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Abstract
Fo-bicategories are a categorification of Peirce’s calculus of relations. Notably, their laws provide a
proof system for first-order logic that is both purely equational and complete. This paper illustrates a
correspondence between fo-bicategories and Lawvere’s hyperdoctrines. To streamline our proof, we
introduce peircean bicategories, which offer a more succinct characterization of fo-bicategories.
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1 Introduction

The first appearences of the characteristic features of first-order logic can be traced back
to the works of Peirce [60] and Frege [26]. Frege was mainly motivated by the pursuit of
a rigorous foundation for mathematics: his work was inspired by real analysis, bringing
the concept of functions and variables into the logical realm [21]. On the other hand Peirce,
inspired by the work of De Morgan [19] on relational reasoning, introduced a calculus in
which operations allow the combination of relations and adhere to a set of algebraic laws.
Like Boole’s algebra of classes [10], Peirce’s calculus of relations does not feature variables
nor quantifiers and its sole deduction rule is substituting equals by equals.

Despite several negative results regarding axiomatizations for the entire calculus [57]
and various fragments thereof [33, 69, 27, 2, 66], its lack of binder-related complexities,
coupled with purely equational proofs, has rendered the calculus of relations highly
influential in computer science, e.g., in the context of database theory [15], programming
languages [67, 32, 44, 1, 43] and proof assistants [64, 65, 41].

In logic, the calculus played a secondary role for many years, likely because it is strictly
less expressive than first-order logic [49]. This was until Tarski in [73] recognized its algebraic
flavour and initiated a program of algebraizing first-order logic, including works such
as [20, 31, 68]. Quoting Quine [68]:

“Logic in his adolescent phase was algebraic. There was Boole’s algebra of classes and
Peirce’s algebra of relations. But in 1879 logic come of age, with Frege’s quantification

theory. Here the bound variables, so characteristic of analysis rather than of algebra, became
central to logic.”

Such a perspective, which regarded algebraic aspects and those concerning quantifiers as
separate entities, changed with the work of Lawvere.

Thanks to the recent development of a new branch of mathematics, namely category
theory, Lawvere introduced in [46, 47, 48] hyperdoctrines which enabled the study of logic from
a pure algebraic perspective. The crucial insights of Lawvere was to show that quantifiers, as
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well as many logical constructs, can be algebraically captured through the crucial notion of
adjointness. Hyperdoctrines, along with many categorical structures related to logics, such
as regular, Heyting, and boolean categories [37, 38], align with Frege’s functional perspective:
arrows represent functions (terms), and relations are derived through specific constructions.

In the last decade, the paradigm shift towards treating data as a physical resource has
motivated many computer scientists to move from traditional term-based (cartesian) syntax
toward a string diagrammatic (monoidal) syntax [39, 71] (see e.g., [72, 3, 5, 9, 17, 22, 23, 29,
58, 62]). This shift in syntax enables an extension of Peirce’s calculus of relations that is as
expressive as first-order logic, accompanied by an axiomatization that is purely equational
and complete. The axioms are those of first-order bicategories [4]: see Figures 1, 2 and 3. In
essence, a first-order bicategory, or fo-bicategory, encompasses a cartesian and a cocartesian
bicategory [12], interacting as a linear bicategory [14], while additionally satisfying linear
versions of Frobenius equations and adjointness conditions.

In this paper, we reconcile Lawvere’s understanding of logic with Peirce’s calculus
of relations by illustrating a formal correspondence between boolean hyperdoctrines and
first-order bicategories.

To reach such a correspondence, we found convenient to introduce the novel notion of
peircean bicategories: these are cartesian bicategories with each homset carrying a boolean
algebra where the negation behaves appropriately with maps – special arrows that intuitively
generalize functions. Our first result (Theorem 26) establishes that peircean bicategories are
equivalent to first-order bicategories.

While the definition of peircean bicategories is not purely equational, as in the case
of fo-bicategories, it is notably more concise. Moreover, it allows us to reuse from [7] an
adjunction between cartesian bicategories and elementary and existential doctrines [52, 51, 53],
which are a generalisation of hyperdoctrines, corresponding to the regular (i.e., ∃,=,⊤,∧)
fragment of first-order logic.

Our main result (Theorem 31) reveals an adjunction between the category of first-order
bicategories and the category of boolean hyperdoctrines. One can perceive this as a logical
analogue of Fox’s theorem [25], which establishes an equivalence between categories with
finite products and monoidal categories equipped with natural comonoids. The latter notion,
like the one of fo-bicategories, is purely equational.

It is essential to note that our theorem establishes an adjunction rather than an equivalence.
The discrepancy can be intuitively explained by observing that, akin to first-order logic,
terms and formulas are distinct entities in hyperdoctrines. This differentiation does not exist
in the calculus of relations or first-order bicategories. For instance, given two terms t1 and t2,
the hyperdoctrine where the formula t1 = t2 is true differs from the hyperdoctrine where t1

and t2 are equated as terms, a distinction not present in fo-bicategories. These issues, related
to the extensionality of equality, are thoroughly analyzed in the context of doctrines in [51]
and, more generally, in that of fibrations in [36].

Leveraging another result from [7], we demonstrate (Theorem 36) that the adjunction
in Theorem 31 becomes an equivalence when restricted to well-behaved hyperdoctrines (i.e.,
those whose equality is extentional and satisfying the rule of unique choice [50]). Finally,
combining this finding with a result in [50], we illustrate (Corollary 42) that functionally
complete [12] first-order bicategories are equivalent to boolean categories [38].

Synopsis: In § 2, we provide a review of (co)cartesian bicategories, linear bicategories,
and fo-bicategories. § 3 covers a recap of elementary and existential doctrines and boolean
hyperdoctrines. The adjunction between cartesian bicategories and doctrines, as detailed
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in [7], is presented in §4. Our original contributions commence in § 5, where we introduce
peircean bicategories and establish their equivalence with fo-bicategories. This result is
further used in § 6 to demonstrate the adjunction and in § 7 to establish the equivalence. § 8
elucidates the correspondence with boolean categories. All proofs are in appendix.

Terminology and Notation: All bicategories considered in this paper are just poset-enriched
symmetric monoidal categories. For a bicategory C, we will write Cop for the bicategory
having the same objects as C but homsets Cop[X,Y] def

= C[Y,X]. Similarly, we will write Cco

to denote the bicategory having the same objects and arrows of C but equipped with the
reversed ordering ≥. The cartesian bicategories in this paper are called in [12] cartesian
bicategories of relations. We refer the reader to [4, Rem. 2] for a comparison with the
presentation of linear bicategories in [14].

2 From (Co)Cartesian to First-Order Bicategories

In this section we recall the notion of first-order bicategory from [4]. To provide a preliminary
intuition, it is convenient to consider Rel, the first-order bicategory of sets and relations.

It is well known that sets and relations form a symmetric monoidal category, hereafter
denoted as Rel◦, with composition, identities, monoidal product and symmetries defined as

a ,◦ b def
= {(x, z) | ∃y∈Y . (x, y) ∈ a ∧ (y, z) ∈ b} ⊆ X × Z id◦X

def
= {(x, y) |x = y}⊆X × X

a ⊗ c def
= {( (x, z), (y, v) ) | (x, y) ∈ a ∧ (z, v) ∈ c} ⊆ (X × Z) × (Y × V)

σ◦X,Y
def
= {( (x, y), (y′, x′) ) | x = x′ ∧ y = y′} ⊆ (X × Y) × (Y × X)

(1)

for all sets X,Y,Z,V and relations a ⊆ X×Y, b ⊆ Y×Z and c ⊆ Z×V. As originally observed
by Peirce in [61], beyond ,◦ there exists another form of relational composition that enjoys
noteworthy algebraic properties. This different composition gives rise to another symmetric
monoidal category of sets and relations, hereafter denoted by Rel• and defined as follows.

a ,• b def
= {(x, z) | ∀y∈Y . (x, y) ∈ a ∨ (y, z) ∈ b} ⊆ X × Z id•X

def
= {(x, y) |x , y}⊆X × X

a �× c def
= {( (x, z), (y, v) ) | (x, y) ∈ a ∨ (z, v) ∈ c} ⊆ (X × Z) × (Y × V)

σ•X,Y
def
= {( (x, y), (y′, x′) ) | x , x′ ∨ y , y′} ⊆ (X × Y) × (Y × X)

(2)

Note that ⊗ and �× are both defined on objects as the cartesian product of sets and have as
unit the singleton set I def

= {⋆}. Both Rel◦ and Rel• are poset-enriched symmetric monoidal
categories when taking as ordering the inclusion ⊆ and the complement ¬ : (Rel◦)co

→ Rel•

is an isomorphism. As we will explain in § 2.1, the relations defined for all sets X as

◀◦X
def
= {(x, (y, z)) | x = y ∧ x = z} ⊆ X × (X × X) ◀•X

def
= {(x, (y, z)) | x , y ∨ x , z} ⊆ X × (X × X)

▶◦X
def
= {((y, z), x) | x = y ∧ x = z} ⊆ (X × X) × X ▶•X

def
= {((y, z), x) | x , y ∨ x , z} ⊆ (X × X) × X

!◦X
def
= {(x, ⋆) | x ∈ X} ⊆ X × I !•X

def
= ∅ ⊆ X × I

¡◦
X

def
= {(⋆, x) | x ∈ X} ⊆ I × X ¡•

X
def
= ∅ ⊆ I × X

(3)

make Rel◦ a cartesian bicategory, while Rel• a cocartesian one.
Intuitively, a first-order bicategory C consists of a cartesian bicategory C◦, called the

“white structure”, and a cocartesian bicategory C•, called the “black structure”, that interact
by obeying the same laws of Rel◦ and Rel•. The name “first-order” is due to the fact that
such laws provide a complete system of axioms for first-order logic.

The axioms can be conveniently given by means of a graphical representation inspired
by string diagrams [39, 71]: composition is depicted as horizontal composition while
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Figure 1 Axioms of Cartesian bicategories

the monoidal product by vertically “stacking” diagrams. However, since there are two
compositions ,◦ and ,• and two monoidal products ⊗ and �×, to distinguish them we use
different colors. All white constants have white background, mutatis mutandis for the black

ones: for instance ◀◦X and ▶•X are drawn X X
X and XX

X , while for some arrows

a, b, c, d of the appropriate type, (a ⊗ c) ,• (b �× d) is drawn as on the right of (ν◦l ) in Figure 2.

2.1 (Co)Cartesian Bicategories

We commence with the notion of cartesian bicategories by Carboni and Walters [12].

▶ Definition 1. A cartesian bicategory (C,⊗, I,◀◦, !◦,▶◦, ¡◦), shorthand (C,◀◦,▶◦), is a poset-
enriched symmetric monoidal category (C,⊗, I) and, for every object X in C, arrows ◀◦X : X→ X ⊗ X,
!◦X : X→ I, ▶◦X : X ⊗ X→ X, ¡◦

X : I→ X such that

1. (◀◦X, !
◦

X) is a comonoid and (▶◦X, ¡
◦

X) a monoid, i.e., the equalities (◀◦-as), (◀◦-un), (◀◦-co) and
(▶◦-as), (▶◦-un), (▶◦-co) in Figure 1 hold;

2. every arrow c : X→ Y is a lax comonoid homomorphism, i.e., (◀◦-nat) and (!◦-nat) hold;
3. comonoids are left adjoints to the monoids, i.e., (η ◀◦), (ϵ ◀◦), (η!◦) and (ϵ!◦) hold;
4. monoids and comonoids form special Frobenius bimonoids, i.e., (F◦) and (S◦) hold;
5. monoids and comonoids satisfy the expected coherence conditions (see e.g. [7]).

C is a cocartesian bicategory if Cco is a cartesian bicategory. A morphism of (co)cartesian
bicategories is a poset-enriched strong symmetric monoidal functor preserving monoids and
comonoids. We denote by CB the category of cartesian bicategories and their morphisms.

As already mentioned, Rel◦ with ◀◦X, !◦X, ▶◦X and ¡◦
X defined in (3) form a cartesian bicategory:

the reader can easily check, using the definitions in (1) and (3), that all the laws in Figure 1
are satisfied. Similarly, one can observe that the opposite inequality of (◀◦-nat) holds iff the
relation c ⊆ X × Y is single-valued (i.e., deterministic), while the opposite of (!◦-nat) iff c is
total. In other words, c is a function iff both (◀◦-nat) and (!◦-nat) holds as equalities.

▶ Definition 2. Let c : X→ Y be an arrow of a cartesian bicategory C. It is a map if

c
Y
YX ≥ c

c

Y
YX and cX ≥ X . (4)
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Figure 2 Axioms of closed symmetric monoidal linear bicategories

It is easy to see that maps form a monoidal subcategory of C [12], hereafter denoted by
Map(C). Since, by (◀◦-nat), (!◦-nat) and (4), comonoids are natural w.r.t. maps, Fox theorem
[25] guarantees that Map(C) is a category with finite products.

In a cartesian bicategory C, each homset C[X,Y] carries the structure of inf-semilattice,
defined for all c, d : X → Y as in (5) below. Furthermore, the equation (6) defines an
identity-on-objects isomorphism of cartesian bicategories (·)† : C→ Cop.

c ∧ d def
=

c

d
X Y ⊤

def
= X Y (5) c† def

= c
Y

X
(6)

The reader can check, using (1) and (3) that in Rel◦, c† : Y→ X is the opposite of the relation c,
namely {(y, x) | (x, y) ∈ c}. It is well known that a relation c is a function iff it is left adjoint to
c†. More generally in a cartesian bicategory c is a map iff it is left adjoint to c†. Summarising:

▶ Proposition 3. Let C be a cartesian bicategory and c : X→ Y an arrow of C. The following hold:

1. every homset carries the inf-semilattice structure, defined as in (5);
2. there is an isomorphism of cartesian bicategories (·)† : C→ Cop, defined as in (6);
3. c is a map iff c is left adjoint to c†;
4. Map(C) is a category with finite products; moreover, a morphism of cartesian bicategories

F : C→ D restricts to a functor F̃ : Map(C)→ Map(D) preserving finite products.

Hereafter, we draw cY X for ( cX Y )
†

and cX Y for a map c : X→ Y.

We mentioned that Rel• with ◀•X, !•X, ▶•X and ¡•
X defined in (3) forms a cocartesian

bicategory. To prove this, it is enough to observe that the complement ¬ is a poset-enriched
symmetric monoidal isomorphism ¬ : (Rel◦)co

→ Rel• preserving (co)monoids.

2.2 Linear Bicategories

We have seen that Rel◦ forms a cartesian bicategory, and Rel• a cocartesian bicategory. The
next step consists in merging them into one entity and study their algebraic interactions.
However, the coexistence of two different compositions ,◦ and ,• on the same class of objects
and arrows brings us out of the realm of ordinary categories. The appropriate setting is
provided by linear bicategories [14] by Cockett, Koslowski and Seely.
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Figure 3 Additional axioms for fo-bicategories

▶ Definition 4. A linear bicategory (C, ,◦, id◦, ,•, id•) consists of two poset-enriched categories
(C, ,◦, id◦) and (C, ,•, id•) with the same class of objects, arrows and orderings (but possibly different
identities and compositions) such that ,◦ linearly distributes over ,•, i.e., (δl) and (δr) in Figure 2 hold.

A symmetric monoidal linear bicategory (C, ,◦, id◦, ,•, id•,⊗, σ◦,�×, σ•, I), shortly (C,⊗,�×, I),
consists of a linear bicategory (C, ,◦, id•, ,•, id•) and two poset-enriched symmetric monoidal categories
(C,⊗, I) and (C,�×, I) s.t. ⊗ and �× agree on objects, i.e., X ⊗ Y = X �× Y, share the same unit I and

2. there are linear strengths for (⊗,�×), i.e., the inequalities (ν◦l ), (ν◦r ), (ν•l ) and (ν•r ) hold;
3. �× preserves id◦ colaxly and ⊗ preserves id• laxly, i.e., (⊗•) and (�×◦) hold.

A morphism of symmetric monoidal linear bicategories F : (C1,⊗,�×, I)→ (C2,⊗,�×, I) consists
of two poset-enriched symmetric monoidal functors F◦ : (C1,⊗, I)→ (C2,⊗, I) and F• : (C1, �×, I)→
(C2,�×, I) that agree on objects and arrows: F◦(X) = F•(X) and F◦(c) = F•(c).

All linear bicategories in this paper are symmetric monoidal. Hence, we usually omit
the adjective symmetric monoidal and refer to them simply as linear bicategories. In linear
bicategories one can define linear adjoints: for a : X→ Y and b : Y→ X, a is left linear adjoint
to b, or b is right linear adjoint to a, written b ⊩ a, if id◦X ≤ a ,• b and b ,◦ a ≤ id•Y.

▶ Definition 5. A linear bicategory (C,⊗,�×, I) is said to be closed if every a : X→ Y has both a
left and a right linear adjoint and, in particular, the white symmetry σ◦ is both left and right linear
adjoint to the black symmetry σ• (σ• ⊩ σ◦ ⊩ σ•), i.e. (τσ◦), (γσ◦), (τσ•) and (γσ•) in Figure 2 hold.

Our main example is the closed linear bicategory Rel of sets and relations. The white
structure is the symmetric monoidal category Rel◦ and the black structure is Rel•. Observe
that the two have the same objects, arrows and ordering. The white and black monoidal
products ⊗ and �× agree on objects (they are the cartesian product of sets) and have common
unit object (the singleton set I). By (1) and (2), one can easily check all the inequalities in
Figure 2. Both left and right linear adjoints of a relation c ⊆ X × Y are given by ¬c†.

2.3 First-Order Bicategories

After (co)cartesian and linear bicategories, we can recall first-order bicategories from [4].

▶ Definition 6. A first-order bicategory C consists of a closed linear bicategory (C,⊗,�×, I), a
cartesian bicategory (C,◀◦,▶◦) and a cocartesian bicategory (C,◀•,▶•), such that
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1. the white comonoid (◀◦, !◦) is left and right linear adjoint to black monoid (▶•, ¡•) and (▶◦, ¡◦) is
left and right linear adjoint to (◀•, !•) i.e., the 16 inequalities in the top of Figure 3 hold;

2. white and black (co)monoids satisfy the linear Frobenius laws, i.e. (F•◦), (F◦•), (F ◦
• ), (F •

◦ ) hold.

A morphism of fo-bicategories is a morphism of linear bicategories and of (co)cartesian bicategories.
We denote by FOB the category of fo-bicategories and their morphisms.

We have seen that Rel is a closed linear bicategory, Rel◦ a cartesian bicategory and Rel• a
cocartesian bicategory. Given (3), it is easy to check the inequalities in Figure 3.

If C is a fo-bicategory, then Cco is a fo-bicategory when swapping white and black
structures. Similarly, Cop is a fo-bicategory when swapping monoids and comonoids.

In a fo-bicategory C, left and right linear adjoints of an arrow c coincide and are denoted by
c⊥. The assignment c 7→ c⊥ gives rise to an identity-on-objects isomorphism of fo-bicategories
(·)⊥ : C→ (Cco)op. Similarly, (·)† : C→ Cop in (6) is also an isomorphism of fo-bicategories.

Since the diagram on the right commutes, one can define the
complement as the diagonal of the square, namely ¬(·) def

= ((·)⊥)†.
Clearly ¬ : C→ Cco is an isomorphism of fo-bicategories. Moreover,
it induces a boolean algebra on each homset of C.

C (·)† //

(·)⊥ ��

Cop

(·)⊥��
(Cco)op (·)† // Cco

▶ Proposition 7. Let C be a fo-bicategory. Then, every homset of C is a boolean algebra.

▶ Proposition 8. Let F : C → D be a morphism of fo-bicategories. Then, ¬F(c) = F(¬c) for all
arrows c, and hence F preserves the boolean structure on the homsets.

The next properties of maps (Definition 2) plays a key role in our work.

▶ Proposition 9. For all maps f : X→ Y and arrows c : Y→ Z, it holds that f ,◦ ¬c = ¬( f ,◦ c)

2.4 Freely Generated First-Order Bicategories

We conclude this section by giving to the reader a taste of how fo-bicategories relate to
first-order theories. First, we recall from [4] the freely generated fo-bicategory FOBΣ.

Given a monoidal signature Σ, namely a set of symbols R : n→ m with arity n and coarity
m, FOBΣ is the fo-bicategory whose objects are natural numbers and arrows c : n→ m are
string diagrams generated by the following rules:

: 0→ 0 : 1→ 1 : 2→ 2

R : n→ m ∈ Σ

R : n→ m

c : n→ m, d : m→ o

c dn o : n→ o

: 1→ 2 : 1→ 0 : 2→ 1 : 0→ 1

c : n→ m, d : o→ p

c

d

n m

o p
: n + o→ m + p

: 0→ 0 : 1→ 1 : 2→ 2

R : n→ m ∈ Σ

R : m→ n

c : n→ m, d : m→ o

c dn o : n→ o

: 1→ 2 : 1→ 0 : 2→ 1 : 0→ 1

c : n→ m, d : o→ p

c

d

n m

o p
: n + o→ m + p
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More precisely, arrows are equivalence classes of string diagrams w.r.t ≲ ∩ ≳, where ≲ is the
precongruence (w.r.t. ,◦,⊗, ,• and �×) generated by the axioms in Figures 1,2,3,4 (with X,Y,Z,W
replaced by natural numbers, and a, b, c, d by diagrams of the appropriate type) and the
axioms forcing R and R to be linear adjoints:

n n ≤ R Rn n R Rm m ≤ m m m m ≤ RR mm RR nn ≤ n n

To give semantics to these diagrams we need interpretations, i.e. pairs I = (X, ρ), where X
is a set and ρ is a function assigning to each R : n→ m ∈ Σ a relation ρ(R) : Xn

→ Xm. Since
FOBΣ is the free fo-bicategory, for any interpretation I there exists a unique morphism of
fo-bicategories I♯ : FOBΣ → Rel such that I♯(1) = X and I♯( Rn m ) = ρ(R) ⊆ Xn

× Xm.

Intuitively, I♯ is defined inductively by (1), (2) and (3) with the free cases provided by I.

A diagrammatic first-order theory is a pair T = (Σ, I) where Σ is a monoidal signature and I
is a set of axioms: pairs (c, d) for c, d : n→ m in FOBΣ, standing for c ≤ d. An interpretation
I is a model of T if and only if, for all (c, d) ∈ I, I♯(c) ⊆ I♯(d). As illustrated in [4], one can
generate the fo-bicategory FOBT and, in the spirit of Lawvere’s functorial semantics [45],
models of T are in one-to-one correspondence with morphisms F : FOBT → Rel.

▶ Example 10. Consider the theory T = (Σ, I), where Σ = {R : 1→ 1} and I be as follows:

{ ( , R ), ( R R , R ), (
R

R
, ), ( ,

R

R
) }.

An interpretation is a set X and a relation R ⊆ X × X. It is a model iff R is an order, i.e.,
reflexive (id◦X ⊆ R), transitive (R ,◦R ⊆ R), antisymmetric (R∩R† ⊆ id◦) and total (⊤ ⊆ R∪R†).

▶ Remark 11. A direct encoding of traditional first-order theories into diagrammatic ones is
illustrated in [4]. Shortly, a predicate symbol P of arity n becomes a symbol P : n→ 0 ∈ Σ,
drawn as Pn , and a n-ary function symbol f becomes f : n→ 1 ∈ Σ, drawn as fn .

For instance, the formula ∃x.P(x)∧Q(x, f (y)) is rendered as on the right, where
plays the role of ∃ and that of ∧. Note that both predicate and

function symbols of traditional first-order theories are regarded as symbols of Qf

P

the monoidal signature Σ. Function symbols are constrained to represent functions by
adding to I the axioms of maps, i.e., the inequalities in (4).

3 From Elementary-Existential Doctrines to Boolean Hyperdoctrines

The notion of hyperdoctrine was introduced by Lawvere in a series of seminal papers [46, 48],
in order to provide an algebraic framework for first-order (intuitionistic) logic. Over the
years, various generalizations and specializations of this concept have been formulated and
applied across multiple domains in the fields of logic and computer science.

In this work, we employ a generalization of the notion of hyperdoctrine introduced by
Maietti and Rosolini in [52, 51, 53], namely that of elementary and existential doctrine.

3.1 Elementary and Existential Doctrines

Elementary and existential doctrines can be thought of as a categorification of the so-called
“regular fragment” of first-order intuitionistic logic, i.e. the (∃,=,⊤,∧)-fragment.

Hereafter ⟨ f , g⟩ denotes the pairing of f and g and ∆X denotes ⟨id◦X, id
◦

X⟩.
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▶ Definition 12. An elementary and existential doctrine is a functor P : Cop
−→ InfSl from the

opposite of a category C with finite products to the category of inf-semilattices such that:

for every Y in C there exists an element δY in P(Y×Y), called equality predicate, such that for a
morphism id◦X ×∆Y : X ×Y→ X ×Y×Y in C and every element α in P(X ×Y), the assignment

∃id◦X×∆Y (α)
def
= P⟨π1,π2⟩(α) ∧ P⟨π2,π3⟩(δY)

determines a left adjoint to the functor Pid◦X×∆Y : P(X × Y × Y)→ P(X × Y);
for any projection πX : X × Y → X, the functor PπX : P(X)→ P(X × Y) has a left adjoint ∃πX ,
and these satisfy the Beck-Chevalley condition and Frobenius reciprocity, see [52, Sec. 2].

▶ Remark 13. In an elementary and existential doctrine, for every f : X→ Y of C the functor
P f has a left adjoint ∃ f that can be computed as ∃πY (P f×id◦XY

(δY)∧PπX (α)) for α in P(X), where
πX and πY are the projections from X × Y. These left ajoints satisfy the Frobenius reciprocity
but not necessarily the Beck-Chevalley condition. See [54, Rem. 6.4].

▶ Definition 14. Let P : Cop
−→ InfSl and R : Dop

−→ InfSl be two elementary and existential
doctrines. A morphism of elementary and existential doctrines is given by a pair (F, b) where

F : C→ D is a finite product preserving functor;
b : P→ Fop ,◦ R is a natural transformation;

satisfying the following conditions:

Cop

InfSl

Dop R

P

Fop
b

1. for every object X of C, bX×X(δX) = δFX×FX;
2. for every πX : X × Y→ X of C and for every α in P(X × Y), ∃F(πX)bX×Y(α) = bX(∃πX (α)).

We write EED for the category of elementary and existential doctrines and morphisms.

▶ Example 15. The powerset functor P : Setop
−→ InfSl is the archetypal example of

an elementary and existential doctrine. More generally, for any regular category C, the
subobjects functor SubC : Cop

−→ InfSl is an elementary and existential doctrine, see [51, 52].
This assignment extends to an inclusion of the categoryREG of regular categories into EED.

▶ Example 16. For a cartesian bicategory C, the functor C[−, I] : Map(C)op
−→ InfSl is an

elementary and existential doctrine, where the actions of left adjoints is given∃g( f ) := f ,◦g† [7,
Thm. 20]. As we will see in §4, this assignment extends to an inclusion of CB into EED.

Similarly to cartesian bicategories, elementary and existential doctrines have enough
structure to deal with the notion of functional (or single-valued) and entire (total) predicates.

▶ Definition 17 (From [50]). Let P : Cop
−→ InfSl be an elementary and existential doctrine. An

element α ∈ P(X × Y) is said to be functional from X to Y if P⟨π1,π2⟩(α) ∧ P⟨π1,π3⟩(α) ≤ P⟨π2,π3⟩(δY)
in P(X × Y × Y). Also, α is said to be entire from X to Y if ⊤X ≤ ∃πX (α) in P(X).

▶ Remark 18. By definition, a morphism of elementary and existential doctrines preserves
both ∃πX and δY. Therefore it preserves functional and entire elements.

▶ Example 19. In the doctrineP : Setop
−→ InfSl from Example 15, an element α ∈ P(X×Y)

is functional if and only if it defines a partial function from X to Y, while it is entire if it
provides a total relation from X to Y.

▶ Example 20. In the doctrine C[−, I] : Map(C)op
−→ InfSl from Example 16, functional and

entire elements are precisely maps of C. A detailed proof is in Lemma 74 in Appendix E.
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3.2 Boolean Hyperdoctrines

In this section we recall the notion of boolean hyperdoctrine, and some useful properties.

▶ Definition 21 (boolean hyperdoctrine). Let C be a category with finite products. A functor
P : Cop

−→ Bool is a boolean hyperdoctrine if it is an elementary and existential doctrine.

A morphism (F, b) : P → R of boolean hyperdoctrines is a morphism of elementary and
existential doctrines such that bX is a morphism of boolean algebras for all objects X of C.
We denote by BHD the category of boolean hyperdoctrines and their morphisms.

It is well-known that in first-order logic the universal quantifier can be derived by the
existential quantifier and the negation. The same happens in boolean hyperdoctrines: for all
arrows f : X→ Y, the functor ∀ f (−) def

= ¬∃ f¬(−) is a right adjoint to P f – see Appendix B.1.

▶ Example 22. The powerset functor P : Setop
−→ Bool provides an example of boolean

hyperdoctrine. This can be generalized to an arbitrary boolean category B, namely a coherent
category such that every subobject has a complement, see [38, Sec. A1.4, p. 38]. The
subobjects functor on B is a boolean hyperdoctrine SubB : Bop

−→ Bool.

▶ Example 23. Given a standard first-order theory Th in a first-order language L (for
simplicity single sorted), one can consider the functorLTh : Vop

−→ Bool. The base category
V is the syntactic category of L, i.e. the category where objects are natural numbers and
morphisms are lists of terms, while the predicates of LTh(n) are given by equivalence
classes (with respect to provable reciprocal consequence ⊣⊢) of well-formed formulae with
free variables in {x1, . . . , xn}, and the partial order is given by the provable consequences,
according to the fixed theory Th. In this case, the left adjoint to the weakening functorLTh

π is
computed by existentially quantifying the variables that are not involved in the substitution
induced by the projection π. Dually, the right adjoint is computed by quantifying universally.

We conclude this section with a result that, intuitively, is the analogous of Proposition 9.

▶ Lemma 24. Let P : Cop
−→ Bool be a boolean hyperdoctrine and ϕ ∈ P(X × Y) a functional and

entire element from X toY. For all ψ ∈ P(Y × Z), it holds that

∃πX×Z (PπX×Y (ϕ) ∧ PπY×Z (¬ψ)) = ¬(∃πX×Z (PπX×Y (ϕ) ∧ PπY×Z (ψ)) ).

4 An Adjunction and an Equivalence

In [7], cartesian bicategories and elementary existential doctrines are compared. The main
results of [7, Thm. 28] states that there exists the following adjunction.

CB EED
HmI

Rel

⊣ (7)

The embedding HmI : CB → EED maps a cartesian bicategory C into the hom-functor
C[−, I] : Map(C)op

−→ InfSl that, as explained in Example 16, is an elementary existential
doctrine. A morphism of cartesian bicategories F : C → D is mapped to the morphism
of doctrines (F̃, bF) where F̃ : Map(C) → Map(D) is the functor F restricted to Map(C) and
bF

X : C[X, I]→ D[F(X), I] is defined as bF
X(c) def
= F(c) for all objects X of C and arrows c ∈ C[X, I].

The functor Rel : EED→ CB is a generalisation to elementary and existential doctrines
of the construction of bicategory relations associated with a regular category (see [12, Ex.
1.4]). For P : Cop

−→ InfSl, the cartesian bicategory Rel(P) is defined as follows:
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objects are those of C; for objects X,Y, the homsets Rel(P)[X,Y] are the posets P(X × Y);
the identity for an object X is the equality predicate δX in P(X × X);
composition of ϕ : X→ Y and ψ : Y→ Z is given by ∃πX×Z (PπX×Y (ϕ) ∧ PπY×Z (ψ)).

For a morphism of doctrines (F, b) : P → Q, the morphism of cartesian bicategories
Rel(F, b) : Rel(P) → Rel(Q) is defined for all objects X as Rel(F, b)(X) def

= F(X) and for all
arrows ϕ : X→ Y in Rel(P), i.e., elements ϕ ∈ P(X × Y), as Rel(F, b)(ϕ) def

= bX×Y(ϕ). The reader
is referred to [7] or to Appendix C for further details on the adjunction in (7).

Another result in [7, Thm. 35] shows that the adjunction in (7) restricts to an equivalence

CB ≡ EED (8)

where EED is a full subcategory of EED whose objects are particularly well-behaved
doctrines. For the sake of readability, we will make clear in §7 what these doctrines are.

5 Peircean Bicategories

In this section we introduce the notion of peircean bicategory, and we prove that such a new
notion provides an alternative presentation of fo-bicategories. The name peircean is due to
the fact that, like in Peirce’s algebra of relations [61], and differently from fo-bicategories, the
structure of boolean algebra is taken as a primitive.

▶ Definition 25. A peircean bicategory consists of a cartesian bicategory (C,◀◦,▶◦) such that

1. every homset C[X,Y] carries a Boolean algebra (C[X,Y],∨,⊥,∧,⊤,¬);
2. for all maps f : X→ Y and arrows c : Y→ Z,

f ,◦ ¬c = ¬( f ,◦ c). (¬M)

A morphism of peircean bicategories is a morphism of cartesian bicategories F : C→ D such that
F(¬c) = ¬F(c). We write PB for the category of peircean bicategories and their morphisms.

By Propositions 7 and 9 every fo-bicategory is a peircean bicategory. By Proposition 8 every
morphism of fo-bicategories is a morphism of peircean bicategories.

Vice versa, every peircean bicategory (C,◀◦,▶◦) gives rise to a fo-bicategory. The black
structure (C,◀•,▶•) is defined as expected from the white one and ¬. Namely:

c ,• d def
= ¬(¬c ,◦ ¬d) id•X

def
= ¬id◦X c �× d def

= ¬(¬c ⊗ ¬d) σ•X,Y
def
= ¬σ◦X,Y

◀•X
def
= ¬◀◦X !•X

def
= ¬!◦X ▶•X

def
= ¬▶◦X

¡•
X

def
= ¬¡◦

X

(9)

With this definition, it is immediate to see that¬ : (Cco,◀◦,▶◦)→ (C,◀•,▶•) is an isomorphism
and thus to conclude that (C,◀•,▶•) is a cocartesian bicategory. Proving that (C,◀◦,▶◦)
and (C,◀•,▶•) give rise to a fo-bicategory is the main technical effort of this paper: the
diagrammatic proof in Appendix D crucially exploits the boolean properties and (¬M).

▶ Theorem 26. There is an isomorphism of categories FOB � PB.

Note that, differently from Definition 6, Definition 25 is not purely axiomatic, since the
property 2 requires f to be a map. However, the notion of a peircean bicategory is notably
more succinct than that of a fo-bicategory, making it more convenient for our purposes.
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6 An Equational Presentation of Boolean Hyperdoctrines

The main purpose of this section is to establish a formal link between fo-bicategories and
boolean hyperdoctrines. In particular, we are going to show that the adjunction presented in
(7) restricts to an adjunction between FOB and BHD. Theorem 26 allows us to conveniently
work with peircean bicategories. We commence with the following result.

▶ Proposition 27. Let C be a peircean bicategory. Then HmI(C) is a boolean hyperdoctrine.

Proof. By (7), C[−, I] : Map(C)op
−→ InfSl is an elementary and existential doctrine and,

by definition of peircean bicategories, C[X, I] is a boolean algebra for all objects X. To
conclude that C[−, I] : Map(C)op

−→ Bool, one has only to show that, for all maps f : X→ Y,
C[ f , I] : C[Y, I]→ C[X, I] is a morphism of boolean algebras. Since, by (7), C[ f , I] is a morphism
of inf-semilattices, it is enough to show that it preserves negation: for all c ∈ C[Y, I]

C[ f , I](¬c) = f ,◦ ¬c (Definition of C[−, I])

= ¬( f ,◦ c) (¬M)

= ¬C[ f , I](c) (Definition of C[−, I])

◀

The above proposition allows us to characterize peircean bicategories as follows:

▶ Corollary 28. Let C be a cartesian bicategory. Then it is a peircean bicategory if and only if
HmI(C) is a boolean hyperdoctrine.

To prove that, for any boolean hyperdoctrine P, Rel(P) is a peircean bicategory, we need
to establish a formal correspondence between Definition 2 and Definition 17.

▶ Proposition 29. Let P : Cop
−→ InfSl be an elementary and existential doctrine. Then the maps

of Rel(P) are precisely the functional and entire elements of P.

▶ Proposition 30. Let P be a boolean hyperdoctrine. Then Rel(P) is a peircean bicategory.

Proof. By (7), Rel(P) is a cartesian bicategory. Since P(X) is a boolean algebra for all objects
X, then each hom-set Rel(P)[X,Y] – by definition P(X×Y) – is a boolean algebra. To conclude
that Rel(P) is a peircean bicategory, it is enough to show that (¬M) holds, that is

ϕ ,◦ ¬ψ = ¬(ϕ ,◦ ψ)

for all maps ϕ ∈ Rel(P)[X,Y] and arrowsψ ∈ Rel(P)[Y,Z]. By Proposition 29, ϕ is a functional
and entire element of P. Thus, one can rely on Lemma 24 to conclude that

ϕ ,◦ ¬ψ = ∃πX×Z (PπX×Y (ϕ) ∧ PπY×Z (¬ψ)) (Defintion of Rel(P))

= ¬(∃πX×Z (PπX×Y (ϕ) ∧ PπY×Z (ψ)) ) (Lemma 24)

= ¬(ϕ ,◦ ψ) (Defintion of Rel(P))

◀

By Propositions 27 and 30 proving the following result amounts to a few routine checks.

▶ Theorem 31. The adjunction in (7), restricts to the adjunction below on the left.

PB BHD
HmI

Rel

⊣ Thus, by Theorem 26, there is an adjunction FOB BHD⊣ .
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7 Boolean Hyperdoctrines Representing First-Order Bicategories

As anticipated in §4, the adjunction in (7) becomes an equivalence for certain well-behaved
doctrines. Definitions 32 and 33 state the conditions that such doctrines must satisfy.

▶ Definition 32. An elementary and existential doctrine P : Cop
−→ InfSl has comprehensive

diagonals if for the equality predicate δX ∈ P(X) it holds that P∆X (δX) = ⊤X and every arrow
f : Y→ X × X such that P f (δX) = ⊤Y factors (uniquely) through ∆X .

Intuitively, a doctrine has comprehensive diagonals if its equality is extensional, namely if a
formula t1 = t2 is true, then the terms t1 and t2 are syntactically equal. In the language of
cartesian bicategories, for two maps t1, t2, this can be stated by means of diagrams as

if t1 t2X X = X X then t1X Y = t2X Y . (10)

While it is sometimes meaningful to consider syntactic doctrines (e.g. Example 23) in which
the equality is not extensional, in several semantical doctrines this condition is satisfied.

▶ Definition 33. Let P : Cop
−→ InfSl be an elementary existential doctrine. We say that P satisfies

the Rule of Unique Choice (RUC) if for every entire functional element ϕ in P(X × Y) there exists
an arrow f : X→ Y such that ⊤X ≤ P⟨id◦X , f ⟩(ϕ).

The reader can think that a doctrine has (RUC) if for every element (intuitively formula) that
is entire and functional, there exists an arrow in C (intuitively a term) that represents it.

▶Example 34. The doctrineP : Setop
−→ InfSl has comprehensive diagonals, and it satisfies

the (RUC) (since every functional and total relation can be represented by a function). More
generally, every subobject doctrine SubC : Cop

−→ InfSl on a regular category, as presented
in Example 15 satisfies the (RUC) and it has comprehensive diagonals, as observed in [50].

▶ Example 35. The doctrine C[−, I] : Map(C)op
−→ InfSl presented in Example 16 satisfies

the (RUC) and it has comprehensive diagonals, as proved in [7]. The reader can find a
diagrammatic proof of (10) in Proposition 48 in Appendix A.

Hereafter –and in the equivalence in (8)– EED is the full subcategory of EED whose
objects are doctrines satisfying (RUC) and with comprehensive diagonals. Similarly BHD
is the full subcategory of BHD whose objects are boolean hyperdoctrines satisfying (RUC)
and with comprehensive diagonals.

By means of Theorem 31, it is easy to prove that the equivalence in (8) restricts as follows.

▶ Theorem 36. PB ≡ BHD and thus, by Theorem 26, FOB ≡ BHD.

8 Comparing Boolean Categories with First-Order Bicategories

In this section we show that boolean categories, described in Example 22, correspond to
those fo-bicategories that are functionally complete, a property introduced in [12].

▶ Definition 37. A cartesian bicategory (C,◀◦,▶◦) is functionally complete if for every arrow
r : X→ I there exists a map i : Xr → X, called tabulation of r, such that

i iXr Xr = Xr Xr and iX = rX .
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▶ Example 38. Let us consider the category Rel◦. The tabulation of a relation r : X→ I is
given by the subset Xr ⊆ X of those elements of X on which r is defined, together with the
trivial inclusion i : Xr ↪→ X.

The previous example emphasizes the essential intuition behind the concept of tabulation,
namely, that a tabulation represents the “domain of definition of a relation”. A notion aiming
to abstract the same concept has been introduced in the context of fibrations in [36] and, as
particular instance, in the context of doctrines in [52], under the name of comprehensions.

▶ Definition 39. Let P : Cop
−→ InfSl be an elementary and existential doctrine and α be an

element of P(X). A comprehension of α is an arrow {α} : Xα → X such that P{α}(α) = ⊤Xα and,
for every f : Y → X such that P f (α) = ⊤Y, there exists a unique arrow g : Y → Xα such that
f = g ,◦ {α}. We say that P has comprehensions if every α has a comprehension. We say that P has
full comprehensions if it has comprehensions and, α ≤ β whenever {α} factors through {β}.

In the light of the previous definition, we can rephrase Definition 32, saying that an
elementary doctrine has comprehensive diagonals if ∆X is the comprehension of δX.

▶ Example 40. Every subobject doctrine SubC : Cop
−→ InfSl on a regular category, as

presented in Example 15 has full comprehensions, as observed in [50]. In this case, the
comprehension of a subobject is given by the subobject itself.

We prove that the notion of tabulation and that of full comprehension happen to be
equivalent when we consider the doctrines associated with a cartesian bicategory.

▶ Theorem 41. A cartesian bicategory (C,◀◦,▶◦) is functionally complete if and only if the
elementary and existential doctrine C[−, I] : Map(C)op

−→ InfSl has full comprehensions.

By combining Theorem 41 with Theorem 36 and Proposition 5.3 from [50], that character-
izes doctrines satisfying (RUC) with comprehensive diagonals and full comprehensions (see
also Appendix F), we obtain equivalences between FOB f , the full subcategory of FOB of
the functionally complete fo-bicategories, BHDc, the full subcategory of BHD of boolean
doctrines with full comprehensions and BC, the category of boolean categories.

▶ Corollary 42. FOB f ≡ BHDc ≡ BC.

9 Conclusions, Related and Future work

Theorems 31, 36 and Corollary 42 provide a solid bridge between functional and relational
approaches to classical logic. The former rely on categorical structures that are usually
defined by means of exactness properties; the latter on fo-bicategories which enjoy a purely
equational presentation, much in the spirit of Boole’s algebra and Peirce’s calulus.

To achieve our result, we found it extremely convenient to introduce the notion of peircean
bicategories that, by Theorem 26, provide a far handier characterisation of fo-bicategories.

The isomorphism between fo-bicategories and peircean bicategories might also be useful
to establish a correspondence with allegories [27], likely the most influential approach
to categorical relational algebra. Since cartesian bicategories are equivalent to unitary
pretabular allegories [40], we expect that such allegories where, additionally, homsets carry
boolean algebras and the negations satisfy (¬M) are equivalent to fo-bicategories. Despite
searching the literature on allegories, we did not find analogous structures. Interestingly, the
property (¬M) can be proven in any Peirce allegories, as shown in Proposition 4.6.1 in [59].
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Boolean hyperdoctrines are used in [11] as a categorical treatment of another work of
Peirce: existential graphs [70]. While the latter share some similarities with the graphical
language of fo-bicategories there is one notable difference: negation is a primitive operator
rather than a derived one, as it happens for instance also in [30] and Definition 25. In [4] and
in §5, it is emphasised how this choice makes the resulting calculus less algebraic in flavour,
having to deal with convoluted rules such as the one for (de)iteration or properties which
are not purely equational, such as (¬M). Inspired by [11], another graphical language [56]
akin to Peirce’s graphs is based on a decomposition of a hyperdoctrine into a bifibration. In
this work, the categorical treatment revolves around the notion of monoidal chiralities [55],
which are much more closer in spirit to fo-bicategories. We believe that our results might set
an initial step towards a connection between fo-bicategories and chiralities.

A recent work [18] proposes a relational understanding of doctrines. However, these
corresponds to the regular fragment of first-order logic, and thus it might by intriguing to
understand the role of the additional black structure of first-order bicategories in this setting.
Finally, it is also worth mentioning a closely related research line, exemplified by works such
as [35, 28], along with the references therein. These work primarily focus on the categorical
approach to classical proof theory, involving suitable variants of poset-enriched categories.

As future work we also aim to investigate how our characterizations can be extended
to higher-order classical logic, which is categorically represented through the notion of
tripos [34, 63]. Indeed, we believe that the constructions and results presented in this work,
together with notion of tripos, can serve as a guide for defining a variant of fo-bicategories
–hopefully, purely equational– capable of representing higher-order classical logic.

An important result in the theory of databases [13] shows that the problem of query
inclusion (entailment of regular-logic formulas) is equivalent to the existence of morphisms
of hypergraphs. This combinatorial characterisation found a neat algebraic understanding
in [8] by means of cartesian bicategories. We hope that Theorem 26 may lead to an analogous
combinatorial understanding of first-order logic.
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Figure 4 Axioms of Cocartesian bicategories

A Appendix to Section 2

In this appendix we collect some useful results about (co)cartesian bicategories. Moreover,
we report in diagrammatic form the axioms of cocartesian bicategories (Figure 4) and we
summarise in Table 1 the properites of the isomorphism (·)† : C→ Cop.

▶ Theorem 43. Any connected diagram c : Xn
→ Xm made out of id◦, σ◦,◀◦, !◦,▶◦ and ¡◦ is equal

to n

 ...
...

X X
X

X

X

X

 m .

Proof. See [42, 16]. ◀

▶Remark 44. Theorem 43 is known as the spider theorem and it holds in any special Frobenius
algebra and thus, in particular, in a cartesian bicategory. A direct consequence of the spider
theorem is that we can “rewire” parts of a diagram involving the (co)monoid structures,
as long as the connectivity is preserved. This is useful in several graphical derivations for
arranging diagrams into a desired shape.

▶ Lemma 45. For any c, d : X→ Y, cX Y = dX Y if and only if cX
Y

= dX
Y

.

Proof. One direction is trivial. The other direction follows from the Frobenius axioms. ◀

▶ Proposition 46. For any c : X→ Y the following inequality holds c
≤ c

c .

Proof. See Lemma 4.3 in [6]. ◀

▶ Proposition 47. For any c : X→ Y the following equality holds cX

Y
=

cY

X
.

Proof.

cY

X

(6)
=

Y
X

c Theorem 43
=

cY

X
≈ c

Y

X
(▶◦-as)
= cX

Y

◀
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Table 1 Properties of (·)† : C→ Cop

if c ≤ d then c† ≤ d† (c†)† = c
(c ,◦ d)† = d† ,◦ c† (id◦X)† = id◦X (▶◦X)† =◀◦X (¡◦X)† = !◦X

(c ⊗ d)† = c† ⊗ d† (σ◦X,Y)† = σ◦Y,X (◀◦X)† =▶◦X (!◦X)† = ¡◦
X

(c ∧ d)† = c† ∧ d† ⊤
† = ⊤

▶ Proposition 48 (Extensional equality). For any t1, t2 : X→ Y maps,

if t1 t2X X = X X then t1X Y = t2X Y .

Proof. First observe that if t1 t2X X = X X , then by the properties in Table 1
the following holds

t2 t1X X = ( t1 t2X X )
†

= ( X X )
†

= X X . (11)

To conclude we show the two inclusions separately:

t1X Y ≤ t1X Y (η!◦)

= t1X Yt2 t1 (11)

≤ t2X Y (Prop. 3.3)

t2X Y ≤ t2X Y (η!◦)

= t2X Yt1 t2 (Hyp.)

≤ t1X Y (Prop. 3.3)

◀

B Appendix to Section 3

B.1 A few properties of Boolean hyperdoctrines

In this section we recall some useful properties of boolean hyperdoctrines, and we prove a
lemma which will be crucial for establishing the precise connection with peircean bicategories.
All the results we are going to show here are quite natural from the perspective of first-order
classical logic, and their proofs are straightforward.

First, it is well-known in first-order classical logic that the universal quantifier can be
defined combining the existential quantifier with the negation. In the following lemma we
provide a proof using the language of f.o. boolean hyperdoctrine of this fact.

▶ Lemma 49. Let P : Cop
−→ Bool be a boolean hyperdoctrine. Then for every arrow f : A→ B,

the functor

∀ f (−) := ¬∃ f¬(−)

provides a right adjoint to P f . Moreover, if ∃ f satisfies BCC then also ∀ f satisfies BCC.

Proof. The proof is a straightforward generalization of the ordinary proof in first-order
classical logic. Indeed:

α ≤ ∀ f P f (α) = ¬∃ f¬P f (α)

holds if and only if

∃ f¬P f (α) ≤ ¬α
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because P is boolean. But this holds because it is equivalent to

P f (¬α) ≤ P f (¬α).

To prove that

P f∀ f (β) ≤ β

we have to use again the assumption that P is boolean. In fact we have that

P f∀ f (β) = ¬P f∃ f (¬β) ≤ ¬¬β

because ¬β ≤ P f∃ f (¬β) (since ∃ f ⊣ P f ), and using the fact that ¬¬β = β we can conclude
that P f∀ f (β) ≤ β. Now we prove that if ∃ f satisfies BCC then also ∀ f satisfies BCC. So let us
consider a pullback

D C

A B

g′

f

g

f ′

⌟

and suppose that Pg∃ f (α) = ∃ f ′Pg′(α) for every α in P(A). From this we can deduce that
¬Pg∃ f (α) = Pg¬∃ f (α) = ¬∃ f ′Pg′ (α), and then that Pg∀ f (¬α) = ∀ f ′Pg′ (¬α) for every α element
of P(A). Therefore, in particular it holds for the element β := ¬α, and hence (using the fact
that P is boolean) we can conclude that Pg∀ f (α) = ∀ f ′Pg′ (α). ◀

▶ Remark 50 (Frobenius reciprocity). Employing the preservation of the implication→ by
the functor P f , it is straightforward to check that every first-order boolean hyperdoctrine
P : Cop

−→ Bool satisfies the so-called Frobenius reciprocity (FR), namely:

∃ f (P f (α) ∧ β) = α ∧ ∃ f (β) and ∀ f (P f (α)→ β) = α→ ∀ f (β)

for every morphism f : X → Y, α in P(Y) and β in P(X). See [34, Rem. 1.3]. However, it is
not guarantee that of Beck-Chevalley conditions with respect to pullbacks along f . See [54]
for more details.

▶ Lemma 51. Let P : Cop
−→ Bool be a boolean hyperdoctrine and ϕ ∈ P(X × Y) a functional and

entire element from X toY. For all ψ ∈ P(Y × Z), it holds that

∃πX×Z (PπX×Y (ϕ) ∧ PπY×Z (¬ψ)) = ¬(∃πX×Z (PπX×Y (ϕ) ∧ PπY×Z (ψ)) ).

Proof of Lemma 24. The proof happens to be straightforward if we employ the classical
arguments of natural deduction. Here we provide a completely algebric proof. For sake
of readability, here we employ the notation given by the internal language of P, writing
∃y instead of the left adjoint ∃πY and using the predicates ϕ(x, y) and ψ(y, z) to denote the
elements ϕ ∈ P(X×Y) andψ ∈ P(Y×Z). Given the well-established correspondence between
a doctrine and its internal language, proving that the two previous predicates a equivalent
using the logical rules of first-order classical logic is equivalent to prove that they are equal
in P. Hereafter we thus prove

∃y.(ϕ(x, y) ∧ ¬ψ(y, z)) = ¬∃y′.(ϕ(x, y′) ∧ ψ(y′, z))

Therefore, we start by proving

∃y′.(ϕ(x, y′) ∧ ¬ψ(y′, z)) ⊢ ¬∃y.(ϕ(x, y) ∧ ψ(y, z)) (12)
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The crucial point to conclude that (12) holds is to show that

ϕ(x, y) ∧ ψ(y, z) ⊢ ¬ϕ(x, y′) ∨ ψ(y′, z). (13)

holds. In fact, from (13) we can deduce the validity of (12) because (13) implies that

∃y.(ϕ(x, y) ∧ ψ(y, z)) ⊢ ¬ϕ(x, y′) ∨ ψ(y′, z)

and hence, by applying to both sides ¬, we obtain

ϕ(x, y′) ∧ ¬ψ(y′, z) ⊢ ¬∃y.(ϕ(x, y) ∧ ψ(y, z))

and hence that

∃y′.(ϕ(x, y′) ∧ ¬ψ(y′, z)) ⊢ ¬∃y.(ϕ(x, y) ∧ ψ(y, z))

So we have to prove the validity of (13). Now since we are working with boolean
algebras, we have that ϕ(x, y) ∧ ψ(y, z) = ϕ(x, y) ∧ ψ(y, z) ∧ (y = y′ ∨ y , y′). Therefore, (13)
is equivalent to

(ϕ(x, y) ∧ ψ(y, z) ∧ y = y′) ∨ (ϕ(x, y) ∧ ψ(y, z) ∧ y , y′) ⊢ ¬ϕ(x, y′) ∨ ψ(y′, z). (14)

To prove (14), it is enough to prove that both

(ϕ(x, y) ∧ ψ(y, z) ∧ y = y′) ⊢ ¬ϕ(x, y′) ∨ ψ(y′, z) (15)

and

(ϕ(x, y) ∧ ψ(y, z) ∧ y , y′) ⊢ ¬ϕ(x, y′) ∨ ψ(y′, z) (16)

hold. Now notice that (16) holds trivially, because ϕ(x, y) ∧ ψ(y, z) ∧ y = y′) ⊢ ψ(y′, z). To
prove (16) we have to employ the functionality of ϕ. In fact, by definition of functionality
we have that

ϕ(x, y) ∧ ϕ(x, y′) ⊢ y = y′

and then, using the fact that y = y′ is equivalent to (y , y′) → ⊥ (were y , y′ denotes
¬(y = y′)) we can conclude that

ϕ(x, y) ∧ y , y′ ⊢ ¬ϕ(x, y′) (17)

and hence that ϕ(x, y) ∧ y , y′ ⊢ ¬ϕ(x, y′) ∨ ψ(y′, z). Therefeore, since ϕ(x, y) ∧ ψ(y, z) ∧ y ,
y′ ⊢ ϕ(x, y) ∧ y , y′, we can conclude by transitivity that also (16) holds.

This concludes the proof that (13), and hence, (12) hold.

Now we have to prove that

¬∃y.(ϕ(x, y) ∧ ψ(y, z)) ⊢ ∃y′.(ϕ(x, y′) ∧ ¬ψ(y′, z)) (18)

First, notice that (18) is equivalent to

∀y′.(¬ϕ(x, y′) ∨ ψ(y′, z)) ⊢ ∃y.(ϕ(x, y) ∧ ψ(y, z)). (19)

Now, in order to prove (19), we start by employing the assumption that ϕ is total, namely:

⊤ ⊢ ∃y′.ϕ(x, y′). (20)
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In fact, (20) implies that

∀y′.¬ϕ(x, y′) ⊢ ⊥

and since in every boolean algebra we have that ψ(y′, z) ∧ ¬ψ(y′, z) ⊢ ⊥, we have that

∀y′.¬ϕ(x, y′) = ∀y′.(¬ϕ(x, y′) ∨ ⊥) = ∀y′.(¬ϕ(x, y′) ∨ (ψ(y′, z) ∧ ¬ψ(y′, z))) ⊢ ⊥ (21)

From (21), using the distributivity of ∨, and the fact that the universal quantifier of a
disjunction is equivalent to the disjunction of two universal quantifiers (categorically, right
adjoints preserve coproducts), we can conclude that

∀y′.(¬ϕ(x, y′) ∨ ψ(y′, z)) ∧ ∀y.(¬ϕ(x, y) ∧ ¬ψ(y, z)) ⊢ ⊥

and hence that

∀y′.(¬ϕ(x, y′) ∨ ψ(y′, z)) ⊢ ¬∀y.(¬ϕ(x, y) ∧ ¬ψ(y, z)).

Now, since ¬∀y.(¬ϕ(x, y) ∧ ¬ψ(y, z)) = ∃y.(ϕ(x, y) ∧ ψ(y, z)) we can conclude that (19), and
then (18) hold. ◀

C Appendix to Section 4

In Section 4 we have recalled the adjunction between the category of cartesian bicategories
CB and that of elementary and existential doctrines EED, i.e. Equation (7), from [7]. The
interested reader may find all details in Sections 5, 6 and 7 of [7] however, for its convenience,
we recall in this appendix some interesting facts that are omitted in the main text.

We start by recalling some details about the Rel(−) construction. The objects, arrows
and composition of the category Rel(P) associated to an elementary and existential doctrine
P : Cop

−→ InfSl are described in Section 4. To see why this is a cartesian bicategory it is
convenient to first illustrate the monoidal product. For ϕ : X→ Y and ψ : U→ V arrows of
Rel(P), namely ϕ ∈ P(X × Y) and ψ ∈ P(U ×V), the arrow ϕ ⊗ ψ : X ⊗ U→ Y ⊗ V is defined
as

ϕ ⊗ ψ
def
= P⟨πX ,πY⟩(ϕ) ∧ P⟨πU ,πV⟩(ψ)

where ⟨πX, πY⟩ and ⟨πU, πV⟩ are the projections from X ×U × Y × Z to, respectively, X × Y
and U × V.

The rest of the structure of cartesian bicategory is inherited from the finite products
base category C of P by means of the graph functor ΓP : C→ Rel(P). In particular, the graph
functor acts as the identity on objects and mapping each arrow f : X→ Y in

ΓP( f ) def
= P f×idY (δY) ∈ P(X × Y) = Rel(P)[X,Y].

For instance, for the doctrineP : Setop
−→ InfSl from Example 15, the functor ΓP : Set→ Rel◦

maps every function f to its graph.
At this point, it is worth to observe that the arrow PidY× f (δY) is right adjoint to ΓP( f ) (see

[7, Pro. 23]) and thus ΓP( f ) is a map. Therefore, ΓP restricts to a finite-product preserving
functor C→ Map(Rel(P)). One can thus define the (co)monoid structure of Rel(P) as

◀◦X
def
= ΓP(◀◦X) ▶◦X

def
= PidX×X×◀◦X

(δX×X)
!◦X

def
= ΓP(!◦X) ¡◦

X
def
= PidI×!◦X (δI)
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where on the right hand side of the above equation ◀◦X : X→ X ×X and !◦X : X→ I are copier
and discard of C (they exist since C has finite products).

The graph functor ΓP : C → Map(Rel(P)) is also used for defining the unit of the
adjunction (7). For every elementary and existential doctrine P : Cop

−→ InfSl, the morphism
of elementary and existential doctrines ηP : P→ HmI(Rel(P)) is

Cop

InfSl

Map(Rel(P))op
Rel(P)[−,1]

P

ΓP
op ρ (22)

where

ΓP : C→ Map(Rel(P)) is the graph-functor;
each component ρX : P(X) → Rel(P)[X, I] def

= P(X × I) is given by the isomorphism
P(X) � P(X × I) obtained by applying the functor P to the right unitor X × I � X in C.

D Appendix to Section 5

In this appendix we prove that the axioms of fo-bicategories hold in peircean bicategories.
In the end we show the isomorphism FOB ≡ PB (Theorem 26). Before the main results, we
need to prove a few useful properties of peircean bicategories.

Since most of the proofs in this appendix are diagrammatic, it is worth remarking that

negation behaves graphically as a colour switch. Thus, for example ¬( X X
X ) = X X

X

and ¬( X ) = X . For a generic arrow c , we depict its negation as c .

Moreover, it is convenient to visualize in diagrams (¬M) on two particular cases, namely
when we take as map ◀◦ or !◦:

c = c c = c .

▶ Lemma 52. For all c, d : X→ Y, c ∨ d =◀•X ,•(c �× d),• ▶•Y and ⊥ = !•X ,• ¡•
Y, graphically rendered

as follows

c ∨ d =
c

d
X Y ⊥ = X Y

Proof.

c ∨ d = ¬(¬c ∧ ¬d) (De Morgan)

= ¬(◀◦X ,◦(¬c ⊗ ¬d),◦ ▶◦Y) (5)

= ¬(¬◀•X ,◦ ¬(c �× d) ,◦ ¬▶•Y) (9)

=◀•X ,•(c �× d),• ▶•Y (9)

⊥ = ¬⊤ (De Morgan)

= ¬(!◦X ,◦ ¡◦
Y) (5)

= ¬(¬!•X ,◦ ¬¡•
Y) (9)

= !•X ,• ¡•
Y (9)

◀
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Given that (C,◀•,▶•) is a cocartesian bicategory, there is an isomorphism (·)‡ : C→ Cop

that is the identity on objects and for all arrows c : X→ Y, c‡ : Y→ X is defined as follows.

c‡ def
= c

Y

X
(23)

With this definition at hand it is immediate to show that ¬(c†) = (¬c)‡. Moreover, we
show that the two isomorphisms (·)† and (·)‡ actually coincide (Lemma 57).

▶ Proposition 53. For any c, d : X→ Y the following are equivalent:

1. c ≤ d 2. ¬d ≤ ¬c 3. ⊤ ≤ ¬c ∨ d 4. c ∧ ¬d ≤ ⊥

Proof. The four inclusions are equivalent since C[X,Y] is a Boolean algebra. ◀

▶ Proposition 54. The following equality holds X Y = X Y

Proof. We prove the two inclusions separately. The ≤ inclusion is trivial since X Y

is ⊥X,Y. For the other inclusion observe that X Y
(¬M)
= YX and thus what is

left to prove is X Y ≤ YX . We prove it by means of Lemma 45 as follows:

X
Y

(▶◦-un)
= X

Y
≈ X

Y

(¬M)
= X

Y
≤ X

Y

where the last inequality holds since the left-hand side is ⊥X⊗Y,I. ◀

▶ Lemma 55. The following equality holds, (⊥X,Y)† = ⊥Y,X.

Proof.

(⊥X,Y)†
(6)

Lemma 52
=

Y

X Proposition 54
=

Y

X (¬M)
=

Y

X

(◀◦-un)
(▶◦-un)
=

Y

X
≈ Y X

(¬M)
= Y X

Proposition 54
= Y X

Lemma 52
= ⊥Y,X

◀

▶ Lemma 56. For any c : X→ Y, (¬c)† = ¬(c†).

Proof. We prove the two inclusions separately. We prove ≤, on the left, by means of
Proposition 53.4. For ≥, on the right, we use the properties of (·)† in Table 1 and the inclusion
proved on the left.

(¬c)† ∧ ¬¬(c†) = (¬c)† ∧ c† (Definition 25.1)

= (¬c ∧ c)† (Table 1)

= (⊥X,Y)† (Definition 25.1)

= ⊥Y,X (Lemma 55)

¬(c†) = ¬(c†)
††

(Table 1)

≤ ¬c†
††

((¬c)† ≤ ¬(c†))

= (¬c)† (Table 1)

◀
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▶ Lemma 57. For any c : X→ Y, c
Y

X
= c

Y

X
.

Proof.

c† Definition 25.1
= (¬¬c)† Lemma 56

= ¬

(
(¬c)†

) (23)
= (¬¬c)‡ Definition 25.1

= c‡

◀

Lemma 57 is instrumental in proving the following result that extends (¬M) to comaps,
i.e. all those arrows f , such that f † is a map.

▶ Lemma 58. For all maps f : X→ Y and arrows c : Z→ Y, ¬c ,◦ f † = ¬(c ,◦ f †).

Proof.

c fZ X
(6)
=

c
f

Z

X Proposition 47
= f

Z

X
c

(¬M)
= f

Z

X
c

Lemma 57
= f

Z

X
c

(23)
= c fZ X

◀

It is convenient to visualize in diagrams Lemma 58 on two particular cases, namely when
we take as comap ▶◦ or ¡◦:

c = c c = c .

The structure in (9) can also be used to define a compact closed structure in (C,◀•,▶•).
In other words, in a peircean bicategory one can bend the wires in two ways. These bending
operations are shown to be the same (Lemma 61).

▶ Proposition 59. For any c : X ⊗ Y→ I, c
Y

X
≤

c
Y

X
.

Proof. We prove it by means of Proposition 53.3 as follows.

¬

 c
Y

X
 ∨ c

Y

X
(9)

Lemma 52
=

c

Y

X

c
Theorem 43
=

c

Y

X
c

Definition 25.1
=

Y

X (¬M)
=

Y

X

(◀•-un)
=

Y
X ≈ YX

Lemma 58
= YX

(5)
= ⊤X,Y

◀

▶ Lemma 60. For any c : X→ Y, cX
Y

= ¬

(
cX

Y

)
.
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Proof. We prove the two inclusions separately.
We prove ≤ by means of Proposition 53.4 as follows.

cX
Y

∧ ¬¬

(
cX

Y

)
Definition 25.1
= cX

Y
∧ cX

Y

(5)
=

c
X
Y c

Theorem 43
=

c
X

Y
c

Definition 25.1
= X

Y

Lemma 58
= X

Y

(▶◦-un)
= X

Y

≈
X
Y

(¬M)
= X

Y

Lemma 52
= ⊥X⊗Y,I

For ≥we proceed as follows.

¬

(
cX

Y

)
= cX

Y

Theorem 43
=

cX

Y

Proposition 59
≤

cX

Y

Theorem 43
= cX

Y

◀

▶ Lemma 61. For any c : X→ Y, cX
Y

= cX
Y

.

Proof.

cX
Y

Definition 25.1
= ¬¬

(
cX

Y

)
Lemma 60
= ¬

(
cX

Y

)
= cX

Y

◀

Now we need to prove that the axioms of fo-bicategories hold in a peircean bicategory.
We do not show a proof for all of them, but only for a few representative ones. The rest are
either derivable or proved in a similar manner.

▶ Proposition 62. For any c, d, e : X→ Y, c ∧ (d ∨ e) ≤ (c ∧ d) ∨ e.

Proof.

c ∧ (d ∨ e) = (c ∧ d) ∨ (c ∧ e) (Definition 25.1)

≤ (c ∧ d) ∨ (⊤ ∧ e) (Proposition 3)

= (c ∧ d) ∨ e (Definition 25.1)

◀

▶ Lemma 63. For any c : X→ I, d : Y→ I, e : Z→ I, c ⊗ (d �× e) ≤ (c ⊗ d) �× e.
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Proof.

Z e
d

X c

Y

(◀◦-un)
(◀•-un)
= Z

e

d

X

c

Y (¬M)
= Z

e

d

X

c

Y (◀•-un)
= Z

e

d

X

c

Y

(5)
Lemma 52
=

Z

X c
Y ∧ (

Z

X
dY ∨

X

Z e
Y )

Proposition 62
≤ (

Z

X c
Y ∧

Z

X
dY ) ∨

X

Z e
Y

(5)
Lemma 52
=

Z

X

Y

e

d

c

(¬M)
=

Z

X

Y

e

d

c

(◀◦-un)
=

Z

X

Y

e

d

c

(¬M)
=

Z

X

Y

e

d

c

≈

Z

X

Y

e

d

c

(◀◦-un)
(◀•-un)
=

X c

d

Z e

Y

◀
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▶ Lemma 64. For any c : X ⊗ Y→ I, d : Y ⊗ Z→ I, e : Z ⊗W → I, the following inequality holds

W e

d

X c

≤

X c

d

W e

Proof.

W e

d

X c

≈

W e

d

X c
(η¡•)
≤

W e

d

X c
(¬M)
=

W e

d

X c

(¬M)
=

W e

d

X c
(ϵ¡•)
≤

W e

d

X c
(¬M)
=

W e

d

X c

(¬M)
=

W e

d

X c
Lemma 63
≤

W e

d

X c
(¬M)
=

W e

d

X c

(¬M)
=

W e

d

X c
(η!◦)
≤

W e

d

X c
(¬M)
=

W e

d

X c

(¬M)
=

W e

d

X c
(ϵ!◦)
≤

W e

d

X c

≈

X c

d

W e

◀
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▶ Lemma 65 (Linear distributivities). For any c : X → Y, d : Y → Z, e : Z → W, the following
inequalities hold

1. c ,◦ (d ,• e) ≤ (c ,◦ d) ,• e 2. (c ,• d) ,◦ e ≤ c ,• (d ,◦ e)

Proof. We prove 1. below by means of Lemma 45. The proof for 2. is analogous.

d ecX

Y

Lemma 61
=

d ecX

Y

Theorem 43
= d

e

cX

Y

Lemma 64
≤

d

e

cX

Y

Lemma 61
=

d

e

cX

Y

Theorem 43
=

d

e

cX

Y

Lemma 61
=

d

e

cX

Y

Theorem 43
= d ecX

Y

Lemma 61
= d ecX

Y

◀

▶ Proposition 66. For any c : X→ Y, the following inequalities hold

1.
X

X c
c

≤ X
X 2. X

X
≤

X

X c
c

Proof. We prove 1. below. The proof for 2. is analogous.

X

X c
c

≈
X

X c
c

(η ▶•)
≤

X

X c
c

(¬M)
=

X

X c
c

Definition 25.1
=

X

X Lemma 58
=

X

X (ϵ!◦)
≤

X

X
≈ X

X

◀

▶ Lemma 67 (Linear adjoints). For any c : X→ Y, the following inequalities hold

1. c ,◦ (¬c)† ≤ id•X 2. id◦Y ≤ (¬c)† ,• c 3. (¬c)† ,◦ c ≤ id•Y 4. id◦X ≤ c ,• (¬c)†

Proof. We prove 1. below. 2. is proved similarly, exploiting Proposition 66.2. The proofs for
3. and 4. are analogous.

c ,◦ (¬c)†
(6)
=

c
c

X

X
Proposition 66.1

≤
X

X
Lemma 61
=

X

X

Lemma 57
=

X

X
Theorem 43
= X X = id•X
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◀

▶ Lemma 68 (Linear strengths I). For any a, b, c, d properly typed, the following equalities hold

1.
ba

dc

X

Z

Y

W
≤

a b

c d

X

Z

Y

W
2.

ba

dc

X

Z

Y

W
≤

ba

dc

X

Z

Y

W

3.
a b

c d

X

Z

Y

W
≤

ba

dc

X

Z

Y

W

X

Z

Y

W
4.

ba

dc

X

Z

Y

W
≤

ba

dc

X

Z

Y

W

X

Z

Y

W

Proof. We prove 1. by means of Proposition 53.4 below. The proof for 2. is analogous. 3.
and 4. follow from 1. and 2. and Proposition 53.2.

ba

dcX

Z

Y

Wba

dc

=

ba

dcX

Z

Y

Wa

c

b

d

b

d
(Proposition 46)

≤

ba

X

Z

Y

Wa

c

b

d

b

dc d
(Lemma 65)

≤

a

X

Z

Y

Wa

c

b

d

c
(Lemma 67)

≈

a

X

Z

Y

Wa

c

b

d

c

=
X

Z

Y

W

b

d
(Definition 25.1)

=
X

Z

Y

W

b

d
(Lemma 58)
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≤

X

Z

Y

W
(!◦-nat)

=
X

Z

Y

W
(Lemma 58)

= ⊥X⊗Z,Y⊗W (Lemma 52)

◀

▶ Proposition 69. For any c, d : X→ Y, c ∧ d ≤ c ∨ d.

Proof. The following holds since C[X,Y] is a Boolean algebra and a ∧-semilattice with ⊤:

c ∧ d = c ∧ (d ∨ d) (Idempotency of ∨)

≤ (c ∧ d) ∨ d (Proposition 62)

≤ (c ∧ ⊤) ∨ d (⊤ is the top element)

= c ∨ d (⊤ is the unit of ∧)

◀

▶ Lemma 70. For any c : X→ Y, d : Z→W, c ⊗ d ≤ c �× d.

Proof.

c

d

X Y

Z W

(◀◦-un)
(▶◦-un)
=

c
X Y

d
Z W

(5)
= cX Y

Z W ∧ d
X Y
Z W

Proposition 69
≤

cX Y
Z W ∨ d

X Y
Z W

Lemma 52
=

c
X Y
Z W

d

(¬M)
Lemma 58
=

c
X Y
Z W

d

≈

c
X Y

d
Z W

(◀•-un)
(▶•-un)
=

c

d

X Y

Z W

◀

▶ Corollary 71 (Linear strenghts II). For all objects X,Y, the following inequalities hold

id•X ⊗ id•Y ≤ id•X �× id•Y id◦X ⊗ id◦Y ≤ id◦X �× id◦Y

Proof. Immediate by Lemma 70. ◀

▶ Proposition 72. The following equality holds
X
X

X

= XX
X .
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Proof. We prove it by means of Lemma 45 as follows.

X
X

X

Theorem 43
= X

X

X

Lemma 61
= X

X

X

(¬M)
= X

X

X

Theorem 43
= X

X

X

Lemma 61
= X

X

X

◀

▶ Lemma 73 (Linear Frobenius). The following equalities hold

1. X

X

X

X = X

X

X

X 2. X

X

X

X =
X

X

X

X

3. X

X

X

X = X

X

X

X 4. X

X

X

X = X

X

X

X

Proof. We prove 1. below. The proof for 2. is analogous. 3. and 4. follow from 1. and 2. and
Proposition 53.2.

X

X

X

X Theorem 43
=

X

X
X

X

Lemma 57
=

X

X
X

X

Theorem 43
=

X

X
X X

Proposition 72
= X

X

X

X

◀

Proof of Theorem 26. By Propositions 7 and 9 every fo-bicategory is a peircean bicategory.
By Proposition 8 every morphism of fo-bicategories is a morphism of peircean bicategories.

Now observe that a peircean bicategory C is a fo-bicategory, since:

it is a cartesian bicategory by definition;
it is a cocartesian bicategory via the isomorphism ¬ : (Cco,◀◦,▶◦)→ (C,◀•,▶•);
it is a closed linear bicategory, since:

(δl) and (δr) hold by Lemma 65;
(ν◦l ), (ν◦r ), (ν•l ) and (ν•r ) hold by Lemma 68 and (⊗•) and (�×◦) hold by Corollary 71;
every arrow c : X → Y, and in particular also σ◦, σ•,◀◦, !◦,▶◦, ¡◦,◀•, !•,▶• and ¡•, has
both a left and right linear adjoint by Lemma 67;

(F•◦), (F◦•), (F ◦
• ) and (F •

◦ ) hold by Lemma 73.

A morphism of peircean bicategories F : C → D preserves the structure defined in (9)
since it preserves negation, e.g.

F(c ,• d) = F(¬(¬c ,◦ ¬d)) (9)

= ¬F(¬c ,◦ ¬d) (F preserves negation)

= ¬(F(¬c) ,◦ F(¬d)) (F is a strong symmetric monoidal functor)

= ¬(¬F(c) ,◦ ¬F(d)) (F preserves negation)

= F(c) ,• F(d) (9)
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In particular, F is both a morphism of cartesian and cocartesian bicategories and thus a
morphism of fo-bicategories. ◀

E Appendix to Section 6

▶ Lemma 74. Let C be a cartesian bicategory, and consider the doctrine C[−, I] : Map(C)op
−→

InfSl. Then an element c ∈ C[X × Y, I] is:

functional if and only if the corresponding arrow in C[X,Y], i.e. cX

Y
, satisfies the

leftmost inequality in (4);

entire if and only if the corresponding arrow in C[X,Y], i.e. cX

Y
, satisfies the rightmost

inequality in (4);

Therefore, c is both functional and entire if and only if cX

Y
is a map.

Proof. By definition, an element c ∈ C[X × Y, I] is functional from X to Y if and only if

c
X

Y c
Y ≤

X

Y
Y (functional)

and it is entire from X to Y if and only if

X ≤ cX (entire)

Now observe that (functional) holds if and only if the following holds

c
X

Y c
Y ≤

c
X

Y
Y (functional-alt)

To conclude, we need to show that (functional-alt) and (entire) are equivalent, respectively,
to

c
X Y

c
Y

≤
cX

Y
Y

and X ≤
cX

.

For (functional-alt) we use the fact that in any cartesian bicategory aX
Y ≤ bX

Y if and

only if aX

Y
≤ bX

Y
, and thus

c
X

Y c
Y ≤

c
X

Y
Y iff

c
X

Y

c
Y

≤

c
X

Y
Y
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which amounts to
c

X Y
c

Y

≤
cX

Y
Y

using Theorem 43.

For (entire) it suffices to observe that cX (◀◦-un)
= cX . ◀

Proof of Proposition 29. By Equation (7) we have that for every elementary and existential
doctrine P, the unit of the adjunction Rel(−) ⊣ HmI(−) is morphism of elementary and
existential doctrines ηP

def
= (ΓP, ρ) : P→ HmI(Rel(P)). Moreover, each component of ρ is an iso

by definition (see Appendix C for a detailed description). Therefore, ρ preserves and reflects
functional and entire relations (see Remark 18), i.e. ρX×Y(ϕ) ∈ Rel(P)[X × Y, I] is functional
and entire in Rel(P) if and only if ϕ is functional and entire in P. On the other hand, by
Lemma 74 we have that an arrow ψ ∈ Rel(P)[X,Y], i.e. an element ψ ∈ P(X × Y), is a map
if and only if the corresponding element in Rel(P)[A × B, I], i.e. ρX×Y(ψ), is functional and
entire with respect to the doctrine Rel(P)[−, I]. Therefore, we can conclude that ϕ is a map in
Rel(P) if and only if ϕ is an entire and functional element of P. ◀

Proof of Theorem 31. First, we want to prove that the inclusion HmI : CB ↪→ EED in (7)
restricts to an inclusion of categories PB ↪→ BHD. By Proposition 27, one only needs to
check for morphisms in PB. Given a morphism of peircean bicategories F : C→ D, HmI(F)
is the morphism of elementary and existential doctrines (F̃, bF) defined in Section 4. In order
to conclude that it is a morphism of boolean doctrines, it is enough to show that bF

X is a
morphism of boolean algebras for all objects X. Since (F̃, bF) is a morphism of doctrines, bF

X
is a morphism of inf-semilattices. Thus it is enough to show that bF

X preserve negation. But
this is trivial since, for all c ∈ C[X, I],

bF
X(¬c) = F(¬c) (Def. bF)

= ¬F(c) (morphism of Peircean, Definition 25)

= ¬bF
X(c) (Def. bF)

Now, to prove that Rel restrict to a functor Rel : BHD → PB, by Proposition 30,
one only needs to check that for all morphisms of boolean hyperdoctrines (F, b) : P → Q,
Rel(F, b) : Rel(P)→ Rel(Q) is a morphism of peicean bicategories. Since by (7), Rel(F, b) is a
morphism of cartesian bicategories, one only needs to check that it preserves the negation.
But this is obvious since for all arrows ϕ ∈ Rel(P)[X,Y], Rel(F, b)(ϕ) is –by definition– bX×Y(ϕ)
and bX×Y is a morphism of boolean algebras.

To conclude, one only needs to check the unit and the counit of the adjunction in (7).
The counit is an isomorphism of cartesian bicategories (see Equation (9) in [7]), and then it
provides an isomorphism of peircean bicategories C � Rel(C[−, I]) whenever C is a peircean
bicategory. The unit of the adjunction ηP : P→ Rel(P)[−, I] is the morphism of elementary
and existential doctrines (ΓP, ρ) illustrated in (22). To conclude that ηP is a morphism of
boolean hyperdoctrine whenever P is a boolean hyperdoctrine, one has only to prove that ρ
is a morphism of boolean algebras, but this is trivial since ρ is always an isomorphism of
inf-semilattices.

◀
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F Appendix to Section 7

Proof of Theorem 36. By Equation (8) we have that the HmI and Rel functors provide an
equivalence between the categories CB and EED. Now, since every peircean category is in
particular a cartesian bicategory, we have that every boolean hyperdoctrine arising from a
peircean bicategory satisfies (RUC) and it has comprehensive diagonals. Then, we have that
the functor HmI : PB ↪→ BHD factors through the canonical inclusion BHD ↪→ BHD:

PB BHD

BHD

HmI

HmI

By Theorem 31, we have that HmI : PB ↪→ BHD is fully and faithful (since the counit of
the adjunction is an iso), so it remains to prove that it is essentially surjective (with respect
to the objects of BHD). By the equivalence presented in Equation (8), we know that every
boolean hyperdoctrine (that is in particular an elementary and existential doctrine) satisfying
(RUC) and having comprehensive diagonals, is isomorphic to an elementary and existential
doctrine C[−, I] : Map(C)op

−→ InfSl for some cartesian bicategory C. Thus, we can conclude
that C[−, I] : Map(C)op

−→ InfSl is a boolean hyperdoctrine and, by Corollary 28, that C is a
peircean bicategory. This concludes the proof that PB ≡ BHD.

◀

G Appendix to Section 8

We summarize some useful properties of tabulations, which are crucial to establish the
precise connection with the notion of full comprehension. We refer to [12, Lem. 3.3] for the
following result:

▶ Lemma 75. Let i : Xr → X be a tabulation of r : X→ I. Then

for every map f : Z→ X such that f † ,◦ !◦Z ≤ r there exists a unique map h : Z→ Xr such that
f = h ,◦ i;
if f † ,◦ !◦Z = r, then h† ,◦ !◦Z = !◦X.

Now we recall another useful lemma, regarding doctrines with full comprehensions. We
refer to [54, Pro. 7.10] for the following result:

▶ Lemma 76. Let P : Cop
−→ InfSl be a doctrine with full comprehensions. Then every comprehen-

sion is a mono for every element α of P(X) we have that α = ∃{α}(⊤Xα ).

Proof of Theorem 41. Let (C,◀◦,▶◦) be functionally complete, and let us consider the
doctrine C[−, I] : Map(C)op

−→ InfSl and an element r : X→ I of C[X, I]. We claim that the
tabulation i : Xr → X of r is the comprehension of r.

First, notice that C[i, I](r) = ⊤Xr (i.e. i ,◦ r = !◦Xr
) because, by definition of functionally

completeness, we have that i ,◦ i† = idXr and i† ,◦ !◦Xr
= r, and hence i ,◦ r = !◦Xr

. Now suppose
that f : Z → X is a map such that C[ f , I](r) = ⊤Z (i.e. f ,◦ r = !◦Z). Then, in particular,
we have that ⊤Z ≤ C[ f , I](r), and we can conclude that ∃ f (⊤Xr ) ≤ r because the doctrine
C[−, I] : Map(C)op

−→ InfSl is elementary and existential, so it has left adjoints along all the
arrows (seeRemark 13). Now, by definition of left ajoints for this doctrine (see Example 16)
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this means that f † ,◦ !◦Z ≤ r, so we can apply Lemma 75 and conclude that there exists a unique
h such that f = h ,◦ i. This concludes the proof that if (C,◀◦,▶◦) is functionally complete then
C[−, I] : Map(C)op

−→ InfSl has comprehensions.
Now we need to prove that comprehensions are full. So let r, r′ : X→ I be two arrows and

let i and i′ their tabulation. If i factors through i′, namely i = g ,◦ i′ for some map g : Xr → Xr′ ,
then we have that i† = (i′)† ,◦ g†. Hence, we can conclude that r ≤ r′ because, by hypothesis,
i† ,◦ !◦Xr

= r, and using the fact that i† = (i′)† ,◦ g†, we can conclude that r = (i′)† ,◦ g† ,◦ !◦Xr
≤ r′

(because (i′)† ,◦ !◦Xr′
= r′ and g† ,◦ !◦Xr

≤ !◦Xr′
).

Now we show that full comprehensions implies functionally completeness. So, let us
consider an arrow r : X→ I. We claim that the comprehension {r} : Xr → X is a tabulation of
r. First, by Lemma 76, we have that ∃{r}(⊤Xr ) = r, namely that {r}† ,◦ !◦Xr

= r. Finally, we have
that {r} ,◦ {r}† = idXr because comprehensions are monomorphisms in Map(C). This concludes
the proof that {r} is the tabulation of r. ◀

The last part of this section is devoted to prove the final corollary, namely that

PB ≡ BHDc � BC

To properly reach this goal, we summarize here in the language of doctrines the main
results presented in this work, and some useful characterizations presented in [50]. Our
result will follow by combining these results.

First, we have the following result presented in [7, Thm. 35]:

▶ Theorem 77. Let P : Cop
−→ InfSl be an elementary and existential doctrine. Then the following

two conditions are equivalent:

P has comprehensive diagonals and satisfies (RUC);
C � Map(Rel(P)) and P � C[−, I].

In particular, CB ≡ EED.

Combining the previous result with Theorem 41 we obtain the following corollary, where
we denote by EEDc the full subcategory of EED given by those doctrines of EED having
full comprehensions, and by CB f the full subcategory of CB given by functionally complete
cartesian bicategories.

▶ Corollary 78. Let P : Cop
−→ InfSl be an elementary and existential doctrine. Then the following

two conditions are equivalent:

P has comprehensive diagonals, full comprehension and satisfies (RUC);
C � Map(Rel(P)), C is functionally complete and P � C[−, I].

In particular, CB f ≡ EEDc.

Notice that Theorem 77 can be seen as a generalization of another result regarding doctrines
and regular categories presented in [50, Prop. 5.3], establishing the precise connection
between regular categories and doctrines:

▶ Theorem 79. Let P : Cop
−→ InfSl be an elementary and existential doctrine. Then the following

two conditions are equivalent:

P has comprehensive diagonals, full comprehensions and satisfies (RUC);
C is regular and P � SubC.
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In particular, REG ≡ EEDc.

Finally, we can combine the previous result with Corollary 78 obtaining as corollary the
well-known equivalence (see [12] and [24]) between functionally complete bicategories and
regular categories:

▶ Corollary 80. We have the equivalences of categories REG ≡ EEDc ≡ CB f .

Since, by definition (see [38, Sec. A1.4, p. 38]), a category C is boolean if and only if the
subobjects functor on C is a boolean hyperdoctrine, we have the following corollary, that is a
particular instance of the previous one. Here we denote the category of boolean categories
by BC and that of boolean hyperodctrines satisfying (RUC), with full comprehensions and
comprehensive diagonals by BHDc:

▶ Corollary 81. We have an equivalence of categories BC ≡ BHDc.

Combining these results we obtain the proof of our finial corollary:

Proof of Corollary 42. By Theorem 36 we have the equivalences FOB ≡ BHD, so we can
combine this result with Corollary 78 obtaining the equivalence FOB f ≡ BHDc. Therefore,
combining this equivalence with Corollary 81 we obtain

FOB f ≡ BHDc ≡ BC.

◀
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