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Abstract

We present an asymptotic analysis of a stochastic two-compartmental cell proliferation

system with regulatory mechanisms. We model the system as a state-dependent birth and

death process. Proliferation of hematopoietic stem cells (HSCs) is regulated by population

density of HSC-derived clones and differentiation of HSC is regulated by population density

of HSCs. By scaling up the initial population, we show the density of dynamics converges

in distribution to the solution of a system of ordinary differential equations (ODEs). The

system of ODEs has a unique non-trivial equilibrium that is globally stable. Furthermore,

we show the scaled fluctuation of the population converges in law to a linear diffusion with

time-dependent coefficients. With initial data being Gaussian, the limit is a Gauss-Markov

process, and it behaves like the FCLT limit under equilibrium with constant coefficients at large

times. This is proved by establishing exponential convergence in the 2-Wasserstein metric for

the associated Gaussian measures in a L2 Hilbert space. We apply our results to analyze and

compare two regulatory mechanisms in the hematopoietic system. Simulations are conducted
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to verify our large-scale and long-time approximation of the dynamics. We demonstrate some

regulatory mechanisms are efficient (converge to steady state rapidly) but not effective (have

large fluctuation around the steady state).

Keywords: Hematopoiesis; Regulatory mechanism; Stochastic two-compartment model; Functional

limit theorems; Stability; Large-time asymptotic behavior

1 Introduction

Hematopoiesis is the blood cell production process. A hematopoietic stem cell (HSC) can self-renew,

differentiate, or die. When a HSC differentiates, it becomes a multi-potent progenitor cell. A

multi-potent progenitor cell will further differentiate until mature cells are produced, leading to a

clone that will eventually become extinct. To maintain homeostasis (stability of the cell production

system), regulatory mechanisms are required. In Duncan et al. (2005) and Blank et al. (2008),

the authors point out Notch and Wnt signaling pathways play crucial roles in the stability of

hematopoietic system. Specifically, Notch signaling regulates differentiation and Wnt signaling

regulates self-renewal. In this paper, we model Notch signaling by a short-range feedback and

Wnt signaling by a long-range feedback. Kopan (2012) and Bigas and Espinosa (2012) contain

justifications for modeling Notch signaling as a short-range feedback. Mechanisms that allow Wnt to

achieve long-range signaling are detailed in Nusse et al. (2008) and Buechling and Boutros (2011).

Deterministic models for cell production systems with regulatory mechanisms are well-studied

in the literature. Getto et al. (2013) studied global stability of two-compartment models with

regulatory mechanisms and Marciniak-Czochra et al. (2009) conducted simulations to compare

efficiencies among various feedback mechanisms in multicompartment models. Differential equation

models for fluctuation (oscialltion) of hematopoietic system are studied in Knauer et al. (2020) and

Bonnet et al. (2021). Bonnet and Méléard (2021) proposed a stochastic model without regulatiory

mechanisms to explain unexpected fluctuations of the mature blood cell number. In this paper, we

introduce a framework to analyze efficiency and effectiveness of regulatory mechanisms in stochastic

two-compartment models.
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We view hematopoiesis as a two-compartment model as in Catlin et al. (2011) with fist compart-

ment N (r)
0 containing HSCs and the second compartment N (r)

1 containing HSC-derived clones. Initial

conditions are N
(r)
0 (0) = n

(r)
0 and N

(r)
1 (0) = n

(r)
1 , where r is a scaling parameter. HSCs self-renew

at rate α and differentiate at rate γ. α depends on the density of derived clones (N̄
(r)
1 = N

(r)
1 /r)

and γ depends on the density of HSCs (N̄
(r)
0 = N

(r)
0 /r). We are interested in the dynamics when

initial population sizes are large (i.e. n(r) → ∞ as r → ∞). With conditions for α and γ in Section

2.1, we derive a functional law of large numbers (FLLN) as r → ∞ in Section 3.1. The FLLN says

the density of cell populations N̄(r) converges weakly to a deterministic function N̄, satisfying a

system of ordinary differential equations (ODEs) with a globally stable non-trivial equilibrium. In

Section 3.2, we consider the difference between the density of cell dynamics and FLLN limit, and

then scale up the difference by
√
r, denoted as N̂(r), to derive a functional central limit theorem

(FCLT), which has a linear diffusion limit process N̂ with time-dependent coefficients. This diffusion

describes the fluctuations of the dynamics around its FLLN limit function in the large-scale system.

We show that the time-dependent coefficients of the limiting diffusion N̂ become constant when

the FLLN limit starts at its equilibrium in Section 4.1, resulting in a stationary linear diffusion

process G∗. An immediate consequence is that the covariance function of the limiting diffusion

under the FLLN equilibrium converges to a constant, which can be solved by a linear equation

when we specify a regulatory mechanism (the functional form of α and γ). Next, we show that the

limiting diffusion N̂ resembles the linear diffusion G∗ under the FLLN equilibrium at large times.

Specifically, we show that the process GT (t) = N̂(T + t) converges to G∗(t) over [0,M ] for arbitrary

M > 0 as T → ∞, where we cast these processes to Gaussian measures in an L2 Hilbert space

and use the 2−Wasserstein metric. We derive the explicit 2−Wasserstein metric for the Gaussian

measures corresponding to GT (t) and G∗ and show that the convergence is exponentially fast.

Finally, in Section 5, we apply our results to two specific regulatory mechanisms and conduct

simulations with parameter values assumed by Catlin et al. (2011) to validate our large-scale and

long-time approximation of the dynamics. We demonstrate some regulatory mechanisms are efficient

(converge to steady state rapidly) but not effective (have large limiting variance).
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2 Model and Assumptions

Denote N
(r)
0 (t) as the stem cell (type 0 individual) population with initial condition n

(r)
0 and N

(r)
1 (t)

as the number of HSC-derived clones (type 1 individuals) with initial condition n
(r)
1 . Define the

density by N̄
(r)
i = N

(r)
i /r, i ∈ {0, 1}. A stem cell can either proliferate (denote this action by

(0, b)) with rate α and increase the stem cell population by 1 or differentiate (denoted by (0, di))

with rate γ to initiate a clone. A HSC-derived clone exhausts with rate δ (denoted by (1, d)). Let

A = {(0, b), (0, di), (1, d)} denote the set of actions for type 0 and type 1 individuals. Notice that

we neglect the action for stem cell death since death rate for the stem cell is small (cf. Domen

et al. (2000) and Catlin et al. (2011)). Hence, if the birth rate for stem cell is α and death rate

is β << α, we can absorb the death rate into the birth rate (α̃ = α − β; β̃ = 0) to approximate

the dynamics. Our model of the hematopoietic system with regulatory feedback is defined by the

following transitions,

(N
(r)
0 , N

(r)
1 ) → (N

(r)
0 + 1, N

(r)
1 ) at rate α(N̄

(r)
1 )N

(r)
0

(N
(r)
0 , N

(r)
1 ) → (N

(r)
0 − 1, N

(r)
1 + 1) at rate γ(N̄

(r)
0 )N

(r)
0

(N
(r)
0 , N

(r)
1 ) → (N

(r)
0 , N

(r)
1 − 1) at rate δN

(r)
1 .

2.1 Construction of Dynamics

In this section, we develop a general framework to analyze the stochastic two-compartment model

with regulatory feedback influencing rates of self-renewal α and differentiation γ. We introduce

three sequences of independent Poisson random measures N (r)
a , a ∈ A on R2

+ with mean measure

being Lebesgue. The natural filtration is

F (r)
t = σ{N (r)

a ([0, s], B) | s ≤ t, B ∈ B(R+)}. (1)

Following the notation in Bonnet and Méléard (2021), we set up our dynamics as follows. For all
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t ≥ 0,

N
(r)
0 (t) = n

(r)
0 −

∫ t

0

∫
R+

1{u≤γ(N̄
(r)
0 (s−))N

(r)
0 (s−)}N

(r)
(0,di)(du, ds)

+

∫ t

0

∫
R+

1{u≤α(N̄
(r)
1 (s−))N

(r)
0 (s−)}N

(r)
(0,b)(du, ds)

N
(r)
1 (t) = n

(r)
1 −

∫ t

0

∫
R+

1{u≤δN
(r)
1 (s−)}N

(r)
(1,d)(du, ds)

+

∫ t

0

∫
R+

1{u≤γ(N̄
(r)
0 (s−))N

(r)
0 (s−)}N

(r)
(0,di)(du, ds).

We write our model in a more compact notation as in Pang et al. (2007). Let {P (r)
a | r ∈ N, a ∈ A}

be a set of independent rate 1 Poisson processes. Then we can rewrite the dynamics as

N
(r)
0 (t) = n

(r)
0 − P

(r)
(0,di)

(∫ t

0

γ(N̄
(r)
0 (s))N

(r)
0 (s)ds

)
+ P

(r)
(0,b)

(∫ t

0

α(N̄
(r)
1 (s))N

(r)
0 (s)ds

)
N

(r)
1 (t) = n

(r)
1 − P

(r)
(1,d)

(
δ

∫ t

0

N
(r)
1 (s)ds

)
+ P

(r)
(0,di)

(∫ t

0

γ(N̄
(r)
0 (s))N

(r)
0 (s)ds

)
.

We assume α, γ ∈ C2(R+;R+) and for all x, y, α′(y) ≤ 0; γ′(x) ≥ 0. Furthermore, we assume

α(0) > γ(0) > 0 and

lim
y→∞

α(y) < γ(0) or α(0) < lim
x→∞

γ(x). (2)

The assumption α(0) > γ(0) implies that type 0 population is growing when regulatory mech-

anisms are absent (for instance, in precancerous or cancer state) and the subsequent assumption

provides stability to the system as we will see in the next section.

3 Large-scale Approximations

In this section, we scale up initial population sizes to obtain limiting dynamics for density (FLLN)

and fluctuation around equilibrium (FCLT). More specifically, we show global stability for the FLLN

and study asymptotic behaviors for the FCLT under equilibrium.
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3.1 Functional Law of Large Numbers

Assume n(r)

r → n̄ > 0 as r → ∞ and denote the scaled process as N̄(r) where

N̄
(r)
0 =

N
(r)
0

r
; N̄

(r)
1 =

N
(r)
1

r
.

The scaled dynamics are

N̄
(r)
0 (t) = n̄

(r)
0 − 1

r
P

(r)
(0,di)

(
r

∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)ds

)
+

1

r
P

(r)
(0,b)

(
r

∫ t

0

α(N̄
(r)
1 (s))N̄

(r)
0 (s)ds

)
N̄

(r)
1 (t) = n̄

(r)
1 − 1

r
P

(r)
(1,d)

(
r

∫ t

0

δN̄
(r)
1 (s)ds

)
+

1

r
P

(r)
(0,di)

(
r

∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)ds

)
.

Denote the centered and scaled Poisson processes by

M
(r)
(0,b) =

1

r
P

(r)
(0,b)

(
r

∫ t

0

α(N̄
(r)
1 (s))N̄

(r)
0 (s)ds

)
−
∫ t

0

α(N̄
(r)
1 (s))N̄

(r)
0 (s)ds

M
(r)
(0,di) =

1

r
P

(r)
(0,di)

(
r

∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)ds

)
−

∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)ds

M
(r)
(1,d) =

1

r
P

(r)
(1,d)

(
r

∫ t

0

δN̄
(r)
1 (s)ds

)
−

∫ t

0

δN̄
(r)
1 (s)ds.

In Proposition 1 we show M
(r)
(0,b),M

(r)
(0,di), and M

(r)
(1,d) are all L2 martingales. In Proposition 2, we

show for all a ∈ A, M (r)
a ⇒ 0. Denote N̄(r) = (N̄

(r)
0 , N̄

(r)
1 )⊤, n̄(r) = (n̄

(r)
0 , n̄

(r)
1 )⊤ and rewrite the

scaled dynamics as follows,

N̄(r) = I(n̄(r),M(r)); N̄(r)(t) = n̄(r) +M(r)(t) +

∫ t

0

F(N̄(r)), (3)

where M(r) includes all the martingale terms and F is defined by

F((x0, x1)
⊤) =

α(x1)x0 − γ(x0)x0

γ(x0)x0 − δx1

 .

In Lemma 1, we show the operator I defined by Eq. (3) is continuous at (b,0) for all b > 0.
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Since n̄(r) → n̄ > 0 and M(r) ⇒ 0, we have N̄(r) = I(n̄(r),M(r)) ⇒ I(n̄,0) by Theorem 1. Denote

the limit by N̄, then it is a solution to the following IVP,

N̄ ′
0(t) = α(N̄1(t))N̄0(t)− γ(N̄0(t))N̄0(t)

N̄ ′
1(t) = γ(N̄0(t))N̄0(t)− δN̄1(t)

N̄0(0) = n̄0; N̄1(0) = n̄1.

Notice that since N̄ is deterministic, N̄(r) → N̄ in probability as well. By setting derivatives to

zeros and denote the non-trivial equilibrium by N̄∗, we have

α(N̄∗
1 ) = γ(N̄∗

0 )

δN̄∗
1 = γ(N̄∗

0 )N̄
∗
0 .

From the second relation, we have

N̄∗
1 =

γ(N̄∗
0 )N̄

∗
0

δ

=⇒ α(
γ(N̄∗

0 )N̄
∗
0

δ
) = γ(N̄∗

0 ).

Since α(0) > γ(0), the expression has at least a solution. By monotonicity of α and γ, we deduce

the non-trivial steady state N̄∗ is unique. The Jacobian of F evaluated at the equilibrium is

A∗ =

 −γ′(N̄∗
0 )N̄

∗
0 α′(N̄∗

1 )N̄
∗
0

γ′(N̄∗
0 )N̄

∗
0 + γ(N̄∗

0 ) −δ

 .

Since N̄∗
0 > 0 and N̄∗

1 > 0, we have

Tr(A∗) = −γ′(N̄∗
0 )N̄

∗
0 − δ < 0

det(A∗) = δγ′(N̄∗
0 )N̄

∗
0 − α′(N̄∗

1 )N̄
∗
0 [γ

′(N̄∗
0 )N̄

∗
0 + γ(N̄∗

0 )] > 0.
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Hence, the system is locally asymptotically stable. Moreover, define λ = max{ℜ(σ(A∗))}, then for

every η ∈ (λ, 0), there is a neighborhood Vη of N̄∗ such that for all initial data n̄ ∈ Vη,

||N̄(t)− N̄∗|| = O(exp(ηt)) as t → ∞. (4)

In Theorem 3, we show the system is also globally asymptotically stable. As a consequence, for

any fixed η ∈ (λ, 0) and initial data n̄,

||N̄(t)− N̄∗|| = o(exp(ηt)) as t → ∞. (5)

3.2 Functional Central Limit Theorem

Now we further assume n̂(r) =
√
r(n̄(r) − n̄) ⇒ n̂ ∼ N(u, U) and define N̂(r) =

√
r(N̄(r) − N̄). The

scaled dynamics become

N̂
(r)
0 (t) = n̂0 +

√
rM

(r)
(0,b)(t)−

√
rM

(r)
(0,di)(t)

+
√
r

∫ t

0

α(N̄
(r)
1 (s))N̄

(r)
0 (s)ds− α(N̄1(s))N̄0(s)−

√
r

∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)− γ(N̄0(s))N̄0(s)ds

N̂
(r)
1 (t) = n̂1 +

√
rM

(r)
(0,di)(t)−

√
rM

(r)
(1,d)(t)

−
√
r

∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)− γ(N̄0(s))N̄0(s)ds+

√
r

∫ t

0

δN̄
(r)
1 (s)− δN̄1(s)ds.

We rewrite the scaled dynamics as

N̂(r) = n̂(r) + M̂(r) +
√
r

∫ t

0

F(N̄(r)(s))− F(N̄(s))ds. (6)

In Lemma 2, we show {N̂(r)} is stochastically bounded and M̂(r) ⇒ M̂, where

M̂(t) =

B(0,b)(
∫ t

0
α(N̄1(s))N̄0(s)ds)−B(0,di)(

∫ t

0
γ(N̄0(s))N̄0(s)ds)

B(0,di)(
∫ t

0
γ(N̄0(s))N̄0(s)ds)−B(1,d)(

∫ t

0
δN̄1(s)ds)

 .
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{Ba | a ∈ A} is a set of IID standard Brownian motions. In Theorem 2, we show N̂(r) ⇒ N̂ with

N̂(t) = n̂+ M̂(t) +

∫ t

0

∇F(N̄(s))N̂(s)ds.

The FCLT limt process N̂ is a linear diffusion with time-dependent parameters

dN̂(t) = A(t)N̂(t)dt+ σ(t)dB(t),

where

A(t) = ∇F(N̄(t)); σ(t) =

√
α(N̄1(t))N̄0(t) −

√
γ(N̄0(t))N̄0(t) 0

0
√

γ(N̄0(t))N̄0(t) −
√
δN̄1(t)

 . (7)

Since the initial condition n̂ is Gaussian, N̂ is a Gauss-Markov process and it can be characterized

by its mean function and autocovariance function as in Section 5.6 of Karatzas and Shreve (2012).

3.3 FCLT Under Equilibrium

If n̄ = N̄∗, the time-dependent coefficients of the limiting linear diffusion become constant as follows:

A∗ =

 −γ′(N̄∗
0 )N̄

∗
0 α′(N̄∗

1 )N̄
∗
0

γ′(N̄∗
0 )N̄

∗
0 + γ(N̄∗

0 ) −δ

 ; σ∗ =
√
γ(N̄∗

0 )N̄
∗
0

1 −1 0

0 1 −1

 .

We henceforth assume A∗ has distinct eigenvalues. This assumption can be easily achieved by

adding small perturbations to α or γ. The fundamental matrix Φ(t) for the mean function satisfies

the matrix differential equation

Φ′(t) = A∗Φ(t); Φ(0) = I2.

Hence, the mean function is m(t) = exp(A∗t)u = O(eλt), which converges to 0 exponentially fast.
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The variance function V (t) satisfies

V ′(t) = A∗V (t) + [A∗V (t)]⊤ + σ∗[σ∗]⊤; V (0) = U.

Define Σ∗ = σ∗[σ∗]⊤ and

W (t) =


V1,1(t)

V1,2(t)

V2,2(t)

 ; B∗ =


2A∗

1,1 2A∗
1,2 0

A∗
2,1 A∗

1,1 +A∗
2,2 A∗

1,2

0 2A∗
2,1 2A∗

2,2

 ; S∗ =


Σ∗

1,1

Σ∗
1,2

Σ∗
2,2

 .

We write the matrix differential equation as a vector differential equation

W ′(t) = B∗W (t) + S∗.

Since the spectrum of B∗ is σ(B∗) = σ(A∗) ∪ {Tr(A∗)}, max{ℜ(σ(B∗))} = λ < 0. Hence,

W (t) = exp(B∗t)W (0) +

∫ t

0

exp(B∗(t− s))S∗ds → −(B∗)−1S∗ as t → ∞.

Define W ∗ = −(B∗)−1S∗. Then,

(W (t)−W ∗)′ = B∗(W (t)−W ∗)

=⇒ ||W (t)−W ∗|| = O(exp(λt).

From W ∗, we deduce the limit V ∗ for the variance function satisfies

A∗V ∗ + [A∗V ∗]⊤ = −Σ∗. (8)

From this relation between A∗ and V ∗, it seems reasonable that a smaller λ implies smaller

limiting variances. However, this is not the case as we will see in Section 5. It is possible for

regulatory mechanism 1 to converge to steady state faster than regulatory mechanism 2 (more
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efficient) but feedback 1 has larger limiting variances (less effective).

4 Asymptotic Analysis

4.1 Large-time behavior of FCLT limit process

In this section, we discard the assumption n̄ = N̄∗ and study the long-time behavior of the process

N̂. Since F is C2, ∇F is locally Lipschitz. Eq. (5) in Section 3.1 suggests the trajectory of N̄ lies in

a compact set. Hence, there exists a constant C such that for all η ∈ (λ, 0),

||A(t)−A∗|| = ||∇F(N̄(t))−∇F(N̄∗)|| ≤ C||N̄(t)− N̄∗|| = o(exp(ηt)). (9)

Define R(t) = A(t)−A∗, we have
∫∞
0

||R(t)||dt < ∞. Therefore, the fundamental matrix for the

mean function satisfies

Φ′(t) = [A∗ +R(t)]Φ(t); Φ(0) = I2.

By assumption in Section 3.3, A∗ has distinct eigenvalues, so it is diagonalizable. We apply

Theorem 2.7 (Levinson’s Fundamental Theorem) in Bodine et al. (2015) to conclude as t → ∞,

Φ(t) = [1 + o(1)] exp(A∗t).

Hence, m(t) = [1 + o(1)] exp(A∗t)u = O(exp(λt)).

Define Σ(t) = σ(t)σ⊤(t) and

W (t) =


V1,1(t)

V1,2(t)

V2,2(t)

 ;B(t) =


2A1,1(t) 2A1,2(t) 0

A2,1(t) A1,1(t) +A2,2(t) A1,2(t)

0 2A2,1(t) 2A2,2(t)

 ;S(t) =


Σ1,1(t)

Σ1,2(t)

Σ2,2(t)

 .
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The variance function satisfies W ′(t) = B(t)W (t) + S(t). By Eq. (5) in Section 3.1, we have

||B(t) − B∗|| = o(exp(ηt)) and ||S(t) − S∗|| = o(exp(ηt)) for all η ∈ (λ, 0). It is evident that

W (t) → W ∗ as t → ∞. To analyze the rate of convergence, we write the system in terms of the

difference

(W (t)−W ∗)′ = (B∗ +B(t)−B∗)(W (t)−W ∗) +B(t)W ∗ + S(t).

By exponential stability, ||B(t)W ∗ + S(t)|| = o(exp(ηt)). In addition, since ||W (t)−W ∗|| → 0,

||(B(t)−B∗)(W (t)−W ∗)|| = o(exp(ηt)) for all η ∈ (λ, 0) and we may write the system as

(W (t)−W ∗)′ = B∗(W (t)−W ∗) + Err(t),

where ||Err(t)|| = o(exp(ηt)) for all η ∈ (λ, 0). The solution to this IVP is

W (t)−W ∗ = exp(B∗t)(W (0)−W ∗) +

∫ t

0

exp(B∗(t− s))Err(s)ds.

The first term is O(exp(λt)). For the second term, for a fixed η ∈ (λ, 0), there exists a constant

C > 0 such that

∥∥∥∫ t

0

exp(B∗(t− s))Err(s)ds
∥∥∥ ≤ C

∫ t

0

exp(λ(t− s)) exp(ηs)ds

=
C

η − λ
(exp(ηt)− exp(λt)) = O(exp(ηt)).

We conclude

||W (t)−W ∗|| = o(exp(ηt)), ∀η ∈ (λ, 0). (10)

4.2 Convergence in Wasserstein Metric

In this section, we show that the limiting diffusion of the FCLT at large times resembles a Gaussian

process G∗ with mean function m∗(t) = 0 and autocovariance function K∗(s, t) = V ∗ exp((t −

s)[A∗]⊤) for s ≤ t. Let T ∈ N and define GT (t) = N̂(T + t) with mean function mT and
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autocovariance function KT , where

mT (t) = exp(

∫ t

0

A(s+ T )ds)u; KT (s, t) = V (s+ T ) exp(

∫ t

s

A⊤(u+ T )du), s ≤ t. (11)

We will show GT converges to G∗ as T → ∞. To introduce the notion of convergence, we follow

Minh (2023) to establish a one-to-one correspondence between the space of Gaussian processes and

the space of Gaussian measures on H = L2([0,M ]2,B([0,M ]2), Leb), where M > 0 is fixed. H is a

separable Hilbert space. For a Gaussian process with mean function m ∈ H and covariance function

K(s, t) being continuous, symmetric, and positive-definite, we invoke Mercer’s theorem to induce a

Gaussian measure N (m, CK). CK : H → H is the covariance operator defined by

(CK)f(s) =

∫
[0,M ]

K(s, t)f(t)dt.

The covariance operator CK is of trace class, self-adjoint, and positive.

Since mean functions mT ,m
∗ ∈ H and the autocovariance functions KT ,K∗ are continuous,

symmetric, and positive-definite, we induce a sequence of Gaussian measures GT ∼ N (mT , CT ) and

G∗ ∼ N (0, C∗). The square of the 2−Wasserstein distance is

W 2
2 (GT ,G∗) = ||mT ||22 + Tr(CT + C∗ − 2(C

1/2
∗ CTC

1/2
∗ )1/2).

In Theorem 4, we show for any fixed M , W2(GT ,G∗) = o(exp(η2T )) for all η ∈ (λ, 0). To interpret

this result, we focus on N̂ in a moving interval [T, T +M ]. As we increase T → ∞, the dynamics of

N̂ will become more and more similar to that of G∗. The length of the interval M can be arbitrarily

large.

5 Applications

We apply our framework to study two regulatory mechanisms. The purpose of this section is

to demonstrate high efficiency (fast convergence of FLLN dynamics) does not guarantee high
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effectiveness (small limiting variance for FCLT dynamics) as claimed in Section 3.3. Let α > γ > 0

be constants. We set up two regulatory mechanisms

Model 1: α(y) =
α

1 + κyy
; γ(x) = γ + κxx

2;

Model 2: α(y) = max(α− κyy
2, 0); γ(x) = γ + κxx.

Notice that in model 2, α(·) is not in C2 and this issue can be easily rectified by convolution with a

mollifier ϕϵ. By selecting ϵ small enough, our theory will approximate the dynamics of model 2.

We take estimated parameters in Catlin et al. (2011) as our base parameters for simulation. That

is, for a human hematopoietic system, we have α = 1
40 − 1

285.7 per week, γ = 1
56.1 per week, and

δ = 1
6.7 per week. We simulate the dynamics under a pathological state with parameter values in

Table 1 (faster self-renewal and slower differentiation). Since our approximation requires r → ∞, we

set r to be a large number r = R = 2000 in the simulation. To compare two regulation mechanisms,

we set κx, κy so that N̄∗
0 = 11000

R = 5.5 and N̄∗
0 = 1275

R = 0.6375 for all simulations. The numbers

11000 and 1275 are estimated steady-states for HSCs and derived clones in Catlin et al. (2011). We

set initial conditions to be n̄0 = 11 and n̄1 = γn̄0

α−γ+δ . This initial condition corresponds to letting

the pathological system, defined as an exponentially growing population without regulation, progress

until the system reaches n̄0 = 11. The relation between n̄0 and n̄1 is based on the formula in Catlin

et al. (2011) on page 4463.

Model Parameters
α γ δ κx κy λ

Model 1 1.5
40 − 1.5

285.7
1

1.5·56.1
1
6.7 0.000179052 1.355547131 -0.02671738

Model 2 1.5
40 − 1.5

285.7
1

1.5·56.1
1
6.7 0.000984786 0.036785540 -0.07733503

Table 1: Parameters used in simulations for model 1 and model 2. λ is the real part of the dominating
eigenvalue for matrix A∗, representing the efficiency of the regulatory mechanism.

As we see in Table 1, λ for model 2 is smaller than that of model 1, suggesting that the regulatory

mechanism in model 2 is more efficient. This is indeed the case since the FLLN scaled dynamics for

model 2 converges to steady-state more rapidly in Figure 1. In Table 2, the limiting variances for
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the derived clones are similar for both models. However, model 2 has greater variance for HSCs,

meaning the regulatory mechanism in model 2 is less effective.

Figure 1: Simulations for the two-compartment cell dynamics for model 1 (top) and 2 (bottom).
Initial conditions are n̄0 = 11, n̄1 = γn̄0

α−γ+δ , u = 0, and U = 1.5 · V ∗. For visual clarity, we display
10 simulations for the simulated FLLN and FCLT dynamics (first two columns). In total, 100
simulations are conducted and boxplots (third column) use all simulations.
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Theoretical and Estimated Limiting Variance
V ∗
1,1 V ∗

2,2 V ∗
1,2

Model 1 Theory 6.8311833 0.6951164 0.3056770
Estimation 6.1895931 0.7504925 0.3406715

Model 2 Theory 12.3610797 0.6541369 0.1093108
Estimation 12.9098659 0.7213062 0.0638457

Table 2: For each parameter specification, we compare the theoretical limiting covariance with
estimated covariance from simulations. “Theory” refers to expression in Eq. (8) in Section 3.3.
“Estimation” refers to average of the sample variance of the last 5 time points in the boxplots in
Figure 1.
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6 Discussions

In this paper, we develop a framework to analyze the efficiency and effectiveness of a given regulatory

mechanism on the two-compartment cell proliferation model. We first scale up initial population

sizes to study the large-scale approximation (FLLN and FCLT) of the dynamics. Then, we pass

with time to infinity to study the long-time asymptotic behavior of FLLN and FCLT. We study the

stability property of the FLLN and FCLT dynamics. More specifically, we show global stability for

the non-trivial steady state and study the rate of convergence to the steady state. For the FCLT

dynamics, we show exponential convergence in 2−Wasserstein metric to a Gauss-Markov process

with zero mean function and a covariance function that will eventually stabilize. To interpret the

results, we view the rate of convergence of FLLN to the non-trivial steady state as the efficiency of

the regulatory mechanism. The FCLT limit at large times represents fluctuation around equilibrium

and we associate the limiting variance of fluctuation with effectiveness of the regulatory mechanism.

For a regulatory mechanism to be effective, the limiting variance of the FCLT should be small. We

show by example that efficiency and effectiveness are not necessarily coupled. There are efficient

regulatory mechanisms that are not effective, and vice versa.

In hematologic malignancies, non-canonical activation or dysregulation of Notch and Wnt

signaling pathways are common (Zhou et al. (2022); Liu et al. (2022)). Specifically, Zhou et al.

(2022) point out more than 50% of the T-ALL patients have NOTCH1 somatic activating mutations

and Liu et al. (2022) state that deletion of GSK3B leaves hematopoietic stem cells in a precancerous

state. Furthermore, both papers indicate activation of Notch or Wnt signaling endow cancer cell with

therapeutic drug resistance for various cancer types. Therapies targeting Notch or Wnt signaling

pathways for various cancer types are reviewed in Li et al. (2023) and Zhang and Wang (2020). One

application of our model in the context of targeted therapy can be summarized as follows. Suppose

dysregulation of signaling pathways occurred in the hematopoietic system and the system in this

pathological state progresses until treatment (time 0 in our model). The regulatory mechanism

in our model can be interpreted as target therapies aiming to restore or modify various signaling

pathways. With the functional forms of α(·) and γ(·) estimated from clinical data, one can study
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the efficiency and effectiveness of the therapy according to our framework.

We conclude by mentioning possible extensions for our framework. In the present paper, we adopt

the assumptions from Model 1 in Arino and Kimmel (1986) that there is a short-range feedback

regulating differentiation and a long-range feedback regulating self-renewal. It is conceivable that

our procedure of deriving large-scale approximations (FLLN and FCLT) will also work under

assumptions from Model 2 (differention and self-renewal both regulated by long-range signals) and 3

(differentiation regulated by a long-range signal and self-renewal regulated by a short-range signal)

from Arino and Kimmel (1986). Naturally, one needs to modify Eq. (2) in Section 2.1 to obtain

stability for FLLN and FCLT dynamics. Notice that conditions for α(·), γ(·) in Section 2.1 are

imposed to guarantee stability of FLLN and FCLT dynamics. If we discard Eq. (2), FLLN and

FCLT can still be derived. However, FLLN might not admit a non-trivial steady state. In this case,

the covariance function will not stabilize. Depending on the biological context, the instability of

FLLN and FCLT dynamics might be of interest. Finally, extension to multi-compartment models is

conceptually straightforward, but complication levels up as the number of compartment increases

(chaos might appear in dimension ≥ 3).
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A Appendix

A.1 FLLN

In this section, we establish the FLLN to the density dynamics {N̄(r)} (Theorem 1). We follow

closely the martingale and continuous mapping approach in Pang et al. (2007). The challenge here

is that F in the integral representation in Lemma 1 is not a Lipschitz function. Hence, we cannot

show continuity of the integral operator I on its entire domain. Instead, we show continuity at the

subset of domain that is of interest in Lemma 1.

Proposition 1. For each action a ∈ A, as defined in Section 2, M
(r)
a is a L2 martingale with

respect to the natural filtration {F (r)
t | t ≥ 0} defined by Eq. (1) in Section 2.1.

Proof. Define E
(r)
i (t) = E(N̄0

(r)
(t)). Since α(y) ≤ α(0) for all y ≥ 0, we have

E
(r)
0 (t) ≤ n̄

(r)
0 +

∫ t

0

α(0)E
(r)
0 (s)ds

=⇒ E
(r)
0 (t) ≤ n̄

(r)
0 exp(α(0)t), by Grönwall’s inequality.

This implies

E
∫ t

0

α(N̄
(r)
1 (s))N̄

(r)
0 (s)ds ≤

∫ t

0

α(0)E
(r)
0 (s)ds

≤
∫ t

0

α(0)n̄
(r)
0 exp(α(0)s)ds

= n̄
(r)
0 exp(α(0)t)− n̄

(r)
0 < ∞;

E
∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)ds ≤

∫ t

0

α(0)E
(r)
0 (s)ds+ n̄

(r)
0

≤ n̄
(r)
0 exp(α(0)t) < ∞.

In addition,

E
(r)
0 (t) + E

(r)
1 (t) ≤ n̄

(r)
0 + n̄

(r)
1 +

∫ t

0

α(0)E
(r)
0 (s)ds
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=⇒ E
(r)
1 (t) ≤ n̄

(r)
1 + n̄

(r)
0 exp(α(0)t)

=⇒ E
∫ t

0

δN̄
(r)
1 (s)ds ≤ δn̄

(r)
1 t+ δn̄

(r)
0

exp(α(0)t)− 1

α(0)
< ∞.

Therefore, by Pang et al. (2007) Lemma 3.2, we deduce M
(r)
(0,b),M

(r)
(0,di), and M

(r)
(1,d) are all L2

martingales with predictable quadratic variations (PQV) being

⟨M (r)
(0,b)⟩(t) =

1

r

∫ t

0

α(N̄
(r)
1 (s))N̄

(r)
0 (s)ds

⟨M (r)
(0,di)⟩(t) =

1

r

∫ t

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)ds

⟨M (r)
(1,d)⟩(t) =

1

r

∫ t

0

δN̄
(r)
1 (s)ds.

Proposition 2. For all a ∈ A, {
√
rM

(r)
a } is stochastically bounded and M

(r)
a ⇒ 0 as r → ∞.

Proof. By Lemma 5.6 in Pang et al. (2007), it suffices to show for any fixed T > 0, there exists

K > 0 such that

sup
r

E((
√
rM (r)

a (T ))2) = sup
r

E(r⟨Mr
a ⟩(T )) ≤ K.

In Proposition 1, we derived ⟨Mr
a ⟩ for all a ∈ A. Fix T > 0, since n̄

(r)
0 → n̄0 as r → ∞, there

exists K(0,b) > 0 such that for all r,

E(r⟨M (r)
(0,b)⟩(T )) = E

∫ T

0

α(N̄
(r)
1 (s))N̄

(r)
0 (s)ds

≤
∫ T

0

α(0)E
(r)
0 (s)ds

≤ sup
r
{n̄(r)

0 exp(α(0)T )− n̄
(r)
0 } ≤ K(0,b).
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Analogously, there exist K(0,di) > 0 and K(1,d) > 0 such that for all r,

E(r⟨M (r)
(0,di)⟩(T )) = E

∫ T

0

γ(N̄
(r)
0 (s))N̄

(r)
0 (s)ds ≤ sup

r
{n̄(r)

0 exp(α(0)T )} < K(0,di)

E(r⟨M (r)
(1,d)⟩(T )) = E

∫ T

0

δN̄
(r)
1 (s)ds ≤ sup

r
{δn̄(r)

1 T + δn̄
(r)
0

exp(α(0)T )− 1

α(0)
} < K(1,d).

Therefore, by Lemma 5.9 of Pang et al. (2007), we have for all a ∈ A, M (r)
a ⇒ 0 in (D, J1),

Skorokhod space equipped with J1 topology.

Lemma 1. Let b ∈ R2 and g ∈ D2 and define the operator I : R2 ×D2 → D2 and I(b,g) = x such

that

x(t) = b+ g(t) +

∫ t

0

F(x(s))ds.

Then the operator I is continuous at (b,0) for b > 0.

Proof. Endow R2 with the max norm || · || and D2 with SJ1 (strong J1) topology generated by

truncated Skorohod metrics {dT | T > 0}. For topologies on D2, we refer the readers to page 83

of Whitt (2002). We will show for all b(n) → b > 0 in (R2, || · ||) and g(n) → 0 in (D2, dT ) that

we have I(b(n),g(n)) → I(b,0) in (D2, dT ) for all T ≥ 0. Since 0 and I(b,0) are both continuous

functions, convergence in dT is equivalent to convergence in the truncated sup norm || · ||T . Since

b > 0 and ||g(n)||T → 0, we may without loss of generality take sequences such that b
(n)
0 > ||g(n)0 ||T

and b
(n)
1 > ||g(n)1 ||T . If I(b(n),g(n)) = (x

(n)
0 , x

(n)
1 )⊤, we have for all t ∈ [0, T ], x(n)

0 (t) ≥ 0, x
(n)
1 (t) ≥ 0

and

x
(n)
0 (t) ≤ b

(n)
0 + ||g(n)0 ||T +

∫ t

0

α(0)x
(n)
0 (s)ds

=⇒ ||x(n)
0 ||T ≤ (b

(n)
0 + ||g(n)0 ||T ) exp(α(0)T ).
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Consequently,

x
(n)
1 (t) ≤ b

(n)
0 + ||g(n)0 ||T + b

(n)
1 + ||g(n)1 ||T +

∫ t

0

α(0)x
(n)
0 (s)ds

=⇒ ||x(n)
1 ||T ≤ b

(n)
0 + ||g(n)0 ||T + b

(n)
1 + ||g(n)1 ||T + Tα(0)(b

(n)
0 + ||g(n)0 ||T ) exp(α(0)T ).

Since both upper bounds converge as n → ∞, there exists N such that for all n ≥ N and

t ∈ [0, T ], (x(n)
0 (t), x

(n)
1 (t))⊤ lies in a compact set KT . Therefore, F is Lipschitz with Lipschitz

constant LT on KT .

Denote I(b,0) = x. Then for all t ∈ [0, T ],

||x(n)(t)− x(t)|| ≤ ||b(n) − b||+ ||g(n)||T +

∫ t

0

LT ||x(n)(s)− x(s)||ds

=⇒ ||x(n) − x||T ≤ (||b(n) − b||+ ||g(n)||T ) exp(TLT ).

The last inequality follows from Grönwall’s inequality. Fix ϵ > 0, we select N such that for all

n ≥ N , we have ||b(n) − b||+ ||g(n)||T ≤ ϵ exp(−TLT ). Continuity then follows.

Theorem 1. N̄(r) → N̄ in probability as r → ∞, where N̄′ = F(N̄) and N̄(0) = n̄.

Proof. By Proposition 2, we have (n̄(r),M(r)) ⇒ (n̄,0) with n̄ > 0. By Lemma 1, we have

N̄(r) = I(n̄(r),M(r)) ⇒ I(n̄,0)
∆
= N̄.

Therefore,

N̄(t) = n̄+

∫ t

0

F(N̄(s))ds

=⇒ N̄′(t) = F(N̄(t); N̄(0) = n̄.

Since N̄ is deterministic, we strengthen the notion of convergence to N̄(r) → N̄ in probability.
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A.2 FCLT

In this section, we establish weak convergence for the fluctuation dynamics N̂(r) as r → ∞ by

applying the continuous mapping theorem. To show the FCLT, we take a different integral operator

J , and show convergence for the argument of the integral operator (Theorem 2). The convergence

of the argument of the integral operator relies on stochastic boundedness of {N̂(r)}, which is shown

in Lemma 2.

Lemma 2. {N̂(r)} is stochastically bounded. That is, the set of random variables {||N̂(r)||T } is

tight for all T ≥ 0.

Proof. Recall

N̂(r) = n̂(r) + M̂(r) +
√
r

∫ t

0

[F(N̄(r)(s))− F(N̄(s))]ds.

By Skorohod representation theorem, we may assume n̂(r) → n̂ almost surely and show tightness

under this assumption since the law of each N̂(r) remains intact. Define

Y(r)(t) =


√
r( 1rP(0,b)(rt1)− t1)

√
r( 1rP(0,di)(rt2)− t2)

√
r( 1rP(1,d)(rt3)− t3)

 ; B(t) =


B(0,b)(t1)

B(0,di)(t2)

B(1,d)(t3)

 .

By the FCLT for Poisson process (Theorem 4.2 in Pang et al. (2007)), we have Y(r) ⇒ B,

a vector of three independent standard Brownian motions. We invoke Skorohod representation

theorem again and assume Y(r) → B almost surely.

Since N̄(r) → N̄ in probability, I(r) → I in probability, where we now denote

I(r)(t) =


∫ t

0
α(N̄1

(r)
(s))ds∫ t

0
γ(N̄0

(r)
(s))ds∫ t

0
δN̄

(r)
1 (s)ds

 ; I(t) =


∫ t

0
α(N̄1(s))ds∫ t

0
γ(N̄0(s))ds∫ t

0
δN̄1(s)ds

 .
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Consequently, we have joint convergence in probability,

(Y(r), I(r))⊤ → (B, I)⊤.

Since a standard Brownian motion is locally 1
4 Hölder, we have

||Y(r) ◦ I(r) −B ◦ I||T ≤ ||Y(r) ◦ I(r) −B ◦ I(r)||T + ||B ◦ I(r) −B ◦ I||T

≤ ||Y(r) ◦ I(r) −B ◦ I(r)||T + C||I(r) − I||
1
4

T .

Since ||I(r) − I||T → 0 in probability as r → ∞, we have ||I(r) − I||
1
4

T → 0 in probability and

||I(r)||T → ||I||T in probability. Hence, for any fixed ϵ > 0, we have

lim sup
r→∞

P(||Y(r) ◦ I(r) −B ◦ I(r)||T ≥ ϵ) ≤ lim sup
r→∞

[P(||Y(r) −B||K ≥ ϵ) + P(||I(r)||T > K)]

= P(||I||T > K).

Since the inequality holds for all K, the limit is zero. Therefore, we conclude Y(r) ◦ I(r) → B ◦ I in

probability. As a consequence, M̂(r) → M̂ in probability, where

M̂0(t) = B(0,b)

(∫ t

0

α(N̄1(s))N̄0(s)ds
)
−B(0,di)

(∫ t

0

γ(N̄0(s))N̄0(s)ds
)

M̂1(t) = B(0,di)

(∫ t

0

γ(N̄0(s))N̄0(s)ds
)
−B(1,d)

(∫ t

0

δN̄1(s)ds
)
.

Using multivariate Taylor’s theorem, there are error terms H(r) → 02×2 in probability and

N̂(r)(t) = n̂(r) + M̂(r)(t) +

∫ t

0

[∇F(N̄(s)) +H(r)(s)]N̂(r)(s)ds.

Since {n̂(r)}, {M̂(r)}, and {∇F(N̄(s)) +H(r)(s)} are stochastically bounded, for any fixed 1− ϵ

and T , there exist K,M such that for all t ∈ [0, T ] and r ∈ N,

P(||N̂(r)(t)|| ≤ K +

∫ t

0

M ||N̂(r)(s)||ds) ≥ 1− ϵ.
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By Grönwall’s inequality, we have

sup
r

P(||N̂(r)||T ≤ K exp(MT )) ≥ 1− ϵ.

This concludes stochastic boundedness of {N̂(r)}.

Theorem 2. N̂(r) ⇒ N̂, where

N̂(t) = n̂+ M̂(t) +

∫ t

0

∇F(N̄(s))N̂(s)ds.

Proof. Define an operator J : D2 → D2 such that J(b) = x with

x(t) = b(t) +

∫ t

0

∇F(N̄(s))x(s)ds.

It is easy to check the operation J is continuous in the SJ1 topology.

Arguing by Grönwall’s inequality, we have bn → b ∈ C2 implies J(bn) → J(b). We write

N̂(r) = J(n̂+ M̂(r) +

∫ ·

0

H(r)(s)N̂(r)(s)ds).

Without invoking Skorohod representation theorem as in Theorem 3, we only have joint conver-

gence in distribution by Slutsky’s theorem

(Y(r), I(r)) ⇒ (B, I).

This is sufficient for us to conclude Y(r) ◦ I(r) ⇒ B ◦ I. Hence, M̂(r) ⇒ M̂. By Lemma 2, {N̂(r)}

is stochastically bounded. Combining with the statement H(r) → 02×2 in probability, we have∫ ·
0
H(r)(s)N̂(r)(s)ds) ⇒ 0. Hence,

n̂+ M̂(r) +

∫ ·

0

H(r)(s)N̂(r)(s)ds ⇒ n̂+ M̂.
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Since n̂+ M̂ has continuous sample paths, N̂(r) ⇒ N̂ by continuity of J .

A.3 Stability of the FLLN Dynamics

Since the FLLN dynamics is a two-dimensional autonomous system of ODEs, global stability can be

established by Poincaré–Bendixson theorem. We first show the forward orbit through the initial

data n̄ lies in a compact set (Proposition 3) and rule out undesired cases (Theorem 3).

Proposition 3. For any fixed initial condition n̄, the trajectory of the FLLN limit {N̄(t) | t ≥ 0}

lies in a compact subset of R2.

Proof. The FLLN limit is defined by N̄(0) = n̄ and

N̄ ′
0(t) = [α(N̄1(t))− γ(N̄0(t))]N̄0(t)

N̄ ′
1(t) = −δN̄1(t) + γ(N̄0(t))N̄0(t).

To show the trajectory lies in a compact set, it suffices to show N̄0(t) is uniformly bounded for all

t ≥ 0.

We consider two cases in Eq. (2) from Section 2.1. For the first case, we assume α(0) <

limx→∞ γ(x) and define an IVP with Ñ(0) = n̄ and

Ñ ′
0(t) = [α(0)− γ(Ñ0(t))]Ñ0(t)

Ñ ′
1(t) = −δÑ1(t) + γ(Ñ0(t))Ñ0(t).

This IVP corresponds to deletion of the regulation on α. Since the first equation is autonomous,

Ñ0(t) is monotonic. Furthermore, since α(0) < limx→∞ γ(x), Ñ0(t) is bounded. Since α(y) ≤ α(0),

Ñ0(t) ≥ N̄0(t) for all t ≥ 0, which implies N̄0(t) is also bounded. As a consequence, N̄1(t) is bounded

for all t.

For the second case, limy→∞ α(y) < γ(0), we set up another IVP with initial condition Ñ(0) = n̄
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and

Ñ ′
0(t) = [α(Ñ1(t))− γ(0)]Ñ0(t)

Ñ ′
1(t) = −δÑ1(t) + γ(0)Ñ0(t).

This IVP corresponds to deletion of regulation on γ. Since γ(x) ≥ γ(0) for all x ≥ 0, we have

Ñ0(t) ≥ N̄0(t) for all t ≥ 0. We show there is a compact trapping region K that contains n̄ by

Theorem 4.2.3 in Schaeffer and Cain (2018). To see this, let y∗ denote the unique solution to

α(y) = γ(0), then for y ≥ y∗, we have α(y)− γ(0) ≤ 0. Therefore, for y ≥ y∗,

(α(y)− γ(0))x

−δy + γ(0)x

 ·

 −1

α(y)−γ(0)
γ(0)

 ≥ 0.

The curve with normal vector (−1, α(y)−γ(0)
γ(0) )⊤ has the form

x(y) = K +

∫ y

y∗

α(t)− γ(0)

γ(0)
dt.

Here K is a positive constant that will be specified later. To complete the boundary for the trapping

region with y < y∗, suppose the normal vector is of the form (−1, C)⊤ for some positive C, then we

must have for all y < y∗,

(α(y)− γ(0))x

−δy + γ(0)x

 ·

−1

C

 = [(1 + C)γ(0)− α(y)]x− Cδy ≥ 0.

The curve with normal vector (−1, C)⊤ has the form x(y) = K −C(y∗ − y), so the desired condition

is equivalent to the following: for all y < y∗,

[(1 + C)γ(0)− α(y)][K − C(y∗ − y)]− Cδy ≥ 0.
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We may select C∗ large enough such that (1 + C∗)γ(0) > α(0) ≥ α(y), then select K∗ large enough

such that [(1 + C∗)γ(0)− α(y)][K∗ − C∗(y∗ − y)]− C∗δy ≥ 0 and n̄ ∈ K, where

K =

{
(x, y) | y ≥ y∗; 0 ≤ x ≤ K∗ +

∫ y

y∗

α(t)− γ(0)

γ(0)
dt

}
∪ {(x, y) | 0 ≤ y < y∗; 0 ≤ x ≤ K∗ − C∗(y∗ − y)}.

The set K is a compact trapping region with piecewise C1 boundaries. Hence, Ñ0(t) is bounded,

which implies that both N̄0(t) and N̄1(t) are bounded.

Theorem 3. N̄(t) → N̄∗ as t → ∞ with any fixed initial condition n̄. Moreover, for any fixed

η ∈ (λ, 0) and initial data n̄ > 0, ||N̄(t)− N̄∗|| = o(exp(ηt)).

Proof. By Proposition 3, the trajectory of FLLN lies in a compact set K. To rule out periodic orbits,

we define U = {(x, y) | x > 0, y > 0}. Then by Dulac’s theorem (Theorem 7.2.5 in Schaeffer and

Cain (2018)), we have

∇ ·
[−1

x
F(x, y)

]
= γ′(x) +

δ

x
> 0 on U .

Therefore, there are no periodic orbits in U . In addition, the forward orbit through n̄ lies in a

compact subset of U and U contains exactly one point. By Eq. (4) in Section 3.1, N̄∗ is locally stable.

We invoke Strong Poincaré–Bendixson Theorem (Theorem 7.2.5 in Schaeffer and Cain (2018)) to

conclude N̄∗ is globally stable. Consequently, for any fixed initial data n̄ > 0 and η ∈ (λ, 0), we have

||N̄(t)− N̄∗|| = O(exp(ηt)) as t → ∞.

Since (λ, 0) is open, we can strengthen the statement. For any fixed n̄ and η ∈ (λ, 0),

||N̄(t)− N̄∗|| = o(exp(ηt)) as t → ∞.
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A.4 Large-time Asymptotics of the FCLT Dynamics

To study large-time behaviors of the FCLT dynamics N̂, we fix M > 0 and focus on the dynamics

in time interval [T, T +M ]. Recall we define GT (t) = N̂(T + t) and the Gaussian process G∗ with

mean function m∗(t) = 0 and autocovariance function K∗(s, t) = V ∗ exp((t− s)[A∗]⊤) for s ≤ t. As

we increase T to infinity, the FCLT dynamics N̂ in the moving interval [T, T +M ] will behave like

the Gaussian process G∗. Also recall that we cast the processes to the space of of Gaussian measures

on H = L2([0,M ]2,B([0,M ]2), Leb), as GT ’s and G∗. We consider the 2−Wasserstein distance of

these two Gaussian measures in the space H. We prove the following result.

Theorem 4. W (GT ,G∗) = o(exp(η2T )), for all η ∈ (λ, 0).

Proof. Let || · ||Tr denote the trace norm and || · ||HS denote the Hilbert-Schmidt norm.

W 2
2 (GT ,G∗) = ||mT ||22 + Tr(CT + C∗ − 2(C

1/2
∗ CTC

1/2
∗ )1/2)

≤ ||mT ||22 + ||CT + C∗ − 2(C
1/2
∗ CTC

1/2
∗ )1/2||Tr.

Since all covariance operators are positive, by operator monotonicity of the square root function

(page 2 of Phillips (1987)),

||CT + C∗ − 2(C
1/2
∗ CTC

1/2
∗ )1/2||Tr ≤ ||(CT + C∗)

2 − 4(C
1/2
∗ CTC

1/2
∗ )||

1
2

Tr.

Since C∗ is positive, self-adjoint, and of trace class, C
1
2
∗ is positive, self-adjoint, and Hilbert-

Schmidt. This implies (CT + C∗)
2 − 4(C

1/2
∗ CTC

1/2
∗ ) is a positive operator. To see this, let (ei) be

an orthonormal eigenbasis for C
1
2
∗ corresponding to eigenvalues (λi). Then, we have

⟨C1/2
∗ CTC

1/2
∗ ei, ei⟩ = ⟨CTC

1/2
∗ ei, C

1/2
∗ ei⟩

= λ2
i ⟨CT ei, ei⟩

= ⟨C∗CT ei, ei⟩ = ⟨CTC∗ei, ei⟩.
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Therefore,

⟨(CT + C∗)
2 − 4(C

1/2
∗ CTC

1/2
∗ )ei, ei⟩ = ⟨(CT − C∗)

2)ei, ei⟩ ≥ 0.

Since the trace norm of a positive operator is equal to to its trace, we have

||(CT + C∗)
2 − 4(C

1/2
∗ CTC

1/2
∗ )||

1
2

Tr = Tr((CT + C∗)
2 − 4(C

1/2
∗ CTC

1/2
∗ ))

1
2

= Tr((CT − C∗)
2)

1
2

= ||CT − C∗||HS .

By Proposition 7.10.23 in Bogachev and Smolyanov (2020), we have

||CT − C∗||2HS = ||KT −K∗||22

= 2

∫ M

0

∫ M

s

||V (s+ T ) exp(

∫ t

s

A⊤(u+ T )du)− V ∗ exp(A∗(t− s))⊤||2dtds

≤ 2

∫ M

0

∫ M

s

(||V (s+ T ) exp(

∫ t

s

A⊤(u+ T )du)− V ∗ exp(

∫ t

s

A⊤(u+ T )du)||

+ ||V ∗ exp(

∫ t

s

A⊤(u+ T )du)− V ∗ exp(A∗(t− s))⊤||)2dtds,

where KT and K∗ are defined by Eq. (11) in Section 4.2. To show ||CT − C∗||2HS = o(exp(2ηT )), it

suffices to show both

∫ M

0

∫ M

s

||[V (s+ T )− V∗] exp(

∫ t

s

A⊤(u+ T )du)||2dtds = o(exp(2ηT ));∫ M

0

∫ M

s

||V ∗[exp(

∫ t

s

A⊤(u+ T )du)− exp(A∗(t− s))⊤]||2dtds = o(exp(2ηT )).

For the first term, by Eq. 10 in Section 4.1, there exist T large enough and a constant C such

that

∫ M

0

∫ M

s

||[V (s+ T )− V ∗] exp(

∫ t

s

A⊤(u+ T )du)||2dtds

30



≤
∫ M

0

C exp(2η(s+ T ))

∫ M

s

|| exp(
∫ t

s

A⊤(u+ T )du)||2dtds

=C exp(2ηT )

∫ M

0

exp(2ηs)

∫ M

s

|| exp(
∫ t

s

A⊤(u+ T )du)||2dtds.

Since A(·+ T ) → A∗ as T → ∞ (see Eq. 9), the integral term is bounded as T → ∞. Hence,

∫ M

0

∫ M

s

||[V (s+ T )− V ∗] exp(

∫ t

s

A⊤(u+ T )du)||2dtds = O(exp(2ηT )),∀η ∈ (λ, 0)

=⇒
∫ M

0

∫ M

s

||[V (s+ T )− V ∗] exp(

∫ t

s

A⊤(u+ T )du)||2dtds = o(exp(2ηT )),∀η ∈ (λ, 0).

For the second term, since A(·+ T ) → A∗ as T → ∞ (see Eq. 9), by the mean value inequality

in Banach space (Theorem 44 in Guirao et al. (2022)), there exists a constant D > 0 (independent

of T ) such that

∫ M

0

∫ M

s

||V ∗[exp(

∫ t

s

A⊤(u+ T )du)− exp(A∗(t− s))⊤]||2dtds

≤||V ∗||2
∫ M

0

∫ M

s

D||
∫ t

s

A⊤(u+ T )du− [A∗]⊤(t− s)||2dtds

=||V ∗||2
∫ M

0

∫ M

s

D||
∫ t

s

A⊤(u+ T )− [A∗]⊤du||2dtds

≤ D̃ ·
∫ M

0

∫ M

s

exp(2ηT )(exp(ηs)− exp(ηt))dtds, for some D̃ > 0.

Therefore,

∫ M

0

∫ M

s

||V ∗[exp(

∫ t

s

A⊤(u+ T )du)− exp(A∗(t− s))⊤]||2dtds = O(exp(2ηT )),∀η ∈ (λ, 0)

=⇒
∫ M

0

∫ M

s

||V ∗[exp(

∫ t

s

A⊤(u+ T )du)− exp(A∗(t− s))⊤]||2dtds = o(exp(2ηT )),∀η ∈ (λ, 0).

Since ||m||T = O(exp(2λT )), we conclude

W 2
2 (GT ,G∗) ≤ ||mT ||22 + ||CT − C∗||HS

= o(exp(ηT )).
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Therefore, W2(GT ,G) = o(exp(η2T )) for all η ∈ (λ, 0) and this result holds for all M .
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