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SPHERICALLY SYMMETRIC EINSTEIN-SCALAR-FIELD

EQUATIONS FOR SLOWLY PARTICLE-LIKE DECAYING

NULL INFINITY

CHUXIAO LIU1,4 AND XIAO ZHANG2,3,4

Abstract. We show that the spherically symmetric Einstein-scalar-
field equations for small slowly particle-like decaying initial data at null
infinity have unique global solutions.

1. Introduction

Spherically symmetric spacetime metrics can be written as

ds2 = −gqdu2 − 2gdudr + r2(dθ2 + s sin2 θdψ2) (1.1)

in Bondi coordinates, see, e.g. [3, 8, 9], where g(u, r) and q(u, r) are C2

nonnegative functions over (0,∞). The null frames are

~n =
1√
gq
D, ~l =

1
√

gq−1

∂

∂r
, e1 =

1

r

∂

∂θ
, e2 =

1

r sin θ

∂

∂ψ
,

where

D =
∂

∂u
− q

2

∂

∂r

is the derivative along the incoming light rays.

Throughout the paper, we denote f̄(r) the integral average of integrable
function f(r) over [0, r]

f̄(r) =
1

r

∫ r

0
f(r′)dr′.

For a real spherically symmetric C2 scalar field φ(u, r) on (0,∞)× (0,∞),
the Einstein-scalar field equations are

Rµν = 8π∂µφ∂νφ, �φ = 0. (1.2)

Under the following regularity conditions at r = 0 and boundary condition
at r = ∞,
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Regularity Condition I: For each u,

lim
r→0

(

−r ∂g
∂u

+ r
∂q

∂u
+
r2

2g

∂g

∂r
− 8πr2

(∂φ

∂u
− q

2

∂φ

∂r

)2
)

= 0. (1.3)

Regularity Condition II: For each u,

lim
r→0

(

rφ
)

= lim
r→0

(

rq
)

= 0. (1.4)

Boundary Condition: For each u,

lim
r→∞

g = lim
r→∞

q = 1, (1.5)

the Einstein-scalar field equations (1.2) are equivalent to the following sys-
tems, see, e.g. [9]































g = exp

{

−4π

∫ ∞

r

(h− h̄)2

r′
dr′

}

,

q = ḡ =
1

r

∫ r

0
gdr′,

Dh =
g − ḡ

2r
(h− h̄).

(1.6)

The Bondi massMB(u), the final Bondi massMB1, the Bondi-Christodoulou
mass M(u) and the final Bondi-Christodoulou mass M1 are given as follows
[1, 3, 8, 9]

MB(u) = lim
r→∞

r

2

(

1− ḡ
)

, MB1 = lim
u→∞

MB(u),

M(u) = lim
r→∞

r

2

(

1− ḡ

g

)

, M1 = lim
u→∞

M(u).

In [3, 4, 5], Christodoulou proved the global existence and uniqueness of
classical solutions for spherically symmetric Einstein-scalar-field equations
with small initial data and the generalized solutions in the large for particle-
like decaying null infinity. He also studied the asymptotic behaviour of the
generalized solutions and proved the formation of black holes of mass M1

surrounded by vacuum when the final Bondi-Christodoulou mass M1 6= 0
[6].

Under the double null coordinates

ds2 = −Ω2dudv + r2
(

dθ2 + sin2 θdψ2
)

,

Christodoulou solved the characteristic initial value problem for small bounded
variation norm and showed the global existence and uniqueness of clas-
sical solution in spherically symmetric case for particle-like decaying null
infinity[7]. These results was extended to more general case by Luk-Oh-
Yang [10, 11], which are summarized as follows.
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Theorem 1.1. Let Cu0
be the initial curve with v ≥ u0 which satisfies

∂vr
∣

∣

∣

Cu0

=
1

2
, r(u0, u0) = m(u0, u0) = 0.

Suppose the data on the initial curve is given by

2∂v(rφ)(u0, v) = Φ(v),

where Φ : [u0,∞) → R is a smooth function which satisfies
∫ v

u

∣

∣Φ(u0, v
′)
∣

∣dv′ ≤ ǫ
(

v − u
)1−γ

, |Φ(u0, v)| +
∣

∣

∣

∂Φ

∂v
(u0, v)

∣

∣

∣
≤ ǫ

for any v ≥ u ≥ u0, where γ > 0 is certain positive constant. Then there
exists a unique global solution to the spherically symmetric Einstein-scalar
field equations. And the resulting spacetime is future causally geodesically
complete. Moreover, the solution satisfies the following uniform priori esti-
mates,

∂vr >
1

3
, −1

6
> ∂ur > −2

3
,

2m

r
<

1

2

and

|φ| ≤ Cǫmin {1, r−γ},
|∂v(rφ)| ≤ C

(

|Φ(v)|+ ǫmin {1, r−γ}
)

,

|∂u(rφ)| ≤ Cǫ,

|∂2v (rφ)|+ |∂2vr|+ |∂2u(rφ)|+ |∂2ur| ≤ Cǫ,

where C > 0 is a constant depending only on γ. Furthermore, if Φ satisfies
the strong asymptotic flatness condition

sup
v∈[u0,∞)

{

(1 + v)ǫ|Φ(v)|+ (1 + v)ǫ+1|∂vΦ(v)|
}

≤ A0 <∞

for some A0 > 0 and ǫ > 1. Then the following estimates

|φ| ≤ A1min
{

u−w, r−1u−(w−1)
}

,

|∂v(rφ)| ≤ A1min
{

u−w, r−w
}

,

|∂u(rφ)| ≤ A1u
−w,

|∂2v (rφ)| ≤ A1min
{

u−(w+1), r−(w+1)
}

,

|∂2u(rφ)| ≤ A1u
−(w+1),

|∂2vr| ≤ A1min
{

u−3, r−3
}

,

|∂2ur| ≤ A1u
−3,

hold for some A1 > 0 and w = min {ǫ, 3}.

In [8], Liu and Zhang proved the global existence and uniqueness for
classical solutions with small initial data, and for generalized solutions with
large initial data for wave-like decaying null infinity.
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Theorem 1.2. Let ǫ ∈ (0, 2]. Given initial data h̆(r) ∈ C1[0,∞). Denote

d0 = inf
b>0

sup
r≥0

{

(

1 +
r

b

)1+ǫ ∣
∣

∣
h̆(r)

∣

∣

∣
+

(

1 +
r

b

)1+ǫ

∣

∣

∣

∣

∣

b
∂h̆

∂r
(r)

∣

∣

∣

∣

∣

}

.

Then there exists δ > 0 such that if d0 < δ, there exists a unique global
classical solution

h(u, r) ∈ C1
(

[0,∞)× [0,∞)
)

of (1.6) which satisfies the initial condition h(0, r) = h̆(r) and the decay
property

|h(u, r)| ≤ C
(

1 + u
2 + r

)1+ǫ
,

∣

∣

∣

∂h

∂r
(u, r)

∣

∣

∣
≤ C

(

1 + u
2 + r

)1+ǫ

for some constant C depending on ǫ only. Moreover, the corresponding
spacetime is future causally geodesically complete with vanishing final Bondi
mass.

Theorem 1.3. For any initial data h̆(r) ∈ C1[0,∞) which satisfies

h̆(r) = O
( 1

r1+ǫ

)

,
∂h̆

∂r
(r) = O

( 1

r1+ǫ

)

as r → ∞ for some ǫ ∈ (0, 2], there exists at least one global generalized
solution which has the same data as a classical solution coincides with it in
the domain of existence of the latter.

We refer to [2, 12] for the spherically symmetric Einstein-scalar field equa-
tions with nontrivial potential for particle-like decaying null infinity, and to
[9] for wave-like decaying null infinity.

In this paper, we prove the global existence and uniqueness for classical
solutions for small slowly particle-like decaying null infinity.

Theorem 1.4. Let ǫ ∈ (0, 1). Given initial data h̆(r) ∈ C1[0,∞). Denote

d0 = inf
b>0

sup
r≥0

{

(

1 +
r

b

)ǫ ∣
∣

∣
h̆(r)

∣

∣

∣
+
(

1 +
r

b

)1+ǫ

∣

∣

∣

∣

∣

b
∂h̆

∂r
(r)

∣

∣

∣

∣

∣

}

.

Then there exists δ > 0 such that if d0 < δ, there exists a unique global
classical solution

h(u, r) ∈ C1
(

[0,∞)× [0,∞)
)

of (1.6) which satisfies the initial condition h(0, r) = h̆(r) and the decay
property

|h(u, r)| ≤ C

(1 + u+ r)ǫ
,

∣

∣

∣

∣

∂h

∂r
(u, r)

∣

∣

∣

∣

≤ C

(1 + u+ r)1+ǫ
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for some constant C depending on ǫ only. Moreover, the corresponding
spacetime is future causally geodesically complete. If we further assume ǫ ∈
(12 , 1), then the final Bondi mass vanishes.

The paper is organized as follow: In Section 2, we derive the main esti-
mates. In Section 3, we prove the main theorem.

2. Main lemma

In this section, we derive the estimates on the iteration solution as well as
its partial derivative with respect to r. Denote X the space of C1 functions
with the finite norm

‖h‖X = sup
u≥0,r≥0

{

(1 + u+ r)ǫ|h(u, r)| + (1 + u+ r)1+ǫ
∣

∣

∣

∂h

∂r
(u, r)

∣

∣

∣

}

<∞.

As in [3, 8], for hn ∈ X, let hn+1 be the solution of the equation

Dnhn+1 −
gn − ḡn

2r
hn+1 = −gn − ḡn

2r
h̄n (2.1)

with the initial data

hn+1(0, r) = h(0, r),

where gn and Dn are the metric given by (1.6) and the derivative along the
incoming light rays corresponding to hn.

Lemma 2.1. Given the initial data h(0, r) and the nth-iteration solution
hn(u, r) which are C1 and satisfy

‖h(0, r)‖X = d, ‖hn(u, r)‖X = x.

Then the solution of (2.1) satisfies

‖hn+1‖X ≤ C exp (Cx2)(d+ x3)(2 + x2) (2.2)

for some constant C > 0.

Proof: By the assumption, we have

|h̄n(u, r)| ≤
1

r

∫ r

0
|hn(u, s)|ds

≤ x

r

∫ r

0

ds

(1 + u+ s)ǫ

=
x

(1− ǫ)r

[

(1 + u+ r)1−ǫ − (1 + u)1−ǫ
]

≤ x

(1− ǫ)r

(1 + u+ r)− (1 + u)1−ǫ(1 + u+ r)ǫ

(1 + u+ r)ǫ

≤ x

(1− ǫ)(1 + u+ r)ǫ
.

(2.3)

Using it, we estimate |(hn − h̄n)(u, r)| in the following.
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(1) For 0 ≤ r ≤ 1 + u, using (2.11) in [8], we obtain

|(hn − h̄n)(u, r)| ≤
5xr(1 + u)1−ǫ

ǫ(1− ǫ)(1 + u+ r)2
.

(2) For r ≥ 1 + u, we have

|(hn − h̄n)(u, r)| ≤ |hn(u, r)|+ |h̄n(u, r)|

≤ x

(1 + u+ r)ǫ
+

x

1− ǫ

1

(1 + u+ r)ǫ

≤ 2x

1− ǫ

(1 + u+ r)

(1 + u+ r)1+ǫ

≤ 4xr

(1− ǫ) (1 + u+ r)1+ǫ
.

Let c = 5
ǫ(1−ǫ) . Then, for r ≥ 0,

|(hn − h̄n)(u, r)| ≤















cxr (1 + u)1−ǫ

(1 + u+ r)2
, 0 ≤ r ≤ 1 + u,

cxr

(1 + u+ r)1+ǫ
, r ≥ 1 + u.

(2.4)

Thus

|(hn − h̄n)(u, r)| ≤
cxr

(1 + u+ r)1+ǫ
. (2.5)

Let k = exp
(

−2πc2x2

ǫ

)

, 0 < k < 1. Since g(u, r) is monotonically increas-

ing with respect to r, we obtain

ḡn(u, r) ≥ gn(u, 0)

≥ exp

[

−4π

∫ ∞

0

(hn − h̄n)
2

s
ds

]

≥ exp

[

−4πc2x2
∫ ∞

0

ds

(1 + u+ s)1+2ǫ

]

≥ exp

[

− 2πc2x2

ǫ(1 + u)2ǫ

]

≥ k.

(2.6)

Claim: Let c1 =
4πc2

ǫ
. We have

(gn − ḡn)(u, r) ≤



















c1x
2r2

(1 + u)2ǫ−1 (1 + u+ r)3
, 0 ≤ r ≤ 1 + u,

c1x
2r

(1 + u)2ǫ (1 + u+ r)
, r ≥ 1 + u.

(2.7)
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Indeed, for 0 ≤ r ≤ 1 + u, (2.7) is a direct consequence of (2.5) and (2.14)
in [8]. For r ≥ 1 + u, by using (2.5) and

∂gn

∂r
=

4π(hn − h̄n)
2gn

r
,

we obtain

(gn − ḡn)(u, r) =
1

r

∫ r

0

∫ r

r′

∂gn

∂s
dsdr′

≤ 2πc2x2

ǫr

∫ r

0

[

1

(1 + u+ r′)2ǫ
− 1

(1 + u+ r)2ǫ

]

dr′

≤ 2πc2x2

ǫr

[

r

(1 + u)2ǫ
− r

(1 + u+ r)2ǫ

]

=
2πc2x2

ǫ

(1 + u+ r)2 − (1 + u)2ǫ (1 + u+ r)2−2ǫ

(1 + u)2ǫ (1 + u+ r)2

≤ c1x
2r

(1 + u)2ǫ (1 + u+ r)
.

Thus, the claim follows and it also implies that

(gn − ḡn)(u, r) ≤
c1x

2r

(1 + u)2ǫ+1 . (2.8)

Therefore
∣

∣

∣

∣

−gn − ḡn

2r
h̄n

∣

∣

∣

∣

≤ 1

2r

c1x
2r

(1 + u)2ǫ+1

x

1− ǫ

1

(1 + u+ r)ǫ

≤ c1x
3

2(1 − ǫ) (1 + u)2ǫ+1 (1 + u+ r)ǫ
.

For the characteristic

r(u) = χn(u; r0),

we use (2.6) and, e.g. (3.26) in [12], to obtain

1 + u+ r(u) ≥ k

2
(1 + u1 + r1),

1 + r0 ≥
k

2
(1 + r1 + u1).

They yield

|h(0, r0)| ≤
d

(1 + r)ǫ
≤ 2ǫd

kǫ(1 + r1)ǫ
, (2.9)

∫ u1

0

[

gn − ḡn

2r

]

χn

du ≤c1x
2

2

∫ ∞

0

du

(1 + u)2ǫ+1
≤ c1x

2

4ǫ
. (2.10)



8 C LIU AND X ZHANG

Let c2 = c1
22−ǫkǫǫ(1−ǫ)

. Integrating (2.1) along the characteristic, we obtain

(1+u1 + r1)
ǫ |hn+1(u1, r1)|

≤|h(0, r0)| exp
{

∫ u1

0

[

gn − ḡn

2r

]

χn

du

}

+

∫ u1

0
exp

{

∫ u1

u

[

gn − ḡn

2r

]

χn

du′

}

∣

∣

∣

∣

−gn − ḡn

2r
h̄n

∣

∣

∣

∣

χn

du

≤c2 exp
(

c2x
2
) (

d+ c2x
3
)

. (2.11)

Next we estimate ∂hn+1

∂r
. Using (9.16) in [3] and (2.23) in [8], we obtain

Dn
∂hn+1

∂r
− gn − ḡn

r

∂hn+1

∂r
= f1, (2.12)

where

f1 =
1

2

∂2ḡn

∂r2
(hn+1 − h̄n)−

gn − ḡn

2r

∂h̄n

∂r
,

∂2ḡn

∂r2
=− 2(gn − ḡn)

r2
+

4π(hn − h̄n)
2

r2
gn.

Using (2.4) and (2.7), for 0 ≤ r ≤ 1 + u and r ≥ 1 + u, we obtain

∣

∣

∣

∣

∂2ḡn

∂r2

∣

∣

∣

∣

≤



















2

r2
c1x

2r2

(1 + u)2ǫ−1 (1 + u+ r)3
+

4π

r2
c2x2r2 (1 + u)2−2ǫ

(1 + u+ r)4

2

r2
c1x

2r

(1 + u)2ǫ (1 + u+ r)
+

4π

r2
c2x2r2

(1 + u+ r)2+2ǫ

respectively. Therefore
∣

∣

∣

∣

∂2ḡn

∂r2

∣

∣

∣

∣

≤ (2c1 + 4πc2)x2

(1 + u)2ǫ+1 (1 + u+ r)
. (2.13)

Let c3 = c2(2πc2+c1)
1−ǫ

. Using (2.3), (2.11), (2.5) and (2.8), we obtain

1

2

∣

∣

∣

∣

∂2ḡn

∂r2

∣

∣

∣

∣

· |hn+1 − h̄n| ≤
c3x

2(d+ x+ x3) exp (c2x
2)

(1 + u)2ǫ+1 (1 + u+ r)1+ǫ
,

∣

∣

∣

∣

gn − ḡn

2r

∂h̄n

∂r

∣

∣

∣

∣

=

∣

∣

∣

∣

(gn − ḡn)(hn − h̄n)

2r2

∣

∣

∣

∣

≤ 1

2r2
c1x

2r

(1 + u)2ǫ+1

cxr

(1 + u+ r)1+ǫ

≤ cc1x
3

2 (1 + u)2ǫ+1 (1 + u+ r)1+ǫ
.
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Let c4 = c3 +
cc1
2 . We obtain

|f1| ≤
c4x

2(d+ x+ x3) exp (c2x
2)

(1 + u)2ǫ+1 (1 + u+ r)1+ǫ
. (2.14)

Similar to (2.9), we have
∣

∣

∣

∣

∂h

∂r
(0, r0)

∣

∣

∣

∣

≤ 21+ǫd

k1+ǫ (1 + u+ r)1+ǫ
. (2.15)

Let c5 = max
{

2c2,
2ǫc4
ǫk1+ǫ

}

. Using (2.10), (2.14) and (2.15), we obtain

∣

∣

∣

∣

∂hn+1

∂r
(u1, r1)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂h

∂r
(0, r0)

∣

∣

∣

∣

exp

{

∫ u1

0

[

gn − ḡn

r

]

χn

du

}

+

∫ u1

0
exp

{

∫ u1

u

[

gn − ḡn

r

]

χn

du′

}

[|f1|]χn
du

≤c5(d+ x3)(1 + x2) exp (c5x
2)

(1 + u1 + r1)1+ǫ
. (2.16)

Let C = 2max {c5, c22}. Using (2.11), we have

‖hn+1‖X ≤ C exp (Cx2)(d+ x3)(2 + x2).

Thus proof of the lemma is complete. Q.E.D.

3. Proof of the main theorem

In this section we prove Theorem 1.4. Denote {hn} the sequence of the
iteration solutions of (2.1). We first show that {hn} converges in function
space

Y =
{

h ∈ C0[0,∞)× [0,∞)
∣

∣

∣
‖h‖Y <∞

}

,

where

‖h‖Y = sup
u≥0,r≥0

{

(1 + u+ r)ǫ|h(u, r)|
}

.

Lemma 3.1. Assume for some n > 0 such that

‖hn−1‖X ≤ x, ‖hn‖X ≤ x

for some constant x > 0. Then there exists F (x) ∈ (0, 12 ) such that

‖hn+1 − hn‖Y ≤ F (x)‖hn − hn−1‖Y .

Proof: From (9.27) in [3], the following equation holds

Dn(hn+1 − hn)−
gn − ḡn

2r
(hn+1 − hn) = f2, (3.1)
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where

f2 =
ḡn − ḡn−1

2

∂hn

∂r
− gn − ḡn

2r
(h̄n − h̄n−1)

+
gn − ḡn − gn−1 + ḡn−1

2r
(hn − h̄n−1).

Similar to (2.3), we have

∣

∣h̄n − h̄n−1

∣

∣ ≤ ‖hn − hn−1‖Y
(1− ǫ) (1 + u+ r)ǫ

,

then
∣

∣hn − hn−1 − h̄n + h̄n−1

∣

∣ ≤ 2‖hn − hn−1‖Y
(1− ǫ) (1 + u+ r)ǫ

. (3.2)

Similar to (2.4), we have

∣

∣hn + hn−1 − h̄n − h̄n−1

∣

∣ ≤



















2cxr (1 + u)1−ǫ

(1 + u+ r)2
, 0 ≤ r ≤ 1 + u

2cxr

(1 + u+ r)1+ǫ
, r ≥ 1 + u.

(3.3)

Then (3.2) and (3.3) imply that
∣

∣(hn−h̄n)2 − (hn−1 − h̄n−1)
2
∣

∣

≤



















4cxr (1 + u)1−ǫ ‖hn − hn−1‖Y
(1− ǫ) (1 + u+ r)2+ǫ

, 0 ≤ r ≤ 1 + u

4cxr‖hn − hn−1‖Y
(1− ǫ) (1 + u+ r)1+2ǫ , r ≥ 1 + u.

(3.4)

Thus,

|gn − gn−1| ≤ 4π

∫ ∞

r

∣

∣

∣
(hn − h̄n)

2 − (hn−1 − h̄n−1)
2
∣

∣

∣

ds

s

≤ 16πcx‖hn − hn−1‖Y
ǫ(1− ǫ) (1 + u+ r)2ǫ

. (3.5)

Therefore

|ḡn − ḡn−1| ≤
1

r

∫ r

0
|gn − gn−1|dr ≤

16πcx‖hn − hn−1‖Y
ǫ(1− ǫ)(1 + u)2ǫ

. (3.6)

Let c6 = 8πcc5
ǫ(1−ǫ) . Using (3.6) and (2.16), we have

∣

∣

∣

∣

ḡn − ḡn−1

2

∂hn

∂r

∣

∣

∣

∣

≤8πcx‖hn − hn−1‖Y
ǫ(1− ǫ)(1 + u)2ǫ

× c5 exp (c5x
2)(d+ x3)(1 + x2)

(1 + u1 + r1)1+ǫ

≤c6 exp (c5x
2)(d+ x3)(x+ x3)‖hn − hn−1‖Y
(1 + u)2ǫ+1 (1 + u+ r)ǫ

. (3.7)
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Using (2.3) and (2.8), we have

∣

∣

∣

gn − ḡn

2r
(h̄n − h̄n−1)

∣

∣

∣
≤ 1

2r

c1x
2r

(1 + u)2ǫ+1

‖hn − hn−1‖Y
(1− ǫ) (1 + u+ r)ǫ

≤ c1x
2‖hn − hn−1‖Y

(1− ǫ) (1 + u)2ǫ+1 (1 + u+ r)ǫ
. (3.8)

Let c7 = 16π2c3

ǫ2(1−ǫ)
. Using (2.5), (3.4) and (3.5), we have

1

2r

∣

∣

∣
gn−gn−1 − (ḡn − ḡn−1)

∣

∣

∣

≤ 1

2r2

∫ r

0

∫ r

r′

∣

∣

∣

∣

∂(gn − gn−1)

∂s

∣

∣

∣

∣

dsdr′

≤2π

r2

∫ r

0

∫ r

r′
|gn|

∣

∣(hn − h̄n)
2 − (hn−1 − h̄n−1)

2
∣

∣

ds

s
dr′

+
2π

r2

∫ r

0

∫ r

r′
|gn − gn−1||hn−1 − h̄n−1|2

ds

s
dr′

≤32π2c3(x+ x3)‖hn − hn−1‖Y
ǫ(1− ǫ)r2

∫ r

0

∫ r

r′

dsdr′

(1 + u+ s)1+2ǫ

≤c7(x+ x3)‖hn − hn−1‖Y
r2

∫ r

0

[

1

(1 + u)2ǫ
− 1

(1 + u+ r)2ǫ

]

dr′

≤2c7(x+ x3)‖hn − hn−1‖Y
(1 + u)2ǫ+1 .

Thus, using (2.3) and (2.11), we obtain

1

2r

∣

∣

∣
gn−gn−1 − (ḡn − ḡn−1)

∣

∣

∣

∣

∣hn − h̄n−1

∣

∣

≤2 exp (c2x
2)c22c7(d+ x3)(x+ x3)

(1 + u)1+2ǫ (1 + u+ r)ǫ
.

(3.9)

Let c8 = c6 +
c1
1−ǫ

+ 2c22c7. Using (3.7), (3.8) and (3.9), we obtain

|f2| ≤
c8 exp (c8x

2)(d+ x+ x3)(x+ x3)‖hn − hn−1‖Y
(1 + u)2ǫ+1 (1 + u+ r)ǫ

. (3.10)

Integrating (3.1) along the characteristic, and using (2.10), (3.10), we have

(1 + u1 + r1)
ǫ
∣

∣(hn+1 − hn)(u1, r1)
∣

∣ ≤ F (x)‖hn − hn−1‖Y ,
where

F (x) =
2ǫc8 exp (2c8x

2)(d+ x+ x3)(x+ x3)

2ǫkǫ
.

Obviously,

F (0) = 0, F ′(x) ≥ 0.
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Thus F (x) is monotonically increasing. Therefore there exists x1 > 0 such
that, for any x ∈ (0, x1),

0 < F (x) <
1

2
.

This gives proof of the lemma. Q.E.D.

Next, we show that the sequences {hn} and {∂hn

∂r
} are uniformly bounded

and equicontinuous.

Lemma 3.2. There exists x̃ such that for any x ∈ (0, x̃), the sequence {hn}
are uniformly bounded by x and converges in the space Y if

Φ(x) =
x exp

(

−Cx2
)

C(2 + x2)
− x3 ≥ d.

Moreover, {hn} and {∂hn

∂r
} are uniformly bounded and equicontinous.

Proof: By Lemma 2.1, we know that

‖hn+1‖X ≤ C exp (Cx2)(d+ x3)(2 + x2).

Denote

Φ(x) =
x exp

(

−Cx2
)

C(2 + x2)
− x3.

Then we have

Φ(0) = 0, Φ′(0) > 0.

Thus, there exists x0 such that Φ(x) is monotonically increasing on [0, x0]
and attains its maximum at the point x0. Let

x̃ = min {x0, x1, 1},
where x1 is given in Lemma 3.1. Then for any x ∈ (0, x̃),

Φ(x) ≥ d, ‖hn‖X ≤ x =⇒ ‖hn+1‖X ≤ x.

By induction, ‖hn‖ ≤ x for all n ∈ N, i.e., {hn} is uniformly bounded by x.
By the proof of Lemma 2.3 in [8], {∂hn

∂r
} and {∂hn

∂u
} are uniformly bounded.

Thus, {hn} is equicontinuous.

By Lemma 3.1, we obtain that for any x ∈ (0, x̃),

‖hn+1 − hn‖Y <
1

2
‖hn − hn−1‖Y .

This implies that {hn} converges in space Y .

For any u ≥ 0, 0 ≤ r1 < r2, let χn(u; r1) and χn(u; r2) be two character-

istics through u-slice at r = r1 and r = r2 respectively. Let k′ = exp
(

c1x
2

4ǫ

)

.
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By (4.29) of [4] and (2.8), we obtain
∣

∣

∣

∣

χn(u; r2)− χn(u; r1)

r2 − r1

∣

∣

∣

∣

≤ sup
s∈[r1,r2]

exp

{

1

2

∫ u1

u

[

∂ḡ

∂r

]

χn(u′;s)

du′

}

≤ k′.

(3.11)

For any differentiable function f , denote

B(f)(u) = f(u, χn(u; r1))− f(u, χn(u; r2)).

We have

|B(f)(u)| ≤ sup

∣

∣

∣

∣

∂f

∂r

∣

∣

∣

∣

k′(r2 − r1).

Now we use the arguments for proving Lemma 2.3 in [8] to prove that {∂hn

∂r
}

is equicontinuous. Let

ψ(u) =
∂hn+1

∂r
(u, χn(u; r1))−

∂hn+1

∂r
(u, χn(u; r2)). (3.12)

Differentiate (3.12), we have

ψ′(u)− (gn − ḡn)(u, χn(u; r1))

χn(u; r1)
ψ(u) =

4
∑

i=1

Ai, (3.13)

where

A1 =
∂hn+1

∂r
(u, χn(u; r2))B

(gn − ḡn

r

)

(u),

A2 =
1

2
B
(∂2ḡn

∂r2
(hn+1 − h̄n+1)

)

(u),

A3 =
1

2
B
(∂2ḡn

∂r2
(h̄n+1 − h̄n)

)

(u),

A4 = −1

2
B
(∂ḡn

∂r

hn − h̄n

r

)

(u).

From (2.13), we have

|A1| ≤
∣

∣

∣

∣

∂hn+1

∂r

∣

∣

∣

∣

·
∣

∣

∣

∣

∂2ḡn

∂r2

∣

∣

∣

∣

k′(r2 − r1)

≤ k′(r2 − r1)
x

(1 + u)1+ǫ

(2c1 + 4πc2)x2

(1 + u)2ǫ+1 (1 + u+ r)

≤ k′(2c1 + 4πc2)x3

(1 + u)3+3ǫ (r2 − r1).

(3.14)

From (2.42) in [8], we know

∂3ḡn

∂r3
=
6(gn − ḡn)

r3
− 16π(hn − h̄n)

2gn

r3

+
8π(hn − h̄n)gn

r2
∂(hn − h̄n)

∂r
+

16π2(hn − h̄n)
4gn

r3
.
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Using (2.4) and (2.8), we obtain

∣

∣

∣

∣

∂3ḡn

∂r3

∣

∣

∣

∣

≤



















(6c1 + 32πc2)x2 + 16π2c4x4

r (1 + u)2ǫ+1 , 0 ≤ r ≤ 1 + u,

(6c1 + 32πc2)x2 + 16π2c4x4

(1 + u)2ǫ+2 , r ≥ 1 + u,

(3.15)

Let c9 = 10cc1 + 40πc3 + 16π2c5. Then (2.4), (3.15) imply that

|A2| ≤
k′c9(x

3 + x5)

(1 + u)3ǫ+2 (r2 − r1).

By Lemma 3.1, we know

hn+1 − hn → 0

uniformly. Then the argument for proving Lemma 2.3 in [8] gives

h̄n+1 − h̄n → 0.

By (2.13), we have
∣

∣

∣

∣

(1 + u)2ǫ+1 ∂
2ḡn

∂r2

∣

∣

∣

∣

≤ (2c1 + 4πc2)x2.

Thus,

(1 + u)2ǫ+1∂
2ḡn

∂r2
(h̄n+1 − h̄n) → 0

uniformly. Therefore,

(1 + u)2ǫ+1 ∂
2ḡn

∂r2
(h̄n+1 − h̄n)

is equicontinuous. Hence for η > 0, there exists t > 0 such that

|χn(u; r2)− χn(u; r1)| ≤ t =⇒ |A3| ≤
2ǫη

3k′2 (1 + u)2ǫ+1 .

Taking s1 =
t
k′
, we have

r2 − r1 ≤ s1 =⇒ |χn(u; r2)− χn(u; r1)| ≤ t

=⇒ |A3| ≤
2ǫη

3k′2 (1 + u)2ǫ+1 .

Similarly,

|A4| ≤
k′(3cc1 + 2πc4)x3

(1 + u)3+3ǫ (r2 − r1).

Taking

s2 =
2ǫη

3k′3[(2c1 + 4πc2 + c9 + 3cc1 + 2πc4)x3 + c9x5]
,
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we have

r2 − r1 ≤ s2 =⇒ |A1|+ |A2|+ |A4| ≤
2ǫη

3k′2 (1 + u)2ǫ+1 .

By (2.8), we have

exp
(

∫ u1

0

(gn − ḡn)(u, χn(u; r1))

χn(u; r1)
du

)

≤ k′2.

By Lemma 2.3 in [8], there exists s3 > 0 such that

r2 − r1 ≤ s3 =⇒
∣

∣

∣

∣

∂h

∂r
(0, χn(0; r1))−

∂h

∂r
(0, χn(0; r2))

∣

∣

∣

∣

≤ η

3k′2
.

Therefore, integrating (3.13), we obtain

ψ(u1) =ψ(0) exp
(

∫ u1

0

(gn − ḡn)(u, χn(u; r1))

χn(u; r1)
du

)

+

∫ u1

0

[

exp
(

∫ u1

u

(gn − ḡn)(u, χn(u; r1))

χn(u; r1)
du

)]

4
∑

i=1

Aidu.

Let s = min {s1, s2, s3}. Then

r2 − r1 ≤ s =⇒ |ψ(u1)| ≤ η ⇐⇒
∣

∣

∣

∣

∂hn+1

∂r
(u1, r1)−

∂hn+1

∂r
(u1, r2)

∣

∣

∣

∣

≤ η.

Thus, {∂hn+1

∂r
} is equicontinuous with respect to r.

The equicontinuous of {∂hn+1

∂r
} with respect to u can be proved by the

equiboundedness of Dn
∂hn+1

∂r
. Thus proof of the lemma is complete. Q.E.D.

Proof of Theorem 1.4. Denote

δ = max
[0,x̃]

{Φ(x)}.

For d0 ≤ δ, we can find x such that d0 ≤ Φ(x). This implies that Lemma

2.1, Lemma 3.1 and Lemma 3.2 hold. Given initial data h̆(r) with d0 ≤ δ,
then there exists a > 0 such that

d̂0 = sup
r≥0

{

(

1 +
r

a

)ǫ ∣
∣

∣
h̆(r)

∣

∣

∣
+

(

1 +
r

a

)1+ǫ

∣

∣

∣

∣

∣

a
∂h̆

∂r
(r)

∣

∣

∣

∣

∣

}

< δ.

Consider the new initial data

ĥ(0, r) = h̆(ar).

By using the same argument as these in [3, 8], there exists a unique global

classical solution ĥ(u, r) with slowly particle-like decaying null infinity sat-

isfying the initial data ĥ(0, r). By scaling group invariance (2.1) [3], we find
that

h(u, r) = ĥ
(u

a
,
r

a

)
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is a unique global classical solution of (2.1) satisfying the initial data h̆(r).
Moreover h satisfies

|h(u, r)| ≤ C

(1 + u+ r)ǫ
,

∣

∣

∣

∣

∂h

∂r
(u, r)

∣

∣

∣

∣

≤ C

(1 + u+ r)1+ǫ
.

Now (2.4) and (2.6) imply that

k ≤ g, ḡ ≤ 1

By Lemma 2.1, h, h̄, g, ḡ and their partial derivatives are all uniformly
bounded. Thus, using the same argument as [8], we can show that the
corresponding spacetime is future casually geodecsically complete.

Finally, using the same argument as [8], we have

1− g(u, r) ≤ 4π

∫ ∞

r

(h− h̄)2

r′
dr′

≤ 4πc2x2
∫ ∞

r

r′

(1 + u+ r′)2+2ǫ
dr′

≤ 2πc2x2

ǫ(1 + u+ r)2ǫ
.

Therefore

r

2

(

1− g
)

≤ πc2x2

ǫ

r

(1 + u+ r)2ǫ
.

We obtain

1

2
< ǫ < 1 =⇒ lim

r→∞

r

2

(

1− g
)

= 0.

Hence the Bondi-Christodoulou mass is equivalent to Bondi mass

M(u) =MB(u).

From [3], we have

M(u) = 2π

∫ ∞

0

ḡ

g
(h− h̄)2dr

≤ 2πc2x2

2ǫ− 1

1

(1 + u)2ǫ−1
.

Therefore,

1

2
< ǫ < 1 =⇒M1 = lim

u→∞
M(u) = 0.

Thus proof of the theorem is complete. Q.E.D.
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