
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

GARA: A novel approach to Improve Genetic
Algorithms’ Accuracy and Efficiency by Utilizing

Relationships among Genes
Zhaoning Shi1,*, Mengxiang2,*, Zhaoyang Hai1, Xiabi Liu1,†, Yan Pei2,†

Abstract—Genetic algorithms (GA) have played an important
role in engineering optimization. Traditional GAs treat each
gene separately. However, biophysical studies of gene regulatory
networks revealed direct associations between different genes. It
inspires us to propose an improvement to GA in this paper,
Gene Regulatory Genetic Algorithm (GRGA), which, to our
best knowledge, is the first time to utilize relationships among
genes for improving GA’s accuracy and efficiency. We design
a directed multipartite graph encapsulating the solution space,
called RGGR, where each node corresponds to a gene in the so-
lution and the edge represents the relationship between adjacent
nodes. The edge’s weight reflects the relationship degree and is
updated based on the idea that the edges’ weights in a complete
chain as candidate solution with acceptable or unacceptable
performance should be strengthened or reduced, respectively.
The obtained RGGR is then employed to determine appropriate
loci of crossover and mutation operators, thereby directing the
evolutionary process toward faster and better convergence. We
analyze and validate our proposed GRGA approach in a single-
objective multimodal optimization problem, and further test it
on three types of applications, including feature selection, text
summarization, and dimensionality reduction. Results illustrate
that our GARA is effective and promising.

Index Terms—genetic algorithms, evolutionary computing al-
gorithms, gene regulatory, crossover loci, mutation locus.

I. INTRODUCTION

S INCE the appearance of the genetic algorithm (GA)
[1], it has provided great help for the optimization of

many engineering problems, and the improvement of GA has
always been an important research direction. There are two
categories of improvement. The first category focuses on the
key operations of GA, such as coding [2], population [3],
selection [4], crossover [5], and mutation [6], [7]. The second
category tries to develop new frameworks, such as parallel
genetic algorithms through the parallel iteration of individuals
[8], chaotic genetic algorithms by adding a chaotic system [9],
and hybrid genetic algorithms through combining with other
types of optimization methods [10].

One shortcoming of GAs and their advanced extensions is
the lack of consideration for the relationships among different

*: Equal contributions
†: Corresponding author
1 Z. Shi, Z. Hai and X. Liu are with School of Computer Science and

Technology, Beijing Institute of Technology, Beijing, China, 100081. (e-
mail:{3220235133, haizhaoyang, liuxiabi}@bit.edu.cn)

2 X. Meng and Y. Pei are with School of Computer Science and
Engineering, University of Aizu, Aizuwakamatsu, Japan, 965-8580. (e-
mail:{d8242104, peiyan}@u-aizu.ac.jp)

Manuscript received April 19, 2021; revised August 16, 2021.

solution components, i.e., each gene in a solution is indepen-
dent. This is reflected in the fact that the loci of crossover
and mutation operations are randomly selected, which could
incur the unreasonable disruption of local interactive gene
sequences, reducing the effectiveness of gene search [11]. In
fact, biological gene segments do not work independently of
each other; instead, they interact with each other in various
ways [12]. We illustrate two cases in Fig. 1(a). The first case
is that one gene could regulate the expression of another. As
shown in Fig. 1(a), in Arabidopsis floral organ development,
the expression product of the LEAFY (LFY) gene, which
has the characteristics of a pioneer transcription factor, binds
directly to chromatin condensation zones and alters the chro-
matin state of its target genes, regulating the expression of
APETALA1 (AP1) [13]. The second case is that the product
of one gene expression requires the product of another gene
expression to act before it can act. As shown in Fig. 1(b),
the process of the human body finally synthesizes adrenaline
from tyrosine through the sequential process: L-Tyrosine → L-
DOPA → Dopamine → Noradrenaline → Adrenaline, which
suggests that there is a sequential effect of gene fragments on
the whole regulatory process.

Drawing inspiration from gene regulatory networks in bio-
physics, this paper proposes a novel genetic algorithm through
the consideration of sequential interactions of genetic codes,
thereby enhancing performance and improving efficiency. We
name this approach the Gene Regulatory Genetic Algorithm
(GRGA). The core of GRGA is a directed Relationship Graph
representing Gene Regulation (RGGR). Each directed chain in
RGGR corresponds to a gene regulatory process. The larger
the weight of an edge in the chain, the more reasonable
the interaction between the two nodes is, and vice versa.
Therefore, if the fitness of the individuals containing an
edge tends to be promising, the weight of this edge will be
gradually increased with the evolution process. In this way,
the RGGR is updated. Then it is employed to guide gene
crossover and mutation operations for reducing unreasonable
disruption of interactive gene segments and finally improving
the effectiveness and efficiency of searching. We evaluate the
proposed GRGA on single-objective multimodal optimization
problems and three applications including feature selection,
text summarization, and dimension reduction, where GRGA
is compared with the most advanced GAs.

The main contributions of this paper are listed as follows:
(1) To our best knowledge, this is the first genetic algorithm

to consider the sequential interaction between genes to al-

ar
X

iv
:2

40
4.

18
95

5v
1 

 [
cs

.N
E

] 
 2

8 
A

pr
 2

02
4



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

LFY	gene

AP1	gene

LFY

AP1

Tyrosine hydroxylase

𝑂𝐻

𝐻𝑂

𝑂

𝑁𝐻2

L-Tyrosine

DOPA	decarboxylase Dopamineβhydroxylase Methyltransferase

𝑂𝐻

𝐻𝑂

𝑂

𝑁𝐻2

𝐻𝑂

L-DOPA

𝐻𝑂

𝑁𝐻2

𝐻𝑂

Dopamine

𝐻𝑂

𝑁𝐻2

𝐻𝑂

𝑂𝐻

Noradrenaline

𝐻𝑂

𝑁𝐻𝐶𝐻3

𝐻𝑂

𝑂𝐻

Adrenaline

DNA

a b

Fig. 1. Interactions between genes. a. The expression product of the LEAFY (LFY) gene regulates APETALA1 (AP1) expression. b.The sequential process
from tyrosine input to the final production of adrenaline.

leviate unreasonable disruption of local structures, which
aligns with the mechanism of gene regulatory networks
in biophysics.

(2) We introduce a relationship graph representing gene
regulation, called RGGR, and design a method to update
RGGR in the evolution process for measuring interaction
degrees between genes.

(3) The RGGR is used to perform more reasonable crossover
and mutation operations to improve the effectiveness and
efficiency of searching.

(4) The proposed GRGA can be widely applied to extend and
improve various genetic algorithms. Careful experiments
prove the advantages of our approach.

II. RELATED WORK

A. New frameworks of GA

Our GRGA can be regarded as a new framework of genetic
algorithms (GAs). Previous research in this direction mainly
includes parallel, chaotic, and hybrid GAs. Parallel GAs can be
further categorized into master-slave parallel, fine-grained par-
allel, and coarse-grained parallel [8]. The master-slave parallel
GA is primarily used for parallel fitness calculation. The fine-
grained parallel GA does not exchange individuals between
subpopulations, and genetic operations are only performed
on topologically adjacent subpopulations, while the coarse-
grained parallel GA exchanges individuals between subpop-
ulations. Chaotic GA addresses the premature convergence
problem by introducing a chaotic system into the genetic
algorithm [9], where crossover and mutation operations are
replaced by chaotic maps. Hybrid GAs [10] combine GA with
other optimization methods, such as Simulated Annealing (SA)
[14], Grey Wolf Optimizer (GWO) [15], and Tabu Search (TS)
[16], to improve performance.

In summary, these frameworks primarily incorporate genetic
algorithms alongside other optimization techniques, rather than
fundamentally altering the genetic algorithm itself.

B. Crossover and mutation operators

The intuitive role of our GRGA in improving traditional
GAs is that the crossover and mutation loci are replaced by
new ones from GRGA. Determining appropriate crossover and
mutation positions by GRGA helps avoid unnecessary search

space and concentrates the search in regions that may contain
better solutions, thereby enhancing the search capability of
genetic algorithms. Recent efforts in designing new crossover
and mutation operators are briefly introduced below. Xue
[17] used an adaptive operator selection mechanism and five
crossover operators with different search characteristics to
improve the performance of GAs in feature selection tasks.
Hvattum [18] proposed an improved operator based on the OX
crossover operator for hybrid genetic search, and enhanced
the efficiency of the algorithm on the capacitated vehicle
routing problem by filling the remaining part of the new
solution into a specific location. Manzoni [19] proposed and
studied a variety of balanced crossover and recombination
operators that maintain the Hamming weight of bit strings to
improve the effectiveness of GAs in combination optimization
problems. Yi [20] introduced an adaptive mutation operator to
improve the performance of the standard NSGA-III algorithm.
By designing a variable mutation rate, they improved its
performance on multi-objective optimization problems.

Although many improved crossover and mutation operators
have been proposed, the problem of deciding reasonable loci
of crossover and mutation remains unexplored.

III. THE PROPOSED METHOD

A. The principle of GRGA

Let the alphabet set for coding the genes of a solution
sequence to a problem be χ = {1, 2, . . . , n}.

Then a solution is represented as G : 2− 1− 3− 4− 7.
The working principle of our GRGA is illustrated in Fig.

2 Taking the solution sequences with a length of 5 as an
example, the solution space with the relationship between
adjacent genes is represented by our RGGR as shown in Fig.
2(a)). Based on RGGR, the appropriate loci in the solution
sequence for performing crossover and mutation are inferred
in Fig. 2(b) and Fig. 2(c). Details are given in the following
subsections.

B. RGGR Calculation

In RGGR, each node corresponds to a gene in the solution
sequence, and the edges represent the relationship between two
adjacent nodes. We can analogize the process of searching for
a solution to a gene regulatory pathway, in which each node



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

Sequence:

Individual

1 2

Each individual can find the 
corrseponding node in RGGR.

3 4 5

Calculate
Fitness

fitness

Update the weights of corresponding 
edges based on fitness.

Crossover

Mutation

Selection of crossing loci.

Selection of mutation locus.

… … …

Sequence: 1 2
�1,1

(1,2)
3 4 5

(a) Relationship graph representing gene regulation
(RGGR)

(b) 

(c) 

Fig. 2. The working principle of our GRGA. a. Relationship graph representing gene regulation (RGGR), where the weight value in the edge represents the
relationship degree between each part of the solution is updated from the fitnesses of individuals. b. Crossover loci were selected by RGGR. c. Mutation locus
was selected by RGGR.

unfolds in turn, with one node triggering the next node to
occur. The complete chain in RGGR is a single solution. To
simplify the problem, we assume a first-order Markov process,
i.e., a node is only affected by its previous node. The weight
of an edge reflects the transition probability between adjacent
nodes. We dynamically compare and adjust the transition
probabilities between genes to guide the population to evolve
toward a more favorable solution.

Let nk
i and nk+1

j represent the i-th node in the k-th column
and the j-th node in the (k + 1)-th column in RGGR,
respectively. Let W

(k,k+1)
(i,j) denote the weight of the edge

between these two nodes, where W
(k,k+1)
(i,j) ≥ 0. The larger

W
(k,k+1)
(i,j) is, the stronger the correlation between nk

i and nk+1
j

is.
Initially, all W (k,k+1)

(i,j) are set to 1. They are then updated
based on the quality of candidate solutions. To do this, we
introduce a threshold value λ to determine whether a solution
is acceptable. Let ∆ represent the difference between the
fitness value of the considered individual and the average
fitness value of the current population.

If ∆ ≥ λ, the individual as a complete chain in RGGR, ex-
hibits sufficiently desirable performance. Consequently, each
component of the solution is considered reasonable. Therefore,
we can reinforce the weights of each local structure within
the solution, facilitating more precise guidance for the genetic
algorithm to alleviate unreasonable structures in subsequent
iterations. This implies that the weights of the corresponding
edges appearing in this chain in the RGGR should be strength-

ened. Formally,


W

(k,k+1)
(i,j) ̸= 0 : (1-1)

W
(k,k+1)
(i,j) = max

{
W

(k,k+1)
(i,j) + ∆

∆+ρ · V
(
W

(k,k+1)
(i,j)

)
, 0
}
;

W
(k,k+1)
(i,j) = 0 : (1-2)

W
(k,k+1)
(i,j) = W

(k,k+1)
(i,j) + µ∆

(1)
In Eq. 1, V (W

(k,k+1)
(i,j) ) > 0 serves as a control function to

prevent a certain W
(k,k+1)
(i,j) from increasing excessively before

receiving sufficient updates. The function V is a function
that varies with the problem and can also be a constant. It
needs to be designed according to specific applications. We
provide examples in the experiment section. ρ > 0 is a control
coefficient for the update rate. By introducing ρ, the influence
of fitness ∆ on the weight update can be limited within the
range [0, 1], and µ within the range (0, 1).

In order to enhance the diversity of the population and im-
prove the global search capability, we propose a fixed strategy
to increase the competitiveness of nodes with W

(k,k+1)
(i,j) = 0.

This strategy promotes the participation of these nodes in
reproduction and gene exchange, thus enhancing population
diversity and global search capability.

If ∆ < λ, indicating that there are unreasonable local struc-
tures in the solution sequence, the weight of the corresponding
edges appearing in this chain in the RGGR can be reduced.

Reversing Eq. 1, we obtain



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4



W
(k,k+1)
(i,j) ̸= 0 : (2-1)

W
(k,k+1)
(i,j) = max

{
W

(k,k+1)
(i,j) − ∆

∆+ρ · V
(
W

(k,k+1)
(i,j)

)
, 0
}
;

W
(k,k+1)
(i,j) = 0 : (2-2)

W
(k,k+1)
(i,j) = max

{
W

(k,k+1)
(i,j) − µ∆, 0

}
,

(2)
When an edge appears in multiple individuals simultane-

ously, its weight undergoes repeated adjustments using Eq. 1
and Eq. 2.

To make it less confusing, for the rest of this section, we
use W

(k,k+1)
n instead of W

(k,k+1)
n,(i,j) , n stands for the n − th

individual share two same genetic loci.
As shown in Fig. 3, we have two individuals, “Individual 1

and Individual 2”, which individuals possess two loci, n1
1 and

n2
1. n1

1 and n2
1 are connected by W

(1,2)
(1,1) , so this W

(1,2)
(1,1) has to

be updated twice:
W

(1,2)
1 = W

(1,2)
(1,1) + ∆

∆+ρV (W
(1,2)
(1,1) )

W
(1,2)
2 = W

(1,2)
1 + ∆

∆+ρV (W
(1,2)
1

… … …

Sequence: 1 2

𝑊(1,1)
(1,2)

3 4 5

𝑛1
1 𝑛1

2

Individual 1

Individual 2

Fig. 3. We give an example showing that when two gene loci are shared
by two individuals, this is how the edges connected by these two individuals
calculate the value of W.

We define that when an edge is shared by N individuals in
the population(Eq. 3), the weight W (k,k+1)

n requires recalcu-
lation and updating, resulting in N updates corresponding to
the number of individuals sharing the edge.

W
(k,k+1)
n+1 = W

(k,k+1)
(i,j) +

∑N
n=1

(
∆

∆+ρ · V
(
W

(k,k+1)
n

))
(3)

When n = 0, W
(k,k+1)
0 = W

(k,k+1)
(i,j) ,When n = 0,

W
(k,k+1)
0 = W

(k,k+1)
(i,j) implies that no two or more individuals

share two same genetic loci.
These adjustments occur separately for each instance of the

edge in different individuals, leading to multiple updates. This
approach helps maintain population diversity and enhances
the algorithm’s exploration of the solution space, reducing the
chances of encountering local optima.

C. Inferring Crossover Loci and Mutation Locus based on
RGGR

After the RGGR is updated as above, we use it to guide
the crossover and mutation operators. Reasonable crossover

and mutation loci can make the offspring evolve towards the
optimal solution more accurately. We calculate the following
formula

s
(k,k+1)
(i,j) =

1

C1 + C2W
(k,k+1)
(i,j)

(4)

as the basis of selecting crossover and mutation loci. In Eq.
4, the introduction of C1 and C2 in the equation is intended to
regulate the effect of W

(k,k+1)
(i,j) . C1 ensures that calculations

can be performed even if W
(k,k+1)
(i,j) = 0, while C2 serves

to adjust the influence of W
(k,k+1)
(i,j) . The crossover process

initiates with the computation of the selection probability
for each gene locus to potentially act as a crossover locus.
This computation relies on the strength values attributed to
the genes within the individuals’ genomes. We calculate the
sum of s

(k,k+1)
i,j for alleles of the two parent chains, like

S
(k,k+1)
i,j1j2

= s
(k,k+1)
i,j1

+ s
(k,k+1)
i,j2

.
As shown in Fig. 4, we compute S

(k,k+1)
i,j1j2

, such as S(1,2)
1,34 =

s
(1,2)
1,3 + s

(1,2)
1,4 .

Suppose the results are s
(k,k+1)
i,j and S

(k,k+1)
i,j1j2

, based on
which we calculate the probability pk of selecting the k − th
locus for performing crossover and mutation by Eq. 5 and Eq.
6, respectively, where K = length of gene sequence−1 and
is the number of possible loci.

Pcrossover =
S
(k,k+1)
i,j1j2∑K

k=0 S
(k,k+1)
i,j1j2

× 100% (5)

Pmutation =
s
(k,k+1)
i,j∑K

k=0 s
(k,k+1)
i,j

× 100% (6)

To sum up, we give the pseudo code of our GRGA in
Algorithm 1.

Algorithm 1 Gene Regulatory Genetic Algorithm (GRGA)
1: Parents← Random initialization population
2: Child← ∅
3: while not (Termination conditions) do
4: Gene sequence expressed as genetic representation
5: Generate the solution from the representation, calcu-

late the effectiveness of the solution as the fitness
6: Update the genetic representation action diagram ac-

cording to Eq. 1 and Eq. 2 above: W (k,k+1)
(i,j)

7: Update the new RGGR according to Eq. 4
8: Dynamically adjust the probability of selecting

crossover loci by balancing the relationship between in-
dividual similarities and maintaining population diversity
as described in Eq. 5.

9: Dynamically adjust the probability of selecting muta-
tion locus by considering individual mutation frequencies
as described in Eq. 6.

10: Child← survival selection
11: end while
12: return solution



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

𝒔𝟏,𝟑
(𝟏,𝟐)

𝒔𝟏,𝟒
(𝟏,𝟐)

𝒔𝟑,𝟐
(𝟐,𝟑)

𝒔𝟒,𝟓
(𝟐,𝟑) 𝒔𝟐,𝟓

(𝟓,𝟔)
𝒔𝟐,𝟒
(𝟓,𝟔)

𝑆1,34
(1,2) 𝑆2,25

(2,3)
𝑆5,54
(5,6)

Select crossover loci based on (S1,34
(1,2)

, S2,25
(2,3)

, … ,S5,54
(5,6)

).

We get two new individuals after the crossover operation.

Sequence: 1 2

𝒔𝟏,𝟑
(𝟏,𝟐)

3 4 5

𝒔𝟏,𝟒
(𝟏,𝟐)

𝒔𝟑,𝟐
(𝟐,𝟑)

𝒔𝟐,𝟓
(𝟑,𝟒)

𝒔𝟓,𝟑
(𝟒,𝟓)

𝒔𝟐,𝟓
(𝟓,𝟔)

𝒔𝟒,𝟓
(𝟐,𝟑)

𝒔𝟓,𝟑
(𝟑,𝟒)

𝒔𝟑,𝟐
(𝟒,𝟓)

𝒔𝟐,𝟒
(𝟓,𝟔)

𝒔𝟓,𝟓
(𝟑,𝟒)

𝒔𝟐,𝟑
(𝟑,𝟒)

Crossover value: 𝑆3,53
(3,4)

.

𝒔𝟐,𝟓
(𝟑,𝟒)

𝒔𝟓,𝟑
(𝟑,𝟒)

𝑆3,53
(3,4)

𝒔𝟓,𝟑
(𝟒,𝟓)

𝒔𝟑,𝟐
(𝟒,𝟓)

𝑆4,32
(4,5)

Crossover Operation

Mutation values: 𝒔𝟑,𝟐
(𝟐,𝟑)

, 𝒔𝟐,𝟓
(𝟓,𝟔)

.

We get two child individuals after the mutation operation.

Mutation Operation

Two new individuals
Mutation locus

Crossover loci

Fig. 4. How to choose crossover and mutation loci. We provide an example to illustrate the crossover and mutation processes of GRGA in detail.

D. Apply the proposed method
GRGA does not require specific selection, crossover, or

mutation operations, we can easily extend traditional GAs into
GRGA strengthened ones as follows:

• Design the RGGR according to the search space of the
problem.

• After obtaining the fitness of individuals, update RGGR
according to the method described in Section 3.B.

• In crossover and mutation operations, replace randomly
selected loci with RGGR selected loci.

IV. EXPERIMENTS

We first validate and analyze our GRGA by conducting
function evaluations using a benchmark from Competitive
Evolutionary Computation (CEC), then we test it in three
typical applications of genetic algorithm, including feature
selection, text summarization, and dimension reduction. The
proposed GRGA is embedded into the latest and most ad-
vanced GAs for these three applications.

A. Verification and Analysis of GRGA
We opt for the Shubert(3 dimensions) function from the

CEC2013 test function set as our experimental subject. This
choice stems from the function’s inherent multimodal char-
acteristics, which present challenges in navigating intricate
solution spaces with multiple peaks.

The expression for Shubert is given by:

F (x) = −
D∏
i=1

5∑
j=1

j cos[(j + 1)xi + j] (7)

This function has a total of 81 peaks, with the maximum
value being 2709.0935. We configured the parameters of
GRGA with a population size of 200, mutation rate of 0.05,
evolution generations of 30, and a scaling factor (f) of 0.3. We
conducted a comprehensive analysis through 100 Monte Carlo
experiments. To ensure consistency with the comparison, we
set GA parameters identical to those of GRGA.

We aim to rigorously assess GRGA’s effectiveness in simul-
taneously exploring and converging to diverse peaks, high-
lighting its robustness and adaptability in handling complex
optimization landscapes.

Fig. 5 illustrates the evolution of average maximum fitness
and population average fitness over 100 experiments with
evolving generations. The results showed that the difference
between GRGA and original GA was not significant in the
first 5 generations of population average fitness. However, after
the 10th generation, the population average fitness of GRGA
began to significantly exceed that of the original GA. GRGA’s
ascent rate and final convergence performance surpass those
of the original GA.

As the RGGR structure in GRGA currently only applies to
discrete genes, we discretized the three variables of Shubert
function within the interval [-10,10] into 60 integers from 0
to 59. The values of nodes in the RGGR displayed in Fig. 6
correspond to these discrete values. In RGGR, determine the
top five most weighted values for each gene sequence in the
last generation.

As depicted in Fig. 6, the peak weight for x1 is observed
at the 7th interval, with a value of 72.20. Considering the
function’s solution space spans from (−10, 10), and each



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

Fig. 5. The evolution of maximum and average fitness of GRGA and original GA over 100 experiments with evolving generations.

dimension is subdivided into 60 intervals, the computation of
x1 is performed as follows:

W
(0,1)
0,7 : x1 =

(
[10− (−10)]× 7

60

)
+ (−10) = −23

3
;

Similarly, we can derive that:
max(W

(1,2)
(i,j) ) = W

(1,2)
7,9 = 191.33,

W
(1,2)
7,9 : x2 =

(
[10− (−10)]× 9

60

)
+ (−10) = −7;

max(W
(2,3)
(i,j) ) = W

(2,3)
9,9 = 193.61.

W
(2,3)
9,9 : x3 =

(
[10− (−10)]× 9

60

)
+ (−10) = −7.

The points(−23
3 ,−7,−7), which as shown in the red circle in

Fig. 7 represent the global optimal solutions found by GRGA.
Through in-depth analysis of the experimental results, we

focus on the key component of GRGA, i.e., RGGR, and reveal
its function and role in the optimization process.

a) Local structure guidance: In RGGR, the weight re-
flects the quality of each local structure, indicating the po-
tential effectiveness of specific combinations of independent
variables. As depicted in Fig. 7, each line represents the fitness
function’s variation with x1 and x2 held constant, while x3

varies within the range of -10 to 10. It is notable that only the
blue line corresponds to the instance where the maximum fit-
ness value is achieved. This observation underscores RGGR’s
capacity to autonomously select local structures, guiding the
overall evolution process.

0-59
weight:1.10

0-1
weight:1.15

0-28
weight:1.33

0-7
weight:72.20

0-56
weight:1.35

10-46
weight:2.23

7-9
weight:191.33

44-45
weight:2.05

44-40
weight:2.13

44-50
weight:2.02

40-43
weight:2.28

9-9
weight:193.61

27-46
weight:2.16

40-46
weight:2.29

47-46
weight:3.35

𝑥1

175

150

125

100

75

50

25

1 2 3 4 5

𝑥2

𝑥3

Fig. 6. TOP5 weighted heatmap. Each row represents a dimension of the
solution space. In the figure, the colors indicate the top five genetic loci
with the highest weights in each dimension. The depth of color reflects the
magnitude of the weight value, where a darker color signifies a larger weight
value.

b) Global optimization capability: In the experiment,
RGGR enables GRGA to rapidly and effectively search for
and converge to optimal solutions within fewer generations.
Specifically, the combination x1 = −23

3 , x2 = −7, and
x3 = −7 emerged as optimal. By dynamically adjusting the
weights of local structures, RGGR enhances GA’s search effi-
ciency, facilitating quicker convergence towards global optimal
solutions.

c) Interaction between independent variables: Fig. 7
vividly illustrates the impact of x3 on the function value,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 7. After fixing the combination relationship of x1 and x2, the impact of the value of x3 on the fitness of the function. The independent variable value
represented by the structure with the largest weight can obtain a higher peak value. The notation x1-x2 in the legend represents x1 taken from the n1-th
interval in the first dimension of the solution space, and x2 taken from the n2-th interval in the second dimension. The curves in the graph illustrate the
variation of x3 across the third dimension of the solution space, corresponding to changes in the Shubert function’s values.

emphasizing the interplay between independent variables.
Notably, the selection of x1 and x2 significantly influences
achieving higher function values. This showcases RGGR’s
capability to capture intricate relationships among independent
variables, thereby enhancing the likelihood of discovering
potential global optimal solutions.

Overall, RGGR plays a key role in self-selected crossover
and mutation operations through its weight structure. This
allows GRGA to selectively emphasize the self-selection of
structures with higher potential fitness, thereby achieving
a more efficient global search throughout the optimization
process.

B. Application Evaluation

In three application tests, the GRGA parameters are set as
follows based on experiments. In Eq. 1-1 and Eq. 2-1, ρ is set
to 0.1 of the average fitness of the contemporary population.
µ in Eq. 1-2 and Eq. 2-2 is set to 0.8. C1 and C2 in Eq. 4 are
taken as 1 and 0.1, respectively. For Eq. 1-1 and Eq. 2-1, if
k = 0, the update value is multiplied by 0.5. The termination
condition is set such that the best fitness of the population
remains unchanged for ten consecutive generations.

1) Feature Selection:
a) Problem Description: To address the feature selection

problem, Altarabichi et al [21] proposed a new fast genetic
algorithm (CHCqx). To verify the advantages of our algorithm
in feature selection, we conducted experiments with our algo-

rithm (GRGA-CHCqx) on this problem and compared it with
CHCqx.

b) Result Analysis: We recorded the running time of the
original method and the method extended by our GRGA. The
results are presented in Table I. The average running time of
the original method and our extended method is 39.92 seconds
and 27.07 seconds, respectively. Efficiency has increased by
more than 32.19%. Additionally, the effectiveness of feature
selection has slightly improved, as shown in Table I.

2) Text Summary:
a) Problem Description: In the task of automatically

generating text summaries, the quantum heuristic genetic
algorithm (MTSQIGA) [22] has achieved good results on
DUC 2005 and 2007 benchmark datasets. We conducted
experiments with our algorithm (GRGA-MTSQIGA) on this
problem and compared it with the original method.

b) Result Analysis: We recorded the change of average in
accuracy of 10 outputs on the data of d438g in DUC 2005. The
results are shown in Fig. 8. Given that the original algorithm
may terminate at different generations, we selected the shortest
duration, which comprised 21 generations, for comparison.
This choice was based on our termination criterion, which
stipulated that termination occurs when the fitness remains
unchanged for ten consecutive generations. It can be seen that
the accuracy of GRGA-MTSQIGA improves faster than that of
MTSQIGA. This indicates that RGGR provides a better search
direction by guiding crossover and mutation, which improves
the search efficiency of the algorithm. In terms of conver-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

TABLE I
THE RUNNING TIME OF GAS IN FEATURE SELECTION.

1 2 3 4 5 6 7 8 9 10 mean
CHCqx 45.13 39.78 34.19 30.08 30.99 28.11 32.36 69.98 43.25 45.36 39.92
GRGA-CHCqx 23.12 32.35 37.28 29.59 16.68 28.74 31.13 16.49 27.5 27.8 27.07

TABLE II
THE SCORE (ACCURACY) OF FEATURE SELECTION.

1 2 3 4 5 6 7 8 9 10 Mean
CHCqx 94.93 94.81 94.93 94.9 94.94 94.94 94.94 94.94 94.9 94.94 94.917
GRGA-CHCqx 94.92 94.89 94.94 94.95 94.95 94.92 94.92 94.93 94.94 94.94 94.93

TABLE III
OPERATION TIME (S)

DUC2005 DUC2007
MTSQIGA 278.75 123.48

283.96 116.83
282.61 126.22

mean 281.7733 122.1767
GRGA-MTSQIGA 277.98 110.14

283.4 124.25
287.91 123.18

mean 283.0967 119.19

Generations

Po
pu

la
tio

n 
Op

tim
al

 fi
tn

es
s

GRGA-MTSQIGA

MTSQIGA

Fig. 8. Result of accuracy changing with generations.

gence effects, in F-score, recall, and precision, the GRGA-
MTSQIGA is significantly better than the original method, as
shown in Table IV and Table V. We also tested the algorithm’s
computing efficiency. As shown in Table III, it can be observed
that the addition of our approach has little effect on the overall
computational speed of the algorithm. In addition, MTSQIGA
adopts quantum encoding, which indicates that our algorithm
is robust to the encoding form.

3) Dimensionality Reduction:
a) Problem Description: In the task of data dimension-

ality reduction, literature [23] provides a genetic algorithm
GDR for transparent dimensionality reduction of numerical
data. We incorporate our GRGA into the GDR algorithm
(GDR GRGA).

b) Result Analysis: We recorded the average of 5 Monte
Carlo experiments as the final result to show in Table VI.
Firstly, in most issues, GDR GRGA outperforms GDR in
F-score, precision, and recall. Especially in the bioesponse
problem, GDR GRGA has achieved much better performance
than the original algorithm. The cases in which GDR GRGA
may not be suitable for higher-order Markov models, result-
ing in the performance of RGGR based on first-order Mar-
kov processes is not good enough. For the cases in which
GDR GRGA’s performance is not good enough, maybe we
need to extend RGGR through cosidering higher-order Markov
chains.

V. CONCLUSIONS

Inspired by the gene regulatory networks in biophysics, this
paper has proposed a Gene Regulatory Genetic Algorithm
(GRGA) that models the relationship between genes and uses
it to guide crossover and mutation operations, thereby improv-
ing the efficiency and effectiveness of GAs. We demonstrated
the effectiveness of GRGA and the role of RGGR through a
test function in CEC2013. GRGA further shows promising
results in three applications. In the feature selection task,
the speed of convergence increased 32.19% than the most
advanced GA for this problem while maintaining the accuracy.
We increase average score by more than 0.5% on text summary
tasks. The effect is superior to state-of-the-art GA in over
66% of dimensionality reduction tasks. We only consider
the first-order Markov relationship in this work, introducing
higher-order Markov relationship could further improve the
performance of our approach, which will be explored in our
future work.

ACKNOWLEDGMENTS

This should be a simple paragraph before the References to
thank those individuals and institutions who have supported
your work on this article.

REFERENCES

[1] J. Holland, “adaptation in natural and artificial systems, university of
michigan press, ann arbor,”,” Cité page, vol. 100, p. 33, 1975.

[2] R. W. Doran, “The gray code,” Journal of Universal Computer Science,
vol. 13, no. 11, pp. 1573–1597, 2007.

[3] I. Korejo, S. Yang, K. Brohi, and Z. Khuhro, “Multi-population methods
with adaptive mutation for multi-modal optimization problems,” 2013.

[4] C. Reeves and J. E. Rowe, Genetic algorithms: principles and perspec-
tives: a guide to GA theory. Springer Science & Business Media, 2002,
vol. 20.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

TABLE IV
ROUGE SCORES ON DUC 2005.

MTSQIGA GRGA-MTSQIGA
ROUGE-1 ROUGE-2 ROUGE-SU4 ROUGE-1 ROUGE-2 ROUGE-SU4

Average F-Score 0.354247 0.08112 0.13746033 0.3595 0.081011 0.141524
Average Recall 0.349966 0.080165 0.136083 0.355823 0.080181 0.139995333
Average Precision 0.358736 0.082108 0.13889133 0.363382 0.081873 0.14311

TABLE V
ROUGE SCORES ON DUC 2007.

MTSQIGA GRGA-MTSQIGA
ROUGE-1 ROUGE-2 ROUGE-SU4 ROUGE-1 ROUGE-2 ROUGE-SU4

Average F-Score 0.447365 0.120771 0.18251333 0.453382 0.124821 0.186347667
Average Recall 0.445665 0.120547 0.182943 0.453013 0.124667 0.187198667
Average Precision 0.449274 0.121048 0.182166 0.453983 0.125036 0.185615667

TABLE VI
COMPARATIVE EXPERIMENTAL RESULTS IN DIMENSIONALITY REDUCTION

Dataset GDR PostF1 GDR PostPrec GDR PostRecall GDR GRGA PostF1 GDR GRGA PostPrec GDR GRGA PostRecall
bank marketing 0.427 0.465 0.438 0.437 0.468 0.460
blood trans 0.374 0.524 0.297 0.439 0.544 0.394
Breast cancer 0.897 0.906 0.888 0.951 0.923 0.980
Credit g 0.795 0.719 0.893 0.775 0.721 0.843
bioresponse 0.352 0.638 0.374 0.741 0.745 0.737
ionosphere 0.896 0.891 0.902 0.870 0.907 0.837
sonar 0.734 0.728 0.744 0.775 0.718 0.844
christine 0.610 0.609 0.619 0.637 0.644 0.630
hyperplane 0.643 0.673 0.616 0.660 0.614 0.719
diabetes 0.629 0.680 0.588 0.593 0.614 0.576
madelon 0.640 0.635 0.646 0.665 0.652 0.679
guillermo 0.437 0.615 0.369 0.397 0.536 0.342

[5] C. Qian, Y. Yu, and Z.-H. Zhou, “An analysis on recombination in multi-
objective evolutionary optimization,” in Proceedings of the 13th annual
conference on Genetic and evolutionary computation, 2011, pp. 2051–
2058.

[6] T. D. Pham and W.-K. Hong, “Genetic algorithm using probabilistic-
based natural selections and dynamic mutation ranges in optimizing
precast beams,” Computers & Structures, vol. 258, p. 106681, 2022.

[7] F. Xie, Q. Sun, Y. Zhao, H. Du et al., “An improved directed crossover
genetic algorithm based on multilayer mutation,” Journal of Control
Science and Engineering, vol. 2022, 2022.

[8] T.-P. Hong, Y.-C. Lee, and M.-T. Wu, “An effective parallel approach for
genetic-fuzzy data mining,” Expert Systems with Applications, vol. 41,
no. 2, pp. 655–662, 2014.

[9] M. Javidi and R. Hosseinpourfard, “Chaos genetic algorithm instead ge-
netic algorithm.” International Arab Journal of Information Technology
(IAJIT), vol. 12, no. 2, 2015.

[10] T. A. El-Mihoub, A. A. Hopgood, L. Nolle, and A. Battersby, “Hybrid
genetic algorithms: A review.” Eng. Lett., vol. 13, no. 2, pp. 124–137,
2006.

[11] M. Srinivas and L. M. Patnaik, “Adaptive probabilities of crossover and
mutation in genetic algorithms,” IEEE Transactions on Systems, Man,
and Cybernetics, 1994.

[12] M. Remm, C. E. Storm, and E. L. Sonnhammer, “Automatic clustering of
orthologs and in-paralogs from pairwise species comparisons,” Journal
of molecular biology, vol. 314, no. 5, pp. 1041–1052, 2001.

[13] X. Lai, R. Blanc-Mathieu, L. GrandVuillemin, Y. Huang, A. Stigliani,
J. Lucas, E. Thévenon, J. Loue-Manifel, L. Turchi, H. Daher et al., “The
leafy floral regulator displays pioneer transcription factor properties,”
Molecular Plant, vol. 14, no. 5, pp. 829–837, 2021.

[14] M. S. Islam and M. R. Islam, “A hybrid framework based on genetic
algorithm and simulated annealing for rna structure prediction with pseu-
doknots,” Journal of King Saud University-Computer and Information
Sciences, vol. 34, no. 3, pp. 912–922, 2022.

[15] K. Yadav, B. Kumar, J. M. Guerrero, and A. Lashab, “A hybrid genetic
algorithm and grey wolf optimizer technique for faster global peak
detection in pv system under partial shading,” Sustainable Computing:
Informatics and Systems, vol. 35, p. 100770, 2022.

[16] W. Xu, Y. Hu, W. Luo, L. Wang, and R. Wu, “A multi-objective

scheduling method for distributed and flexible job shop based on hybrid
genetic algorithm and tabu search considering operation outsourcing and
carbon emission,” Computers & Industrial Engineering, vol. 157, p.
107318, 2021.

[17] Y. Xue, H. Zhu, J. Liang, and A. Słowik, “Adaptive crossover operator
based multi-objective binary genetic algorithm for feature selection in
classification,” Knowledge-Based Systems, vol. 227, p. 107218, 2021.

[18] L. M. Hvattum, “Adjusting the order crossover operator for capacitated
vehicle routing problems,” Computers & Operations Research, vol. 148,
p. 105986, 2022.

[19] L. Manzoni, L. Mariot, and E. Tuba, “Balanced crossover operators in
genetic algorithms,” Swarm and Evolutionary Computation, vol. 54, p.
100646, 2020.

[20] J.-H. Yi, S. Deb, J. Dong, A. H. Alavi, and G.-G. Wang, “An improved
nsga-iii algorithm with adaptive mutation operator for big data opti-
mization problems,” Future Generation Computer Systems, vol. 88, pp.
571–585, 2018.

[21] M. G. Altarabichi, S. Nowaczyk, S. Pashami, and P. S. Mashhadi,
“Fast genetic algorithm for feature selection — a qualitative
approximation approach,” Expert Systems with Applications, vol. 211,
p. 118528, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0957417422016049

[22] M. Mojrian and S. A. Mirroshandel, “A novel extractive multi-document
text summarization system using quantum-inspired genetic algorithm:
Mtsqiga,” Expert systems with applications, vol. 171, p. 114555, 2021.

[23] N. Radeev, “Transparent dimension reduction by feature construction
with genetic algorithm,” Authorea Preprints, 2023.

https://www.sciencedirect.com/science/article/pii/S0957417422016049
https://www.sciencedirect.com/science/article/pii/S0957417422016049

	Introduction
	Related Work
	New frameworks of GA
	Crossover and mutation operators

	The Proposed Method
	The principle of GRGA
	RGGR Calculation
	Inferring Crossover Loci and Mutation Locus based on RGGR
	Apply the proposed method

	Experiments
	Verification and Analysis of GRGA
	Application Evaluation
	Feature Selection
	Text Summary
	Dimensionality Reduction


	Conclusions
	References

