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Abstract 
The convergence of arƟficial intelligence (AI) and syntheƟc biology is rapidly acceleraƟng the pace of 
biological discovery and engineering. AI techniques, such as large language models and biological design 
tools, are enabling the automated design, build, test, and learning cycles for engineered biological 
systems. This convergence promises to democraƟze syntheƟc biology and unlock novel applicaƟons 
across domains from medicine to environmental sustainability. However, it also poses significant risks 
around reliability, dual use, and governance. The opacity of AI models, the deskilling of workforces, and 
the outdated nature of current regulatory frameworks present challenges in ensuring responsible 
development. Urgent aƩenƟon is needed to update governance structures, integrate human oversight 
into increasingly automated workflows, and foster a culture of responsibility among the growing 
community of bioengineers. Only by proacƟvely addressing these issues can we realize the 
transformaƟve potenƟal of AI-driven syntheƟc biology while miƟgaƟng its risks. 

 

1. IntroducƟon 
Recent years have witnessed rapid progress in two transformaƟve technological fields - arƟficial 
intelligence (AI) and syntheƟc biology. AI advances have been enabled by improvements in 
computaƟonal speed, data transfer, and data storage. SyntheƟc biology advances have been powered by 
improvements in reading, wriƟng, and ediƟng DNA. The use of AI in syntheƟc biology has evolved in two 
phased. IniƟally large language models (LLMs) and biodesign tools were used for biodesign. Now, 
machine learning is being employed to analyze integrated genomic and funcƟonal data sets. This 
convergence is yielding powerful discriminaƟve assessments of biological informaƟon, system and 
structure which are acceleraƟng, and democraƟzing bioengineering [1]. Current applicaƟon of AI to 
biotechnical problem sets is delivering both rapid technological change and creaƟng a deluge of new 



AI-syntheƟc biology Convergence draŌ 
Benjamin.d.trump@usace.army.mil 

governance and oversight challenges. Future generaƟve AI will likely deliver not just discriminaƟve and 
predicƟve capability but perhaps an AI biological designer, cognizant and considerate of the contextual 
challenges presented by the biological domain. Responsible development of this AI-syntheƟc biology 
fronƟer necessitates proacƟve governance based on principles of knowledge culƟvaƟon, accountability, 
transparency, and ethics. 

AI capabiliƟes are facilitaƟng a more complete understanding of biology, and this growing fluency will 
underpin AI-assisted biological engineering and eventually lead to a robust ability to imagine and 
validate a wide array of biological constructs. While we are sƟll in the age of defining the tools and 
building materials that future syntheƟc biologists will employ, AI is now and will conƟnue to hasten 
discovery and aggregaƟon of biological informaƟon [2]. Efforts to deliver curated, intelligible biological 
informaƟon will eventually shiŌ from discriminaƟve to generaƟve in nature, giving rise to automated 
bioengineering pipelines. Efforts like BioAutomata embody this vision, using AI to guide each step of a 
design-build-test cycle for engineering microbes - with limited human supervision [3]. The result could 
be dramaƟcally accelerated and democraƟzed syntheƟc biology [4]. 

However, this AI-syntheƟc biology convergence also poses risks if not developed thoughƞully [5]. Many 
of these risks are associated with a reduced knowledge threshold to carry out biological engineering 
tasks and the democraƟzaƟon of the tools and capabiliƟes to engineer potenƟally harmful sequences or 
organisms of concern. Lack of oversight and access to emerging tools like desktop sequencers create 
potenƟal scenarios where accidental or intenƟonal de novo design of harmful biology is released and 
allowed to spread uncontrolled. The potenƟal democraƟzaƟon of the design and tesƟng of engineered 
biology could reduce our ability to anƟcipate the consequences of syntheƟc biological constructs.  
Further, the design and implementaƟon of miƟgaƟon strategies for unforeseen consequences could 
move out of reach. There are also dual use issues if AI enables rapid producƟon of harmful engineered 
organisms. More broadly, policy frameworks tend to lag cuƫng edge technologies, exacerbaƟng the 
above risks within an environment of incomplete risk insight, and inconsistent policies across countries 
harden this challenge. While guidelines do exist for things like genome synthesis screening procedures, 
these are sƟll merely recommendaƟons and robust systems of oversight and transparency have yet to be 
mandated industry-wide.  

Balancing these tensions inherent to AI-syntheƟc biology convergence requires mulƟ-stakeholder 
collaboraƟon and governance. ScienƟsts, ethicists, policymakers, and other experts must work closely 
and transparently to ensure technologies advance responsibly. Biological construct design and 
deployment currently requires extensive regulatory oversight, that should conƟnue to be the case, but a 
new quesƟon arises; If a design process, tesƟng protocol, or deployment strategy happens in an 
increasingly distributed and automated manner what current governance instruments or regulatory 
protocols might be insufficient to gauge risk? IntegraƟng oversight into highly automated pipelines could 
act as a safeguard to inform risk assessment, regulaƟon, and policy, as could developing internaƟonal 
soŌ laws and codes of conduct regarding safe use recommendaƟons such as the screening and logging of 
synthesized DNA sequence [6]. If pursued judiciously, this nexus of breakthrough technologies could 
posiƟvely transform fields from human health to agriculture and environmental sustainability. To get 
there, we must thoughƞully weigh each step to understand points of sensiƟvity, intervenƟon, and 
regulaƟon in managing risks to balance safety with the economic first actor incenƟves for breakthrough 
innovaƟon.  
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UlƟmately, a balance must be struck between nurturing convergence capabiliƟes to accelerate desirable 
breakthroughs across various product lines, and the imperaƟve to diligently idenƟfy and appropriately 
govern novel risk on an internaƟonal landscape. This arƟcle delineates the disƟncƟve roles of AI in 
acceleraƟng the design and experimental phases of syntheƟc biology. At the same Ɵme, we underscore 
the criƟcal need to revisit regulatory requirements, instruments, and capabiliƟes to ensure that risks 
stemming from technological convergence are adequately captured through perƟnent hard or soŌ law 
for the coming decade. It is imperaƟve to disƟnguish between the automaƟon of rouƟne tasks, which AI 
facilitates, and the decision-making processes that require human oversight and ethical consideraƟon. 
The integraƟon of AI into syntheƟc biology presents unparalleled opportuniƟes for innovaƟon yet 
necessitates a nuanced understanding of where automaƟon serves to enhance efficiency and where 
human intervenƟon is indispensable for ethical oversight and safety assurance. Specifically, this 
discussion examines the technical and ethical standards necessary for balancing automated systems with 
human-in-the-loop controls within AI-driven biotechnological pipelines. It also explores strategies for 
preserving criƟcal human oversight in the design process, even as we advance towards more 
autonomous laboratory environments [7]. While AI significantly contributes to the field's advancement 
by opƟmizing design and experimentaƟon, it does not obviate the need for rigorous regulatory 
frameworks or diminish the essenƟal role of human oversight at various stages of the product lifecycle. 
As such, this arƟcle discusses some of the emerging opportuniƟes and challenges stemming from the 
technological convergence of AI and biotechnologies like syntheƟc biology, while also suggesƟng key 
areas of aƩenƟon and potenƟal innovaƟon to ensure effecƟve but not excessively burdensome 
governance of technology risk. 

2. Promises of AI-SyntheƟc Biology Convergence 
The integraƟon of arƟficial intelligence (AI) techniques into syntheƟc biology workflows is set to 
accelerate the design, tesƟng, and opƟmizaƟon of engineered biological constructs across mulƟple 
domains [8]. From pharmaceuƟcal producƟon to environmental remediaƟon, AI-enabled automaƟon 
and in silico modeling can shorten development Ɵmelines and expand the complexity of achievable 
biosystems. Early efforts to incorporate advanced digital capability such as LLMs and BDTs foreshadow 
the near-term achievements of this convergence. Specifically, the non-trivial processing power of 
machine learning (ML), a data-driven subdiscipline of AI, will likely deliver rapid acquisiƟon of complex 
high fidelity biological informaƟon, increasingly accurate sequence-to-structure predicƟon modeling and 
improved design-build-Test-Learn cycle efficiency. These advances will also be the foundaƟon for future 
digital biodesign that will someday be capable of rapid automated design and synthesis of novel 
biological constructs ranging from macromolecules to enƟre metabolisms. Early examples of 
improvement of these aeras of bioengineering exist and we can use them as guideposts as we anƟcipate 
the future of AI empowered syntheƟc biology.  

Knowledge acquisiƟon and refinement 

The last 50 years have seen remarkable gains in the acquisiƟon and interpretaƟon of sequence 
informaƟon. Early sequencing technologies, based on chain terminaƟon, required hours of work by 
highly skilled hands to deliver short segments of nucleic acid sequence. These efforts eventually gave rise 
to the era of high-throughput sequencing marked by the introducƟon of automated sequencing 
plaƞorms and the applicaƟon of computer processing which delivered the assembly of the first long 
conƟguous sequences of DNA [9]. Further ingenuity produced massively parallel sequencing techniques 
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oŌen referred to as “Next generaƟon”. DNA sequencing began to significantly outpace Moore’s Law in 
2008 This trend conƟnues today [10].  

Growing capability in sequencing empowered the human genome project as well as the delivery of 
mulƟple eukaryoƟc genomes in the early 2000s. The uƟlizaƟon of digital tools such as Basic Local 
Alignment Search Tool (BLAST) and microarray technologies encouraged the emerging fields of   
comparaƟve -omics [11]. The success of the BLAST tools highlights how integral digital based processing 
is to modern biological invesƟgaƟon. This early convergence of a digital tool which allowed faster 
examinaƟon and delivered insights into the structure of both coding and noncoding sequence 
foreshadows the success of powerful AI/ML tools that will deliver the next generaƟon of biological 
fluency.   

Today, emerging single molecule sequencing (SMS) capabiliƟes are delivering improved cost, speed, and 
plaƞorm portability. SMS is also opening the door to a more exquisite examinaƟon of sequence, the 
convergence of AI and SMS is producing more intricate sequence informaƟon including modified base 
calling, sequence variant calling, and chromosome phasing [12 - 13]. These advances have already 
delivered in applicaƟon areas such as medical diagnosƟcs, epigenomic analysis and the improvement of 
reference genomes [14 – 16]. In future it is likely that ML will allow raw data to be curated and 
interpreted to an even greater extent at the point of original discovery.  

Molecular geneƟc studies have piece by piece revealed the intricate processes that control gene 
expression. The landmark idenƟficaƟon and purificaƟon of the eukaryoƟc RNA polymerases in 1969 
followed by decades of rigorous biochemical studies revealed a staggeringly complex interplay between 
DNA sequence, chromaƟn structure and the soluble factors that control the dynamic and responsive 
industry of eukaryoƟc gene expression. While impressive revelaƟons regarding the paradigm of gene 
expression at large have been made, gaps in our ability to predict how both coding and non-coding 
genomic informaƟon deliver the dynamic living structures persist. As we conƟnue to uncover the 
paradigms of geneƟc expression including nucleic acid sequence structure, epigeneƟc structure, and 
other contextual effectors; our understanding of how biological funcƟon is recorded, stored, and altered 
will grow more sophisƟcated. Fulsome cognizance of how biological informaƟon is transformed into 
funcƟonality is almost certainly unobtainable without the aid of the analyƟcal power of AI. AI 
empowered analyses of the biological systems may themselves fall short of this immense task, but they 
will move us closer to mastery. 

Tools like LLMs and BDTs, and other technologies that broadly fit under the umbrella of AI, are beginning 
to help shape our understanding of genomic informaƟon. AI is being employed to progress our 
understanding of how geneƟc sequence becomes physical structure. Significant capability is emerging in 
DNA-based LLMs and BDTs that are capable of tasks such as gene finding, enhancer annotaƟon and 
chromaƟn accessibility predicƟon. UlƟmately, this convergence will enhance human understanding of 
how biological structures are produced in a temporally and spaƟally coordinated manner to produce 
funcƟonal metabolisms.   

PredicƟng FuncƟonality 

Beginning with the publicaƟon of the central dogma, perhaps the birth of modern molecular geneƟcs, 
molecular biology has pushed us towards a beƩer understanding of how stored biological informaƟon is 
transformed into structural capability. With every gain we seem to uncover a beƩer but more daunƟng 
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view of the intricate and sophisƟcated biochemistry which delivers the diversity of life on earth. In the 
secƟon above we discussed the emerging convergent technologies that will allow for extensive and 
precise readings of sequence, and it is important to note this acƟvity as a foundaƟon for what we will 
discuss in this secƟon. The integraƟon of huge volumes of genomic data into more than nonsensical 
leƩers has, for decades, been a burdensome task. Modern molecular biology has parƟally revealed the 
significance of non-coding sequence, epigeneƟcs, and other contextual effectors of biological 
manifestaƟon. Adept syntheƟc biological designers will require mastery over a polyfactorial system, 
which is not fully understood. AI/ML supported knowledge acquisiƟon will progress human 
understanding of the relaƟonship between sequence, context, and structure.   

Modern AI, including LLMs and BDTS, will be powerful tools in the deciphering of DNA data that will 
unquesƟonably improve our understanding of genomes and their design paradigms. AI is fueling 
advances across the biological sciences, from deciphering the rules of protein folding to opƟmizing 
chemical synthesis pathways [17]. AI, driven by state-of-the-art architectures like Transformers and 
Hyena models4, are emerging as increasingly reliable tools for uncovering subtle, distant, and non-
obvious implicaƟons of coding and non-coding sequence. The work to decipher the meaning of genomic 
data is more challenging than similar work on protein sequence, hindered largely by a lack of well-
curated and publicly available experimental data. This discrepancy is caused by the fact that protein 
sequence has already been extensively experimentally decoded, removing the myriad intricacies of 
expression altering non-coding detail that is abundant in genomic data. Put another way, the derivaƟon 
of phenotype from DNA sequence will require deeper understanding of a language that has been 
developed and refined via 4 billion years of evoluƟonary process.   

Proteins are the molecular workhorses of life, and the physical result of the central dogma. Protein 
funcƟon is derived from its exact physical embodiment, understanding how a protein will play its 
metabolic role requires intricate awareness of its shape and charge to the atomic level. Empirically 
derived 3D protein structure has historically required laborious techniques such as X-ray crystallography 
that placed some proteins, including many membrane-bound proteins, out of reach for structural 
biologists. In the first decade of the 21st Century cryo-electron microscopy improved the plight of 
structural biologists by removing the need for crystallizaƟon prior to molecular interrogaƟon [18]. It is 
sƟll however, a non-trivial task to idenƟfy precise physical 3D structure of proteins. 

Protein engineering stands to benefit from AI [19]. One key area of focus has been the de novo design of 
proteins - creaƟng novel protein sequences predicted to fold into desired shapes and funcƟons. Recently, 
DeepMind's AlphaFold has solved a 50-year-old challenge that has stumped the field by achieving 
improved accuracies at modeling protein terƟary structure for all known proteins simultaneously [20]. It 
is not surprising that in 2022 Nature Methods idenƟfied the AlphaFold2 protein structure predicƟon as 
the Method of the Year [21]. This computaƟonal leap forward approaches the level of accuracy of 
tradiƟonal empirical methods but does so for all known proteins simultaneously and delivers results with 
a significantly reduced Ɵme, cost, and labor burden [22]. AlphaFold2 has flexed its capability, predicƟng 
protein structure for all of the known human proteome [23]. GeneraƟve models such as Hyena [24], or 
from companies like Absci and Orbit Discovery use their in-house AI to propose novel protein sequences 
tailored for binding affinity, catalysis, signaling funcƟons, and others. These AI techniques enhance 
raƟonal protein engineering efforts and put in reach combinatorial spaces too vast for high-throughput 
screening. By exponenƟally acceleraƟng the design proposal and selecƟon, they stand to unlock novel 
biomolecules for applicaƟons from industrially useful enzymes to living therapeuƟcs. 
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AcceleraƟng Design Cycles and AutomaƟng DBTL 

Grueling, painstaking work gave rise to our first understanding of gene expression. The lac operon was 
explained by Nobel laureates: In 1969, Jacob and Monod [25] began to uncover the machines 
responsible for eukaryoƟc gene expression. The first wave of foundaƟonal discoveries regarding natures 
control over transformaƟon of informaƟon into physical structure have since been joined by a myriad of 
molecular mechanisms such as small interfering RNA (siRNA) and clustered regularly interspaced short 
palindromic repeats (CRISPR) [26], the laƩer of which earned the authors the Nobel Prize in 2020. The 
foundaƟonal work in molecular geneƟcs, while exciƟng, has also revealed the incomplete status of our 
understanding. That same insight revealed the daunƟng and complex challenge for the field of molecular 
biology. AI techniques, such as tradiƟonal machine learning algorithms and the more recently developed 
language models (LMs) and biological design tools (BDTs), are beginning to assist us in answering that 
challenge. As Science delivers a deeper understanding of how biological language is translated into 
physical structure, the toolkits of future syntheƟc biologists are being built.  

The field of syntheƟc biology is approaching a Ɵpping point driven by the applicaƟon of ML [27]. 
RevoluƟonary ability to augment and automate computaƟonal steps in the design-build-test-learn 
pipeline will be delivered by AI [28]. For DNA design, neural network models may learn to opƟmize 
regulatory sequence and expression regimes for a desired biological context [29]. SophisƟcated models 
can even propose enƟre geneƟc circuits for a specified outcome. Companies like Ansa Biotechnologies, 
TeselaGen, and Synthace offer such AI-guided DNA design and opƟmizaƟon services to clients 
engineering microbial strains or developing gene therapies. An enƟre industry of design opƟmizaƟon for 
the user of syntheƟc biological structure is emerging.  

Engineered CAR T-cells have shown effecƟveness against some lymphomas. These treatments are 
expensive, cosƟng several hundred thousand dollars.  This price point is a funcƟon of the effort required 
to design and implement the producƟon of CAR proteins in the paƟent’s T-cells. Further, while these can 
be effecƟve customized therapies, they conƟnue to have major limitaƟons such as off-target toxicity. As 
databases of CAR-T designs are built researchers will begin to piece together a wider understanding of 
why certain constructs are effecƟve. The applicaƟon of ML to predict the quality of the complex 
interacƟons between CAR-T cells and their cancerous targets has been shown to track with clinical 
outcomes for an exisƟng CAR-T cell treatment. The conƟnued applicaƟon of ML and future AI systems 
with access to growing databases will feed the ability of AI to predict funcƟonality, ulƟmately lowering 
the bar for delivering efficacious, financially obtainable, individualized therapies. 

Beyond construct design, AI can also automate and enhance downstream steps like molecular cloning, 
strain engineering, phenotypic assays, and data analyƟcs. RoboƟcs controlled by algorithms handle 
material transport, instrumentaƟon control, colony picking, liquid handling, incubaƟon, and 
chromatography. They can systemaƟcally build geneƟc variant libraries, perform mulƟplexed 
experiments, and characterize engineered cells with minimal human intervenƟon. Startups like BioƟum, 
Strateos, and Emerald Cloud Lab already leverage such capabiliƟes, offering services like rapid microbial 
strain and enzyme opƟmizaƟon to clients. The automated build-test loops they orchestrate help 
engineer organisms for goals from biosensing to biomanufacturing. 

Closing the build-test loop, AImay be useful in digesƟng and learning from the resultant data. Beyond 
acceleraƟng each individual step, algorithmic coordinaƟon also conƟnually tunes the end-to-end 
pipeline. Performance metrics from assays and analyƟcs further refine design parameters, DNA synthesis 
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constraints, roboƟc workflows, and models themselves. BioAutomata, an automated roboƟc plaƞorm 
coupled with predicƟve ML was able to demonstrate opƟmizaƟon of lycopene producƟon pathway.  This 
example removes the human in the loop aŌer iniƟal query, returned a completed DBTL cycle and 
delivered impressive opƟmizaƟon while tesƟng less than 1% of variants (HamediRad et al., 2019).   

Connecting AI analysis to automated empirical learning will allow rapid interrogation of synthetic design 
across a spectrum of cellular and multi-cellular contexts. While this will clearly reduce costs and labor 
input required to identify functional synthetic biological constructs it’s also worth noting that it reduces 
human access to empirical knowledge acquisition.  

 

Enabling Novel Biosystems 
Beyond sheer acceleraƟon, AI integraƟon can also expand the complexity fronƟers of achievable 
biological systems. Tasks like controlling and interpreƟng mulƟplexed sensors, tuning mulƟdimensional 
gene expression, or opƟmizing intricate metabolic pathways require assessing vast design spaces. 
ComputaƟonal exploraƟon of combinatorial and sequence spaces facilitates the raƟonal design of 
mulƟfaceted systems previously out of reach.  For example, companies like Lycia TherapeuƟcs and Nuvai 
leverage generaƟve neural networks to engineer novel protein machines, signaling modulators, and 
smart enzyme cascades.  

Synthesizing such elaborate blueprints demands a fluency in biology’s design grammar - understanding 
how low-level DNA syntax translates to high level systemic funcƟons. Here too AI is proving adept at 
deducing underlying design rules. Whether by mining paƩerns in databases or learning sequence-
structure-funcƟon mappings from laboratory data, algorithms uncover predicƟve models relaƟng 
genotypes to phenotypes. In a feedback loop, experimentally validaƟng model outputs also conƟnually 
refines understanding of this grammar. The design of an opƟmized whole gene regulatory structure using 
a deep generaƟve adversarial network can be used to drive regulatory control above tradiƟonal 
mutagenesis methods. Startups like Design-by-Data and Flatcarbon leverage such learned design 
principles for forward engineering of microbes, yeast, or cell lines to specificaƟon. 

As algorithms are engineered for improved interpretability of geneƟc informaƟon at a biological system 
level, they can assist bioengineers in consciously composing increasingly sophisƟcated systems for 
sensing, manufacturing, remediaƟon, and medical needs. Rather than just troubleshooƟng known 
designs via discriminaƟve models, these AI systems will become generaƟve partners enabling more 
expansive and reliable creaƟon. UlƟmately AI will deliver a next generaƟon arƟficial bio designer. An AI 
biodesigner will require a more sophisƟcated ability to apply the polyfactorial contextual effectors that 
lie between nucleoƟde structure and biological funcƟon to the task of bioengineering. The advent of this 
AI biodesigner will be a leap forward from the current discriminaƟve assistance that is currently in use. 
Progress towards a capable AI biodesigner must be accompanied by human knowledge capture, criƟcal 
for both installing appropriate interrogaƟon sites and controls on next generaƟon biotechnical AI 
models.   

Increased Access and Reducing Skill Threshold 
The convergence of AI and syntheƟc biology is poised to dramaƟcally lower the skill threshold allowing 
access to and parƟcipaƟon in the bioengineering landscape (O’Brien & Nelson 2020). By automaƟng 
rouƟne molecular biology tasks and providing intuiƟve design tools, AI lowers the barriers to entry and 
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de-skills many rouƟne technical tasks for a wider range of interested actors. TradiƟonally, the field has 
been restricted to highly skilled experts with extensive hands-on experience in molecular biology 
techniques. However, the integraƟon of AI is now enabling computer scienƟsts, entrepreneurs, and even 
biohackers to engage in bioengineering projects with minimal wet lab backgrounds. 

One key way AI facilitates this democraƟzaƟon is by handling repeƟƟve workflows and providing user-
friendly interfaces. Graphical user interfaces (GUIs) abstract away the complexiƟes of command-line 
programming, allowing those without coding experƟse to sƟll leverage advanced models. Startups like 
Strateos and Emerald Cloud Lab take this a step further, offering remote access to roboƟc 
instrumentaƟon for automated experimentaƟon. This means even freelance bioentrepreneurs can 
prototype ideas without the need for costly in-house lab infrastructure. 

Moreover, as AI models grow increasingly sophisƟcated, they are beginning to encapsulate the domain 
knowledge and decision-making capabiliƟes that were once the exclusive purview of seasoned 
researchers. By codifying the heurisƟcs and intuiƟon of human experts into algorithmic rouƟnes, AI is 
progressively deskilling certain aspects of the bioengineering process. In the near future, AI assistants 
may provide personalized guidance and support, enabling students, DIY scienƟsts, and ciƟzen syntheƟc 
biologists to safely explore ideas without direct supervision from established pracƟƟoners. 

However, it is crucial to recognize that this democraƟzaƟon also comes with inherent risks. As the tools 
and knowledge required to engineer living systems become more widely accessible, so too does the 
potenƟal for accidental or deliberate misuse. While AI can streamline technical workflows, it cannot 
replace the ethical judgment and social responsibility of human actors. Therefore, appropriate 
safeguards, oversight mechanisms, and educaƟonal iniƟaƟves must be put in place to ensure that 
biosafety and biosecurity standards are upheld even as the field expands to welcome new parƟcipants. 

 

3. Risk and Governance Challenges 
 

Along with the  benefits discussed above, the integraƟon of AI into syntheƟc biology also creates risks 
related to reliability, dual use, and outmatched governance systems. Unlike more bounded applicaƟons, 
programmed cells can self-replicate, evolve, and disperse with ecological consequences at stake. 
Employing emerging AI capabiliƟes to engineer organisms demands heightened safeguards and 
oversight. Core areas needing scruƟny include opaque AI models, automaƟon reducing human diligence, 
potenƟal for weaponizaƟon, and outdated regulaƟons [30].  

Interpretability of AI Models 
Many AI models for biodesign like generaƟve neural networks or gradient boosƟng models operate as 
“black boxes” - delivering predicƟons without explanaƟons for internal reasoning [31 - 32]. While this 
opaqueness does not hinder their technological uƟlity, it does limit evaluability regarding reliability or 
safety and may also retard acceptance and legiƟmizaƟon of AI models for biodesign. For instance, a 
protein design large language algorithm may hallucinate flawed sequence suggesƟons that nevertheless 
receive high performance scores. Benchmarking new AI techniques against tradiƟonal expert methods 
can give insight into the relaƟve limitaƟons of these techniques regarding certain tasks, but sƟll cannot 
capture the detailed reasons why a model reaches a specific conclusion[33 – 34]. Without transparency 
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into failure modes, researchers cannot fully trace or troubleshoot limitaƟons, this lack of insight may give 
potenƟal adopters pause and erode confidence even for those tools that demonstrate funcƟonality.  

The difficulty in understanding the intent behind AI-generated outputs poses policy challenges. While AI 
models may be highly accurate in their predicƟons, they are ulƟmately a reflecƟon of the data they are 
trained on. If the training data incorporates biases, either from the underlying biological systems or from 
the human curators, these biases can propagate through to the model's outputs, which then go on to 
influence policy interpretaƟons as well as our understanding of human and environmental safety [35]. 
Moreover, even if a model correctly idenƟfies paƩerns or relaƟonships in the data, it may not capture 
the proximate causes or mechanisƟc explanaƟons for these associaƟons. This lack of causal 
understanding limits the ability to anƟcipate potenƟal side effects or failure modes when translaƟng AI 
predicƟons into real-world applicaƟons. 

Interpretability goes beyond mere predicƟon - it involves understanding the meaning, value, and 
jusƟficaƟon behind a model's outputs. Factor analysis techniques can help uncover the latent variables 
driving a model's decision-making process, providing a reduced funcƟonal form that is more amenable 
to human comprehension [36]. By examining the differences between structure and funcƟon learned by 
the model, researchers can gain insights into the biological mechanisms underpinning its predicƟons. 

This interpretability is crucial for validaƟng the claimed benefits of AI-assisted biodesign while also 
idenƟfying potenƟal risks. Understanding how a model maps from training data to findings to ulƟmate 
jusƟficaƟons allows for more rigorous evaluaƟon of its real-world applicability. Techniques like saliency 
maps, counterfactual explanaƟons, and feature importance rankings can help illuminate the key factors 
influencing a model's outputs [37]. Armed with this knowledge, domain experts can beƩer assess 
whether a model's reasoning aligns with established biological principles and experimental evidence. 

Achieving interpretability remains a challenge, parƟcularly for complex models operaƟng on high-
dimensional data. The sheer number of parameters and non-linear interacƟons can make it difficult to 
disƟll a model's decision-making process into a form that is easily digesƟble by humans. Moreover, there 
may be inherent trade-offs between model performance and interpretability, as the most accurate 
models oŌen rely on intricate architectures that resist simple explanaƟons (Murdoch et al., 2019). 

Moreover, biosecurity risks grow if algorithms have undetected flaws or training biases hackers can 
exploit to deliberately output hazardous designs. DARPA’s recent malicious AI report war gamed 
scenarios around poisoning data or models for biomanufacturing, highlighƟng vulnerabiliƟes of opaque 
systems. For any AI-bio convergence, standards requiring explainability, auditability, and transparency 
into variables influencing output would bolster accountability and trust. Alongside monitoring for signs 
of data or model tampering. 

The ability of AI to autonomously interpret and respond to observed threats is limited but developing. 
AI's ability to self-teach and solve problems in syntheƟc biology extends beyond human capabiliƟes, 
largely due to its proficiency in handling and analyzing vast datasets. AI can idenƟfy paƩerns and 
relaƟonships in geneƟc data that are too subtle or complex for human researchers to discern. This leads 
to the idenƟficaƟon of problems that humans might not have recognized or understood how to address. 
For example, AI might discover non-obvious geneƟc interacƟons that influence drug resistance in 
pathogens, a problem that human scienƟsts might not have idenƟfied due to the complexity of genomic 
interacƟons. In industrial enzyme development, AI could reveal new enzymaƟc pathways that opƟmize 
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producƟon processes, pathways that human researchers might have overlooked due to the sheer 
volume of potenƟal enzymaƟc combinaƟons and reacƟons. 

The implicaƟons of this capability are profound. AI-driven discoveries can leapfrog current scienƟfic 
understanding, but they also present challenges in terms of verificaƟon, safety, interpretaƟon, and 
ethical consideraƟons. The advanced soluƟons proposed by AI might be effecƟve, yet their underlying 
mechanisms could be opaque, making it difficult to predict long-term effects or unintended 
consequences. This opacity necessitates new frameworks for risk assessment and management in AI-
assisted syntheƟc biology innovaƟons, balancing the potenƟal for groundbreaking advances with the 
need for safety and ethical responsibility [38]. 

Further, the interpretaƟon of AI models is not purely a technical maƩer, but also involves subjecƟve 
values and cultural contexts. What is considered a desirable or acceptable outcome may vary widely 
across different countries and communiƟes. For example, the use of AI to opƟmize gene drives for 
environmental conservaƟon might be viewed favorably in some regions, while others may prioriƟze 
preserving natural ecosystems without human intervenƟon [39]. Balancing these compeƟng values and 
prioriƟes requires inclusive deliberaƟon and parƟcipatory governance that goes beyond the capabiliƟes 
of AI alone. As such, policymakers must grapple with the challenges of regulaƟng a technology that is 
rapidly evolving, difficult to interpret, and entangled with broader societal concerns that include 
compeƟng incenƟves, perspecƟves, and interpretaƟons of risk across naƟonal borders. 

 

Ensuring Human Oversight in AI-Automated Workflows 
A criƟcal concern as AI assumes greater responsibility for biological design, building, and tesƟng is 
maintaining adequate human oversight to idenƟfy and miƟgate potenƟal risks [40]. The increasing 
automaƟon of workflows may lead to the deskilling of workforces, as personnel become overly reliant on 
algorithms without criƟcally evaluaƟng their suggesƟons or outcomes. This lack of human vigilance could 
allow unsafe engineered organisms to slip through automated build pipelines. The COVID-19 pandemic, 
for instance, exposed gaps in screening protocols for emerging viral sequences from genomic databases 
[41]. Such incidents highlight the ongoing need for human diligence and oversight, even when working 
closely with advanced AI tools. 

To address this challenge, bioengineers must establish ethical standards and protocols that keep humans 
in the loop at criƟcal assessment points as research pipelines progress. The specific funcƟons and 
decision gates requiring human evaluaƟon will vary depending on the context and safety consideraƟons. 
However, it is crucial to develop clear guidelines that delineate the roles and responsibiliƟes of human 
experts in validaƟng AI-generated designs, monitoring experimental outcomes, and making hard calls 
when faced with limited transparency or intelligibility of models. 

Moreover, as AI capabiliƟes advance, we may soon witness the emergence of fully autonomous 
biodesigner that can handle the enƟre process from iniƟal query to final construct delivery. While such 
AI-driven plaƞorms could revoluƟonize the field, their development must be accompanied by thoughƞul 
construcƟon of human-in-the-loop regimes. These oversight mechanisms should be enforced through 
professional norms, funding requirements, and regulatory frameworks to ensure that AI-assisted 
bioengineering remains accountable to societal values and prioriƟes. 
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Importantly, the integraƟon of AI into bioengineering workflows should not be viewed as a replacement 
for human experƟse, but rather as a tool to augment and enhance human capabiliƟes. Ongoing 
workforce training around the responsible development and ethics of converging technologies will be 
essenƟal to counteract deskilling risks and ensure that researchers can effecƟvely leverage AI while 
maintaining criƟcal thinking skills [42]. By fostering a culture of conƟnuous learning and ethical 
reflecƟon, the field can harness the power of AI-automated workflows while safeguarding against 
unintended consequences. 

 

Dual Use PotenƟal 
 

Even with responsible pracƟces in place, the possibility of misuse by state or non-state actors cannot be 
enƟrely eliminated [43]. For example, automated DNA synthesis plaƞorms controlled by algorithms 
could be covertly manipulated to generate pathogenic sequences or opƟmize the virulence of exisƟng 
pathogens. While such biosecurity risks predate the emergence of AI-synbio convergence, the 
accelerated pace and expanded scope of bioengineering enabled by these technologies can strain 
exisƟng governance and security frameworks [44]. UlƟmately, there are emerging concerns that AI-
biotechnology convergence may inspire or amplify dual use research of concern (DURC) (“research that 
can be reasonably anƟcipated to provide knowledge, informaƟon, products, or technologies that could 
be directly misapplied to pose a threat with broad potenƟal consequences to public health and safety, 
agricultural crops and other plants, animals, the environment, materiel, or naƟonal security)” [45]. 

Moreover, the dual use potenƟal extends beyond the direct synthesis of pathogenic agents. AI-assisted 
bioengineering could also be used to enhance the transmissibility, stability, or target specificity of 
exisƟng pathogens, leading to the creaƟon of novel threats. Techniques such as directed evoluƟon and 
gain-of-funcƟon (GOF) research, which can involve modifying pathogens to increase their virulence or 
host range, are parƟcularly concerning in this regard [46 – 47]. While such research can provide insights 
into pathogen biology and inform the development of countermeasures, it also carries inherent risks of 
accidental release or deliberate misuse. 

The digiƟzed and distributed nature of AI models and tools further complicates efforts to prevent 
misuse. Unlike physical materials, digital files containing AI algorithms or DNA sequences can be easily 
shared and replicated across borders, making it difficult to track and control their disseminaƟon [48 – 
49]. Moreover, the increasing accessibility of DNA synthesis technologies means that even non-experts 
can potenƟally create novel biological threats using AI-generated designs. 

To miƟgate these risks, a mulƟ-pronged approach is needed that encompasses both technical soluƟons 
and policy intervenƟons. From a technical perspecƟve, enhanced screening methods are required to 
detect and filter out potenƟally dangerous sequences, including those generated by AI algorithms. 
However, exisƟng sequence-based controls may struggle to idenƟfy novel or arƟficially designed 
sequences with unpredictable funcƟons [50]. Developing more advanced screening technologies that 
can assess the funcƟonal characterisƟcs of DNA sequences, rather than relying solely on homology to 
known pathogens, will be criƟcal. 

On the policy front, internaƟonal coordinaƟon and harmonizaƟon of governance frameworks areneeded. 
Currently, norms and regulaƟons around DNA synthesis and dual use research vary widely across 



AI-syntheƟc biology Convergence draŌ 
Benjamin.d.trump@usace.army.mil 

countries, creaƟng gaps that can be exploited by bad actors [51]. Establishing global standards for 
transparency, supply chain tracking, and informaƟon sharing can help create a more robust and 
responsive biosecurity ecosystem. There is growing recogniƟon of the need to address dual use and 
biosecurity challenges in the context of AI-synbio convergence. InternaƟonal organizaƟons such as the 
World Health OrganizaƟon (WHO), INTERPOL, and the NaƟonal InsƟtute of Standards and Technology 
(NIST) have recently highlighted these issues and called for proacƟve policy measures [6, 52]. However, 
translaƟng these high-level recommendaƟons into concrete and enforceable policies remains a work in 
progress. 

PrevenƟng the misuse of AI-assisted bioengineering will require a sustained and collaboraƟve effort from 
researchers, policymakers, security experts, and civil society. By proacƟvely addressing dual use risks and 
invesƟng in responsible innovaƟon frameworks, we can work to ensure that the potenƟal of these 
technologies is realized in service of the greater good, rather than being subverted for harmful purposes. 

 

Regulatory Shortcomings – the Pacing Problem Anew 
Finally, the cross-cuƫng risks from AI-syntheƟc biology integraƟon highlighted above also expose 
governance gaps - as regulaƟons struggle catching up to fast changing technological capabiliƟes. Few 
exisƟng policy frameworks contemplated risks around autonomous generaƟon of digital genomic 
blueprints or sequence-based controls for now widespread custom DNA synthesis abiliƟes. And oversight 
bodies like the Recombinant DNA Advisory CommiƩee in the US face criƟcism for lacking binding rule 
making authority, transparency, and cultural competency surrounding new sciences. 

Managing the rapid pace of technological change, termed the “pacing problem”, poses an endemic 
challenge for governance systems. Policymaking inherently moves slower than exponenƟal tech 
advancement – even in instances where policy prioriƟes desire rapid modernizaƟon of technology 
capabiliƟes [53]. This is parƟcularly evident in the rivalry between the United States and China, which are 
both heavily invesƟng in AI and biotech research as part of their broader geopoliƟcal strategies [54]. This 
compeƟƟon has spurred investments in research and development, as well as efforts to aƩract top talent 
and gain access to sensiƟve technologies. China has made no secret of its ambiƟons to become a global 
leader in AI and biotech, with the government launching a series of iniƟaƟves and funding programs to 
support these goals. For example, the “Made in China 2025” plan idenƟfied biotechnology as a key 
strategic industry, while the “New GeneraƟon ArƟficial Intelligence Development Plan” outlined a 
roadmap for China to achieve dominance in AI by 2030 (Kania, 2020). The United States, for its part, has 
responded to China’s challenge by ramping up its own investments in AI and biotech research. The 
NaƟonal Defense AuthorizaƟon Act for Fiscal Year 2021 included provisions for a new NaƟonal ArƟficial 
Intelligence IniƟaƟve [55]. CompeƟƟon between these and other partners carries profound implicaƟons 
for economic growth, defense, and health, with rewards incenƟvized towards as ‘first actor privilege’ 
[56]. 

With acceleraƟng innovaƟon comes the struggle for risk informaƟcs and risk governance to ‘keep up’. 
This challenge is not restricted to AI-biotechnology convergence, although the pace of such convergence 
raises an array of near-term and long-term technology governance quesƟons. This lag leaves gaps where 
innovaƟons progress absent oversight, someƟmes enabling unanƟcipated harm or coercion before 
safeguards are acƟvated. The dilemma grows as technologies like AI and syntheƟc biology converge, 
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integraƟng powerful capabiliƟes faster than risks are characterized or governed. Unfortunately, the 
dilemma will be dwarfed with the advent of an arƟficial biodesigner.  

For example, DNA synthesis and gene ediƟng techniques are now rapid, inexpensive, and accessible 
thanks to technological advancement [57]. Yet screening policies fail to match the volume of users. This 
means oversight depends largely on voluntary self-governance - hoping actors internally weigh benefits 
and risks. But such self-policing falters securing collecƟve interests against errors, externaliƟes, or 
malicious non-compliance. Accordingly, the lag between technological possibility and prudenƟal control 
widens, allowing potenƟal slippage. The lag further widens with integrated AI-syntheƟc biology 
capabiliƟes automaƟng design and build cycle but consider the regulatory implicaƟons of an arƟficial 
biodesigner that only requires a query and access to automated wet lab capability to deliver an 
opƟmized structure. The advent of an arƟficial biodesigner will require a regulatory regime that 
considers data access, forced human in the loop safety and funcƟonality reporƟng and restricƟons on 
access to automated wet labs. These necessary controls will require interfacing across mulƟple industries 
and agencies to ensure chain of custody like consideraƟon of the arƟficial design process. 

All dual use technologies wrestle with this pacing challenge, but AI and syntheƟc biology feature acute 
aƩributes rendering governance uniquely difficult. These include hyper-scalability enabling systems to 
quickly disseminate globally once built, uncertainty given syntheƟc biology’s complexity and AI’s ‘black 
box’, and dual use traits innately embedded directly into underlying knowledge itself rather than just 
arƟfacts. Once digiƟzed, informaƟon spreads rapidly and indefinitely. These facets disƟnguish bio or 
cyber risks from nuclear, accentuaƟng policy lags. 

CreaƟve soluƟons are needed to address the pacing problem for AI-syntheƟc biology integraƟon, lest 
unmanaged divergence erodes safety. OpƟons range from anƟcipatory governance models that forecast 
and pilot policy ahead of full deployment to responsive capaciƟes via global monitoring for risky 
convergence signals. But at core, rapidly modernizing legal frameworks via internaƟonal technical 
resources, parƟcipatory review boards to calibrate oversight, and adapƟve policymaking tools provide 
foundaƟons [58]. With vigilance and collecƟve responsibility, the pacing problem, while impracƟcal to 
fully solve, can at least be miƟgated [59]. 

Globally, provisions around transparency, licensing for restricted techniques like gene drives or live 
research demonstraƟons vary widely between countries and insƟtuƟons [60]. Voluntary codes of 
conduct similarly exhibit liƩle uniformity, compliance verificaƟon, or enforcement teeth industry-wide. 
The deficiencies of self-governance models grow starker amidst military investments, commercial 
secrecy imperaƟves, and global tech rivalries around domains like AI, syntheƟc biology, quantum, and 
roboƟcs. Thus, improved governance guardrails and internaƟonal partnerships appear essenƟal to help 
sustain tech innovaƟon that enhances collecƟve well-being rather than eroding it. 

 

4. First Steps to DemysƟfy the Black Box 
Realizing the transformaƟve potenƟal of AI- syntheƟc biology convergence is conƟngent upon navigaƟng 
the complex landscape of benefits, convergent risks, and governance. ProacƟve governance and 
cooperaƟve efforts among key stakeholders become the linchpin in harnessing the posiƟves while 
responsibly miƟgaƟng the associated risks. While there are many steps required to improve the 
collecƟve technologies’ governance, a criƟcal first step for many naƟons is the urgent need to address 
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the AI-syntheƟc biology black box and idenƟfy opportuniƟes to make the convergence learning and 
improvement process one that is traceable, defensible, and informed by insƟtuƟonal norms and values. 
These concerns coalesce into a central policy challenge shared by naƟons worldwide: exisƟng 
governance tools are currently grappling with the present forms of AI, primarily centered on enhancing 
rather than fundamentally altering syntheƟc biology research and operaƟons. However, as we look 
ahead to the next ten to twenty years, these instruments may prove insufficient in overseeing AI-driven 
syntheƟc biology. The imminent advancements in technology have the potenƟal to transform or even 
supplant human involvement in learning, intuiƟon, and the steering of syntheƟc biology research 
through automaƟon and self-learning. While it is difficult to discern what specific governance strategies 
or instruments are needed to address near future AI convergence capabiliƟes, a few hints have already 
emerged at some of the direcƟons that policymakers and syntheƟc biology stakeholders might consider. 

At present, the potenƟal lack of explainability of AI-syntheƟc biology outputs, as well as the but 
uncertain implicaƟons to human health and biodiversity, are criƟcal shortcomings that may stymie future 
development in key development areas such as medicine or environmental remediaƟon. DemysƟfying 
the AI-SyntheƟc biology black box necessitates involving a deep integraƟon of human intelligence at 
criƟcal junctures of AI-driven processes, bolstering safety and security frameworks, and laying down 
transparent, acƟonable pathways for regulatory bodies and stakeholders to scruƟnize AI's methodologies 
in interpreƟng geneƟc data and forging new biological innovaƟons. Absent human guidance, the 
recursive AI learning process can generate potenƟal opportuniƟes for biological and geneƟc 
breakthroughs, yet equally could struggle with unforeseen errors in training data, or even learn from 
hallucinated interpretaƟons of training data. This concern is not unique to AI’s convergence with 
syntheƟc biology, though the implicaƟons for error are potenƟally more concerning, and can yield 
irreversible, sweeping harm to those exposed to AI-generated syntheƟc biology innovaƟon. 

Many of the potenƟal benefits and risks discussed in this arƟcle relate to the challenge of demysƟfying 
the AI-syntheƟc biology black box. On the posiƟve side, AI tools like large language models and biological 
design tools can help uncover subtle paƩerns in vast genomic and biological datasets, acceleraƟng 
scienƟfic understanding and the development of beneficial applicaƟons in medicine, agriculture, and 
environmental protecƟon. Puƫng AI's predicƟve power in the hands of a wider range of users through 
automated labs and intuiƟve interfaces could democraƟze problem-solving and unlock innovaƟve 
soluƟons from diverse contributors. 

However, the opacity of many AI models and their use of underlying training sets makes it difficult to 
interpret how they are arriving at design recommendaƟons or intervenƟon strategies. Coupled with the 
deskilling of workforces and the abstracƟon of laboratory work into black-box machines, this opacity 
risks scenarios where unsafe or improperly veƩed biological enƟƟes are created without adequate 
oversight. The dual-use potenƟal of engineered organisms developed through such opaque pipelines 
further compounds the risks. Shortcomings in our ability to screen for concerning genomic sequences or 
assess emergent funcƟons means quesƟonable research could proceed unchecked. 

The integraƟon of 'human-in-the-loop' systems serves as a foundaƟonal pillar in iteraƟvely interpreƟng 
AI-syntheƟc biology output, and improving transparency and explainability in how the AI biodesigner 
makes sense of opportunity, risk, and the most efficient paths forward to drive further innovaƟon from 
basic science to commodifiable product (Figure 1). By strategically posiƟoning domain experts within the 
AI decision-making workflow, regulators and policymakers can ensure a conƟnual oversight mechanism 
that leverages human intuiƟon and ethical judgment to guide AI's exploraƟon of geneƟc codes and 
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biological systems. This approach not only anchors AI's computaƟonal capabiliƟes within a framework of 
human values and ethical consideraƟons but also enhances the reliability of outcomes by incorporaƟng 
expert feedback to refine algorithms and correct course as necessary. The dynamic interplay between 
human oversight and AI's processing power is criƟcal in idenƟfying and addressing biases, improving 
training data, evaluaƟng hallucinaƟons, ensuring ethical compliance, and validaƟng the scienƟfic 
integrity of AI-generated hypotheses and designs. 

  

 

 

 

Figure: EffecƟve RegulaƟon for Convergence of ArƟficial Intelligence and SyntheƟc Biology. Over Ɵme, 
gaps between exisƟng relaƟvely staƟc regulatory mechanisms and challenges associated with the 
convergence of AI and genomics are likely to increase. EƯective oversight over emerging biotechnology 
processes and products will become increasingly problematic. AdapƟve regulatory systems, 
featuring systemaƟc observaƟon and feedback, will be beƩer able to respond to challenges posed by the 
convergence of AI and genomics than either staƟc or anƟcipatory regulatory systems. Uncertainty over 
evolving technologies, applicaƟons and implicaƟons will undercut the viability of forecasƟng.   
 
Balancing the benefits and risks of the AI-biotech convergence ulƟmately comes down to implemenƟng 
the appropriate governance frameworks and oversight mechanisms. Central to this is integraƟng human 
judgment and accountability at key chokepoints in increasingly automated discovery and development 
workflows. While it may slow the pace of innovaƟon, this is a necessary brake to avoid unintended and 
potenƟally catastrophic consequences. Domain experts must be in-the-loop to contextualize AI outputs, 
watch for failure modes, and make hard judgment calls - even if the underlying models are not fully 
transparent. SimulaƟon sandboxes can further aid in pressure-tesƟng AI-generated hypotheses before 
real-world deployment. 
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Clear and enforceable guidelines are needed around acceptable use cases, containment protocols, 
monitoring requirements, and other safeguards. These should be developed through mulƟ-stakeholder 
dialogues to navigate complex ethical quandaries and ensure alignment with societal values. Consistent 
standards for data access, model documentaƟon, and impact assessment can improve auditability. And 
robust horizon scanning for emerging risks and ongoing public communicaƟon are criƟcal for staying 
ahead of the pacing problem. 

A likely first step towards idenƟfying inserƟon points for human-in-the-loop involves the development of 
advanced analyƟcal frameworks and simulaƟon environments. These environments decision support 
algorithms and neural networks to simulate the intricate dynamics of biological processes, such as 
enzyme-substrate interacƟons, gene expression paƩerns, and cellular metabolism. The specificity and 
accuracy of these simulaƟons are enhanced through the incorporaƟon of vast biological databases and 
machine learning models that have been trained on genomic, transcriptomic, proteomic, and 
metabolomic data. This allows for a granular level of simulaƟon fidelity, where even minor perturbaƟons 
in geneƟc sequences or environmental condiƟons can be analyzed for their downstream effects on 
biological systems. Human experts, by interacƟng with these simulaƟons, can apply their domain-specific 
knowledge to evaluate the feasibility of AI-generated predicƟons, scruƟnize the models for potenƟal 
biases, and ensure the simulaƟons adhere to established biological principles. By simulaƟng complex 
biological systems, these environments allow for the tesƟng of AI-generated hypotheses and 
intervenƟons in a controlled, limited, virtual space before any real-world applicaƟon. This setup enables 
human experts to iteraƟvely evaluate and refine AI's predicƟons, ensuring that the outputs are not only 
scienƟfically plausible but also ethically and socially acceptable. In turn, such inquiry can help idenƟfy 
areas where human intervenƟon is necessary or desirable to address various limitaƟons or concerns of a 
larger biodesigner. 

The establishment of clear, transparent pathways for regulators and key stakeholders to evaluate the 
inputs, processes, and outputs of AI systems in syntheƟc biology is another cornerstone in addressing 
the black box challenge. This entails the development of standardized metrics and benchmarks for 
assessing AI's performance and reliability in biological applicaƟons, coupled with the creaƟon of open-
access repositories for AI-generated data, models, and findings. Such measures not only facilitate 
rigorous, independent verificaƟon of AI-driven innovaƟons but also promote an ecosystem of 
accountability and trust among researchers, pracƟƟoners, and the public. Engaging regulatory bodies 
early in the development cycle and ensuring their acƟve involvement in shaping the ethical and 
governance frameworks around AI in syntheƟc biology are essenƟal steps in aligning technological 
advancements with societal norms and regulatory standards. 

No amount of governance will be able to completely eliminate all risks. But by proacƟvely grappling with 
these challenges, we can strive for a net posiƟve impact - where transformaƟve breakthroughs that 
improve the human condiƟon outweigh the unavoidable missteps and growing pains. Geƫng this 
balance right is daunƟng but existenƟally important for future technology innovaƟon. 
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