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This study employs extensive three-dimensional direct numerical simulations (DNS) to investigate the hemodynamics
around a bileaflet mechanical heart valve. In particular, this study focuses on assessing whether non-Newtonian rhe-
ological behaviors of blood, such as shear-thinning and yield stress behaviors, exert an influence on hemodynamics
compared to the simplistic Newtonian behavior under both steady inflow and physiologically realistic pulsatile flow
conditions. Under steady inflow conditions, the study reveals that blood rheology impacts velocity and pressure field
variations, as well as the values of clinically important surface and time-averaged parameters like wall shear stress
(WSS) and pressure recovery. Notably, this influence is most pronounced at low Reynolds numbers, gradually dimin-
ishing as the Reynolds number increases. For instance, surface-averaged WSS values obtained with the non-Newtonian
shear-thinning power-law model exceed those obtained with the Newtonian model. At Re= 750, this difference reaches
around 67%, reducing to less than 1% at Re = 5000. Correspondingly, pressure recovery downstream of the valve
leaflets is lower for the shear-thinning blood than the constant viscosity one, with the difference decreasing as the
Reynolds number increases. On the other hand, in pulsatile flow conditions, jets formed between the leaflets and the
valve housing wall are shorter than steady inflow conditions. Additionally, surface-averaged wall shear stress and blood
damage (BD) parameter values are higher (with differences more than 13% and 47%, respectively) during the peak stage
of the cardiac cycle, especially for blood exhibiting non-Newtonian yield stress characteristics compared to the shear-
thinning or constant viscosity characteristics. Therefore, blood non-Newtonian behaviors, including shear-thinning and
yield stress behaviors, exert a considerable influence on the hemodynamics around a mechanical heart valve. All in all,
the findings of this study demonstrate the importance of considering non-Newtonian blood behaviors when designing
blood-contacting medical devices, such as mechanical heart valves, to enhance functionality and performance.

I. INTRODUCTION

Human blood, an intricate bodily fluid coursing through
the cardiovascular system, serves as a conduit for vital sub-
stances across the body. Comprising diverse elements like
red blood cells (RBCs), white blood cells (WBCs), platelets,
and plasma, human blood diverges significantly from the sim-
plicity of Newtonian fluids, such as water, wherein stress
and deformation rate adhere to a linear relationship as de-
fined by Newton’s law of viscosity. Instead, it manifests
intricate non-linear relationships, marking it as a complex
non-Newtonian suspension. Consequently, human blood ex-
hibits a spectrum of non-Newtonian behaviors in its rheolog-
ical characterization. Predominantly, human blood demon-
strates shear-thinning behavior, where viscosity diminishes
with increasing deformation rates, a phenomenon established
decades ago1,2. However, ongoing research has uncovered
several more intricate rheological behaviors of human blood3.
Notably, human blood exhibits both viscous and plastic be-
haviors, typified by viscoplastic tendencies featuring a dis-
cernible yield stress4,5. Furthermore, it displays viscoelastic
behaviors arising from the deformation of red blood cells and
the formation of reversible aggregates out of them, known
as rouleaux aggregates6. Surprisingly, recent investigations
reveal that even blood plasma, primarily composed of water
(90%) and other components like dissolved proteins, glucose,
electrolytes, and hormones, also exhibits viscoelastic behav-
ior7,8. Moreover, human blood demonstrates the more intri-

cate thixotropic rheological behavior, characterized by time-
dependent shear-thinning and elastic properties, attributed to
the formation of rouleaux influenced by the Brownian motion
of RBCs9–11.

These intricate non-Newtonian rheological behaviors ex-
hibited by human blood introduce an increased level of com-
plexity into its flow dynamics, commonly referred to as hemo-
dynamics, surpassing the simplistic assumptions of it being a
Newtonian fluid12–14. Even within straight microvessels, the
flow of human blood deviates from the anticipated character-
istics of constant viscosity Newtonian fluids. Instead, it yields
a blunt velocity profile with higher velocities near the ves-
sel wall. This deviation arises from the localized changes in
blood viscosity attributable to the deformation and formation
of aggregates of red blood cells, diverging from the parabolic
velocity profile observed in Newtonian fluids15. These nu-
anced hemodynamic phenomena hold substantial implications
for calculating critical clinical parameters, including flow re-
sistance and hemodynamic shear stress, often interchangeably
known as wall shear stress (WSS). Accurate determination of
these parameters plays a pivotal role in diagnosing cardiovas-
cular diseases, particularly atherosclerosis, and informs the
development of intervention and treatment strategies16. Be-
yond disease identification, an understanding of blood rheol-
ogy proves crucial in the design and fabrication of medical
devices, especially those in direct contact with blood. This
is essential for ensuring their precise functionality and oper-
ation. Importantly, the consideration of blood rheology be-
comes imperative in mitigating the risk of material thrombosis
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and subsequent catastrophic adverse thrombotic events, such
as stroke or pulmonary embolism, associated with the forma-
tion of blood clots on these devices17.

The prosthetic mechanical heart valve is one such med-
ical device that makes direct contact with blood. These
medical devices are crucial in addressing valvular heart dis-
eases and are in high demand globally due to the prevalence
of these diseases affecting millions each year18,19. Condi-
tions like congenital abnormalities, endocarditis, atheroscle-
rosis, high blood pressure, aging, and specific diseases con-
tribute to the destruction of native heart valves, necessitat-
ing replacement20,21. The failure of heart valves to open and
close properly, a consequence of diseases, leads to inefficient
blood pumping, resulting in heart failure, cardiac arrest, and
death. Cardiovascular diseases, responsible for 32% of global
mortality, claim 85% of their victims due to heart attacks22.
To address valvular heart diseases, prosthetic heart valves,
whether mechanical or bioprosthetic, aim to replicate native
valve functions while ensuring smooth hemodynamics, long
durability, thromboresistance, and implantability23. However,
available prosthetic heart valves have limitations; mechani-
cal valves offer durability exceeding 25 years but exhibit poor
thromboresistance, while bioprosthetic valves excel in throm-
boresistance but have a lifespan limited to around 15 years24.
Consequently, mechanical valves are often preferred for pa-
tients under 60 years old due to their superior durability25.

The deficient thromboresistant capability of mechanical
heart valves stems from hemolysis-induced damage to red
blood cells and platelet activation, attributed to nonphysiolog-
ical flow patterns in and around the valve26. Presently avail-
able prosthetic mechanical heart valves, despite incorporating
the latest designs, induce undesirable flow features such as jet
flow, elevated shear stresses, flow separation, recirculation,
shed vortices, and turbulence. These factors pose threats of
damaging red blood cells, activating platelets, and fostering
blood clot formation. Consequently, the meticulous design
of mechanical heart valves is crucial, necessitating a com-
prehensive investigation into fluid-structure interaction (FSI)
involving the valve leaflet, heart wall, and blood. Addition-
ally, molecular-scale interactions between the valve surface
and blood cells are pivotal considerations.

Therefore, a substantial body of literature, encompassing
both experimental and numerical studies, delves into fluid me-
chanics pertaining to prosthetic mechanical heart valves. For
instance, Chandran et al.27 experimentally examined physio-
logical pulsatile flow patterns past a caged-ball valve (Starr-
Edwards valve) in a model human aorta using laser Doppler
anemometry (LDA). Their findings unveiled an asymmetric
velocity profile downstream and a jet-like flow structure in the
peripheral region of the valve. Subsequent investigations28

explored a tilting disc valve (Bjork-Shiley valve), revealing a
bi-helical secondary flow structure downstream complicated
by the multiple curvatures of the aorta and disc orientation.
Gross et al.29 conducted detailed investigations on the flow
dynamics of two bileafet valves, St. Jude Medical and Car-
bomedics, utilizing the particle image velocimetry (PIV) tech-
nique. They identified a von Karman-like vortex pattern, char-
acterized by a pair of vortices shedding from the valve surface.

Further exploration of vorticity dynamics in a bileafet valve by
Dasi et al.30 emphasized the significance of flow through the
hinge region, revealing a vortex during forward flow, evolv-
ing into a disturbed three-dimensional structure during reverse
flow with zones of high turbulent shear stresses capable of
damaging red blood cells.

Comparative studies among different prosthetic valves, in-
cluding in vitro assessments by Kvitting et al.31, elucidated
distinct differences in velocity fields and turbulence kinetic
energy. Beyond experimental studies, extensive numerical in-
vestigations provided insights into wall and turbulent shear
stresses. For example, Thalassoudis et al.32 numerically stud-
ied turbulent flow past a Starr-Edwards caged-ball valve, iden-
tifying maximum turbulent shear stresses near the sewing-ring
tip and in the sinus separation region, consistent with exper-
imental observations. Huang et al.33 conducted a numerical
study on a tilting disc valve, observing maximum shear stress
at the valve disc, deemed insufficient to damage red blood
cells. Cheng et al.34 simulated a bileafet valve, identifying
relatively high velocity and shear stress fields in the clearance
region between the leaflet and valve housing during valve clo-
sure, potentially contributing to blood clot formation.

Numerous studies employ diverse numerical tools to scru-
tinize the flow dynamics in various mechanical valves, with
comprehensive summaries available in excellent review ar-
ticles35,36. Furthermore, outstanding review articles com-
prehensively delineate the functionality, durability, hemody-
namic ability, thromboresistant capability, development sta-
tus, and future directions of different mechanical heart valves
from fluid mechanical perspectives37–39. Intriguingly, all prior
studies, whether experimental or numerical, have hitherto pre-
sumed blood as a simple Newtonian fluid. In contrast, as em-
phasized earlier, blood exhibits diverse non-Newtonian char-
acteristics, encompassing shear-thinning, viscoplasticity, vis-
coelasticity, and more complex thixotropic rheological behav-
ior. This raises the pivotal question: Do non-Newtonian blood
behaviors significantly impact hemodynamics past a mechan-
ical heart valve? This article endeavors to address this query
through extensive three-dimensional direct numerical simu-
lations (DNS) under both steady inflow and realistic physi-
ological pulsatile flow conditions, considering various non-
Newtonian behaviors of blood. Specifically, this study aims
to meticulously investigate whether specific non-Newtonian
behaviors of blood can, indeed, modify flow characteristics,
such as turbulence intensity, vortex dynamics, blood damage,
or forces acting on the leaflet, potentially influencing the per-
formance of a mechanical heart valve. Consequently, this
investigation seeks to furnish in-depth insights and analyses
of these fluid mechanical aspects, contributing valuable infor-
mation for designing next-generation mechanical heart valves
with enhanced hemodynamic performance and thromboresis-
tant capability.

II. PROBLEM SETUP

This study aims to investigate the influence of non-
Newtonian behaviors of blood on the hemodynamics past me-
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FIG. 1. St. Jude Medical heart valve (SJMHV).

chanical heart valve, particularly a St. Jude Medical (SJM)
mechanical heart valve with a diameter of 23 mm, as depicted
in Fig. 1. This valve is commonly employed for valve re-
placement in clinical practice42,43. It has also been extensively
utilized in previous research, both in simulations and experi-
mental studies, to gain insights into the hemodynamics asso-
ciated with mechanical heart valves41,44. The computational
domain, illustrated in Fig. 2, consists of four distinct regions:
the ventricular side chamber (A), valve (B), sinus expansion
(C), and aortic side chamber (D). The valve’s internal diam-
eter is denoted as DB = 21.4 mm, while the diameters of the
aortic and ventricular sides are equal, each with a value of
25.4 mm (DA = DD = D0 = 25.4 mm). The lengths of these
chambers are specified as LA = 3D0 and LD = 11.35D0. The
overall computational domain spans sixteen times the mean
diameter, i.e., L = 16D0, and features a sudden axisymmetric
expansion downstream of the valve (region C) with a diameter
of DC = 31.75 mm. We adopt a Cartesian coordinate system
with the origin at the center of the inlet plane, the x axis along
the streamwise direction, the y axis perpendicular, and the z
axis parallel to the long axis of the leaflets. The present struc-
ture of the computational domain aligns with previous work
by Yun et al.41. Additionally, the blood flow is assumed to
be incompressible, exhibiting non-Newtonian shear-thinning
and yield stress behaviors. As determined by Valant et al.40,
the non-Newtonian properties of blood are incorporated into
the present simulations using the power-law and Casson fluid
models, as depicted in Fig. 3. Furthermore, Fig. 4 illustrates
the implemented volumetric flow rate and the dependency of
leaflet angle throughout one cardiac cycle lasting 860 ms, cor-
responding to a heart rate of 70 beats/min, as reported by Yun
et al.41. The peak and average flow rates for one cardiac cycle
are approximately 25 L/min and 4.5 L/min, respectively. Our
analysis focuses on a specific region where both leaflets are
held fixed at a leaflet angle of 5◦ on the xz-plane (neglecting
the hinge mechanism), representing the fully open position of
an SJM standard valve, as shown in Fig. 4.

III. GOVERNING EQUATIONS

Direct numerical simulations (DNS) are carried out in the
present study. Under the assumption of an incompressible
flow of blood, the following equations will govern the present
flow dynamics

Continuity equation

∇ ·u= 0 (1)

Momentum equation

ρ

(
∂u

∂ t
+u ·∇u

)
=−∇p+∇ ·τ (2)

In the above equations, ∇ is the gradient operator, u is the
velocity vector, t is the time, p is the pressure, τ is the extra-
stress tensor, and ρ is the density of blood (taken as 1060
kg/m3). The extra-stress tensor, τ , is evaluated as

τ = ηγ̇ (3)

Where γ̇ is the shear-rate tensor and η is the apparent shear
viscosity of blood, which is evaluated by the three constitutive
relations, namely, Newtonian (Eq. 4), power-law (Eq. 5) and
Casson (Eq. 6), as follows

η = η0 (4)

η = k (γ̇)n−1 , η0 ≤ η ≤ η∞ (5)

√
η =

√
τ0/γ̇+

√
m, η0 ≤ η ≤ η∞ (6)

Where k, n, η0, η∞, τ0, and m denote the fluid consistency
coefficient, flow behavior index, zero-shear viscosity, infinite
or high-shear viscosity, threshold or yield stress, and consis-
tency index, respectively. As mentioned earlier, the values of
all these parameters are obtained by fitting the experimental
rheological response of real and whole blood conducted by
Valant et al.40) as shown in Fig. 3 and those are as follows:
k = 0.018 Pa− s0.708, n = 0.708, η0 = 0.0548 Pa− s, η∞ =
0.0035 Pa− s, τ0 = 0.004 Pa, and m = 0.0043 Pa− s.

IV. COMPUTATIONAL DETAILS

A. Solution algorithm

In this study, we have employed the finite volume method
(FVM) based open-source computational fluid dynamics
(CFD) code OpenFOAM (version 7)45 to solve all the govern-
ing equations numerically. Specifically, we have utilized the
pisoFoam solver to conduct simulations for various blood rhe-
ological models, including Newtonian, power-law, and Cas-
son models. We have opted for the second-order Gauss lin-
ear scheme to discretize the momentum equation’s advective
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FIG. 2. The whole computational domain used in the present numerical setup, which consists of four regions: A-ventricular side chamber,
B-valve, C-sinus expansion and D-aortic side chamber. Note that the origin is set at the center of the inlet plane such that the x axis is in the
streamwise direction, the y axis is in the spanwise direction, and the z axis is parallel to the long axis of the leaflets.
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axis) of the mechanical heart valve for one cardiac cycle of 860 ms
corresponding to a heart rate of 70 beat/min41. Here, the time in-
stances T1, T2, and T3 denote the mid-acceleration, peak, and mid-
deceleration phases during the systolic condition, respectively.

terms. Time derivative terms have been discretized using the
Euler scheme, while diffusion terms appearing in the momen-
tum equation were handled with the second-order accurate
Gauss linear corrected interpolation scheme. For solving the
linear system of pressure fields, we have employed the Gener-
alized Geometric-Algebraic MultiGrid (GAMG) solver cou-
pled with the Gauss-Seidel smoother, chosen for its efficiency
in information transport across the solution domain. Velocity
fields were solved using the smooth solver with a symmet-
ric type Gauss-Seidel preconditioner, capable of both forward
and reverse sweeps. Pressure-velocity coupling was accom-
plished using the Pressure Implicit with Splitting of Opera-
tors (PISO) algorithm46, known for its improved efficiency
over the Semi-Implicit Method for Pressure Linked Equations
(SIMPLE) algorithm, particularly in unsteady problems. A
relative tolerance level of 10−6 was set for both velocity and
pressure. Simulations were conducted for three cardiac cy-
cles for pulsatile flow (up to t = 2580 ms), whereas for steady
flow, those were conducted up to t = 5000 ms using 200-
640 processors in parallel. The simulations required approxi-
mately 60-144 hours of run time, equivalent to approximately
14,000-57,000 computational resource hours, on a supercom-
puter equipped with Intel Xeon Platinum 8268, 2.9 GHz pro-
cessors, and 960 GB of memory per node. Finally, to complete
the problem setup, the following set of boundary conditions
has been imposed.

B. Boundary conditions

At the inlet boundary: The fully developed flow condition
was used for the steady inflow condition, whereas the pre-
scribed flow rate (as shown in Fig. 4) condition was used for
the pulsatile flow condition. On the other hand, the pressure
was specified with a zero-gradient value at this boundary.

At the outlet boundary: A Neumann-type boundary con-
dition was used for the velocity, whereas the pressure value of
100 mm o f Hg was provided at this boundary, which is the
average of systolic (≈ 120 mm o f Hg) and diastolic (≈ 80
mm o f Hg) pressure of a normal human being.

At the leaflets and walls: The no-slip boundary condition
was imposed for the velocity, whereas the zero-gradient for
the pressure was used at these surfaces.
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FIG. 5. The schematic of grid 2 (G2) with a total of about 4.25 million cells used in the present study showing the refined mesh structure near
the two leaflets and the solid walls to capture the steep gradients of velocity, pressure, stress, etc.

C. Grid and time-step size independence studies

In addition, we have conducted systematic grid and time-
step size independence studies to ensure the robustness and
reliability of our present numerical simulations. These studies
involved varying the grid resolution and time-step size while
keeping other simulation parameters constant. Such investiga-
tions are essential for validating the numerical approach and
ensuring consistent results regardless of the chosen discretiza-
tion schemes and tolerance levels. We have first constructed
the computational domain and initial mesh structure using
the blockMeshDict subroutine available within OpenFOAM.
Subsequently, we have utilized snappyHexMeshDict, a script
available with OpenFOAM, to refine the mesh, particularly in
areas of anticipated high gradients, such as around the leaflets.
The mesh structure employed in this study comprised polyhe-
drons, chosen for their reduced sensitivity to stretching near
walls and leaflets, which led to improved mesh quality and
enhanced numerical stability.

For the grid independence study, we have created three dis-
tinct grids, namely, G1, G2, and G3, with increasing num-
bers of cells, as detailed in Table I. Simulations were con-
ducted for blood flow under pulsatile conditions, correspond-
ing to two cardiac cycles (i.e., t = 1720 ms), employing the
power-law rheological model. Figure 6 illustrates the tem-
poral variation of non-dimensional drag forces (represented
as drag coefficient, Cd) acting on the leaflet surfaces for the
three grid configurations. The corresponding time-averaged
(<Cd >) and maximum (Cd,max) values of the drag coefficient
are summarized in Table I. Analysis of these results indicates
that grid G2, comprising approximately 4.25 million cells, is
adequate for the present study, with relative errors in time-
averaged and maximum drag coefficient values of approxi-

mately 0.5223% and 2.8789% for the top leaflet, and 0.1405%
and 2.8773% for the bottom leaflet, respectively, compared to
grid G3. Furthermore, Figure 7 and Table II compare results
obtained with two different time-step sizes using grid G2 to
evaluate the influence of time-step size selection. These com-
parisons demonstrate negligible differences as the time-step
size decreases from ∆t1 = 2× 10−6 to ∆t2 = 1× 10−6, with
relative errors of less than 1% across both cardiac cycles. Fur-
thermore, to ensure numerical stability, we have monitored the
Courant number (Co), defined as Co = u∆t

∆x , to satisfy the CFL
(Courant-Friedrichs-Lewy) condition47. Here, ∆t represents
the time-step size, and ∆x

u denotes the characteristic convec-
tive time scale. Throughout our simulations, we have main-
tained Comax ≤ 0.9 with ∆t ≤ 2×10−6 s, ensuring stability in
the numerical solution.

D. Code validation

To ensure the accuracy and reliability of our numerical
setup, we have conducted thorough code validation on bench-
mark problems before delving into the detailed analysis of
our present new results. A key validation involved com-
paring the variation of the streamwise velocity component
in a straight three-dimensional pipe between our numeri-
cal predictions and analytical solutions for both Newtonian
and power-law fluid models. The analytical expressions for
the axial velocity component are well-established, follow-

ing the forms: ux = 2U0

(
1−

(
2r
D0

)2
)

for Newtonian fluids

and ux = U0
( 3n+1

n+1

)(
1−

(
2r
D0

) n+1
n
)

for power-law fluids48.
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TABLE I. Details of the grid independence study performed in the present study with the shear-thinning power-law fluid model of blood under
pulsatile flow conditions. Note that here, all the parameter values are obtained after simulating two cardiac cycles, and < . > denotes the
time-averaged value of a parameter.

Grid 1 (G1) Grid 2 (G2) Grid 3 (G3)

Hexahedra 2,524,198 3,598,868 4,883,516

Po
ly

he
dr

a 6 faces 88,538 119,434 157,826
9 faces 292,128 402,490 525,104

12 faces 61,480 84,768 112,234
15 faces 32,544 45,854 61,724
18 faces 242 352 348

Total number of cells 2,999,130 4,251,766 5,740,752
Minimum cell volume (m3) 3.87×10−16 2.50×10−16 1.37×10−16

Maximum cell volume (m3) 8.40×10−9 4.51×10−9 2.70×10−9

<Cd > (Top leaflet) 13.8472 12.7135 12.7799
% Error − 8.1872 0.5223

Cd,max (Top leaflet) 81.5010 68.1834 70.1463
% Error − 16.3404 2.8789

<Cd > (Bottom leaflet) 13.8726 12.7360 12.7539
% Error − 8.1931 0.1405

Cd,max (Bottom leaflet) 81.6807 68.1994 70.1617
% Error − 16.5049 2.8773

TABLE II. Details of the time-step size convergence study performed
in the present study with the shear-thinning power-law fluid model of
blood under pulsatile flow conditions.

step size-1 (∆t1) step size-2 (∆t2)

step size value (s) 2×10−6 1×10−6

<Cd > (Top leaflet) 12.7135 12.6151
% Error − 0.7740

Cd,max (Top leaflet) 68.1834 68.5386
% Error − 0.5209

<Cd > (Bottom leaflet) 12.7360 12.6564
% Error − 0.6250

Cd,max (Bottom leaflet) 68.1994 68.6880
% Error − 0.7164

Figure 8 illustrates this comparison, demonstrating excellent
agreement between our numerical results and analytical pre-
dictions.

Moreover, we have conducted a comprehensive compari-
son with experimental and numerical studies that employed a
similar computational setup, assuming blood is a simple New-
tonian fluid. For instance, Yun et al.41 conducted extensive in
vitro experiments and in silico numerical simulations to ana-
lyze flow dynamics past a St. Jude Medical (SJM) RegentT M

mechanical heart valve. Their experiments utilized digital par-
ticle image velocimetry (DPIV), while simulations were per-
formed using the entropic lattice-Boltzmann method (LBM).

Figure 9 compares streamwise velocity variations along the
spanwise direction at different locations downstream of the
valve leaflet between our numerical predictions and the ex-
perimental and numerical results of Yun et al. at Reynolds
numbers 750 and 5000 for steady inflow conditions. Overall,
a good correspondence was observed, particularly between
our direct numerical simulation (DNS) results and Yun et al.’s
experimental findings. Additionally, further validations were
also conducted for blood flow in our previous study, as de-
tailed elsewhere49. Collectively, these validation efforts instill
confidence in our ability to present and discuss the novel find-
ings of this study, as outlined in the subsequent section.

V. RESULTS AND DISCUSSION

After solving the aforementioned governing equations with
the above-stated boundary conditions, we have obtained the
results in terms of velocity, pressure, and stress fields. These
results are then further post-processed to calculate the param-
eters of clinical importance, such as wall shear stress (WSS)
acting on the solid walls, non-dimensional drag forces (Cd)
acting on the surface of the two valve leaflets, and the blood
damage (BD). The mathematical expressions for evaluating
WSS, Cd , and BD are as follows:

WSS = τ ·ni (7)

Cd =
Fd

1
2 ρU2

0Ap

=
2

ρU2
0Ap

∫
S
(−pδ+τ ) ·no · idS (8)
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(a)

(b)

FIG. 6. Temporal variation of non-dimensional drag forces (Cd) act-
ing on the surface of the leaflet for three different grids (details given
in Table I) considered in the present study for the top (a) and bottom
(b) leaflets.

BD = (DI)
0.785 (9)

where ni is the patch normal vector drawn into the domain,
U0 is the average velocity (for pulsatile flow, it is ≈ 0.148
m/s, and for steady inflow, its value depends on the Reynolds
number), Ap is the projected area of the leaflet in the direc-
tion of flow, Fd is the dimensional drag forces acting on the
leaflet, δ is the Kronecker delta, no is the outward unit normal
vector drawn on the leaflet surface, i is the unit vector in the
x-direction, S is the leaflet surface area, and DI is the average
linear damage calculated using the expression50:

DI =
1
Q

∫
V
σ dV (10)

σ = (3.62×10−7)1/0.785(τvm)
2.416/0.785 (11)

where Q is the volumetric flow rate, σ is the rate of hemolysis
production per unit time, V is the volume of the whole compu-
tational domain, and τvm is the Von Mises criterion calculated
as proposed by Garon and Farinas50.

(a)

(b)

FIG. 7. Temporal variation of non-dimensional drag forces (Cd) act-
ing on the surface of the leaflet for two different time-step sizes (de-
tails given in Table II) considered in the present study for top (a) and
bottom (b) leaflets.

-1

-0.5

	0

	0.5

	1

	0 	0.5 	1 	1.5 	2

y/
R

ux	/	U0

Analytical,	Newtonian
Present,	Newtonian
Analytical,	Power-law
Present,	Power-law

FIG. 8. Comparison of the non-dimensional axial velocity profile
obtained from the present implemented numerical code with that of
the analytical solution for the flow in a circular pipe.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 9. Validation of the present numerical setup for steady inflow at Re = 750 ((a)-(e)) and Re = 5000 ((f)-(i)) with that of experimental and
numerical results of Yun et al.41. Here, the streamwise velocity component (ux) is measured along the spanwise direction at different axial
locations, namely, x = 2.2 (a), x = 10.3 (b), x = 20.1 (c), x = 40.7 (d), x = 50.6 (e), x = 3.1 (f), x = 7.5 (g), x = 13.8 (h), and x = 18.3 (i),
where ‘x’ is the distance measured in ‘mm’ from the leaflet tip.

We have conducted direct numerical simulations (DNS) to
gain deeper insights into the flow dynamics of blood through a
bileaflet St. Jude Medical heart valve (SJMHV). Our simula-
tions considered blood as both Newtonian and non-Newtonian
fluids to facilitate qualitative and quantitative comparisons
between the two cases. Although blood primarily exhibits
shear-thinning behavior, it also manifests threshold or yield
stress characteristics, as previously mentioned and discussed
in Fig. 3. In our study, we have characterized blood’s shear
rheology using the power-law model, while the Casson fluid
model was employed to represent yield stress. Simulations
have been conducted under both steady and pulsatile flow
conditions. For steady flow, we have enforced fully devel-
oped flow conditions at the inlet section of the ventricular side
chamber, as depicted in Fig. 2. Conversely, for pulsatile flow,
we have applied prescribed flow rate conditions, as illustrated
in Fig. 4, at the same boundary. In the case of steady flow, we
have performed both instantaneous and time-averaged analy-
ses. For pulsatile flow, only instantaneous analyses have been
carried out, with results presented at three distinct time in-
stances: mid-acceleration phase (T1), peak phase (T2), and
mid-deceleration phase (T3) during the systolic condition, as

outlined in Fig. 4. Our analyses have encompassed various
parameters, including velocity magnitude contours, pressure
drop across inlet and outlet sections, Reynolds stresses, tur-
bulent kinetic energy (TKE), wall shear stress (WSS), drag
coefficient (Cd), local non-Newtonian importance factor (IL),
among others. These results are comprehensively presented
and discussed to provide a detailed understanding of the dif-
ferences in the flow characteristics caused by blood rheology.

A. Steady inflow conditions

Under steady inflow conditions, simulations have been car-
ried out at four distinct Reynolds numbers, namely, 750, 1250,
2400, and 5000, wherein the Reynolds number is defined as
Re = 4ρQ

πD0η∞
. These four Reynolds numbers nearly corre-

spond to the early beginning of the mid-acceleration phase,
between the beginning and mid-acceleration phase, the mid-
acceleration phase, and the peak phase during the systolic
phase of our cardiac cycle, respectively41, as schematically
shown in Fig. 4. At first, we present the variation of the
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FIG. 10. Non-dimensional velocity magnitude contours at eight different planes (P1-P8) for various Reynolds numbers predicted by Newtonian
and non-Newtonian power-law fluid models of blood. Note that the non-dimensionalization for the velocity is performed using the average
velocity imposed at the inlet plane for each case according to the value of Re, and the results shown here for Re = 750 are seen to be steady in
nature and for Re = 5000 are time-averaged from 0−5000 ms.
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FIG. 11. Variation of non-dimensional streamwise velocity com-
ponent along the centerline for several Reynolds numbers predicted
by Newtonian and non-Newtonian power-law fluid models of blood.
Note that the results presented here are either steady or time-
averaged, as mentioned in Table III.

non-dimensional velocity magnitude at the lowest (Re = 750)
and highest (Re = 5000) Reynolds numbers encompassed in
this study by considering blood both as Newtonian and non-
Newtonian power-law fluids, Fig. 10. Eight different planes
have been chosen to display the results: six planes (P1 to
P6) normal to the x-direction with one situated upstream of
the leaflet (P1) and the remaining situated downstream of the
leaflet (P2-P6), one normal to the y-direction (P8), and the

other normal to the z-direction (P7). The flow remains steady
at Re = 750, whereas it becomes unsteady at Re = 5000.
Therefore, the time-averaged results (for a time of 5000 ms,
which corresponds to more than five times the time corre-
sponding to a full cardiac cycle) are presented in Fig. 10 for
the latter case. The velocity varies smoothly, with the maxi-
mum at the axis of the ventricular side chamber and the min-
imum at the wall upstream of the valve leaflet at Re = 750;
see plane P1 in sub-Figs. 10 (a) and (b). As the blood ap-
proaches plane P2 (situated in the valve chamber region), the
velocity field becomes more uniform across the plane, and its
magnitude also increases. This is because the cross-sectional
area of the valve region is less compared to the ventricular
side chamber region, and the velocity field has to be accel-
erated to obey the mass conservation principle. Furthermore,
at this plane, three fluid jets are formed, namely, one central
jet formed between the two valve leaflets and two lateral jets
formed between the valve leaflet and the wall of the chamber.
The formation of these jets is clearly visible in plane P7. As
blood passes through plane P3 (situated in the sinus region),
once again, the velocity field becomes highly non-uniform in
nature due to the larger cross-sectional area of this region, and
three regions of high-velocity magnitude are seen due to the
formation of three fluid jets. As blood traverses more down-
stream to the aortic chamber region (region D) downstream of
the valve, a mushroom-like velocity field develops, which ex-
tends gradually towards the chamber wall as the downstream
distance increases. The intensity of the fluid jets decreases
with the distance downstream of the valve, which is notice-
able both in planes P7 and P8. Therefore, far downstream of



10

(a) Re = 750

P6

P4
P3

P7

P8

P1
P2

P5

(b) Re = 1250

P6

P4
P3

P7

P8

P1
P2

P5

(d) Re = 5000

P6

P4
P3

P7

P8

P1
P2

P5

(c) Re = 2400

P6

P4
P3

P7

P8

P1
P2

P5

FIG. 12. Instantaneous local non-Newtonian importance factor (IL = η/η∞) at eight different planes (P1-P8) for various Re values for power-
law fluid model of blood, namely, (a) Re = 750, (b) Re = 1250, (c) Re = 2400, and (d) Re = 5000.

the valve, one can expect the velocity field to be the same as
observed upstream of the valve.

At a relatively higher Reynolds number of 5000, the same
trend is qualitatively observed in the time-averaged results as
that seen at Re = 750. However, some obvious quantitative
differences are present. For instance, the velocity field at this
Reynolds number is more uniform and dispersed at any plane
perpendicular to the x-direction than seen at Re = 750. The
magnitude of the central jet and two lateral jets is less, and
they end in the sinus region (region C) at this Re = 5000 ir-
respective of the blood rheology type, i.e., Newtonian or non-
Newtonian power-law (P7, sub-fig. 10(c) & (d)). Also, the
merging of the central jet with the two lateral jets happens
quickly at this Reynolds number, unlike the case of Re = 750,
wherein they merged far downstream of the two leaflets (P1-
P6, sub-fig. 10(c) & (d)). It happens due to the increase in
the flow strength at this value of the Reynolds number, which
leads to more fluid movement in the lateral direction, ulti-
mately facilitating the quick merging of the jets. However, the
thickness of the central jet is higher at this Reynolds number
than Re = 750. All these can be clearly visible from the re-
sults presented in planes P7 and P8 in sub-Figs. 10(c) and (d).
Furthermore, the mushroom-like velocity field downstream of
the valve is not clearly developed at this Reynolds number.
Regardless of the blood rheology, all these differences are
seen between these two Reynolds numbers. This is because
the flow becomes unsteady and turbulent-like at Re = 5000 in
contrast to a steady flow at Re = 750, which will be discussed
in detail later in this section.

The effect of blood non-Newtonian behaviors on the spatial
variation of the velocity field is also apparent. For instance,
the velocity magnitude of the central and lateral jets is higher

for the Newtonian model than the shear-thinning power-law
model, particularly in the vicinity of the valve leaflets. Fur-
thermore, the central jet is seen to be more extended down-
stream of the valve for the Newtonian model than for the
power-law one. All these differences can be more evident
on planes P7 and P8. However, these differences are seen
to be more pronounced at Re = 750 than at Re = 5000. This
is probably because, at the higher Reynolds number, the shear
rate becomes so high that the apparent viscosity reaches the
Newtonian plateau (see Fig. 3), resulting in the difference be-
tween the two models being minimal. A more quantitative
difference between the two models is presented in Fig. 11
wherein the non-dimensional streamwise velocity is plotted
along the horizontal line passing through the origin of the ge-
ometry. The streamwise velocity is seen to be maximum at
around x/D0 = 4, which is the region between the two leaflets.
It then gradually decreases as one moves further downstream
of the valve. The maximum velocity for the Newtonian model
is higher than for the power-law one, and the difference be-
tween the two decreases as the Reynolds number increases.
The same trend is also seen downstream of the valve. All
in all, the difference between the two models is seen to be
more noticeable downstream of the valve than upstream of it.
This is because the detachment of the shear layers happens
downstream of the valve leaflets, resulting in the generation
of vortices wherein the fluid rheology would have a signifi-
cant impact on the velocity field.

To precisely assess the impact of blood’s non-Newtonian
rheological properties on hemodynamics, in the present study,
we calculate the non-Newtonian importance factor (I) pro-
posed by Ballyk et al.51. This factor is defined as the ratio of
the effective (or apparent) viscosity (ηe f f ) to the high-shear
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FIG. 13. Surface variation of the Reynolds normal stress (RNS) at
eight different planes (P1-P8) for Re = 5000 predicted by (a) New-
tonian and (b) non-Newtonian power-law model of blood.

viscosity (η∞) of the fluid, expressed as I =
ηe f f
η∞

. Subse-
quently, Johnston et al.52 extended this concept to compute
the local non-Newtonian importance factor (IL) at specific
points within the flow system. The value of IL equals one
in the case of Newtonian flow, whereas deviations from this
value indicate the influence of non-Newtonian flow charac-
teristics of the blood. Figure 12 illustrates the instantaneous
surface distribution of IL for the power-law model across var-
ious planes within the present cardiovascular system at differ-
ent Reynolds numbers. At a low Reynolds number (Re = 750,
sub-Fig. 12)(a), most regions, particularly central areas, ex-
hibit IL values exceeding one, except for regions near the
leaflet, valve housing wall, and around jets formed in the
sinus region, where IL value remains around one. With in-
creasing Reynolds numbers, regions with IL values near one
expand radially and axially within the flow system. At the
highest Reynolds number (Re = 5000, sub-Fig. 12(d)), IL ap-
proximates one across the entire region, indicating dimin-
ished influence of blood’s non-Newtonian rheology on hemo-
dynamics. This suggests a more pronounced effect of non-
Newtonian properties of blood at lower Reynolds numbers,
which will gradually decrease with increasing Reynolds num-
bers. This will be reflected in the discussions later in this sec-
tion on the variation of the clinically relevant surface-averaged
parameters, such as pressure drop and wall shear stress, with
the Reynolds number.

The flow field exhibits a steady and laminar behavior at a
Reynolds number of Re = 750, nearly corresponding to the
initial stage of the mid-acceleration phase in the cardiac cycle.
However, as the cardiac cycle progresses, the flow undergoes
a transition from steady and laminar to unsteady and turbulent
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FIG. 14. Surface variation of the Reynolds shear stress (RSS) at eight
different planes (P1-P8) for Re = 5000 predicted by (a) Newtonian
and (b) non-Newtonian power-law model of blood.

conditions. This transition is particularly pronounced at the
peak phase of the cardiac cycle, where the Reynolds number
peaks at nearly 5000. Consequently, we investigate the sur-
face distribution of Reynolds normal (RNS) and shear (RSS)
stresses for both Newtonian and non-Newtonian power-law
blood models at Re = 5000, as depicted in Figs. 13 and 14,
respectively. Reynolds stresses, also often referred to as tur-
bulent stresses, quantify the intensity of velocity fluctuations
associated with turbulent eddies in the flow. Normal stresses
represent fluctuations occurring perpendicular to each other,
while shear stresses represent fluctuations parallel to each
other. In the context of cardiovascular flow, studying these tur-
bulent stresses is crucial due to their potential to cause damage
to blood cells53–55. Analysis of the Reynolds stresses reveals
higher values of both normal and shear stresses in the region
between the two leaflets and at the edges of lateral jets formed
in the sinus region, regardless of the blood rheological model
employed. This suggests that the intensity of velocity fluctu-
ations is highest in these regions, indicating a higher risk of
blood cell damage. Interestingly, the surface distribution pat-
terns of turbulent stresses are similar for both Newtonian and
power-law models, although the magnitude is slightly higher
for the Newtonian model. This discrepancy is attributed to the
minimal difference in flow dynamics between the two models
at the high Reynolds numbers associated with the peak phase
of the cardiac cycle. This observation is consistent with the
distribution of the local non-Newtonian factor, which remains
close to one throughout the region, indicating minimal varia-
tion between the two rheological models.

Figure 15 illustrates the temporal evolution of turbulent ki-
netic energy (TKE) per unit mass of fluid at a specific probe
location positioned between the two leaflets on the front side,
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(a)

(b)

FIG. 15. Time history of turbulent kinetic energy (TKE) at a probe
situated near the tip of the two leaflets (a) and the corresponding
power spectral density plot (b). The dashed black lines in the second
sub-figure denote the lines with a constant slope of −5/3 correspond-
ing to the Kolmogorov energy scaling law of turbulence.
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FIG. 16. Schematic of the pressure variation along the center line
and the various locations chosen to show different types of pressure
drop calculated in Table III.

(a) Newtonian

(b) Power-law

FIG. 17. Time-averaged wall shear stress (WSS) magnitude at
Re= 5000 for (a) Newtonian and (b) non-Newtonian power-law fluid
models. The values shown in the legend have units of ’Pa’.

along with its corresponding power spectral density (PSD)
plot. This analysis is conducted for two different blood rheo-
logical models at Reynolds numbers 2400 and 5000. TKE is
computed as half the sum of the variances of the fluctuating
velocity components, defined as 1

2

(
(u′x)2 +(u′y)2 +(u′z)2

)
,

where u′ represents the fluctuating velocity component (u′ =
u− u), and u and u denote instantaneous and average veloc-
ity components, respectively. The temporal variation of TKE
demonstrates an increase with Reynolds number, indicating
higher turbulence intensity, as depicted in sub-Fig. 15(a). At
Re = 2400, the TKE magnitude is notably greater for the
non-Newtonian power-law model than the Newtonian model,
though this difference diminishes at Re = 5000. This trend
is also reflected in the power spectrum of TKE fluctuations
shown in sub-Fig. 15(b). The black dashed lines in this plot
represent the slope of -5/3, corresponding to the Kolmogorov
inertial subrange of the energy cascade. Notably, the observed
slope deviates from -5/3 at both Reynolds numbers, irrespec-
tive of the blood rheological model, indicating the presence
of non-Kolmogorov turbulent flow conditions within the heart
valve. Recent studies56–58 have highlighted the prevalence of
non-Kolmogorov turbulent flow in physiological blood flow
across various geometries, attributed to the highly inhomo-
geneous and anisotropic nature of turbulence induced by the
presence of solid valve leaflets.
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Finally, Table III represents various post-processed param-
eters, including some surface and time-averaged (in the case
of unsteady flow) parameters that provide more quantitative
analysis of the effect of blood non-Newtonian behaviors on
the hemodynamics past the present mechanical heart valve.
First of all, three different pressure difference measurements
are calculated in this study, namely, ∆P|peak, ∆P|recovery, and
∆P|net . Their definitions are schematically shown in Fig. 16.
To calculate all these parameters, the values of the pressure
field are first extracted along a horizontal line passing through
the center of the region between the two leaflets. This horizon-
tal line’s starting (P1) and ending (P3) points are situated at
the inlet and outlet of the computational domain. The pressure
will be higher upstream of the valve leaflet at point P1. It will
be minimal in the region between the two leaflets at point P2
due to the increased velocity magnitude in this region. How-
ever, some recovery will happen at point P3 downstream of
the valve leaflets. Irrespective of the blood rheological model,
the values of all three parameters related to the pressure dif-
ference increase as the Reynolds number increases. On the
other hand, the values of ∆P|peak and ∆P|net are always higher
in the case of the power-law rheological model of blood than
the Newtonian model. In contrast, a reverse trend is seen for
∆P|recovery at all Reynolds numbers. This suggests that the re-
covery of pressure downstream of the valve leaflets is more
in the case of the Newtonian model than the non-Newtonian
power-law model. However, the difference between the val-
ues of the two models diminishes as the Reynolds number in-
creases. For instance, at Re = 750 the differences between
the values of ∆P|peak, ∆P|recovery, and ∆P|net are around 10%,
100%, and 46%, respectively, whereas the corresponding dif-
ferences at Re = 5000 are 0.86%, 3.27%, and 2.80%, respec-
tively. This highlights that blood rheology will have a greater
influence on the parameters of clinical importance at lower
Reynolds numbers. This is expected as it was also evident in
the distribution of the local non-Newtonian importance factor
IL presented in Fig. 12, whose value approached nearly one
in the entire region of the flow system, suggesting a minimal
influence of blood non-Newtonian behaviors on the hemody-
namics.

Next, the hydrodynamic drag forces acting on the valve
leaflets are examined for two blood rheological models, which
is crucial for optimizing the design and performance of me-
chanical heart valves. Contrary to the pressure difference,
drag forces decrease with increasing Reynolds number, re-
gardless of the blood rheological model. This decline is at-
tributed to the reduction in the frictional component of drag
forces. Notably, the difference between the two models is
more pronounced at lower Reynolds numbers, gradually di-
minishing as the Reynolds number increases. For example, at
Re = 750, the difference in drag forces is approximately 4%,
decreasing to less than 1% at Re = 5000. Additionally, the
maximum and surface-averaged (and time-averaged for un-
steady flow) values of wall shear stress (WSS) are analyzed
for both blood rheological models. WSS is a fundamental
biomechanical factor in hemodynamics, regulating vascular
function, pathophysiology, and therapeutic interventions. Un-
derstanding its role is essential for elucidating cardiovascular

diseases and developing targeted therapies for their prevention
and treatment16,59–61. The time-averaged surface distribution
of WSS, depicted in Fig. 17, reveals higher values around the
valve leaflets, particularly in the hinge region, regardless of
the blood rheological model. Significant values are also ob-
served on the valve housing region walls (section B in Fig. 2),
indicating an increased risk of blood cell damage in these
regions62. Furthermore, the maximum and surface-averaged
WSS values are consistently higher in the non-Newtonian
power-law model compared to the Newtonian model. Similar
to drag forces, the difference between the two models is more
pronounced at lower Reynolds numbers, gradually diminish-
ing as the Reynolds number increases. For instance, differ-
ences are approximately 67% and 0.9% at Re= 750 and 5000,
respectively, for surface-averaged WSS. In summary, differ-
ences in various post-processed parameters between the two
blood rheological models are evident at lower Reynolds num-
bers, corresponding to the beginning of the mid-acceleration
phase of the cardiac cycle, and gradually diminish as the flow
progresses to its peak phase. Therefore, these findings high-
light the importance of considering blood non-Newtonian be-
haviors in the design and evaluation of cardiovascular devices
and treatments.

B. Pulsatile flow conditions

In the preceding section, steady inflow results have pro-
vided valuable insights into the flow physics associated with
blood. However, it is the pulsatile nature of blood flow dur-
ing the cardiac cycle that holds greater physiological impor-
tance. A pulsatile flow condition has been imposed at the in-
let plane to accurately simulate this pulsatility, following a
flow rate curve representative of one cardiac cycle (Fig. 4).
This curve, spanning a time period of 860 milliseconds, cor-
responds to a heart rate of 70 beats per minute41. The sim-
ulation encompasses three cardiac cycles, with results ana-
lyzed at three different time instances: mid-acceleration (T1),
peak systolic (T2), and mid-deceleration (T3) phases (Fig. 4).
Additionally, the Casson fluid model has been incorporated
alongside the power-law fluid model, which is widely used
in studying blood hemodynamics. Newtonian results are also
presented alongside the two non-Newtonian models for com-
parison under identical conditions. Figure 18 displays ve-
locity magnitude contours at eight different planes (P1-P8)
during the mid-acceleration phase (T1), representing the mid-
acceleration phase of the cardiac cycle. Here, as blood reaches
the leading edge of the valve leaflets, the flow separates into
three jets, akin to steady inflow conditions. Moreover, the
velocity magnitude of the central jet exceeds that of the lat-
eral jets, regardless of the blood’s rheological model. How-
ever, under this flow condition, all three jets are confined
within the valve region only (region B in Fig. 2), in contrast to
the steady inflow condition where they extend further down-
stream. The velocity field appears uniform along all planes
normal to the x-axis except plane P3, situated in the sinus re-
gion (region C in Fig. 2), where flow separation occurs at the
trailing edge of the leaflets, forming vortices, evident from the
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TABLE III. Values of various post-processed parameters for Newtonian and non-Newtonian power-law models of blood obtained at different
Reynolds numbers.

Parameter Fluid Model Re=750 Re=1250 Re=2400 Re=5000

∆P|peak (mmHg) Newtonian 0.1590* 0.3975* 1.4310# 6.4395#

Power-law 0.1749* 0.4055* 1.4469# 6.4952#

∆P|recovery (mmHg) Newtonian 0.0398* 0.1749* 0.3896# 3.0290#

Power-law 0* 0.1193* 0.3339# 2.9298#

∆P|net (mmHg) Newtonian 0.1193* 0.2226* 1.0415# 3.4106#

Power-law 0.1749* 0.2862* 1.1130# 3.5060#

Cd (Top leaflet) Newtonian 4.6749* 3.5792* 2.7348# 2.4063#

Power-law 4.8745* 3.6060* 2.7057# 2.3844#

Cd (Bottom leaflet) Newtonian 4.6749* 3.5792* 2.7397# 2.4039#

Power-law 4.8745* 3.6060* 2.7071# 2.3970#

|WSS|max
walls (Pa) Newtonian 2.7811* 6.4044* 19.9064# 80.2681#

Power-law 2.8711* 6.7006* 20.3392# 79.2888#

|WSS|avg
walls (Pa) Newtonian 0.1419* 0.2647* 0.7478# 2.4714#

Power-law 0.2380* 0.3699* 0.8247# 2.4484#

* steady
# time-averaged

TABLE IV. Values of various post-processed parameters for New-
tonian, power-law, and Casson fluid models of blood obtained at
three different time instances of the cardiac cycle, namely, mid-
acceleration (T1), peak systolic (T2) and mid-deceleration (T3)
phase.

Parameter Time instance Newtonian Power-law Casson

| ∆Pnet |
(mmHg)

T1 42.8346 42.8664 43.2321
T2 9.8898 9.9375 10.3350
T3 71.5476 71.3528 71.5238

Cd
(Top

leaflet)

T1 28.4240 28.6189 30.4530
T2 66.7494 65.1499 69.0875
T3 7.2717 7.5626 7.7548

Cd
(Bottom
leaflet)

T1 28.8118 28.5838 30.1858
T2 66.7503 66.2410 68.5901
T3 7.6539 7.5430 7.4631

|WSS|max
walls

(Pa)

T1 42.7490 42.5631 47.1142
T2 165.8206 167.3339 114.5817
T3 42.8277 39.7073 41.8817

|WSS|avg
walls

(Pa)

T1 4.3632 4.4072 5.0766
T2 5.4672 5.5287 6.3446
T3 3.0090 3.0660 3.4225

Blood
damage
(×106)

T1 0.1384 0.1383 0.2102
T2 0.5184 0.5167 0.7629
T3 0.1738 0.1783 0.2617

low velocity-magnitude values in this region. Conversely, the
velocity field was highly non-uniform along all these planes
under steady inflow conditions with nearly the same Reynolds

number, Fig. 10. Additionally, the high-velocity magnitude
zone in the valve region appears concave in shape (P8 plane),
contrasting with the convex shape observed in steady inflow
conditions. The velocity field is seen to be highly asymmetric
in nature, signifying the existence of an unsteady flow field in
the geometry at this flow condition.

As the velocity further increases during the peak systolic
phase (T2), significant changes in flow behavior become ap-
parent, Fig. 19. Both the central and lateral jets extend in
length and cover not only the valve region but also the si-
nus region. Beyond this, the jets disappear in the aortic re-
gion, and the velocity field becomes more uniform, as evident
from the results presented in planes P4-P8. With the exten-
sion of the jets into the sinus region, a mushroom-shaped ve-
locity field appears in plane P3, resembling observations in
steady inflow conditions. However, the velocity magnitude is
notably reduced within the sinus cavities, suggesting the po-
tential formation of strong vortices in this region. Moreover,
at this stage of the cardiac cycle, the lateral jets strengthen, be-
coming as robust as the central jet. Unlike at stage T1, where
the central jet predominated, both the lateral jets and the cen-
tral jet exhibit increased velocity magnitudes. This increase is
consistent with the maximum flow rate and velocity expected
during the peak systolic phase, resulting in the maximum ex-
pected jet length under these conditions.

In the mid-deceleration stage (T3), the velocity field
exhibits greater chaotic behavior compared to the mid-
acceleration (T1) and peak systolic (T2) stages, Fig. 20. At
this stage, the jets in the sinus region break apart and merge
together, leading to a highly non-uniform velocity field, par-
ticularly noticeable in plane P3 within the sinus region. This
non-uniformity extends up to plane P5 along the x-axis in the
aortic region. The trend is further evident in the results pre-
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FIG. 18. Velocity magnitude contours at eight different planes (P1-
P8) during the mid-acceleration phase (t = T 1 ≈ 1965 ms) of the
cardiac cycle predicted by Newtonian, power-law, and Casson fluid
models of blood.

sented on planes P7 and P8. This behavior during the cardiac
cycle’s mid-deceleration phase can be attributed to decreased
flow rate and/or velocity. As the deacceleration phase pro-
gresses, fluid parcels with higher inertia slow down, increas-
ing pressure in this region and creating an adverse pressure
gradient. Consequently, the boundary layers separate more
rapidly, leading to the breakage of jets and an escalation in
chaotic behavior.

Figure 21 illustrates the isosurface of the Q-criterion at
three distinct time instances during the cardiac cycle for
three different rheological models of blood. The Q-criterion
is mathematically defined as Q = 1

2

(
||Ω||2 −||S||2

)
, where

Ω
(
= 1

2

(
∇u−∇uT

))
and S

(
= 1

2

(
∇u+∇uT

))
represent

the vorticity and strain-rate tensors, respectively, and ||..|| de-
notes their magnitudes. Positive values of the Q-criterion typ-
ically indicate the presence of vortex cores, representing con-
centrated vorticity with fluid particles rotating around an axis,
indicative of coherent vortical structures within the flow. Con-
versely, negative values of the Q-criterion are associated with
regions where strain dominates over rotation, leading to elon-
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FIG. 19. Velocity magnitude contours at eight different planes (P1-
P8) during systolic peak (t = T 2≈ 2074 ms) of the cardiac cycle pre-
dicted by Newtonian, power-law, and Casson fluid models of blood.

gation or distortion of the flow instead of forming concen-
trated vortices. Thus, negative Q-values signify regions where
the flow is more elongational than rotational. In Fig. 21, the
results depict two different values of Q = 1×103 and 5×104.
At the mid-acceleration stage (T1) of the cardiac cycle, three
prominent circumferential vortical structures emerge: around
the trailing edge of the valve leaflets (valve region), the lead-
ing edge of the valve leaflets (sinus region), and at the begin-
ning of the aortic section, irrespective of the blood rheologi-
cal model. As the flow progresses to the peak systolic phase
(T2), these large circumferential vortical structures fragment
into smaller vortices, particularly in the sinus region. Conse-
quently, the presence of small vortical structures increases sig-
nificantly within the sinus and aortic regions, regardless of the
rheological model, owing to the intensified flow at this stage.
The tendency for further fragmentation into smaller vortical
structures escalates as the flow enters the mid-deceleration
phase (T3) of the cardiac cycle. Additionally, the extension
of vortices into the aortic region expands at this stage. This
is due to the increased chaos in the flow field resulting from
the generation of an adverse pressure gradient, as observed
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FIG. 20. Velocity magnitude contours at eight different planes (P1-
P8) during mid-deceleration phase (t = T 3≈ 2170 ms) of the cardiac
cycle predicted by Newtonian, power-law, and Casson fluid models
of blood.

in Fig. 20, where the jets were observed to break due to the
increased chaotic nature of the flow field.

While the pattern and intensity of vortical structures ap-
pear qualitatively similar across all three rheological models
of blood, notable differences also emerge. For instance, dur-
ing the mid-acceleration stage (T1), small vortical structures
manifest in the middle of the aortic section, with a more pro-
nounced tendency observed for the Newtonian model (sub-
Fig. 21(a)) compared to the non-Newtonian power-law and
Casson models. This difference may stem from the apparent
viscosity of blood, which could be higher for the power-law
and Casson models than for the Newtonian model during this
stage of the cardiac cycle, owing to lower shear rates resulting
from decreased flow rates and/or velocities. Consequently, the
formation of small vortical structures for the non-Newtonian
blood models may be suppressed. Furthermore, in the mid-
deceleration stage of the cardiac cycle (T3), characterized by
maximum chaos, the prevalence of small vortical structures is
more pronounced for the power-law rheological model (sub-
Fig. 21(f)) compared to the Newtonian and Casson fluid mod-
els. This observation may be attributed to the shear-thinning

behavior of blood captured by the power-law model, which
promotes the formation of small vortical structures.

Figure 22 illustrates the surface distribution of wall shear
stress (WSS) at various stages of the cardiac cycle for dif-
ferent blood rheological models. In stage T1, WSS exhibits
elevated values near the valve leaflets region, particularly in
the valve hinge region situated within the valve housing sec-
tion. As the cardiac cycle progresses to stage T2, the mag-
nitude of WSS increases, with significantly higher values ob-
served throughout the valve housing section than seen in stage
T1. Additionally, patches of high WSS emerge in the si-
nus section during this stage. In the deceleration stage of
the cardiac cycle (T3), the overall magnitude of WSS again
decreases in the valve housing section, with regions of high
WSS predominantly observed at the end of the sinus section.
Although the distribution trend of WSS magnitude remains
similar across all three blood rheological models, it appears
higher and more widespread in the Casson model. For in-
stance, in sub-Fig. 22(g) for stage T1, the results demonstrate
this increased and broader distribution of WSS in the Casson
model compared to the other two rheological models of blood.

The difference in spatial variations of flow characteristics,
such as velocity magnitude or vortical structures among dif-
ferent rheological models of blood, is not prominently dis-
cernible. This observation is further elucidated by plotting
the local non-Newtonian importance factor IL in Fig. 23 for
the power-law and Casson rheological models at three distinct
time instances during the cardiac cycle. As previously dis-
cussed, this factor quantifies the influence of non-Newtonian
apparent viscosity on flow characteristics. In stage T1 of the
cardiac cycle, IL values slightly exceed one near the valve
leaflets and the wall region of the valve and sinus sections.
This is due to the presence of high-shearing zones in these
regions that reduce apparent viscosity (however, it remains
lesser than the Newtonian one), resulting in IL values slightly
above one. Conversely, in the aortic region, IL values are sub-
stantially higher than one throughout, except near the wall,
for both power-law and Casson models. Progressing to stage
T2, increased velocity (and hence higher shear rate) further
diminishes apparent viscosity, with IL values precisely equal
to one near the valve leaflets and valve and sinus regions for
the power-law model. Additionally, the region of lower IL val-
ues extends deeper into the aortic region at this stage. In stage
T3 of the cardiac cycle, this trend is accentuated. Notably, the
Casson model exhibits a higher non-Newtonian importance
factor than the power-law model across all stages of the car-
diac cycle, indicating a greater impact on flow characteristics.

Spatial variations in velocity magnitude, vortical structures,
or wall shear stress offer valuable insights into the flow dy-
namics at different time instances during the cardiac cycle.
However, it is the spatially averaged flow parameters that hold
greater clinical significance. Hence, akin to steady inflow con-
ditions, various post-processed spatially averaged parameters
are presented in Table IV for different blood rheological mod-
els and cardiac cycle stages. From this table, it can be seen
that the pressure drop is notably higher in stage T1 compared
to T2, with a further increase observed in T3 surpassing T1
levels. Conversely, drag forces exerted on valve leaflets peak
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(a) Newtonian, T1, Q = 103 s-2

(d) Power-law, T1, Q = 103 s-2

(g) Casson, T1, Q = 103 s-2

(b) Newtonian, T2, Q = 5 × 104 s-2

(e) Power-law, T2, Q = 5 × 104 s-2

(h) Casson, T2, Q = 5 × 104 s-2

(c) Newtonian, T3, Q = 5 × 104 s-2 

(f) Power-law, T3, Q = 5 × 104 s-2

(i) Casson, T3, Q = 5 × 104 s-2

FIG. 21. Isosurface for the Q-criteria during mid-acceleration (t = T 1 ≈ 1965 ms), peak systolic (t = T 2 ≈ 2074 ms) and mid-deceleration
(t = T 3 ≈ 2170 ms) phase of the cardiac cycle predicted by Newtonian, power-law, and Casson fluid models of blood. The embedded color
bar shows the corresponding magnitude of velocity.

in T2 and reach a minimum in T3. These increased forces in
the peak systolic stage stem from the maximum blood flow
rate and velocity, consequently elevating shear stresses and
frictional drag forces on the leaflet wall. As evident from the
surface distribution of WSS, the corresponding maximum and
surface-averaged wall shear stress values are highest in T2, as
presented in Table IV. Notably, the Casson fluid model ex-
hibits higher values for most parameters than the power-law
and Newtonian models, which was also evident from the sur-
face distribution of WSS in Fig. 22. For example, surface-
averaged WSS values are 6.3446 and 5.4672 for the Casson
and Newtonian models, respectively, implying a 16.4% dif-
ference. Similarly, the Casson model shows a higher pres-
sure drop, albeit with a 4.5% difference compared to WSS.
This discrepancy remains significant (>13%) across other car-
diac cycle stages, i.e., T1 and T3. This is due to the higher
apparent viscosity inherent in the Casson model relative to
the Newtonian counterpart. This trend aligns with observa-
tions from Fig. 23, where the non-Newtonian importance fac-
tor shows the higher apparent viscosity associated with the
Casson model, resulting in increased viscous forces and wall
shear stresses. Moreover, the blood damage (BD) parame-
ter exhibits its peak values when blood exhibits yield stress
characteristics. Notably, the highest levels of damage occur
during the T2 phase, regardless of the blood’s non-Newtonian

behaviors. A notable discrepancy in BD values arises between
considering blood as a simple Newtonian fluid and as a Cas-
son fluid, amounting to approximately 47%, as shown in Ta-
ble IV. This substantial difference signifies the importance of
accounting for non-Newtonian blood behaviors, particularly
yield stress, in the design of blood-contacting medical devices
like mechanical heart valves, aiming to enhance their func-
tionality and performance.

VI. CONCLUSIONS

This study conducts extensive three-dimensional direct nu-
merical simulations (DNS) to delve into the impact of non-
Newtonian rheological behaviors of blood, including shear-
thinning and yield stress, on the hemodynamics past a bileaflet
mechanical heart valve. The simulations utilize the finite
volume method (FVM) based on the open-source computa-
tional fluid dynamics (CFD) code OpenFOAM. Before diving
into the main investigation, the accuracy and reliability of the
present CFD solver are rigorously validated against existing
experimental and numerical data from the literature, ensuring
the robustness of the present computational framework. Simu-
lations are conducted under both steady inflow and physiolog-
ically realistic pulsatile flow conditions. In steady inflow con-
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(a) Newtonian, T1

(d) Power-law, T1

(g) Casson, T1

(b) Newtonian, T2

(e) Power-law, T2

(h) Casson, T2

(c) Newtonian, T3

(f) Power-law, T3

(i) Casson, T3

FIG. 22. Variation of the wall shear stress (WSS) during mid-acceleration (t = T 1 ≈ 1965 ms), peak systolic (t = T 2 ≈ 2074 ms) and mid-
deceleration (t = T 3 ≈ 2170 ms) phase of the cardiac cycle predicted by Newtonian, power-law, and Casson fluid models of blood. The values
shown in the legend have units of ‘Pa’.

ditions, three central jets form—one between the two valve
leaflets and two lateral jets between the leaflets and the valve
housing wall, which decrease in size with the Reynolds num-
ber. A mushroom-like flow structure emerges downstream
of the valve leaflets, gradually diminishing with increasing
Reynolds number. Furthermore, with the increasing values
of the Reynolds number, a gradual transition in the flow field
from a steady and laminar to an unsteady and turbulent is
observed. Under pulsatile flow conditions, jet sizes increase
from the mid-acceleration stage to the peak stage of the car-
diac cycle, ultimately dissipating in the deceleration stage due
to adverse pressure gradients. At this stage, small vortical
structures appear downstream of the valve leaflets, although
jet sizes remain smaller than those observed in steady inflow
conditions.

While the spatial variations in the flow field due to blood
non-Newtonian behaviors may not be immediately apparent,
their influence on surface and time-averaged clinical quanti-
ties like wall shear stress (WSS), pressure recovery, and blood

damage is substantial. For instance, WSS values are signif-
icantly higher in the shear-thinning power-law model com-
pared to the Newtonian model, with a difference of around
67% at Re = 750, gradually decreasing to less than 1% at
Re = 5000. Similarly, pressure recovery downstream of the
valve leaflets is lower in the presence of the shear-thinning
behavior of blood. Additionally, WSS values are increased
under pulsatile flow conditions, especially when considering
shear-thinning and yield stress behaviors of blood, with yield
stress behavior exhibiting over 13% higher values than the
Newtonian model. Furthermore, drag forces acting on the
valve leaflets are increased when non-Newtonian blood be-
haviors are considered, indicating their significant influence
on hemodynamics and associated consequences such as blood
cell damage. It is also evident in the blood damage (BD) pa-
rameter values, showing a variation of approximately 47% be-
tween blood exhibiting non-Newtonian yield stress character-
istics and blood characterized by a constant Newtonian vis-
cosity.
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FIG. 23. Local non-Newtonian importance factor (IL = η/η∞) at eight different planes (P1-P8) during various time instances for the two
non-Newtonian fluid models of blood, namely, (a) power-law, mid-acceleration phase (t = T 1 ≈ 1965 ms), (b) Casson, mid-acceleration phase
(t = T 1 ≈ 1965 ms), (c) power-law, systolic peak (t = T 2 ≈ 2074 ms), (d) Casson, systolic peak (t = T 2 ≈ 2074 ms), (e) power-law, mid-
deceleration phase (t = T 3 ≈ 2170 ms), and (f) Casson, mid-deceleration phase (t = T 3 ≈ 2170 ms).

However, it should be emphasized here that this study as-
sumes fixed leaflets at the maximum opening, omitting fluid-
structure interaction (FSI) that occurs in real scenarios dur-
ing mechanical heart valve operation. Additionally, the valve
housing wall is treated as a rigid solid, whereas in reality, it
is flexible and extensible. Addressing these aspects would of-
fer a more realistic depiction of blood non-Newtonian behav-
iors’ influence on the corresponding hemodynamics. How-
ever, addressing all these aspects would require solving addi-
tional physics, which, in turn, would necessitate more com-
putational hours, which will be explored in our subsequent
studies.
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