ instead of
|L⟩ or |R⟩ as given in Fig. 2(d). We reveal the ordering
mechanism by introducing both local and non-local fluc-
tuations to the ordered system. This can be inferred from
Ĥdim(|E⟩−|L⟩)/

√
2 = (Ωµw−t) |R⟩−Ωµw(|E⟩−|L⟩)/

√
2,

where local fluctuations couple |E⟩ to |R⟩ due to equal
favoring of |L⟩ and |R⟩ whereas non-local fluctuations
couple |L⟩ to |R⟩ due to U(1) symmetry. Therefore, the
system can be further constrained to prefer left dimers
by tuning t to lower the coupling to |R⟩. This also ex-
plains why having t < 0 in Eq. (2) does not help restore
the long-range order but rather promotes the disordered
state [52]. Therefore, having non-local fluctuations mim-
ics the increased connectivity of 2D by lowering the cou-
pling of |L̃⟩ (|R̃⟩) to |R⟩ (|L⟩). This is also corroborated
by the ansatz overlap | ⟨Ψ|ΨED⟩ | ∼ 0.99 with variational
parameters u = 0.92, v = −0.92, w = 0.01 [52], where
vanishing w indicates that |L⟩ is favored. Therefore, the
ansatz leads to a product state of the form

⊗
i |L̃⟩i. The

essential feature required to restore order in 1D is the ne-
cessity of combined local and non-local fluctuations. This
emphasizes a crucial aspect of our setup, distinguishing
it from constrained models in conventional Rydberg sim-
ulators.
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FIG. 4. (a) ∆ forms a dip in the vicinity of the critical point.
As the system size L gets larger, ∆ approaches zero, thus,
making the dip sharper. (b) Rescaled ∆ exhibits a data
collapse for the critical point ϵc = 0.429, correlation criti-
cal exponent ν = 1.011, and the dynamic critical exponent
z = 1.001 for various system sizes. The inset depicts the
neutral gap at pseudocritical points ∆m as a function of the
system size in logarithmic scale.

We examine the nature of the QPT by first per-
forming finite-size analysis of the fidelity susceptibility
χF = lim

dϵ→0
2(1 − ⟨ϕ(ϵ)|ϕ(ϵ+ dϵ)⟩)/(dϵ)2[68–70], where

|ϕ(ϵ)⟩ is the ground state of Ĥ(ϵ) in Eq. (2). χF probes
the QPT by detecting the abrupt change in the ground-
state character as ϵ varies. This can be seen in Fig. 3(a)
where the χF /L makes a peak around the QCP with the
peak becoming more pronounced as the system size L in-
creases. This divergent behavior is captured in the inset
of Fig. 3(b) by analyzing the power-law behavior of the fi-
delity susceptibility given by χm

F (ϵm, L) ∝ L2/ν [68, 71] at
pseudocritical points ϵm, where ν is the correlation criti-
cal exponent and is extracted as ν = 1.011 by the slope of
the fitted line. To locate the QCP, the finite-size scaling
law for χF in the form χF (ϵ, L) = L2/νFF [L

1/ν(ϵ − ϵc)]
is analyzed, where ϵc is the QCP and FF is an unknown
scaling function [71, 72]. Fig. 3(b) displays the behavior
of the scaling function FF for various system sizes by us-
ing rescaled variables χFL

−2/ν and (ϵ− ϵc)L
1/ν . A good

data collapse is achieved by substituting the previously
obtained exponent ν = 1.011 and tuning the ϵc = 0.429
as shown in Fig. 3(b). A similar analysis of the neutral
gap ∆ = E1−E0 for the scaling forms ∆m(ϵm, L) ∝ L−z

and ∆(ϵ, L) = L−zF∆[L
1/ν(ϵ − ϵc)] is performed [73].

Here, E0 and E1 are the ground and first excited state
energy of Ĥ in Eq. (2). The dynamical critical exponent

is determined as z = 1.001 as shown in Fig. 4(a,b). We
conclude that the order-by-disorder transition belongs to
the (1+1)D Ising universality class with ν = 1 and z = 1.
The key difference from earlier results is that combining
local and non-local fluctuations drives the transition in
the disordered-to-ordered direction where the long-range
order is restored.

Conclusion and outlook.—Quantum fluctuations give
rise to a wide range of phenomena in frustrated systems.
This work promotes studying fluctuations in frustration-
free systems using strongly interacting Rydberg atoms.
Using vdW and dipolar interactions, a constrained model
is derived, which differs from previous models [53, 56]
by putting local and non-local fluctuations on an equal
footing. Long-range order in 1D is established through
mimicking high dimensionality where the increased con-
nectivity is replaced by the synergistic effects of local and
non-local fluctuations. This illustrates the combined ef-
fects of local and non-local fluctuations since they do not
promote order individually. We developed a theoretical
description of the model that offers a variational ansatz
and explains the order formation. The ordered phase
can in principle be verified experimentally for a system
of tens of atoms a few microns apart from each other with
{|r = 60S⟩ , |r′ = 61P ⟩} and Ωµw of 1− 5 MHz [42]. For
future works, it would be interesting to see the physics
arising from combining local and non-local fluctuations in
higher dimensional lattices with occupation constraints.
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Supplemental Material:
Formation of Rydberg Crystals Induced by Quantum Melting in One-Dimension

1. DERIVATION OF THE CONSTRAINED MODEL

In this section, the constrained model given in Eq. (2) is derived starting from the Rydberg Hamiltonian given in
Eq. (1) as,

ĤRyd =
∑
i<j

tij(b̂
†
i b̂j + h.c.) +

∑
i<j

Vij n̂in̂j −∆µw

∑
i

n̂i +Ωµw

∑
i

(b̂†i + b̂i), (S1)

where b̂†i (b̂i) is the bosonic creation (annihilation) operator at site i with (b̂†i )
2 = 0, and n̂i = b̂†i b̂i is the site density

operator. Long-range hopping and density interaction strengths are denoted as Vij and tij with 1/|i−j|6 and 1/|i−j|3
scaling, respectively. Ωµw and ∆µw stand for the microwave Rabi frequency and detuning. We continue working in
the case of dominant nearest-neighbor processes where longer-range interaction and hopping terms are neglected
(ti,i+k, Vi,i+k = 0, k > 1) with vanishing detuning (∆µw = 0). The resulting Hamiltonian is written as,

Ĥ = V
∑
i

n̂in̂i+1︸ ︷︷ ︸
Ĥ0

+ t
∑
i

(b̂†i b̂i+1 + h.c.) + Ωµw

∑
i

(b̂†i + b̂i)︸ ︷︷ ︸
Ĥp

, (S2)

where V and t denote the strengths of nearest-neighbor density interactions and hoppings, respectively. We are
interested in the regime of strong interactions (V ≫ Ωµw, t) where the laser coupling and hopping terms are treated

perturbatively. In this way, the first term is the non-perturbing Ĥ0 whose eigenstates are known exactly and can be
grouped into eigenspaces Eα, Eβ , . . . with different energies Eα,Eβ , . . . determined by the number of nearest-neighbor
bosons. Therefore, a fixed eigenspace α consists of states with a definite number N•• of nearest-neighbor bosons. For
example, Eα=0, α ≡ N••, denotes the manifold of states with N•• = 0 nearest-neighbor boson occupations with energy
E0 = 0. As mentioned in the main text, the eigenspace α = 0 is of great interest since it forms the required extensive
classical ground state manifold. The combined second and third terms denote the perturbing Ĥp that couples states
residing in different/same manifolds. We are interested in the effective Hamiltonian acting only within the α = 0
manifold. Therefore, the effects of the perturbation are incorporated only within α = 0 and high-energy processes
causing inter-manifold couplings are integrated out. The effective Hamiltonian Ĥeff is defined up to second order in
Ĥp by the non-zero matrix elements between any two states |k, α⟩ and |l, α⟩ with energy Ekα and Elα in the same
eigenspace α as [74–76],

⟨k, α|Ĥeff|l, α⟩ = Ekαδkl + ⟨k, α|Ĥp|l, α⟩+
1

2

∑
m,β ̸=α

⟨k, α|Ĥp|m,β⟩ ⟨m,β|Ĥp|l, α⟩
( 1

Ekα − Emβ
+

1

Elα − Emβ

)
. (S3)

We are interested in the expression up to the first order, thus, the third term above is neglected. In the operator
form, the above expression for α = 0 becomes,

Ĥeff = Ĥ0P̂0 + P̂0ĤpP̂0, (S4)

where P̂0 =
∏

⟨ij⟩(1 − Q̂iQ̂j) with Q̂i = |•⟩i ⟨•| is the projection operator to the α = 0 manifold of states without

nearest-neighbor ⟨ij⟩ boson occupations. The first term above vanishes since Ĥ0 essentially counts the number of
nearest-neighbor boson pairs, which is zero in the α = 0 manifold. It is useful to decompose the perturbing term
Ĥp into block-off-diagonal and block-diagonal forms with respect to the eigenspaces α of Ĥ0. In this way, the block-

diagonal terms that encode intra-manifold couplings would survive the projector P̂0, and the operator form of the
second term in α is obtained. The decomposition is written as,



2

Ĥp = Ωµw(Ω̂0 + Ω̂1 + Ω̂2 + Ω̂−1 + Ω̂−2) + t(T̂0 + T̂1 + T̂−1), (S5)

where each term above is given as follows,

Ω̂1 =
∑
i

(Q̂i−1b̂
†
i P̂i+1 + P̂i−1b̂

†
i Q̂i+1), Ω̂−1 = Ω̂†

1, (S6)

where P̂i = |◦⟩i ⟨◦|. Here Ω̂1 (Ω̂−1) creates (annihilates) a boson at a given site i if the site i is surrounded by a
boson on one of the sides. This process increases/decreases the number N•• in a given state by one, thereby, coupling
manifolds of states differing from each other by a single pair of nearest-neighbor boson occupation, i.e., states in the
eigenspace Eα=N and Eα=N+1 are coupled.

Ω̂2 =
∑
i

Q̂i−1b̂
†
i Q̂i+1, Ω̂−2 = Ω̂†

2, (S7)

Here Ω̂2 (Ω̂−2) creates (annihilates) a boson at a given site i if the site i is surrounded by bosons on both sides. This
results in adding/removing the number N•• in a given state by two, thereby, coupling states in the eigenspace Eα=N

and Eα=N+2.

Ω̂0 =
∑
i

P̂i−1(b̂
†
i + b̂i)P̂i+1, (S8)

Here Ω̂0 creates and annihilates a boson at a given site i if the site i is surrounded by empty sites. Hence, Ω̂0 does
not add/remove nearest-neighbor boson pairs upon acting on states within a given manifold α. Therefore, it only
encodes intra-manifold couplings.

T̂1 =
∑
⟨i,j⟩

(Q̂i−1b̂
†
i b̂jP̂j+1 + Q̂j+1b̂

†
j b̂iP̂i−1), T̂−1 = T̂ †

1 (S9)

Here T̂1 represents the hopping of bosons between nearest-neighbor sites i, j if the sites are surrounded only by a single
boson on one of the sides. This operation ends up adding a pair of nearest-neighbor bosons. Therefore it couples the
manifold of states with Eα=N and Eα=N+1. Analogously, T̂−1 removes a pair of nearest-neighbor bosons.

T̂0 =
∑
⟨i,j⟩

(Q̂i−1b
†
i b̂jQ̂j+1 + P̂i−1b

†
i b̂jP̂j+1 + h.c.). (S10)

Here T̂0 represents the hopping of bosons between nearest-neighbor sites i, j if the sites i, j involved in the particle
exchange are surrounded by bosons (first term) and empty sites (second term). T̂0 does not add or remove a pair
of nearest-neighbor bosons upon acting on states within a given manifold α thereby encoding only intra-manifold
couplings.

Since we are interested only in intra-manifold couplings, the only relevant terms for Eq. (S4) come from Eq. (S8)
and (S10) giving,

Ĥeff = P̂0[Ωµw

∑
i

P̂i−1(b̂
†
i + b̂i)P̂i+1 + t

∑
i

(Q̂i−1b
†
i b̂jQ̂j+1 + P̂i−1b

†
i b̂jP̂j+1 + h.c.)]P̂0, (S11)

where the projectors P̂0 =
∏

⟨ij⟩(1− Q̂iQ̂j) get rid of the Q̂i−1(b
†
i b̂j +h.c.)Q̂j+1 in T̂0 since it violates the occupation

constraint where no two bosons are allowed to be adjacent. The above equation is written in the α = 0 manifold of
states obeying the occupation constraint as follows,

Ĥeff = Ωµw

∑
i

P̂i−1(b̂
†
i + b̂i)P̂i+1 + t

∑
i

P̂i−1(b̂
†
i b̂i+1 + h.c.)P̂i+2. (S12)
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2. MAPPING TO INTERACTING DIMERS

In this section, the constrained model given by Eq. (2) in the main text is expressed by interacting dimers where
two sites are combined into one. The resulting Hamiltonian acting on the dimer states with the appropriate operators
is derived. Variational many-body ansatz inspired by the dimer mapping is proposed.

After dimerizing the lattice as shown in Fig. 1(b) in the main text, the configurations that represent the state of
a dimer are given by {|◦◦⟩ , |◦•⟩ , |•◦⟩}. In this way, the state c1 |◦◦⟩ + c2 |◦•⟩ + c3 |•◦⟩ represents the most general
dimer state. However, this construction does not respect the occupation constraint since it implicitly assumes that
dimers are independent of each other. This can be seen from the fact that the state of a given dimer does not depend
on the nearby dimers. To remedy this problem and impose the occupation constraint, creating a dimer at a site j
of the form |◦•⟩ is accompanied by attaching a fermion to the right bond (j, j + 1). Similarly, creating a dimer at
a site j of the form |•◦⟩ is accompanied by attaching a fermion to the left bond (j − 1, j) as depicted in Fig. (1) in
the main article. Such auxiliary fermions have been employed in other works as well [77–79]. This procedure encodes
empty, left, and right-dimer states which make up the dimer degree of freedom as |E⟩ , |R⟩ , |L⟩. Single-site and dimer
degrees of freedom are equivalent since the latter corresponds to distinguishing even- and odd-site boson occupations
in the former. This could be seen by considering the left-dimer as odd-site boson occupied states and the right-dimer
as even-site boson occupied states. By using the dimer degrees of freedom, we define the following operators,

d̂†L,j f̂
†
j−1,j = |•◦⟩j ⟨◦◦| ⊗ |1⟩j−1,j ⟨0|

d̂†R,j f̂
†
j,j+1 = |◦•⟩j ⟨◦◦| ⊗ |1⟩j,j+1 ⟨0| , (S13)

where d̂†L,j f̂
†
j−1,j creates a left-dimer at site j with a fermion between site j and j− 1 (|1⟩j,j−1) and d̂†R,j f̂

†
j,j+1 creates

a right-dimer at site j with a fermion between site j and j + 1 (|1⟩j,j+1). This can be seen in the following,

d̂†L,j f̂
†
j−1,j |E⟩ = d̂†L,j f̂

†
j−1,j |0⟩j−1,j ⊗ |◦◦⟩j ⊗ |0⟩j,j+1 = |•◦⟩j ⟨◦◦| ⊗ |1⟩j−1,j ⟨0| [|0⟩j−1,j ⊗ |◦◦⟩j ⊗ |0⟩j,j+1]

= |1⟩j−1,j ⊗ |•◦⟩j ⊗ |0⟩j,j+1 = |L⟩j , (S14)

d̂†R,j f̂
†
j,j+1 |E⟩ = d̂†R,j f̂

†
j,j+1 |0⟩j−1,j ⊗ |◦◦⟩j ⊗ |0⟩j,j+1 = |◦•⟩j ⟨◦◦| ⊗ |1⟩j,j+1 ⟨0| [|0⟩j−1,j ⊗ |◦◦⟩j ⊗ |0⟩j,j+1]

= |0⟩j−1,j ⊗ |◦•⟩j ⊗ |1⟩j,j+1 = |R⟩j , (S15)

where |L⟩ and |R⟩ are shown above in Eq. (S14) and (S15), respectively. The Pauli exclusion of auxiliary fermions
imposes occupation constraint. For example, a state of the form |· · ·RkLk+1 · · ·⟩ is discarded since |· · ·RkLk+1 · · ·⟩ =
d̂†R,kf̂

†
k,k+1d̂

†
L,k+1f

†
k,k+1 |· · ·EkEk+1 · · ·⟩, where f†

k,k+1f
†
k,k+1 violates Pauli exclusion principle. By using the operators

defined in Eq. (S13), we will encode the local- and non-local processes in Eq. (2) in the main article using the dimer
degree of freedom. The local fluctuation is provided by the Rabi Ωµw term and is expressed by the following,

Ωµw

∑
j

(d̂†L,j f̂
†
j−1,j + d̂†R,j f̂

†
j,j+1 + h.c.), (S16)

where the creation and annihilation of left/right dimer states are given. Specifically, the first term corresponds to

creation/annihilation processes on odd-numbered sites through the mapping d†L,j f̂
†
j−1,j → P̂i−1b̂

†
i P̂i+1 with i = 2j−1.

With this identification, the effect of the right projector P̂i+1 is a built-in property due to |•◦⟩ in |L⟩ and the
auxiliary fermion on the left link encodes the left projector P̂i−1. Analogously, the second term corresponds to
creation/annihilation processes on even-numbered sites through the mapping d̂†R,j f̂

†
j,j+1 → P̂i−1b̂

†
i P̂i+1 with i = 2j.

The non-local fluctuation is provided by the hopping t term and is expressed by the following,

t
∑
j

(d̂†L,j f̂
†
j−1,j d̂R,j f̂j,j+1 + h.c.) + t

∑
⟨j,k⟩

(d̂†R,j f̂
†
j,j+1d̂L,kf̂k,k−1 + h.c.), (S17)

where the first term corresponds to the flipping between |L⟩j and |R⟩j locally at dimer-site j. Since this happens
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FIG. S1. (a,b) Overlap of the |ΨED⟩ with the ansatz |Ψ⟩ with optimal variational parameters (u, v, w) is shown. A system
of size L = 20 with periodic boundary conditions is considered for the exact diagonalization. (c) DMRG simulation for the
expectation value of the density operator n̂i for a system size L = 121 with ϵ = −0.5 is shown. In contrast to Fig. 2(c) in the
main article, the disordered state with homogeneous density is obtained.

locally, it encodes intra-dimer hopping processes over even and odd sites in terms of single-site states. For example, let
us consider the case of dimer-site j = 2 which includes single-sites i = 3, 4. Therefore, the flipping of |R⟩2 to |L⟩2 gives
rise to boson hopping from i = 4 to i = 3. This could be seen by the explicit substitution of the single-site operators
into the dimer hopping expression. d̂†L,2f̂

†
1,2d̂R,2f̂2,3 = (P̂2b̂

†
3P̂4)(P̂3b̂4P̂5) = P̂2b̂

†
3b̂4P̂5, since operators residing on

different sites commute and b̂†3P̂3 = b̂†3, P̂4b̂4 = b̂4. The second term corresponds to the exchange between |L⟩j
and |R⟩k at nearest-neighbor dimer-sites ⟨j, k⟩. Since this involves two dimer-sites, it encodes inter-dimer hopping
processes over even and odd sites in terms of single-site states. For example, consider the exchange of |L⟩3 with

|R⟩2 which is expressed as d̂†R,2f̂
†
2,3d̂L,3f̂2,3 = (P̂3b̂

†
4P̂5)(P̂4b̂5P̂6) = P̂3b̂

†
4b5P̂6 since operators residing on different sites

commute and b̂†4P̂4 = b̂†4, P̂5b̂5 = b̂5. Therefore, both local and non-local processes in the single-site description are
generated with the dimer degree of freedom. Motivated by the dimer mapping we propose the following ansatz,

|Ψ⟩ = 1

N

N∏
j

(u+ vd̂†L,j f̂
†
j−1,j + wd̂†R,j f̂

†
j,j+1) |E · · ·E⟩ , (S18)

where |E · · ·E⟩ is the many-body state of empty dimers with no fermions on the links. N denotes the number of dimer
sites. Variational parameters are u, v, w and N corresponds to the normalization constant. The state |Ψ⟩ amounts
to superposing all many-body dimer configurations |Λ⟩ that obey the occupation constraint. To illustrate this, the
ansatz above is expanded as follows,

|Ψ⟩ = (u+ vd̂†L,1 + wd̂†R,1f̂
†
1,2)(u+ vd̂†L,2f

†
1,2 + wd̂†R,2f

†
2,3) · · · |E · · ·E⟩

= (u2 + uvd̂†L,2f
†
1,2 + uwd̂†R,2 + uvd̂†L,1 + v2d̂†L,1d

†
L,2f

†
1,2 + vwd†L,1d̂

†
R,2f

†
2,3 + uwd̂†R,1f̂

†
1,2

+(((((((((
vwd̂†R,1f̂

†
1,2d̂

†
L,2f

†
1,2 + w2d̂†R,1f̂

†
1,2d̂

†
R,2f

†
2,3)(u+ vd̂†L,3f

†
2,3 + wd̂†R,3f

†
3,4) · · · |E · · ·E⟩

= (uN + uN−1vd̂†L,1 + uN−1wd̂†R,1f̂
†
1,2 · · ·+ vN d̂†L,1d̂

†
L,2f

†
1,2 · · · d̂

†
L,Nf†

N−1,N + wN d̂†R,1f̂
†
1,2d̂

†
R,2f̂

†
2,3 · · · d̂

†
R,N ) |E · · ·E⟩

= uN |E · · ·E⟩+ uN−1v |LE · · ·E⟩+ uN−1w |RE · · ·E⟩+ · · ·+ vN |L · · ·L⟩+ wN |R · · ·R⟩

=
∑
Λ

uNΛ
EvN

Λ
LwNΛ

R |Λ⟩ (S19)

where terms that create different many-body dimer configurations |Λ⟩ are given inside the brackets. In this way, all
the |Λ⟩ configurations obeying the occupation constraint are generated. For example, the configuration that violates

the constraint is crossed out due to having f̂†
1,2f̂

†
1,2. The final expression is written in terms of |Λ⟩ as given in

Eq. (5) in the main article. To test the performance of the ansatz, we compute the optimal parameters (u, v, w) by
minimizing the variational energy ⟨Ψ|Ĥdim|Ψ⟩, where periodic boundary conditions applied. We then calculate the
overlap of the optimal ansatz with the exact ground state of Ĥdim obtained by exact diagonalization with periodic
boundary conditions. In the disordered regime (ϵ → 0), the overlap | ⟨Ψ|ΨED⟩ | ∼ 0.99 with v = w is achieved as
shown in Fig. S1(a). This implies that the superposition exhibits equal favoring of |L⟩ and |R⟩ in the many-body
configurations |Λ⟩. Motivated by this observation, we further find out that the optimal superposition can be written as
|Ψdis⟩ =

⊗
i |D⟩i with |D⟩i = [(|E⟩i /

√
2)−(|L⟩i+ |R⟩i)/2], where i denotes a single dimer-site. Numerical calculations
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of the overlaps show that | ⟨Ψdis|ΨED⟩ | ∼ 0.99 and | ⟨Ψdis|Ψ⟩ | ∼ 0.99 with v = w. As the system enters the ordered
regime, equal favoring of |L⟩ and |R⟩ as given in |D⟩ is no longer the case. This is reflected in the ansatz with
v ̸= w. Large overlaps in the ordered regime ϵ ∈ [0.5, 1.0] are obtained as shown in Fig. S1(a) (the lowest being
| ⟨Ψ|ΨED⟩ | ∼ 0.88). As mentioned in the main article, when t < 0 long-range order is not restored and the disordered
state with homogeneous density [Fig. S1(c)] is promoted. This can be seen from Fig. S1(b) where | ⟨Ψ|ΨED⟩ | ∼ 0.99
with v = w.
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