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Optimal Bridge, Twin Bridges and Beyond:

Inserting Edges into a Road Network to Minimize

the Constrained Diameters

Zhidan Feng∗ Henning Fernau† Binhai Zhu‡

Abstract

Given a road network modelled as a planar straight-line graph G =
(V,E) with |V | = n, let (u, v) ∈ V × V , the shortest path (distance)
between u, v is denoted as δG(u, v). Let δ(G) = max(u,v) δG(u, v), for
(u, v) ∈ V × V , which is called the diameter of G. Given a disconnected
road network modelled as two disjoint trees T1 and T2, this paper first
aims at inserting one and two edges (bridges) between them to minimize
the (constrained) diameter δ(T1∪T2∪Ij) going through the inserted edges,
where Ij , j = 1, 2, is the set of inserted edges with |I1| = 1 and |I2| = 2.
The corresponding problems are called the optimal bridge and twin bridges

problems. Since when more than one edge are inserted between two trees
the resulting graph is becoming more complex, for the general network G

we consider the problem of inserting a minimum of k edges such that the
shortest distances between a set of m pairs P = {(ui, vi) | ui, vi ∈ V, i ∈
[m]}, δG(ui, vi)’s, are all decreased.

The main results of this paper are summarized as follows:

• We show that the optimal bridge problem can be solved in O(n2)
time and that a variation of it has a near-quadratic lower bound
unless SETH fails. The proof also implies that the famous 3-SUM
problem does have a near-quadratic lower bound for large integers,
e.g., each of the n input integers has Ω(log n) decimal digits. We
then give a simple factor-2 O(n log n) time approximation algorithm
for the optimal bridge problem.

• We present an O(n4) time algorithm to solve the twin bridges prob-
lem, exploiting some new property not in the optimal bridge prob-
lem.

• For the general problem of inserting k edges to reduce the (graph)
distances between m given pairs, we show that the problem is NP-
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complete — even if the given and resulting graphs are planar and
the inserted edges must have a bounded length.

1 Introduction

Geometric spanners have received a lot of attention since 1986 [8]. In the major-
ity of the literature, the problem is to construct a geometric (or metric) graph
G from scratch such that the maximum stretch factor (or dilation) of G is mini-
mized (or approximated). Recently, a breakthrough result of Gudmundsson and
Wong proved that by inserting k edges greedily into a connected metric graph
M the dilation of the resulting graph can be approximated with a factor of O(k)
[12].

In this paper, we consider a similar problem of inserting edges to an existing
road networkG (modelled as a planar straight-line graph of n vertices) such that
the diameter of the resulting graph is minimized/reduced. We start from the
basic problem of inserting one and two edges into two disjoint trees T1 and T2

to minimize the constrained diameter, going through the inserted edges, of the
resulting graphs, which are called the optimal bridge and twin bridges problems.
These problems could appear in some scenario, for example, in the recent work
by Higashikawa et al., where the vertices of G could be in red and black and
a path must be planned with no red-red edge (i.e., no edges whose vertices are
both red) [3]. Naturally, such a path could be planned by deleting all red-red
edges in G, possibly resulting in disjoint components (disjoint trees or a forest
when G is a tree). Then, to ensure connectivity and minimizing/reducing the
dilation some non-red-red edges much be inserted — even though how to do
that is left open.

Coming back to the optimal bridge and twin bridges problems, we present
O(n2) and O(n4) time algorithms to solve them. For the former, we show
that a variation of it, the one-bridge decision problem, has a near-quadratic
lower bound unless the Strong Exponential Time Hypothesis (SETH) fails. Our
method modifies the traditional one by Williams and it can be used to prove
that the famous 3-SUM problem has a near-quadratic lower bound when the n
input integers are large, i.e., each has Ω(logn) decimal digits. Then, a simple
O(n logn) time approximation algorithm is designed to achieve a factor-2 (the
factor is tight). Consequently, this approximation algorithm can be used as a
subroutine to approximate the more general problem of connecting k + 1 trees
with k edges into a tree T so as to minimize the diameter of T , with a factor of 4
and a running time of O(n log n). For the twin bridges problem, not surprisingly,
when two edges are added between T1 and T2, the resulting graph is not a tree
anymore. Hence we need to consider a new scenario that never occurs in the
optimal bridge problem.

On the other hand, from a pure geometric setting, the optimal bridge prob-
lem is well-studied when the input is a pair of polygons. The problem was first
studied by Cai, Xu and Zhu in 1999 for the case where the input is a pair of
convex polygons P and Q, with a total of n vertices [7]. (In this case, the
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problem is to construct a connecting segment pq between P,Q such that p ∈ P
and q ∈ Q and maxx∈P |xp| + |pq| + maxy∈Q |qy| is minimized. Here, |xp| is
the Euclidean distance between points x and p.) The problem was solved in
O(n2 logn) time and was subsequently improved to O(n) by using geometric
properties [18, 4, 14]. When the polygons P,Q are not necessarily convex, the
problem is to find a connecting segment pq between P,Q such that p ∈ P and
q ∈ Q to minimize maxx∈P δP (x, p) + |pq|+maxy∈Q δQ(q, y). (Here δP (x, p) is
the geodesic distance between x and p in polygon P .) For this problem, there
are two versions: (1) p, q are visible to each other, and (2) p, q do not have to
be visible to each other. For the first case, the problem can be solved in O(n2)
time by Kim and Shin [14], improved to O(n log3 n) time by Tan [19]. For the
second case, Bhosle and Gonzalez gave an O(n2 logn) time algorithm [5] (and
they solved a variation when p, q could be connected by one or more segments in
the same amount of time [6]). When P,Q are rectilinear and p, q are connected
by one or two rectilinear segments, Wang gave an optimal O(n) time algorithm
[20].

Also in the geometric setting, when P,Q are both convex, a simple O(n)
time greedy 2-approximation algorithm was given by Cai, Xu and Zhu [7]. The
algorithm is simply to connect two closest points between P and Q. Slightly
later, Ahn, Cheong and Shin gave a factor-

√
2 approximation by connecting

the centers of P and Q (i.e., the centers of the circumscribing circles of P and
Q), which can be used to obtain a factor-2

√
2 approximation to connect k + 1

convex polygons by inserting k edges to minimizing the (geodesic) diameter. In
our case, we show that the greedy algorithm by Cai, Xu and Zhu can be adapted
to the road network setting to achieve a factor-2 approximation and the factor
is tight. The algorithm can also be applied to obtain a factor-4 approximation
to connect k + 1 trees into a tree T by inserting k edges so as to minimize the
diameter of T .

As discussed earlier, when two or more edges are added between T1 and T2,
the resulting graph is not a tree anymore. Hence, algorithms must make use
of some new properties. We prove such properties and present an O(n4) time
algorithm to solve the problem.

On the other hand, it is noted that when two or more edges are inserted
to connect T1 and T2 it might be possible that it cannot reduce the diameter
further — regardless of if the second edge is inserted between T1 and T2 or
between the vertices in Ti, i ∈ {1, 2}. (An example is when T1 and T2 are
two disjoint segments on the same line.) Hence, the problem here is more on
inserting edges to a connected graph to minimize/reduce the diameter, closer
to the setting by Gudmundsson and Wong [12].

Finally, we investigate the complexity of the following problem: given a
connected road network G = (V,E) and a set of pairs P = {(u, v) | u, v ∈ V },
insert k edges such that the distances δG(u, v), with (u, v) ∈ P , can all be
reduced. We prove that this problem is NP-complete by a reduction from Vertex
Cover on Planar 2-Connected Cubic Graphs [15].

The paper is organized as follows. In Section 2 we give necessary definitions.
In Section 3 we study the optimal bridge problem. In Section 4 we present
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the results for the twin bridges problem. In Section 5, we present the NP-
completeness proof for the general case. We conclude the paper in Section 6.

2 Preliminaries

We define a road network as a (weighted) planar straight-line graph G =
(V,E). Each vertex (node) p ∈ V is a point in the plane with coordinates
p = (x(p), y(p)). The weight between two points p, q is their Euclidean dis-
tance which is denoted as |pq|, and is equal to

√

(x(p)− x(q))2 + (y(p)− y(q))2.
Given u, v ∈ V , the shortest path between them on G is denoted as δG(u, v).
(We also slightly abuse the notation to use δG(u, v) as the length of the corre-
sponding shortest path.) The diameter of G is defined as maxu,v∈V δG(u, v).

A tree T = (V (T ), E(T )) is a connected road network with no cycle. As well-
known facts, between u, v ∈ V (T ) the shortest path δT (u, v) is unique. Also, if
|V (T )| = n, then the shortest path tree from any node u to all other nodes can
be computed in O(n) time by running the breadth-first search (BFS) algorithm
starting at u. Consequently, the all-pair shortest paths problem on T can be
solved in O(n2) time; moreover, when this information is stored as a table, the
length of δT (u, v) can be returned in O(1) time. In fact, maxx∈V (T ) δT (u, x),
the maximum distance from u ∈ V (T ) to a (leaf) node x, can be computed in
O(n) time by looking at the row/column maximum; moreover, once stored, this
distance can be queried in O(1) time. Throughout the paper, we assume such
a table on all-pair shortest path distances is associated with the corresponding
tree.

3 The optimal bridge problem

The optimal bridge problem is defined as follows: given two tree road networks
(trees for short) T1 and T2, add an edge (p, q), with p ∈ V (T1), q ∈ V (T2),
such that the (constrained) diameter through pq of the resulting graph T1∪T2∪
{(p, q)}, i.e., the maximum of δT1

(x, p) + |pq| + δT2
(q, y) with x ∈ V (T1) and

y ∈ V (T2), is minimized.
An O(n2) time algorithm can be easily designed to solve the optimal bridge

problem:

1. For each pair, p ∈ V (T1), q ∈ V (T2), record maxx∈V (T1) δT1
(x, p) + |pq|+

maxy∈V (T2) δT2
(q, y).

2. Return the minimum distance recorded and then compute the correspond-
ing path between x and y.

It is intriguing to know if this O(n2) time bound can be further improved.
For the (pure) geometric version where two polygons with vertices n are given
and the bridge must be a segment pq where p is visible from q, an O(n log3 n)
time algorithm is known [19].
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We define the one-bridge problem as the decision version of the optimal
bridge: given constants C1 and C2, determine if a bridge pq exists such that
|pq| = C1 and its specific solution value δT1

(x, p) + |pq|+ δT2
(q, y) = C2, where

x is a leaf in T1 and y is a leaf in T2. Clearly, one-bridge is a variation of the
optimal bridge problem. We show next that the one-bridge problem cannot be
solved in O(n2−ǫ) time unless the SETH (Strong Exponential Time Hypothesis)
fails. Thus, even though this does not give a similar lower bound for the optimal
bridge problem, it does give some evidence that it is probably hard to improve
the O(n2)-time bound for the optimal bridge problem.

3.1 A near-quadratic lower bound for the one-bridge prob-

lem

We prove the conditional lower bound by considering a variation of Williams’
Orthogonal Vector (OV) problem [21], which we call Complementary Orthogonal
Vectors problem (COV for short).

Given a binary (0/1) vector in d-dimension, v = (v1, v2, . . . , vd), define v̄ =
(v̄1, v̄2, . . . , v̄d) (with 0̄ = 1 and 1̄ = 0). We say that v and v̄ are complementary
to each other. Clearly, v and v̄ are orthogonal, i.e., the dot product satisfies
v · v̄ = 0. Roughly, in Williams’ case, we given a k-SAT instance φ′ with a set of
n variables A ∪ B, with |A| and |B| being of roughly the same size n/2. Then
two sets of binary vectors in d-dimension, A′ and B′, which correspond to how
a partial assignment of A and B satisfy the d clauses in φ′, are constructed.
Here the j-th component of a d-vector u ∈ A′ is 0 if the partial assignment of
A can satisfy the j-th clause in φ′, and 1 otherwise. (A vector in B′ is similarly
defined.) Then, Williams’ problem is to find if there are binary vectors u ∈ A′

and v ∈ B′ such that they are orthogonal, i.e., u · v = 0. In our Complementary
Orthogonal Vectors (COV) problem, we have two sets of ternary vectors A and
B such that each entry in a vector of A and B is an element of {0, 1, 2}, and
we want to find a pair of binary vectors u ∈ A and v ∈ B such that they are
complementary.

To modify William’s proof, we make the following changes: (1) Use One-in-
three SAT instead of k-SAT; (2) Modify the definition for constructing the sets
of d-vectors.

Let φ be an One-in-three SAT instance composed of n variables and m
disjunctive clauses where the i-th clause Fi contains three literals and is in the
form of (xi,1∨xi,2∨xi,3). The problem is to determine for i = 1..m, exactly one
of the three literals in each clause Fi, i.e., xi,1, xi,2 and xi,3, is assigned TRUE.
One-in-three SAT is a well-known NP-complete problem with m = Ω(n) [17].

We arbitrarily partition the variables in φ into two equal-sized parts VA and
VB (we can assume that n is even, though it does not really matter for the
result). Each of the m-vectors u ∈ A is determined by an assignment αA of VA

(i.e., a partial assignment of the variables in φ), where

u = (u1, u2, · · · , um),
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and

ui =







0 if Fi is satisfied with exactly one TRUE literal by αA,

1 if Fi is not satisfied by αA,

2 if Fi is satisfied with at least two TRUE literals by αA.

(1)

Similar to (1), we could define an m-vector v ∈ B determined by an assignment
αB of VB. In a preprocessing, we could remove all non-binary vectors from
A and B, but this does not affect the lower bound proof (for the worst case).
Hence we will stick with the ternary vectors as input for COV.

Then, similar to Williams’ idea, we can claim that φ has a valid truth assign-
ment if and only if there are vectors u ∈ A and v ∈ B which are complementary
(i.e., COV has a solution). As there are 2n/2 assignments for VA and VB respec-
tively, the above reduction takes 2n/2 · O(m) time. If COV could be computed
in O(N2−ǫ) time, where N is the input size for COV, One-in-three SAT could
be solved in 2n−nǫ/2 · O(m2−ǫ) time — which would contract the SETH. We
hence have the following theorem.

Theorem 3.1 The Complementary Orthogonal Vectors problem with input size N
cannot be solved in O(N2−ǫ) unless the SETH fails.

We next reduce COV to one-bridge as follows¿ Let the input for COV be
two sets A and B each containing n1 and n2 (0/1/2)-vectors in m-dimension
respectively, with n1 + n2 = n, Hence the total size of COV is N = mn. For
each m-vector u ∈ A, with u = (u1, u2, · · · , um), we construct a path Lu of
segment lengths ℓi, i.e., Lu = (ℓ1, ℓ2, · · · , ℓm), where

ℓi =







1
3i−1 if ui = 0,

0 if ui = 1,

4 if ui = 2.

(2)

Here ℓi is the length of the i-th segment of Lu. (The fact that ℓi = 0 means that
we could have duplicated geometric points on Lu.) Similarly, given an m-vector
v ∈ B, with v = (v1, v2, · · · , vm), we can construct a path Lv of segment lengths
ℓ′i, i.e., Lv = (ℓ′1, ℓ

′

2, · · · , ℓ′m), with

ℓ′i =







1
3i−1 if vi = 0,

0 if vi = 1,

4 if vi = 2.

(3)

Let C1 = 0 and C2 = C + 2 with

C = 1 +

(
1

3

)

+

(
1

3

)2

+ · · ·+
(
1

3

)m−1

=
3

2

(

1−
(
1

3

)m)

.

Then we put these straight paths Lu’s not containing segment lengths of four
downward along the Y -axis starting at (0, C). We also add another node (0, C+
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(0,C)

(0,0)

(0,C+1)

(0,−1)

4

4

4

4

p, q

T1

T2

Lu

Lv

Figure 1: An example for the reduction from COV to the one-bridge decision
problem. The vertical paths, which should all be on the Y -axis, are drawn for
a better visualization.

1) and connect it to (0, C). For Lu’s which contain a segment of length 4, we
just convert each of them into a path centered at (0, C), in a star fashion. This
would give us T1. Similarly, we define put the straight path Lv’s not containing
a segment of length 4, each corresponding to a binary vector v ∈ B, upward and
starting at (0, 0) and we also add another node (0,−1) and connect it to (0, 0).
For Lv’s containing a segment of length 4, we put them in a star centered at
(0, 0). This gives us the second tree T2. See Figure 1 for an example.

This reduction obviously takes O(N) = O(mn) time, where the total number
of points in T1 and T2 is O(N). Finally, we claim that COV has a solution if
and only if between T1 and T2 there is a bridge pq with length C1 = 0 and
with a specific solution value of C2 = C + 2. We prove this “iff” relation next,
focusing on the “if-part” as the “only-if” part is trivial. We first prove the
following lemma regarding the geometric sequence (1, 1

3 ,
1
32 , · · · , 1

3m−1 ). Note
that as C < 3

2 , C2 < 3.5. Hence, we can ignore any path with a segment length
of 4 in our proof, as they would incur a specific solution of value at least 4,
which is greater than C2.

Lemma 3.1 For 0 ≤ i < m− 1,
(
1
3

)i
>
∑

j=i+1..m−1

(
1
3

)j
.
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Proof. By calculation,

∑

j=i+1..m−1

(
1

3

)j

=

(
1

3

)i+1

· 3
2

(

1−
(
1

3

)m−i−1
)

<
1

2
·
(
1

3

)i

<

(
1

3

)i

.

⊓⊔
We then prove the “if-part” by proving its contrapositive: if COV does not

have a solution, then between T1 and T2 there does not exist a bridge pq with
length C1 = 0 and with a specific solution value of C2 = C + 2. To finish this
proof, we need the following two lemmas.

Lemma 3.2 Let u ∈ A, v ∈ B; moreover, u = (u1, u2, · · · , um) and v = (v1, v2,
· · · , vm) with ui, vi ∈ {0, 1}. If there exists an i with ui = vi = 0 and for all
k < i exactly one of uk and vk is equal to zero, then the sum of segment lengths
in Lu and Lv is greater than C.

Proof. Here i is the smallest index such that ui = vi = 0 and for all k < i

exactly one of uk and vk is equal to zero. Then, by definition, both ℓi =
(
1
3

)i−1

and ℓ′i =
(
1
3

)i−1
would contribute to the sum of segment lengths in Lu and Lv.

Following Lemma 3.1,

(
1

3

)i−1

>
∑

j=i..m−1

(
1

3

)j

.

In other words, the value of this additional copy of
(
1
3

)i−1
is greater than the

sum of all possible shorter segment lengths, each appearing exactly once, which
is necessary to achieve a sum of C. Hence there is no bridge pq with a length
of zero connecting T1 and T2, and the lemma is proven. ⊓⊔

Lemma 3.3 Let u ∈ A, v ∈ B; moreover, u = (u1, u2, · · · , um) and v = (v1, v2,
· · · , vm) with ui, vi ∈ {0, 1}. If there exists an i with ui = vi = 1 and for all
k < i exactly one of uk and vk is equal to zero, then the sum of segment lengths
in Lu and Lv is smaller than C.

Proof. Symmetrically, i is the smallest index such that ui = vi = 1 and for
all k < i exactly one of uk and vk is equal to zero. Again, by definition, both

ℓi =
(
1
3

)i−1
and ℓ′i =

(
1
3

)i−1
would not contribute to the sum of segment lengths

in Lu and Lv. Again, by the proof of Lemma 3.1,

1

2
·
(
1

3

)i−1

>
∑

j=i..m−1

(
1

3

)j

,

or
(
1

3

)i−1

> 2 ·
∑

j=i..m−1

(
1

3

)j

.
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In other words, for all possible segment lengths shorter than
(
1
3

)i−1
, each pos-

sibly appearing twice in Lu as well as in Lv, their sum would not make up for
(
1
3

)i−1
which is needed to have a sum of C for the segments in Lu and Lv.

Again, there cannot be a bridge pq with a length of zero connecting T1 and T2.
⊓⊔

Theorem 3.2 Given two trees with a total of N vertices and non-negative con-
stants C1 and C2, the one-bridge decision problem cannot be solved in O(N2−ǫ)
time unless the SETH fails.

Proof. As claimed earlier, COV has a solution if and only if between T1 and
T2 there is a bridge pq with length C1 = 0 and with a specific solution value of
C2 = C + 2. We finish to prove this “iff” relation, focusing on the “if-part” as
the “only-if” is trivial.

Suppose that there is a bridge pq between T1 and T2 with length C1 = 0
and with a specific solution value of C2 = C + 2. Since C < 1.5, we have
C + 2 = C2 < 3.5. Hence the only possible specific solution value C2 in the
one-bridge instance is the (tree) distance between (0, C + 1) and (0,−1), as all
non-vertical segments have length 4. As C1 = 0 (i.e., there is a bridge of length
zero between T1 and T2), the sum of segment lengths in Lu and Lv, which
are paths in T1 and T2 respectively, must be exactly C. Following Lemma 3.2
and Lemma 3.3, for that to happen, each component in the geometric sequence
(1, 13 ,

1
32 , · · · , 1

3m−1 ) must appear exactly once in Lu and Lv. Recall that the
total number of points in T1 and T2 is O(N). Then, if one-bridge could be
solved in O(N2−ǫ) time the Complementary Orthogonal Vectors problem would
also be solved in O(N2−ǫ) time. But this is a contradiction to Theorem 3.1. ⊓⊔

3.2 Implication to the 3-SUM Conjecture

The 3-SUM problem is defined as follows: given a set S of n integers, decide if
there are a, b, c ∈ S such that a+ b+ c = 0. The problem was initially posed by
Gajentaan and Overmars [11], who conjectured that the problem has a lower
bound of Ω(n2). Then the problem was solved in o(n2) time by Baran et al. [2]
(later even for real numbers [13]). Hence the new conjecture for 3-SUM is by
Patrascu, which is that 3-SUM has a lower bound of Ω(n2−o(1)) [16]. We show
that when the integers in S are large, i.e., each has Ω(log n) decimal digits,
then the 3-SUM conjecture is true (in fact, it is almost matches the original
conjecture by Gajentaan and Overmars).

We follow the set-up for Theorem 3.1. Recall that φ is an One-in-three SAT
instance composed of n variables and m disjunctive clauses where the i-th clause
Fi contains three literals and is in the form of (xi,1 ∨ xi,2 ∨ xi,3). The problem
is to determine for i = 1..m, exactly one of the three literals in each clause Fi,
i.e., xi,1, xi,2 and xi,3, is assigned TRUE.

We arbitrarily partition the variables in φ into two equal parts VA and VB

(we can assume that n is even, though it does not really matter for the result).
Each of the (m + 2)-vectors u ∈ A is determined by an assignment αA of VA
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(i.e., a partial assignment of the variables in φ), where

u = (u1, u2, · · · , um+2),

and, for 1 ≤ i ≤ m,

ui =







0 if Fi is not satisfied by αA,

1 if Fi is satisfied with exactly one TRUE literal by αA,

2 if Fi is satisfied with at least two TRUE literals by αA.

(4)

For i = m+ 1 and i = m+ 2, we define

um+1 =

{

1 if u is in VA,

0 otherwise.
(5)

um+2 =

{

1 if v is in VB,

0 otherwise.
(6)

Similar to (1), we could define an (m + 2)-vector v ∈ B determined by an

assignment αB of VB. We define the integer v∗(m + 2) =

m+2
︷ ︸︸ ︷

11 · · ·1 (which can
still be viewed as a vector of m+ 2 ones).

Let S be a set of 2n/2+1 + 1 large integers, each with m+ 2 decimal digits;
more precisely, let S = A∪B ∪ {−v∗(m+ 2)}. Then, similar to Williams’ idea,
we can claim that φ has a valid truth assignment if and only if there are vectors
(integers) u ∈ A and v ∈ B such that u+v+(−v∗(m+2)) = 0 (or, equivalently,
if there are u, v ∈ S such that u + v + (−v∗(m + 2)) = 0, i.e., 3-SUM has a
solution). As there are 2n/2 assignments for VA and VB respectively, the above
reduction takes 2n/2 · O(m) time. If 3-SUM could be computed in O(N2−ǫ)
time, where N is the number of input integers for 3-SUM, One-in-three SAT
could be solved in 2n−nǫ/2 ·O(m2−ǫ) time — which would fail the SETH. (Note
that when N large input integers are given for 3-SUM, each of them needs to
have m+ 2 = Ω(logN) decimal digits.) We hence have the following theorem.

Theorem 3.3 The 3-SUM problem with N large integers, each with Ω(logN)
decimal digits, cannot be solved in O(N2−ǫ) time unless the SETH fails.

We could easily extend the above ideas to k-SUM: just partition the variables
in φ into k subsets Vi, 1 ≤ i ≤ k, each containing at most n/k variables. Then
from each Vi, 1 ≤ i ≤ k, construct a set of integers with m + k decimal digits
where the first m digits are defined as in equation (1) while the (m + j)-th
digit is one for j = i, and zero for all other 1 ≤ j ≤ k. However, note that,
among the first m decimal digits, it is possible to obtain a ternary sub-vector
of 1’s due to possible carries. For instance, we could obtain a 2-vector (1,1) by
adding six ternary 2-vectors, (0, 2) + (0, 2) + (0, 2) + (0, 2) + (0, 2) + (0, 1), due
to a carry from adding five 2’s. Hence, we need k ≤ 6 to enforce the relation
that φ has a valid truth assignment if and only if there are vi ∈ Vi such that
v1 + v2 + · · ·+ vk−1 + (−v∗(m+ k − 1)) = 0. Therefore, we have
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Corollary 3.1 For k ≤ 6, the k-SUM problem with N large integers, each with
Ω(logN) decimal digits, cannot be solved in O(Nk−ǫ) time unless the SETH
fails.

3.3 A simple approximation

Even though we cannot solve the one-bridge problem in o(n2) time (neither
we could for the optimal bridge problem so far), a subquadratic approximation
algorithm for the optimal bridge problem can be easily designed as follows.

1. Compute the closest pair (p, q), where p ∈ V (T1), q ∈ V (T2).

2. Return maxx∈V (T1) δT1
(x, p) + |pq| + maxy∈V (T2) δT2

(q, y) and the corre-
sponding path between x and y.

The closest pair between V (T1) and V (T2) can be computed in O(n log n) time
using a standard method, say, Voronoi diagrams. Note that δT1

(x, p) (resp.
δT2

(q, y)) can be computed in linear time by running BFS starting at p (resp.
q) on the tree T1 (resp. T2); i.e., we do not need the O(n2) time preprocessing
as for the exact algorithm.

Theorem 3.4 The optimal bridge problem can be solved in O(n2) time and can
be approximated in O(n log n) time with a factor of 2 (and the factor is tight).

Proof. The running times are straightforward. For the approximation factor,
if OPT is the optimal solution value, (p∗, q∗) is the optimal bridge and (p, q) is
the approximate solution computed. Also, let x∗ ∈ V (T1) and y∗ ∈ V (T2) be
chosen such that δT1

(x, p∗) + |p∗q∗|+ δT2
(q∗, y) is maximized. Then,

max
x∈V (T1)

δT1
(x, p) ≤ D(V (T1)) ,

whereD(V (T1)) is the diameter of the tree T1. Similarly, maxy∈V (T2) δT2
(q, y) ≤

D(V (T2)). On the other hand, let OPT = δT1
(x∗, p∗) + |p∗q∗| + δT2

(q∗, y∗).
Then, δT1

(x∗, p∗) ≥ D(V (T1))/2 and δT2
(q∗, y∗) ≥ D(V (T2))/2. Consequently,

the approximation solution APP satisfies

APP = max
x∈V (T1)

δT1
(x, p) + |pq|+ max

y∈V (T2)
δT2

(q, y)

≤ D(V (T1)) + |pq|+D(V (T2))

≤ 2δT1
(x∗, p∗) + |p∗q∗|+ 2δT2

(q∗, y∗)

≤ 2 ·OPT.

⊓⊔
To see the tightness of the approximation factor, we refer to Figure 2. In

this figure, the approximate bridge is (c, f), giving a solution value of 4n+1−ε.
The optimal bridge is (b, e), resulting a solution value of 2n+ 1. Clearly,

lim
n→∞

4n+ 1− ε

2n+ 1
= 2.
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Figure 2: An example where two paths (a, b, c) and (d, e, f) need to be connected
into a spanning tree. be and cf are positioned by rotating a segment of length
n at b and e slightly to achieve that |cf | = 1 − ǫ. Adding (b, e) would result in
an optimal diameter of 2n+ 1; with the greedy method of adding the shortest
edge between the two paths, (c, f) is added to achieve a diameter of 4n+1− ε.
(The distances in the figure are not measured geometrically, due to the space
constraint.)

We note that for the geometric version when two convex polygons are given,
the approximation algorithm can make use of the centers of the polygons; hence
the factor can be improved to

√
2 [1]. Nonetheless, if we need to connect k + 1

tree road networks using k edges to minimize the diameter of the resulting tree,
combining our approximation with a method to [1] can be used to obtain a
factor of 4.

4 The twin bridges problem

In this section we focus on the twin bridges problem on two road networks
which are given as disjoint (geometric) trees. Given two disjoint trees T1 and T2

with a total of n vertices (which are points in the plane), we aim to add pairs
(p1, q1) and (p2, q2) with pi ∈ V (T1), qi ∈ V (T2), i ∈ {1, 2}, and p1 6= p2, q1 6= q2,
as new edges/bridges into T1 and T2 to form a road network T ′′ = T1 ∪ T2 ∪
{(p1, q1), (p2, q2)}, the goal is to minimize the maximum distance between nodes
of T ′′ whose corresponding path must pass through one or two of these bridges.
We loosely call this minimum distance the constrained diameter of T ′′. See
Figure 3 for an example. (Note that since T1 and T2 are initially disconnected,
at least one edge/bridge between T1 and T2 must be added. Consequently, after
the first bridge is added, if we do not require the second edge to be a bridge
between T1 and T2, then adding the second edge in T1 or T2 is a trivial problem.
This case is not included in our twin bridges problem.)

First of all, notice that T ′′ is not a tree anymore. The constrained diameter
of T ′′ can appear in four cases:

1. It is the maximum of δT1
(x, p1) + |p1q1|+ δT2

(q1, y), with x ∈ V (T1) and
y ∈ V (T2);
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Figure 3: An illustration for the twin bridges problem.

2. It is the maximum of δT1
(x, p2) + |p2q2|+ δT2

(q2, y), with x ∈ V (T1) and
y ∈ V (T2);

3. It is the maximum of δT1
(x, p1) + |p1q1|+ δT2

(q1, q2) + |q2p2|+ δT1
(p2, z),

with x, z ∈ V (T1); and

4. It is the maximum of δT2
(y, q1) + |q1p1|+ δT1

(p1, p2) + |p2q2|+ δT2
(q2, w),

with y, w ∈ V (T2).

Note that Case 1 and Case 2 are similar to the optimal bridge problem in
some way; in fact, it is a matter of partitioning Ti into Ti,1 and Ti,2(i = 1, 2)
by deleting an edge in Ti such the two pairs (Ti,k, Tj,l), with {i, j} = {1, 2} and
k, l ∈ {1, 2}, form instances of the optimal bridge problem — with the resulting
optimal bridges p1q1 and p2q2 respectively. (See also the next lemma for the
details.) On the other hand, Case 3 and Case 4 are to improve the diameter
of T1 (resp. T2) using both the bridges p1q1 and p2q2. (In the optimal bridge
problem, it is impossible to improve the diameter of T1 and T2 using the bridge
pq. The reason is that pq is a cut edge between T1 and T2, and going from T1

through pq will lead one to T2 or vice versa.)
We refer to Figure 3, and, assuming a proper partitioning for T1 and T2 is

known as above and the pairing of (T1,k, T2,l) and (T1,l, T2,k) is fixed. Then
for x, p1 ∈ T1,k, p2 ∈ T2,l, and y, q1 ∈ T2,l and q2 ∈ T2,l (or vice versa), with
{k, l} = {1, 2}, we define

f1(x, y, p1, q1, p2, q2) = δT1,k
(x, p1) + |p1q1|+ δT2,l

(q1, y) ,

f2(x, y, p1, q1, p2, q2) = δT1,l
(x, p2) + |p2q2|+ δT2,k

(q2, y) , and

f(x, y, p1, q1, p2, q2) = min{f1(x, y, p1, q1, p2, q2), f2(x, y, p1, q1, p2, q2)} .

Clearly, to compute f(−), the crucial part is to find the partition of T1 and
T2. We show next that Case 1 and Case 2 can be solved in O(n4) time, and the
following lemma is proved first.

Lemma 4.1 Suppose that the optimal solution for the twin bridges problem
occur in Case 1 or Case 2, there must be two edges ei ∈ E(Ti), i ∈ {1, 2},
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such that Ti − {ei}, i ∈ {1, 2}, each results in a pair of trees (Ti,1, Ti,2) and the
problem is reduced to solving two optimal bridge problems with input instances
(T1,1, T2,1), and (T2,1, T2,2), or vice versa.

Proof. We refer to Figure 3. Suppose that p1q1 and p2q2, pi ∈ V (T1), qi ∈
V (T2) for i ∈ {1, 2}, form the optimal solution for the twin bridges problem
under Case 1 or Case 2. Also suppose that the optimal solution is formed by
x ∈ V (T1), y ∈ V (T2), through the bridge p1q1; and z ∈ V (T1), w ∈ V (T2),
through the bridge p2q2. Then in T1 ∪ T2 ∪ {p1q1} ∪ {p2q2} there is a cycle
C∗ = (p1, · · · , p2, q2, · · · , q1), which is 2-connected. Let e1 = (p′, p′′) be an edge
on C∗ but not on either of the constrained diameters between x, y and z, w, and
also on C∗, δC∗(p′, p2) ≥ δC∗(p′′, p1) (or δT1

(p′′, p2) ≥ δT1
(p′, p1)). Then (p′, p′′)

can be deleted to decompose T1 into T1,1 (containing p1) and T1,2 (containing
p2). The reason we could delete e1 is that for a point x′ in T1,1 which is closer
to p′ than p′′, we have

δT1
(x′, p2) = δT1,1

(x′, p′) + δC∗(p′, p2)

≥ δT1,1
(x′, p′) + δC∗(p′′, p1)

= δT1,1
(x′, p′) + |p′p′′|+ δT1,1

(p′, p1)

≥ δT1,1
(x′, p′) + δT1,1

(p′, p1)

= δT1,1
(x′, p1).

In other words, deleting e1 would not affect the (optimal) diameter from a
point in T1 through the bridge p1q1. Similarly, if (p′, p′′) is on C∗ but not
on either of the (optimal) constrained diameters, and we have δC∗(p′, p2) ≤
δC∗(p′′, p1) (or δT1

(p′′, p2) ≤ δT1
(p′, p1), then (p′, p′′) can be deleted such that for

a point z′ in T1,2 which is closer to p′′ than p′, we have δT1
(z′, p1) ≥ δT1,2

(z′, p2).
Symmetrically, T2 can also be decomposed into T2,1, T2,2 by deleting some edge
e2 ∈ E(T2). ⊓⊔

With this lemma, it is easy to solve Case 1 and Case 2 in O(n4) time. We
enumerate the O(n2) pairs of edges (e1, e2) with ei ∈ E(Ti), i ∈ {1, 2}. For
each pair, we delete them from T1 and T2. Then for the two resulting pairs of
trees, one from T1 and the other from T2, we solve the optimal bridge problem
in O(n2) time.

It is noted, surprisingly, that the two optimal bridges p1q1 and p2q2 could
intersect in some cases, contrary to many geometric problems. In Figure 4, we
show such an example, △bcd is initially an equilateral triangle with da being the
height of the edge bc, we then move a slightly out of the triangle and moving
c toward b to have |bd| > |bc| = |cd| = |ad|. We also set |ax| = |by| = |cz| =
|dw| = ε. If the two intersecting bridges bc and ad are chosen, the optimal
solution value is |bc| + 2ε; while if we choose the non-intersecting bridges ac
and and bd, the solution value is |bd|+ 2ε, which is larger. Therefore, when in
practical applications the two bridges must not intersect, we might need to seek
sub-optimal solutions.

It remains to handle Case 3 and 4 now. We focus on Case 3 here as Case 4
can be similarly handled. By definition, in Case 3 the optimal solution is the
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Figure 4: An example for the twin bridges problem in which the two optimal
bridges must intersect. The two input trees are paths: T1 = (x, a, b, y) and
T2 = (z, c, d, w).

maximum of δT1
(x, p1)+|p1q1|+δT2

(q1, q2)+|q2p2|+δT1
(p2, z), with x, z ∈ V (T1).

This can be solved as follows. First, let δT1
(x, z) be the diameter of T1; naturally,

that implies x, z are leaves of T1. Then the problem is to identify two vertices
on δT1

(x, z), say p1 and p2, and also two vertices on T2, say q1 and q2, such that

g(p1, q1, p2, q2) := δT1
(p1, p2)− {|p1q1|+ δT2

(q1, q2) + |q2p2|}

is maximized. Obviously, this can be solved by enumerating all 4-tuples (p1, q1, p2, q2),
which incur a cycle 〈p1, q1, δT2

(q1, q2), q2, p2, δT1
(p2, p1)〉, where δT1

(p1, p2) is a
subpath on the diameter δT1

(x, z). Once (p1, q1, p2, q2) is given, g(p1, q1, p2, q2)
can be computed in O(1) time. Hence all we need to do is to select the max-
imum of these O(n4) values for Case 3 (and symmetrically for Case 4). By
evaluating the recorded values for all recorded solutions in Case 1 and 2 as well,
we therefore have the following theorem.

Theorem 4.1 The twin bridges problem can be solved in O(n4) time.

In the next section, we consider the more general problem of inserting k
edges in a planar road network such that for a set of pairs of vertices we would
like to reduce the shortest path distance between each pair. We call this problem
Reducing Distances Between Pairs (RDBP), and we show that RDBP is NP-
complete.

5 RDBP is NP-complete

We formally define Reducing Distances Between Pairs (RDBP) as follows: Given
a planar straight-line graph G = (V,E) with n vertices and a set of m pairs
P = {(ui, vi) | ui, vi ∈ V, i ∈ [m]}, insert k edges into G to obtain G′ such
that the shortest distance between ui and vi, i ∈ [m], are all decreased (i.e.,
δG′(ui, vi) < δG(ui, vi) for i ∈ [m]).

Our reduction is from Vertex Cover for Planar 2-Connected Cubic Graphs
which is known to be NP-complete [15]. If the graph G is not given with a
straight-line embedding, then following Fary’s theorem [10] it is possible to do
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Figure 5: An illustration for the reduction from Vertex Cover on Planar 2-
Connected Cubic Graphs to RDBP.

that (in fact, even over a grid of size Θ(n2) [9]). Consequently, we can assume
that G is given with a straight-line embedding.

The idea of the reduction is as follows. At each vertex u of G, for its three
incident edges (u, x), (u, y) and (u, z) we cut out a small triangle △(u1u2u3).
Then u is replaced by three paths 〈u1, u, u2, · · · , xu〉, 〈u2, u, u1, · · · , yu〉 and
〈u3, u1, u, u2, · · · , zu〉. (All the · · · represents a subpath of constant size.) More-
over, as all the three paths can be shortened by taking the shortcut u1u2, if u is
selected for a node in a Vertex Cover solution to cover three edges (u, x), (u, y)
and (u, z), then the shortcut u1u2 must be taken. If we perform this transfor-
mation similarly at nodes like x, y and z on G to obtain G′, then the three pairs
in G′ corresponding to edges (u, x), (u, y) and (u, z) in G would be (xu, ux),
(yu, uy) and (zu, uz) — they will be stored in the set of pairs P , though ux, uy

and uz are not drawn in the figure. Note that, by construction, each of these
pairs is corresponding to an edge in G, which also corresponds to a unique
simple (geometric) path, before taking the shortcuts. Moreover, the maximum
degree of G′ is four. The construction of G′ from G takes O(n+m) time, where
m = O(n) and in addition a set P of m pairs are constructed. At this point, it is
clear that: G has a vertex cover of size K if and only K shortcuts can be taken
in G′ such that all the shortest distances for pairs (u, v) in P can be reduced.
Note that after the shortcuts are added the resulting graph has a maximum
degree of five. As RDBP is obviously in NP, we have the following theorem.

Theorem 5.1 The Reducing Distances Between Pairs problem is NP-complete
on a given planar graph with degree at most four and the inserted edges have
bounded lengths.

6 Concluding Remarks

There are several open problems from this paper. For example, for the optimal
bridge problem itself, can a near quadratic lower bound be proved? Also, for
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RDBP, can we show the NP-completeness of its natural variation, i.e., P is not
given and the goal is to minimize the diameter of G′?
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