
ar
X

iv
:2

40
4.

18
93

8v
2 

 [
ph

ys
ic

s.
ge

n-
ph

] 
 6

 M
ay

 2
02

4

ON POSSIBLE EMBEDDINGS OF THE STANDARD MODELS

OF PARTICLE PHYSICS AND GRAVITY IN E8

ROBERT ARNOTT WILSON

Abstract. I investigate the structure of E8 under the action of the subalge-
bra/subgroup A1 + G2 + C3, as a potential route to unification of the funda-
mental forces of nature into a single algebraic structure. The particular real
form E8(−24) supports a decomposition into compact G2 plus split A1 + C3,

which allows a restriction from G2 to SU(3) for the strong force, together with
split SL2(R) to break the symmetry of the weak interaction and give mass
to the intermediate vector bosons. The factor C3 contains various copies of
the Lorentz group SL2(C) and extends the ‘spacetime’ symmetries to the full
group of symplectic symmetries of real 3 + 3-dimensional phase space.

Restricting G2 to the Standard Model SU(3) extends C3 to A5, in the real
form SU(3, 3), acting on a complex phase space that includes both momentum
and current. There is then a natural restriction from SU(3, 3) to SO(3, 3),
describing the action of SL4(R) on phase space. The resulting action of SL4(R)
on E8 includes tensors that are equivalent to the stress-energy tensor, the Ricci
tensor and the Riemann tensor, and therefore permits the formalism of general
relativity to be developed inside E8(−24). The model then suggests unexpected
and perhaps subtle ways in which general relativity and particle physics may
be forced to modify each other, in order to produce a unified theory.

1. Introduction

A number of E8 models of fundamental physics have been proposed in recent
years [1, 2, 3, 4, 5], but none of them has been sufficiently compelling to persuade
large numbers of people that they are useful. The key issue is how to split up
the symmetries of E8 to get something that looks like the Standard Model, and
in particular, how to do this in a reasonably ‘natural’ way. In addition there
are a number of technical issues which cause a lot of trouble, particularly to do
with complex structures and chirality, and with implementing three generations of
fermions when there appears on the face of it to be only enough room for two [6].

The approach to ‘naturality’ taken in [1] is to take the Freudenthal–Tits ‘magic
square’ [7, 8, 9] as a guide. The Lie structure of the magic square is

A1 A2 C3 F4

A2 A2 +A2 A5 E6

C3 A5 D6 E7

F4 E6 E7 E8

(1)

and most emphasis has been put on the fourth row and the fourth column, where
the exceptional Lie groups are found. However, the other entries in the table are
also interesting. For example, the route taken in [1] from top left to bottom right
goes via A2, A5 and E6 in the second row (see also [10, 11]).
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The corresponding ‘magic square’ for 2× 2 matrices is

B0 B1 B2 B4

B1 D2 D3 D5

B2 D3 D4 D6

B4 D5 D6 D8

(2)

where I use the notation B and D to emphasise that these are all spin groups, with
Bn = Spin(2n+ 1) and Dn = Spin(2n). However, I would like to draw particular
attention to the isomorphisms between spin groups (types B and D) and unitary
(type A) and symplectic (type C) groups:

B1 = A1,

D2 = A1 +A1,

B2 = C2,

D3 = A3.(3)

All of the exceptional isomorphisms listed here arise from the triality automorphism
of D4, which links together all the groups in the table that are not in the fourth
row or fourth column.

The isomorphism B1 = A1 gives the basic fact that Spin(3) ∼= SU(2), which
is the foundation of quantum mechanics (QM), while D2 = A1 + A1 extends this
to Spin(3, 1) ∼= SL(2,C) for relativistic QM. The isomorphism D3 = A3 is needed
to explain the complex structure of the Dirac algebra, as the complex Clifford
algebra of Minkowski spacetime, since the smallest real Lie algebra that contains
all the Dirac matrices, including γ5, is of this type. This isomorphism also plays
a significant role in various Grand Unified Theories (GUTs) from 1974 onwards
[12, 13, 14], in various real forms including Spin(6) ∼= SU(4), Spin(4, 2) ∼= SU(2, 2)
and Spin(3, 3) ∼= SL4(R). The isomorphism B2 = C2 similarly lies at the heart of
the AdS/CFT correspondence [15], and describes the Lie algebra of the even part
of the Dirac algebra.

Extending then to the 3 × 3 case, we extend C2 to C3, which looks a lot more
‘natural’ than extending B2 to C3. In this note, therefore, I concentrate on the third
row of the magic square [16, 17], and especially the first group, Sp6(R), that has
a classical interpretation as the symmetry group of phase space [18]. The second
group extends this to a complex phase space, so that both momentum and current
can be included, as well as the position of both mass and charge. This extends the
symplectic group to Sp6(C) ∼= SU(3, 3), whose centralizer in E8 is SU(3)×SL2(R).
The latter is a real form of the gauge group SU(3)×SU(2) of the strong and weak
nuclear forces, and I shall argue in this paper that the group SU(3, 3) describes
both classical and quantum forms of both electromagnetism and gravity.

2. Embedding C2 in D8

In the semi-split version of the magic square, both the compact and split real
forms of C2 occur, but because I want to use C2 to implement the Dirac algebra,
I want the split form, that is the group Spin(3, 2) ∼= Sp4(R). Embedding into
Spin(12, 4) we see the centralizer Spin(9, 2), which we can split into three pieces,
Spin(6), Spin(3) and Spin(2), if we want to get the Standard Model gauge groups
SU(3), SU(2) and U(1). However, the reason for this splitting will not become
clear until we consider the embedding of C3 in E8.
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In the notation of [1, 19], we need to choose a copy of the split quaternions
H′ in the split octonions, say the copy with basis U,K,L,KL. Then the corre-
sponding copy of Spin(3, 2) acts on the indices u := 1, U,K,L,KL, leaving IL, JL

for Spin(2), and i, j, k, il, jl, kl for Spin(6) and/or SU(3), so that Spin(3) acts on
l, I, J . In particular we see some symmetry-breaking for Spin(3), generated by XlI ,
XlJ and DI,J , already in the notation. Now for the Dirac part of the algebra, the
labels u, U,K,L,KL correspond to the matrices γ1, γ2, γ3, γ0 and γ5 respectively,
and the products of pairs of these gamma matrices generate the algebra so(3, 2):

X1, XK , DK ,

XL, DL, DK,L,

XKL, DKL, DK,KL, DL,KL,(4)

in which the first row contains the rotations in SL2(C), and the second row contains
the boosts, while the third row contains a Lorentzian 4-vector.

Since this algebra is quaternionic rather than octonionic, its elements can be
written as ordinary 2× 2 anti-Hermitian quaternion matrices, which make it easier
to understand the structure. The Xs are off-diagonal, the single-index Ds are
diagonal traceless, and the double-index Ds add the imaginary traces:

(

0 1
−1 0

)

,

(

0 K

K 0

)

,

(

K 0
0 −K

)

,

(

0 L

L 0

)

,

(

L 0
0 −L

)

,

(

KL 0
0 KL

)

,

(

0 KL

KL 0

)

,

(

KL 0
0 −KL

)

,

(

L 0
0 L

)

,

(

K 0
0 K

)

(5)

These matrices can be regarded as a split quaternionic version of the Pauli matrices,
which occur in the first row, in the mathematicians’ anti-Hermitian convention
rather than the physicists’ Hermitian convention. The last matrix in the third row
is the scalar matrix that is the product of the three Pauli matrices (Hermitian
convention).

3. Extending to C3

To extend from C2 to C3 we have to generalise the X terms to Y and Z, and
the D terms to E:

Y1, YK , YL, YKL,

Z1, ZK , ZL, ZKL,

EK , EL, EKL.(6)

Equivalently, we extend from 2× 2 matrices to 3× 3, to obtain a split quaternionic
version of the Gell-Mann matrices [20]. It turns out that the ‘scalar’ 2× 2 matrices
extend to traceless 3 × 3 matrices, in the same way that the Gell-Mann matrices
are traceless. In the notation of [19], this condition is enforced by the identity:

Dp + Ep + Fp = 0(7)

for all single index p, here K, L and KL. I make no claims as to how these Gell-
Mann matrices should be interpreted, or whether they have anything to do with
the Gell-Mann matrices used in QCD [21].
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In fact, the compact part of this group Sp6(R) is a copy of U(3) generated by
all the elements that have an even number of copies of L in their labels:

X1, XK , Y1, YK , Z1, ZK , DK , EK , DL,KL(8)

where again the double-index Ds add an imaginary trace to the matrices. As
matrices, these are just the anti-Hermitian matrices over the complex subalgebra
C of H′. There are also two copies of GL3(R) obtained by replacing K by L or KL

(or indeed any linear combination of the two):

X1, XL, Y1, YL, Z1, ZL, DL, EL, DK,KL;

X1, XKL, Y1, YKL, Z1, ZKL, DKL, EKL, DK,L.(9)

These are anti-Hermitian matrices over the respective copies of the split complex
numbers C′ in H′. Leaving off the double-index Ds restricts to SL3(R), and the
subtle relationships between these two copies of SL3(R) and SU(3) will play an
important role in this paper.

4. The centralizer of C3

The centralizer of Sp6(R) in E8 is a group of type A1 + G2, in which the copy
of G2 is compact, acting on the indices i, j, k, l, il, jl, kl, and the copy of A1 is
split, acting on the indices I, J, IL, JL in one of its chiral spinor (weak isospin?)
representations. This copy of A1 is obviously not the same as the copy, acting
on l, I, J , that we suggested in Section 2 simply by looking in D8. However, we
effectively chose a copy of su(2) + u(1) acting on l, I, J, IL, JL, so that by ‘mixing’
DI,J with DIL,JL we obtain one of the elements of the centralizer. To get the
rest we need to replace XlI and XlJ by one combination of DI,IL and DJ,JL and
another combination of DI,JL and DJ,IL.

In other words, the conversion between these two copies of A1, one of which
is compact and the other split, is very reminiscent of the ‘symmetry-breaking’ of
the weak SU(2) in the Standard Model, that converts from a ‘primordial’ massless
SU(2) to SL2(R) via the complexification SL2(C), in order to give the intermediate
vector bosons non-zero masses. Thus the E8 model provides a fundamental math-
ematical reason for this symmetry-breaking, namely enforcement of the condition
that the gauge group must commute not only with D2, as the Coleman–Mandula
theorem [22] requires, or with C2, as the embedding in D8 requires, but with the
whole of C3.

To see the details of how these two copies of A1 are related to each other, we
can work in the group they generate, which is another copy of Spin(3, 2), acting on
the labels l, I, J, IL, JL, and commuting with the first copy. The ten dimensions of
this group are represented by

XlI , XlJ , DI,J , DIL,JL,

XlIL, XlJL, DI,IL, DI,JL, DJ,IL, DJ,JL.(10)

Since we are genuinely using the octonions at this point, it is not possible to write
these elements of the algebra as ordinary matrices. However, the notation of [19]
may help to visualise what is going on. The generators of the two copies of A1 are
related as follows (where the signs are determined by the chirality, or equivalently
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by the embedding in G2):

DI,J → DI,J −DIL,JL

XlI → DI,IL −DJ,JL

XlJ → DJ,IL +DI,JL.(11)

Turning now to the remaining factor, which is presumably related to the strong
force, we compare the group Spin(6) that appears in the centralizer of Spin(3, 2),
with the group G2 that appears in the centralizer of Sp6(R). After replacing the
original (unbroken symmetry) copy of A1 by the chiral copy on I, J, IL, JL, we no
longer require the label l for the weak interaction, which can be added to the strong
force, to extend the gauge group SU(3) acting on 3+ 3 colours and anti-colours to
G2 acting on 7 ‘colours’. This extension is reminiscent of the Pati–Salam model,
which uses SU(4) for four colours and four anti-colours, but is group-theoretically
completely different.

Notice also that we have a chiral pair of left-handed and right-handed copies of
SL2(R), so that there is a close parallel between the two models:

SU(4)× SU(2)L × SU(2)R

G2 × SL2(R)L × SL2(R)R.(12)

Generators for SL2(R)R in this case are obtained by changing the signs in (11).
But this group SL2(R)R is not contained in Sp6(R), so we do not find it useful,
and shall not use it. In Section 5 we consider a different type of ‘right-handed’
SL2(R), whose generators are given in (22), which is contained in Sp6(R), and has
more useful symmetry properties.

Here we have a total of 20 degrees of freedom, compared to 21 in the Pati–Salam
model. Therefore our full model is of type C3 +A1 +G2, based on the group

Sp6(R)× SL2(R)×G2,(13)

with the first factor generalising the Lorentz group, the second factor representing
a real form of weak SU(2), and the third factor generalizing strong SU(3).

5. Extending to A5

The occurrence of G2 in the decomposition A1+G2+C3, rather than A2, that we
would expect for the strong force, suggests that we should move to the second group
in the third row of the magic square, of type A5, and the associated decomposition
A1 +A2 +A5 of E8. The particular real forms that arise are

SL2(R)× SU(3)× SU(3, 3),(14)

which is analogous to the decomposition

SU(2)× SL3(R)× SL3(H)(15)

studied in [1, Section II.C]. I propose these different real forms as a potentially closer
match to the Standard Model, since the compact group SU(3) is more suitable for
massless gluons, while the split group SL2(R) has two boosts that are suitable for
masses of the intermediate vector bosons. This is because mass is usually introduced
by complexifying the compact gauge group, precisely in order to generate boosts.
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To extend Sp6(R) to SU(3, 3) we add 14 dimensions, all involving the complex
structure l. The analogous 2×2 extension is from Spin(3, 2) acting on u, U,K,L,KL

to Spin(4, 2) acting on l, u, U,K,L,KL, so that the five new elements are

Xl, Dl, XlK , XlL, XlKL(16)

Since we are not really using the octonions here, all these elements can be written
as 2× 2 anti-Hermitian matrices over

C⊗H
′ = 〈u, l〉 ⊗ 〈U,K,L,KL〉(17)

so that the new matrices are
(

0 l

l 0

)

,

(

l 0
0 −l

)

,

(

0 lK

−lK 0

)

,

(

0 lL

−lL 0

)

,

(

0 lKL

−lKL 0

)

.(18)

To get the whole of SU(3, 3), therefore, we need to extend from 2 × 2 to 3 × 3
matrices, which means adding in the corresponding Y s and Zs, and one E:

El, Yl, YlK , YlL, YlKL,

Zl, ZlK , ZlL, ZlKL.(19)

The ‘diagonal’ part of this group is U(1)× U(1)× SL2(R)× SL2(R)× SL2(R),
an 11-dimensional group generated by

Dl, El, DK , EK , DL,KL, DL, EL, DK,KL, DKL, EKL, DK,L,(20)

and the off-diagonal part consists of 8 dimensions each of elements of type X

(bosonic), Y and Z (fermionic). Adding any one of these three types gives a group
U(1)×SL2(R)×SU(2, 2) of dimension 19. The subgroup Sp6(R) loses the first two
diagonal elements of type D, and half of the off-diagonal elements of types X,Y, Z.
In this case the Ds and Xs generate a group SL2(R) ⊗ Sp4(R) of dimension 13.
This last copy of SL2(R) is generated by

EK − FK , EL − FL, EKL − FKL,(21)

or equivalently by

DI,J +DIL,JL +DKL,L,

DI,IL +DJ,JL +DK,KL,

DJ,IL +DJL,I +DK,L.(22)

and is a type of ‘right-handed’ SL2(R), as described in Section 4.
The particular real form SU(3, 3) suggested here as a (huge) generalisation of

the Lorentz group, from 6 dimensions to 35, is closely related to Penrose twistors,
since the corresponding entry in the magic square of 2×2 matrix groups is SU(2, 2).
In other words, SU(3, 3) combines the group Sp6(R) of symmetries of phase space
with the group SU(2, 2) of symmetries of twistors, into a single symmetry group. If
this mathematical unification can lead to a physical unification, then it could have
far-reaching consequences for the fundamental theory.

It should be noted that SU(2, 2) embeds in Spin(12, 4) in two different ways,
as Spin(2, 4) and as Spin(4, 2), centralizing Spin(10) and Spin(8, 2) respectively.
The former was used in [5] and extended to SU(2, 3) × SU(5) in an attempt to
understand how twistors relate to E8 models. Here we use the latter instead, so
that the centralizer splits as Spin(6)⊗Spin(2, 2) to give a different real form of the
Georgi Spin(10) GUT, and a different embedding of the twistors into E8. Compar-
ing with [1], we see that the latter uses Spin(3, 3)⊗ Spin(4) inside Spin(7, 3), as
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yet another real form of Spin(10). It is worthwhile considering which real form is
most appropriate. In the Standard Model, the strong force SU(3) is definitely com-
pact, and the mediators are correspondingly massless, but the weak force SU(2) is
definitely not compact, because the complexification is used to allow the mediators
to be massive. So of the three choices Spin(10), Spin(7, 3) and Spin(8, 2), only the
last has a reasonable chance of agreeing with the Standard Model.

The group Sp6(R) is studied in detail in [25], embedded in a different real form of
SU(6), namely SL3(H

′). It is straightforward to translate that work into SU(3, 3),
simply by multiplying the Hermitian matrices by l to make them anti-Hermitian
over C ⊗ H′. However, any interpretation in [25] that is based on the particular
real form is suspect. The study of SL3(H) in [1] is also not difficult to translate
into, or out of, these other two real forms. But again, the interpretation offered
in [1] is quite different from the interpretation I offer here. The great advantage
of using SU(3, 3) rather than SL3(H

′) is that it removes the contradiction with
general relativity that was apparent in [25] (see Section 9 below).

6. Representations

Let us first look at the restriction to A1 +A2 +A5 of the adjoint representation
of E8. The real constituents for the real form SL2(R) × SU(3) × SU(3, 3) are as
follows:

3 = 3⊗ 1⊗ 1

8 = 1⊗ 8⊗ 1

35 = 1⊗ 1⊗ 35

40 = 2⊗ 1⊗ 20

90 = 1⊗ 3C ⊗C 15C

72 = 2⊗ 3C ⊗C 6C(23)

The first three constituents are the adjoint representations of the three factors,
and the last three involve the real weak doublet representation 2 and the complex
colour triplet representation 3C. The representations of SU(3, 3) are the natural
6-dimensional complex representation 6C, its anti-symmetric square 15C and its
anti-symmetric cube (real 20).

Restricting to SU(2, 2) to separate bosonic and fermionic representations we
have

6C → (1 + 1) + 4

20 → (6 + 6) + (4 + 4)

15C → (1 + 6) + (4 + 4)(24)

which gives us a total of 16 + 48 + 48 = 112 dimensions of spinors, of which 48
are right-handed and 64 are left-handed. The left-handed spinors split 16 + 48
into leptons and quarks, while the right-handed spinors here represent only quarks.
The remaining 16 dimensions of right-handed spinors lie inside the group SU(3, 3).
In order to allocate some of these spinors to right-handed electrons, therefore, we
need to break the symmetry back down to Sp6(R). This gives us 8 dimensions of
right-handed lepton spinors, compared to 16 for left-handed leptons, which is the
ratio that we expect.
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One way to study the splitting of E8 into representations of A1 + C3 +G2 is to
embed it first in F4 +G2, where we have a decomposition

248 = 52+ 14+ 26⊗ 7.(25)

Then we restrict from F4 to A1 + C3 to get

52 = 3+ 21+ 2⊗ 14b

26 = 2⊗ 6+ 14a(26)

where 6 is the natural representation of Sp6(R), and the other representations are
defined by

Λ2(6) = 1+ 14a,

S2(6) = 21,

Λ3(6) = 6+ 14b.(27)

Here, Λ2(6) has a natural structure as a Jordan algebra, while S2(6) has a natural
structure as a Lie algebra. An alternative way to see these splittings is by restriction
from SU(3, 3):

6C → 6

15C → 1+ 14a

20 → 6+ 14b

35 → 21+ 14a(28)

As representations of A1+G2+C3 we have the following irreducible constituents
of E8:

3 = 3⊗ 1⊗ 1

14 = 1⊗ 14⊗ 1

21 = 1⊗ 1⊗ 21

28 = 2⊗ 1⊗ 14b

98 = 1⊗ 7⊗ 14a

84 = 2⊗ 7⊗ 6(29)

All the right-handed spinors (including the electrons) are now inside the 98, while
the left-handed lepton spinors have been split 8 + 8 between the 28 and the 84, as
a result of the breaking of 20 into 14b+6. This curious phenomenon will no doubt
repay closer scrutiny. It looks at first sight like a distinction between (massless)
neutrinos and (massive) electrons, but that is not consistent with the identification
of the A1 factor as acting on weak doublets. Hence one or other of these suggested
interpretations has to change.

This analysis gives us a total of five different types of spinors:

• 8 dof in 28, left-handed leptons;
• 8 + 48 dof in 98, right-handed leptons and quarks;
• 8 + 48 dof in 84, left-handed leptons and quarks.

In total, then, there are 24 dof for leptons, or 6 Weyl spinors, compared to the
9 that are usually expected for three generations. Similarly, there are 96 dof for
quarks, or 24 Weyl spinors, compared to the 36 that are usually expected. Thus
we need a mechanism similar to that proposed in [1] for reducing the number of



THE STANDARD MODEL AND GRAVITY IN E8 9

independent spinors required by one-third. This is not surprising, of course, as
it is well-known that the standard interpretation requires 180 dof for spinors [6].
However, a discrete symmetry of order 3 can be implemented in a 2-dimensional
real space using the symmetries of an equilateral triangle, so there is no theoretical
reason why a 3-space is needed for this symmetry.

An alternative interpretation is that this model describes only the first-generation
fermions, since we have broken the generation symmetry by choosing K. In that
case, we have not too few spinors, but too many. In particular, half of the spinors
that we assumed were leptons are actually associated with quarks under the action
of G2. Hence it may be more reasonable to assume that they are (first generation)
baryons, i.e. proton and neutron. This assumption allows us to use the representa-
tion 20 to describe all ‘normal’ matter, made out of electrons, protons and neutrons,
while leaving more exotic particles to be described by other representations.

7. Restricting to A2 +A2

An alternative strategy for producing spinors for right-handed electrons is to
restrict from A5 to A2 × A2 instead of C3. This extends the centralizer from
A1 +A2 to A2 +A2, and gives rise to the following subgroup of E8(−24):

SL3(C)× SU(3)× SL3(R).(30)

This group provides an obvious embedding of the Lorentz group SL2(C) in SL3(C),
defining the splitting into fermions and bosons, and offers various possibilities for
SL2(R) or SO(3) for the weak force. However, SL3(R) acts identically on vectors
and both types of spinors, so does not provide any obvious way to implement the
chirality of the weak force. We considered this possibility in the work that led to
[1], but did not find a way to make it work. Of course, that does not necessarily
mean that it cannot be done.

The group SL3(C) is generated by the 16 elements

Dl, DL, X1, Xl, XL, XlL,

El, EL, Y1, Yl, YL, YlL,

Z1, Zl, ZL, ZlL(31)

in which the top row is the Lorentz group SL2(C), centralized by a complex scalar
generated by

EL − FL = DL + 2EL,

El − Fl = Dl + 2El.(32)

The group SU(3) acts on the labels i, j, k, il, jl, kl, identically on X , Y and Z. The
group SL3(R) acts similarly on the labels I, J,K, IL, JL,KL. The 120 spinors
therefore split as 24 + 24 + 72, in which the 72 have both an i, j, k and an I, J,K

in the label, and the 24s have one or the other.
We now have to break the symmetry of I, J,K in order to separate left-handed

and right-handed spinors, so let us separate I, J from K to break 72 = 24+ 48 and
one of the 24 = 8+16. This gives us a splitting of quarks in 24+24+48, such that
24 + 24 are right-handed, and 48 are left-handed. Similarly, the leptons split as 8
right-handed and 16 left-handed, again in agreement with the Standard Model. To
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be more explicit, we give the labels in the form of a table, with the labels for the
C3 version for comparison:

RH l u, l K,KL u, l U ±KL,K ± L

LH l u, l I, J, IL, JL u, l I, J, IL, JL

RH q i, j, k, il, jl, kl U,K,L,KL i, j, k, il, jl, kl U,K,L,KL

LH q i, j, k, il, jl, kl I, J, IL, JL i, j, k, il, jl, kl I, J, IL, JL

(33)

The actual signs for the right-handed leptons in the C3 case are different in the Y

and Z spinors, but only one sign occurs in each case. The allocation of individual
particles in the C3 and A2 + A2 cases is not necessarily the same, but the overall
picture is very similar. But only the C3 case has the projection with U −KL that
corresponds to 1− γ5 in the Standard Model. This appears to be a decisive vote in
favour of the C3 model over the A2 +A2 model, at least for the Dirac algebra.

On the other hand, the Dirac equation is probably better modelled with A2+A2,
where there are 12 Lorentzian 4-vectors available for the gamma matrices. Nine of
these extend Spin(3, 1) to Spin(4, 1), and therefore have an obvious place to put a
mass that is defined by the Einstein mass equation:

DI , XI , XlI , DI,L,

DJ , XJ , XlJ , DJ,L,

DK , XK , XlK , DK,L

Xi, Di, Di,l, XiL

Xj , Dj, Dj,l, XjL,

Xk, Dk, Dk,l, XkL

Xil, Dil, Dil,l, XilL

Xjl, Djl, Djl,l, XjlL,

Xkl, Dkl, Dkl,l, XklL

(34)

The first column look like electrons, and the others look like quarks, although
it is also possible to take arbitrary linear combinations. The other three extend
Spin(3, 1) to Spin(3, 2), and therefore do not have an Einstein/Dirac mass term:

DIL, XIL, XlIL, DIL,L,

DJL, XJL, XlJL, DJL,L,

DKL, XKL, XlKL, DKL,L

(35)

These are presumably neutrinos.

8. Symmetry-breaking

Nevertheless, there are many questions remaining about the differences between
C3 and A2+A2, particularly concerning the physical interpretations, and the reason
for the symmetry-breaking from SL3(R) to SL2(R). In order to bring the questions
into focus, it is useful to consider the square of groups A2, A2 + A2, C3 and A5,
together with the corresponding block of the 2×2 magic square, and the centralizers.

SL3(R) SL3(C)
Sp6(R) SU(3, 3)

Spin(2, 1) Spin(3, 1)
Spin(3, 2) Spin(4, 2)

G2 × SL3(R) SU(3)× SL3(R)
G2 × SL2(R) SU(3)× SL2(R)

(36)

It may also be helpful to display the generators for the four groups in a table

X1, XL, DL Xl, XlL, Dl

Y1, YL, Z1, ZL, EL Yl, YlL, Zl, ZlL, El

XK , XKL, DK , DKL, DL,KL, DK,L, DK,KL XlK , XlKL

YK , YKL, ZK , ZKL, EK , EKL YlK , YlKL, ZlK , ZlKL

(37)

where each box contains the extra generators needed in each case, to add to the
generators of the group(s) above and/or to the left of the box.
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We would expect to use Spin(3, 1) in the top right corner for the Lorentz group,
acting on the four labels u, U, l, L for spacetime and/or 4-momentum. However, in
the Dirac algebra including γ5 we need Spin(3, 2), which appears in the bottom-
left, acting on the five labels u, U,K,L,KL. From this labelling we see that we
have lost one of the three dimensions of momentum, labelled l, and gained two
dimensions of something else, labelled K,KL. In particular, we have broken the
symmetry of spacetime, to include a preferred direction in space, and we have
broken the symmetry of I, J,K, to obtain a weak force with a broken symmetry
group SL2(R). The breaking of the I, J,K symmetry seems most likely to be a
breaking of the generation symmetry of fundamental fermions. We can, of course,
avoid the breaking of the spacetime-symmetry by extending to Spin(4, 2) and the
complex Dirac algebra, as is effectively done in the Standard Model.

But in the E8 model it seems more likely that the symmetry-breaking from
complex quaternions and Spin(4, 2) down to real split quaternions and Spin(3, 2)
is important for the description of those parts of physics that use (mathematically
real) momentum but not (mathematically imaginary) current. In other words we
may need this symmetry-breaking for the description of mass and gravity. The
particular space direction chosen must be something physically important such as
the direction of acceleration relative to an inertial frame, or the direction of the
ambient gravitational field, or the direction of the ambient angular momentum.

This suggests that the top right corner, in the form

SL3(C)× SU(3)× SL3(R),(38)

represents the Standard Model of elementary particles, with three colours of quarks
and three generations of fermions (but only for half of the right-handed quarks!).
The restriction from SL3(C) to SL2(C) splits fermions from bosons, and allows
every observer to choose their own preferred copy of the Lorentz group SL2(C). The
ten remaining dimensions of SL3(C) consist of a complex scalar and a Dirac spinor.
Hence there is an 8-parameter family of copies of SL2(C) available for different
observers. This compares to a 9-parameter family of copies of SO(3, 1) inside
SL4(R) that describes the analogous phenomenon in General Relativity. Clearly,
therefore, this model does not resolve the basic problem of incompatibility of GR
with QM. It does, however, provide an explanation of sorts for the so-called ‘right-
handed neutrinos’: these are not interpreted as particles, but as transformations
between different coordinate systems preferred by different observers.

The interpretation of the bottom left corner, in the form

Sp6(R)×G2 × SL2(R),(39)

is now freed from the necessity to include the Lorentz group in Sp6(R), and hence
freed from the necessity to extend Minkowski spacetime, with symmetry group
SO(3, 1), to anti-de Sitter spacetime, with symmetry group SO(3, 2). Indeed, the
latter group, or rather its double cover Sp4(R), now only has to act on two of the
three spatial coordinates, and can therefore plausibly be identified with the group
of symmetries of phase space for 2-dimensional dynamics. The choice of which
two dimensions these are is the same as the choice of restriction from SO(3, 1) to
SO(2, 1) above, and therefore has the same relationship to acceleration, rotation
and/or the gravitational field. In practice, most experiments are horizontal, so that
the most likely direction in most cases will be the direction of the gravitational field.
However, other directions may enter into the model at various points.
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Finally, the extension from Sp4(R) to Sp6(R) allows individual observers to
choose whichever 2-dimensional part of dynamics they wish to model with the
Standard Model, and hence to modify the Standard Model for different ambient
conditions of acceleration, rotation and gravity. If we want a model that is truly
relativistic (independent of the observer), then we can treat Sp6(R) as the symmetry
group of phase space for 3-dimensional dynamics, which entails abandoning the
concept of ‘spacetime’, since it is now observer-dependent, and therefore no longer
useful for a fundamental theory. The embedding of Sp4(R) via Sp4(R) × Sp2(R)
into Sp6(R) shows that there is again an 8-parameter family of copies of Sp4(R)
available, for an 8-parameter family of observers. This extends to an 11-parameter
family of copies of SL2(C), in case this is useful.

A more radical proposal is made in [25], in which it is noted that both SU(3)
and SL3(R) are subgroups of Sp6(R), and it is therefore proposed to identify the
colour symmetry group SU(3) and the generation symmetry group SL3(R) with
the corresponding subgroups of Sp6(R), so that the latter group now contains all
of the required symmetries of fundamental physics. It may be that this proposal
is too radical, but it is certainly necessary to have some mechanism for linking the
generation symmetry group SL3(R) to some concept of mass.

9. Gravity

It must be stressed again that with the standard interpretation of the Lorentz
group SL2(C) acting on spacetime, labelled by u, U, l, L, there is no conceivable
way of implementing General Relativity inside E8(−24). The fact that SL4(R) has
no double cover that acts on spinors categorically rules this out. However, there
are bits of E8 that appear not to be used in the Standard Model, that could in
principle be used for a quantum theory of gravity, and that might approximate
to GR in appropriate circumstances. Or it may be that a suitable tweak to the
interpretation might allow GR in to the model.

For example, SL4(R) acting on spacetime translates to SO(3, 3) acting on phase
space, and there is an obvious copy of SO(3, 3) in SU(3, 3), that extends SL3(R)
in Sp6(R). This suggests that complexifying phase space, in order to implement
momentum and current separately, may be key to including quantum gravity in the
model. In other words, A5 is the battleground in which the QM and GR models
must resolve their differences. These differences mainly lie in the fundamental prop-
erties of spacetime, so the hope is that by shifting the emphasis from spacetime to
phase space, a compromise might be reached in which spacetime is never defined or
used at all. If QM uses Sp6(R) to act on phase space, as it should in a Hamiltonian
theory, and GR uses SO(3, 3), then both can be embedded in SU(3, 3), and each
can be allowed to add corrections to the other.

The key to this process is to re-interpret the various spin groups as acting on 2+2-
dimensional (real, complex or quaternionic) phase space, and not on an abstract
space of ‘spinors’ that have no concrete physical interpretation. We have already
done this [25] with the group Spin(3, 2) ∼= Sp4(R) in C3, interpreted as a subalgebra
of the Dirac algebra, so we must now do the same with Spin(4, 2) ∼= SU(2, 2) in A5,
and interpret this both as the full complex Dirac algebra, and as a complex version
of the subgroup SO(2, 2) of SO(3, 3), corresponding to a subgroup SL2(R)×SL2(R)
of SL4(R) in GR.
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Within the 2× 2 magic square, we therefore have a copy of

SO(2, 2) = Spin(2, 1)⊗ Spin(2, 1)(40)

inside Spin(4, 2), from which we can write down generators for SO(3, 3) as follows:

DL, DK,KL, X1, XL, XlK , XlKL,

EL, Y1, YL, YlK , YlKL,

Z1, ZL, ZlK , ZlKL(41)

These are the elements in the top left and bottom right of (37), together with
DK,KL. The first row of (41) consists of generators for SO(2, 2). The elements
whose labels do not include l generate GL3(R) inside Sp6(R).

This choice of SO(2, 2) amounts to splitting the 6 labels into u, U, L for one copy
of Spin(2, 1) and l,K,KL for the other. In matrix terms we have

(

L

0 −L

)

,

(

0 1
−1 0

)

,

(

0 L

L 0

)

,

(

L 0
0 L

)

,

(

0 lK

−lK 0

)

,

(

0 lKL

−lKL 0

)

,(42)

where the first row is SO(2, 1) acting on 2 + 1-dimensional spacetime.
This splitting is similar to Woit’s splitting [23, 24] into ‘right-handed’ spacetime

and ‘left-handed’ gauge groups, respectively, except that he complexifies everything
and interprets these groups as compact SU(2) rather than split SL2(R). Moreover,
he interprets SU(2) as acting on a Euclidean rather than Lorentzian spacetime, or
a spinor. In our interpretation, the ‘right-handed’ copy acts on 2 + 1-spacetime,
which we must presumably interpret as being perpendicular to the local direction
of the gravitational field, and the ‘left-handed’ copy acts on 2 + 1 fermions in a
single generation.

At this point we may notice that we have acquired two copies of SL2(R), both
labelled ‘left-handed’, one acting on labels l,K,KL, the other acting on labels
I, J, IL, JL. Some mixing of the two may be required in order to define masses for
the intermediate vector bosons. We also have a second ‘right-handed’ copy acting
on the six labels I, J,K, IL, JL,KL, but not acting on l. Again it is not clear
whether there is any relationship between this right-handed copy, analogous to the
one defined in [1], and the one acting on u, U, L (with or without l), analogous
to the one defined in [23, 24]. What is clear, at least, is that the terms ‘right-
handed’ and ‘left-handed’ have multiple different meanings in the literature, and
are consequently best avoided.

10. General relativity

The tensors used in GR are irreducible representations of SO(3, 3) of dimensions
6 (field strength tensor), 10 (Ricci tensor, stress-energy tensor) and 20 (Riemann
curvature tensor). The representations of SU(3, 3) that are available in E8 are
complex 6C and 15C, and real 20 and 35, which restrict to SO(3, 3) as follows:

6C → 6

15C → 15

20 → 10a+ 10b

35 → 15+ 20(43)
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It follows that the Einstein field equations must be written in terms of the rep-
resentation 2 ⊗ 20 on left-handed leptons, that relates matter to neutrinos, and
therefore expresses the gravitational field in terms of neutrinos. On the other hand,
the Riemann Curvature Tensor (RCT) lies in the adjoint representation of SU(3, 3),
and consists of the 20 dimensions outside SO(3, 3). Thus the RCT becomes part
of the symmetry group of the model, and consists of the elements in the top right
and bottom left of (37), excluding the ‘scalar’ DK,KL. Finally, the field strength
tensor is coupled to the quark colour/charge representation 2 ⊗ 3C, and hence to
baryonic matter.

From this analysis, we see that the only essential thing that is missing from GR is
the distinction between 10a and 10b, which are usually regarded as being self-dual
and therefore equivalent, but are in fact dual to each other. In the usual formalism
in terms of the Lorentz group SO(3, 1), they both restrict to 1 + 9, so that the
distinction between them is less obvious. The introduction of a second scalar (the
cosmological constant) only extends from 10 to 11 variables, when 20 are required
for the full theory. A consequence of this generalisation is that electrons are far
more important for gravity than is usually supposed, since all three generations
of neutrinos and antineutrinos, and therefore all three generations of electrons,
participate in an essential way.

Indeed, it is possible to include the whole of GR and the weak force inside E6

by adding the representation 2 ⊗ 20 to the adjoint representation of SU(3, 3), so
that on restriction to A1 +A3 the adjoint representation of E6 has the structure

3⊗ 1+ 1⊗ (15+ 20) + 2⊗ (10a+ 10b).(44)

The representation 3⊗ 1 is the adjoint representation of SL2(R), generated by

DI,J −DIL,JL, DI,IL −DJ,JL, DJ,IL +DI,JL.(45)

and generators for the adjoint representation 1⊗ 15 of SO(3, 3) are listed in (41).
A translation to 6× 6 real matrices is obtained via the map

lKL 7→

(

0 1
−1 0

)

, L 7→

(

0 1
1 0

)

, lK 7→

(

1 0
0 −1

)

(46)

but it is noteworthy that this translation does not map 15 to antisymmetric ma-
trices, as one might naively expect. This is because of the difference between the
split and compact signatures. For example, we have

X1 7→









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









, XL 7→









0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0









,

XlK 7→









0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0









, XlKL 7→









0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0









.(47)
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The Riemann Curvature Tensor 20 is generated by

Dl, El, DK , EK , DKL, EKL, DL,KL, DK,L,

Xl, XlL, XK , XKL,

Yl, YlL, YK , YKL,

Zl, ZlL, ZK , ZKL.(48)

We can take the five elements with label l to correspond to the diagonal elements
of the tensor as 6× 6 matrices.

The four 10-dimensional tensors consist of all the elements containing I or J in
their labels, and they each split into Ds, Xs, Y s and Zs as 4 + 2 + 2 + 2. Bases
for the four representations are given below. The top two can be taken as the two
copies of 10a, mixed by SL2(R), in which case the bottom two are 10b.

XlI(1+L), YlI(1+L), ZlI(1+L),

XJ(1+L), YJ(1+L), ZJ(1+L),

DK,I(1+L), EK,I(1+L),

DKL,I(1+L), EKL,I(1+L).

XlI(1−L), YlI(1−L), ZlI(1−L),

XJ(1−L), YJ(1−L), ZJ(1−L),

DK,I(1−L), EK,I(1−L),

DKL,I(1−L), EKL,I(1−L).

XI(1+L), YI(1+L), ZI(1+L),

XlJ(1+L), YlJ(1+L), ZlJ(1+L),

DK,J(1+L), EK,J(1+L),

DKL,J(1+L), EKL,J(1+L).

XI(1−L), YI(1−L), ZI(1−L),

XlJ(1−L), YlJ(1−L), ZlJ(1−L),

DK,J(1−L), EK,J(1−L),

DKL,J(1−L), EKL,J(1−L).

(49)

11. MOND

The proposed extension to General Relativity involves extending the standard
10-dimensional symmetric rank 2 tensors on spacetime to 20-dimensional anti-
symmetric rank 3 tensors on phase space. Restricting to the Lorentz group SO3(C),
the latter breaks up as 1 + 9 + 9 + 1, containing two real scalars, with spin (0, 0),
and two real representations with spin (1, 1). With respect to a basis of phase
space consisting of 3 directions of momentum and 3 directions of position, the an-
tisymmetric cube breaks up into pieces with 0, 1, 2 and 3 position coordinates, of
dimensions 1, 9, 9 and 1 respectively.

Newton–Einstein gravity consists mainly of the inverse-square law, with two
position vectors, and a relativistic ‘mass’ (or energy) that involves the momen-
tum vector. This occupies one of the 9-dimensional pieces, mixed with a scalar
‘rest mass’, that involves all three position coordinates. In other words, the rest
mass is defined by an inverse cube law that relates an object to its surroundings.
The other scalar has no position coordinates at all, and therefore plays the role
of a cosmological constant, or a ‘dark energy’ field that in principle may not be
constant throughout the universe [26]. Indeed, this ‘dark energy’ depends on the
anti-symmetric cube of momentum, and therefore relates an object to the rest of
the universe via Mach’s Principle.

This leaves one 9-dimensional piece of the representation unaccounted for in
Newton–Einstein gravity. This has a single position vector, and therefore corre-
sponds to an inverse-linear term in the universal law of gravity. Such a term was
first proposed by Milgrom [27] in 1983, in order to reconcile the theory of gravity
with observations that appeared to be inconsistent with the existing theory. This
proposed modification to Newtonian dynamics (MOND) has since been confirmed
in a wide variety of studies of astronomical objects on varying scales [28, 29, 30].
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The model proposed here suggests a dependence of this inverse-linear term on
a square of momentum, which may mean the momentum of each body relative to
the ‘centre-of-mass’ frame, assuming that such a frame can be adequately defined.
However, it may be necessary to embed the system in a larger system (or external
field), in which case we have two independent momenta relative to the external
system. In particular, for a star on the outskirts of a spiral galaxy, with a reasonably
‘standard’ stellar mass, and where the speed of rotation with respect to the centre
of the galaxy is observationally close to a constant value (in contrast to the expected
Keplerian decline), this momentum-squared factor is close to being a constant. But
the point at which the inverse-linear term becomes dominant is not yet clear from
this picture, and I have not found a convincing explanation for the empirical ‘critical
acceleration’ a0. What appears to be critical is a ratio of momentum to distance,
which translates in Newtonian physics to a ratio of mass to duration.

A number of models [31, 32, 33] have attempted to reconcile GR with MOND by
adding extra scalar and/or vector fields to the Einsteinian tensors. However, the
analysis of symmetries carried out in this paper suggests that it is not sufficient to
add scalars or vectors, but that it is necessary to add a second tensor, dual to the
first. On the other hand it has been proposed by Yahalom [34] that the inverse-
linear term is merely an artefact of the fact that the gravitational field propagates
at a finite and not infinite speed. In other words, it is not enough to know where
an object is, it is also necessary to know how fast its mass is travelling. It may or
may not be necessary to separate its momentum into mass and velocity, but it is
certainly necessary to know the momentum. Thus it may be possible to implement
this ‘retarded gravity’ approach within the phase space model that I propose.

12. Conclusion

The problem of unification of particle physics and gravity goes back almost a
century, and occupied Einstein for at least a quarter of that century. Yet the
problem seems no nearer to a solution today than it did fifty years ago, and even
further away than it seemed forty or thirty years ago. This indicates that there
must be something subtly wrong in the basic assumptions somewhere. My analysis
locates this problem in the concept of spacetime itself. The way that spacetime is
treated in relativity, using the Lorentz group in the form SO(3, 1), ismathematically

(never mind physically) inconsistent with the way that spacetime is treated in
quantum mechanics, using the Lorentz group in the form SL2(C). It isn’t a question
of one of them being ‘right’ and the other one ‘wrong’, it is a question of there
being no consistent definition of spacetime at all, and no possible way to measure
spacetime in the absence of objects embedded in spacetime.

Therefore I have considered the possibility of describing physics without using
spacetime, but instead using only phase space, as Hamilton taught us to do. This
involves re-interpreting the Dirac algebra, the Einstein field equations and the Rie-
mann curvature tensor in terms of a complex phase space, in order to include both
momentum and current. The symmetry group of the complex phase space in three
dimensions is the complex symplectic group Sp6(C) ∼= SU(3, 3). Taking my cue
from the variety of models based on E8 and the Freudenthal–Tits magic square,
from E8×E8 heterotic string theory down, I focus on the group SU(3, 3) embedded
in E8(−24) via E6(2), and find within these groups all the mathematical structures
that a unified model appears to require.
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This is not, of course, in itself a unified theory of fundamental physics. But it is
a unified mathematical model, in which all the ingredients of all the fundamental
theories of physics can be found. This includes the complex Dirac algebra, the
gauge groups of the weak and strong nuclear forces, including symmetry-breaking
of the weak force, a classification of elementary fermions in which there are no right-
handed neutrinos, general covariance, and all the tensors used in GR. Moreover,
these ingredients fit together in ways that are broadly consistent with experiment.
I therefore suggest that this is a promising foundation on which to try to build a
unified theory of fundamental physics.
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