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Spectral measures and iterative bounds for effective diffusivity

of steady and space-time periodic flows

N. B. Murphy, D. Hallman, E. Cherkaev, J. Xin, and K. M. Golden

Abstract

Over three decades ago the advection-diffusion equation for a steady fluid velocity field was homog-

enized, leading to a Stieltjes integral representation for the effective diffusivity, which is given in terms

of a spectral measure of a compact self-adjoint operator and the Péclet number of the fluid flow. This

result was recently extended to space-time periodic flows, instead involving an unbounded self-adjoint

operator. Padé approximants provide rigorous upper and lower bounds for Stieltjes functions in terms of

the moments of the spectral measure. However, with the lack of a method for calculating the moments

of the spectral measure for general fluid velocity fields, the utility of this powerful mathematical frame-

work for calculating bounds for the effective diffusivity has not been fully realized. Here we significantly

expand the applicability of this framework by providing an iterative method that enables an arbitrary

number of moments, hence bounds, to be calculated analytically in closed form for both spatially and

space-time periodic flows. The method is demonstrated for periodic flows in two spatial dimensions. The

known asymptotic behavior of the effective diffusivity for a steady flow is accurately captured by high

order upper and lower bounds, demonstrating the ability of the method to provide accurate estimates

for the effective diffusivity for a broad range of parameter values.

1 Introduction

The long time large scale transport of passive tracers by an incompressible fluid velocity field is equivalent
to a diffusion process [24] involving an effective diffusivity matrix D∗ [12]. A Stieltjes integral representation
for D

∗ was developed for steady flows, involving a spectral measure µ of a compact self-adjoint operator
[1, 2, 16]. Recently this result was extended to space-time periodic flows, involving a spectral measure for
an unbounded self-adjoint operator [15]. This integral representation separates the Péclet number from the
geometry and dynamics of the fluid velocity field, which is encoded in the spectral measure through its
moments µn. The theory of Padé approximants for Stieltjes functions provide a nested sequence of rigorous
bounds for the diagonal components of the matrix D∗, given in terms of the measure moments [3]. The
bounds get tighter as more moments are incorporated and can converge to the true value of D∗ for certain
Péclet number values [3]. However, for over 3 decades, the lack of a way to calculate the measure moments
for general fluid velocity fields has hindered the progress of providing rigorous bounds for D∗.

Here, we develop an iterative method that, in principle, enables an arbitrary number of measure moments
to be calculated analytically in closed form for any spatially periodic or space-time periodic fluid velocity
field represented as a finite trigonometric Fourier series. This, in turn, enables an arbitrary number of nested
bounds to be calculated for such flows. This iterative method is implemented into a numerical algorithm
using Maple’s symbolic math toolbox which can be used to calculate measure moments in closed form for
such flows up to a given order only limited by computational resources. Moreover, we extend this numerical
algorithm to Matlab, which enables hundreds of moments to be computed using floating point arithmetic.
We incorporate the moment values into an existing numerical algorithm padeapprox [10] which computes
Padé approximants in a robust, stable way and compute several nested bounds for the diagonal components
of the matrix D∗ for some model steady and space-time periodic flows. High order bounds accurately capture
the known [6, 7] asymptotic behavior of the effective diffusivity for a steady cell-flow as a function of Péclet
number in the advection dominated regime [15, 16]. Adding a space-time periodic term to the fluid velocity
field of this steady flow results in an appreciable additional enhancement of D∗, shown both in the Padé

1

http://arxiv.org/abs/2404.18754v1


approximant bounds here and in numerical results involving direct computation of the spectral measure
µ [15].

The organization of the paper is as follows. In Section 2 the homogenization problem for the advection-
diffusion equation is reviewed [12, 6, 17, 11]. In Section 2.1 an abstract Hilbert space framework is re-
viewed [15] which is used in Section 2.2 to provide Stieltjes integral representations for the components
D∗

jk, j, k = 1, . . . , d, of the effective diffusivity matrix D∗ involving spectral measures µjk of a self-adjoint
operator [15], where d is the spatial dimension of the system. This abstract framework is utilized in Section
3 to develop an iterative method for calculating the moments µn

jk, n = 0, 1, 2, . . ., of µjk for spatially and
space-time periodic fluid velocity fields u. The moments for a spatially and a space-time periodic u are
calculated in Section 4, which are incorporated into Padé approximant bounds for the diagonal components
of D∗ [3] in Section 5. Concluding remarks are given in Section 6.

2 Effective transport by advection-diffusion

The density φ of a cloud of passive tracer particles diffusing along with molecular diffusivity ε and being
advected by an incompressible velocity field u satisfies the advection-diffusion equation

∂tφ(t,x) = u(t,x)·∇φ(t,x) + ε∆φ(t,x), φ(0,x) = φ0(x), (1)

for t > 0 and x ∈ Rd. Here, the initial density φ0(x) and the fluid velocity field u are assumed given, and u
satisfies ∇·u = 0. In equation (1), ε > 0 is the molecular diffusion constant, ∂t denotes partial differentiation
with respect to time t, and ∆ = ∇·∇ = ∇2 is the Laplacian. Moreover, ψ·ϕ = ψ Tϕ, where ψ T denotes
transposition of the vector ψ and ϕ denotes component-wise complex conjugation, with ψ·ψ = |ψ|2. Later,
we will extensively use this form of the dot product over complex fields, with built in complex conjugation.
However, we emphasize that all quantities considered in this section are real-valued.

In our analysis of the effective diffusivity matrix D
∗, it is beneficial to use non-dimensional parameters.

We therefore assume that equation (1) has been non-dimensionalized as follows. Let ℓ and τ be typical length
and time scales associated with the problem of interest. Mapping to the non-dimensional variables t 7→ t/τ
and x 7→ x/ℓ, one finds that φ satisfies the advection diffusion equation in (1) with a non-dimensional
molecular diffusivity and fluid velocity field,

ε 7→ τε/ℓ 2, u 7→ τ u/ℓ. (2)

This non-dimensionalization demonstrates that the fluid velocity field u is divided by a quantity with
dimensions of velocity and the molecular diffusivity is divided by a quantity with dimensions of velocity
multiplied by spatial length. A detailed discussion of various non-dimensionalizations involving the Strouhal
number, the Péclet number, and the periodic Péclet number is given in [13, 11]. It is convenient to choose
the rescaled u and ε in a way that captures information about the fluid velocity field. However, it is also
convenient to choose these rescaled variables in a way that separates the rescaled ε from the geometry and

dynamics of u; this leads to mathematically and physically meaningful properties of rigorous bounds for
D∗ which follow from the analytic structure of Stieltjes integral representations for D∗ [2, 3] — discussed in
Section 2.2 below.

We accomplish both of these goals as follows. Define the dimensional fluid velocity field by u = u0v, where
the parameter u0 has dimensions of velocity and represents the “flow strength” of u which is independent
of the geometry and dynamics of u which, in turn, is encapsulated in the non-dimensional vector field
v. With these definitions, we choose reference scales τ and ℓ in equation (2) to satisfy u0 = ℓ/τ so that
u 7→ v and ε 7→ ε/u0 ℓ . For example, for BC-flow [5], we define the dimensional fluid velocity field by
u = u0 (C cos y,B cosx), where the flow strength u0 ∈ (0,∞) is chosen to be independent of the non-
dimensional parameters B,C ∈ [0, 1] which determine the streamline geometry of u in v = (C cos y,B cosx).

An example of a non-dimensional parameter that compares the rate of scalar advection to the rate of
diffusion is the Péclet number. We define it by the ratio Pe = ℓu0/ε, although other definitions have been
used [13, 11, 11]. Therefore, our choice of the rescaled ε satisfies Pe = 1/ε. The advection and diffusion
dominated regimes are characterized by Pe ≫ 1 and Pe ≪ 1, respectively.

The parameter separation between Pe and the geometry of the flow is important for rigorous upper and
lower Padé approximant bounds for D∗ [2] discussed in Section 5. Padé approximants of D∗ are given in
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terms of ratios of polynomials [3] P (z)/Q(z), where z = Pe2, 0 < z < ∞, and the coefficients of these
polynomials depend on the moments of a spectral measure that, in turn, depend on the fluid velocity field
u [2]. For example, when u is given by BC-flow the moments of the measure depend on the parameters B
and C. Our numerical investigations have shown if the non-dimensionalization of equation (1) is chosen in
a way that the variable z also depends on the flow geometry through the ratio B/C, then this gives rise to
positive real roots for the polynomials P (z) and Q(z). This, in turn, gives rise to positive real roots and poles
in the (rigorous) Padé approximant bounds for D∗, which is not physically or mathematically consistent with
the known behavior of D∗ [6, 18, 5, 11]. This demonstrates the importance of parameter separation between
z and the flow geometry for Padé approximant bounds for D∗.

This way of non-dimensionalizing equation (1) is also convenient in the case of a time-dependent fluid
velocity field [15], where the parameter u0 again represents the flow strength and the vector field v en-
capsulates the geometric and dynamical properties of the flow. For example, the space-time periodic flow
with velocity field u = u0( (C cos y,B cosx) + θ cos t (sin y, sinx) ) has dynamical behavior exhibiting La-
grangian chaos [5, 15]. Here, the flow strength u0 ∈ (0,∞) is independent of the parameters B,C, θ ∈ [0, 1]
which determine the geometric and dynamical properties of u. This choice of non-dimensionalization gives
a clearer interpretation of the advection and diffusion dominated regimes in terms of Pe = 1/ε than the
non-dimensionalization given in [15].

We now discuss the effective transport properties of advection enhanced diffusion, as described by the
advection diffusion equation in (1). We will assume in this manuscript that the fluid velocity field u is mean-
zero in space for steady u = u(x) and mean-zero in space-time when u = u(t,x) is space-time dependent
(also see [19]). The long time, large scale dispersion of diffusing tracers, such as heat or pollutants, being
advected by an incompressible fluid velocity field is equivalent to an enhanced diffusion process [25] with
an effective diffusivity matrix D∗. In recent decades, methods of homogenization theory [12, 6, 17, 11] have
been used to provide an explicit representation for D∗. In particular, these methods have demonstrated that
the averaged or homogenized behavior of the advection-diffusion equation in (1), with space-time periodic
velocity field u, is determined by a diffusion equation involving an averaged scalar density φ̄ and an effective
diffusivity tensor D∗ [11]

∂tφ̄(t,x) = ∇·[D∗
∇φ̄(t,x)], φ̄(0,x) = φ0(x). (3)

Equation (3) follows from the assumption that the initial tracer density φ0 varies slowly relative to the
variations of the fluid velocity field u [12, 7, 11]. This information is incorporated into equation (1) by
introducing a small dimensionless parameter δ ≪ 1 and writing [12, 7, 11]

φ(0,x) = φ0(δx) . (4)

Anticipating that φ will have diffusive dynamics as t → ∞, space and time are rescaled according to the
standard diffusive relation

ξ = x/δ, τ = t/δ2. (5)

The rescaled form of equation (1) is given by [11]

∂tφ
δ(t,x) = δ−1u(t/δ2,x/δ)·∇φδ(t,x) + ε∆φδ(t,x), φδ(0,x) = φ0(x), (6)

where we have denoted φδ(t,x) = φ(t/δ2,x/δ). The convergence of φδ to φ̄ can be rigorously established in
the following sense [11]

lim
δ→0

sup
0≤t≤t0

sup
x∈Rd

|φδ(t,x)− φ̄(t,x)| = 0, (7)

for every finite t0 > 0, provided that φ0 and u obey some mild smoothness and boundedness conditions.
An explicit representation of the effective diffusivity tensor D∗ is given in terms of the (unique) mean

zero, space-time periodic solution χj of the following cell problem [5, 11],

∂τχj(τ, ξ)− ε∆ξχj(τ, ξ)− u(τ, ξ)·∇ξχj(τ, ξ) = uj(τ, ξ), (8)
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where the subscript ξ in ∆ξ and ∇ξ indicates that differentiation is with respect to the fast variable ξ defined
in equation (5). The components D∗

jk, j, k = 1, . . . , d, of the matrix D∗ are given by [12, 6, 17, 11]

D
∗
jk = εδjk + 〈ujχk〉, (9)

where δjk is the Kronecker delta and uj is the jth component of the vector u. The averaging 〈·〉 in (9) is
with respect to the fast variables defined in equation (5). The averaging is over the bounded sets T ⊂ R and
V ⊂ Rd, with τ ∈ T and ξ ∈ V , which define the space-time period cell ((d+ 1)–torus) T × V .

In general, the effective diffusivity tensor D∗ has a symmetric S∗ and antisymmetric A∗ part defined by

D
∗ = S

∗ + A
∗, S

∗ =
1

2

(

D
∗ + [D∗]T

)

, A
∗ =

1

2

(

D
∗ − [D∗]T

)

, (10)

where [D∗]T denotes transposition of the matrixD∗. Denote by S∗
jk and A∗

jk, j, k = 1, . . . , d, the components
of S∗ and A

∗ in (10). When the fluid velocity field is mean-zero and divergence-free, as discussed above, then
equation (7) holds and the effective diffusivity tensorD∗ defined in (9) is constant [11]. Consequently, only the
symmetric part of D∗ plays a role in the effective transport equation shown in (3), as the antisymmetric part
of D∗ cancels out in the sum

∑

ij D
∗
ij∂i∂j φ̄, where ∂i denotes differentiation in the ith spatial direction [18].

In Section 4.3 we consider the fluid velocity field u

u(t,x) = (C cos y,B cosx) + θ cos t (sin y, sinx), θ ∈ [0, 1]. (11)

with temporal periodicity T = [0, 2π] and spatial periodicity V = [0, 2π]d, with d = 2. In the case of a
time-dependent fluid velocity field, 〈·〉 denotes space-time averaging over T × V . In the special case of a
time-independent fluid velocity field, the function χj is time-independent and satisfies equation (8) with
∂τχj ≡ 0, and 〈·〉 in (9) denotes spatial averaging over V [6, 17, 11].

2.1 Hilbert space

In this section we provide an abstract Hilbert space formulation of the effective parameter problem for
advection-diffusion that was proposed in [18], based on [4], and generalized to the setting of a space-time
periodic fluid velocity field in [15]. To fix ideas, consider the following sets T = [0, T ] and V = ⊗d

j=1[0, L]

which define the space-time period cell T ×V . Now consider the Hilbert spaces L2(T ) and L2(V) of Lebesgue
measurable scalar functions over the complex field C that are also square integrable [9]. Define the associated
Hilbert spaces HT , HV , and HT V = HT ⊗ HV of periodic functions, where

HT =
{

ψ ∈ L2(T ) |ψ(t) = ψ(t+ T )
}

, (12)

HV =
{

ψ ∈ L2(V) |ψ(x) = ψ(x+ Lej), j = 1, . . . , d
}

,

and the ej are standard basis vectors.
More specifically, denote time average over T by 〈·〉T , space average over V by 〈·〉V , and space-time

average over T × V by 〈·〉. The space-time average 〈·〉, induces a sesquilinear inner-product 〈·, ·〉 given by
〈ψ, ϕ〉 = 〈ψ ϕ〉, with 〈ϕ, ψ〉 = 〈ψ, ϕ〉. This HT V–inner-product, in turn, induces a norm ‖ · ‖ given by
‖ψ‖ = 〈ψ, ψ〉1/2 [9]. The set of space-time periodic Lebesgue measurable functions HT V satisfying ‖f‖ <∞
is a (complete) Hilbert space [9]. Similarly, the space and time averages, 〈·〉V and 〈·〉T , induce sesquilinear
inner-products, 〈·, ·〉V and 〈·, ·〉T , that induce norms, ‖ · ‖V and ‖ · ‖T , associated with the Hilbert spaces HV

and HT .
To treat temporal dependence, we define the space AT of functions that are absolutely continuous [23, 21]

on the interval T , having derivative belonging to L2(T ), and the space ÃT of absolutely continuous T –
periodic functions with time derivatives belonging to L2(T ),

ÃT = {ψ ∈ AT |ψ(0) = ψ(T )}, (13)

which is not a Hilbert space but is instead an everywhere dense subset of the Hilbert space HT [23]. To
treat spatial dependence, we now define the Sobolev space H

1,2
V which is itself a Hilbert space [4, 8, 14],

H
1,2
V =

{

ψ ∈ HV | ‖∇ψ‖V <∞, 〈ψ〉V = 0
}

. (14)
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The condition 〈ψ〉V = 0 in (14) is required to eliminate non-zero constant ψ, which satisfies ‖∇ψ‖V = 0.

The H
1,2
V –norm ‖∇ · ‖V is induced by the H

1,2
V –inner-product: ‖∇ψ‖V = 〈∇ψ·∇ψ〉

1/2
V .

Finally, define the Hilbert space H and its everywhere dense subset F

H = HT ⊗ H
1,2
V , F = ÃT ⊗ H

1,2
V . (15)

Due to the presence of ÃT in the definition of the function space F , it is not a complete Hilbert space, and
is instead an everywhere dense subset of the complete Hilbert space H . Recall that 〈·〉 denotes space-time
average over T × V and ψ·ζ = ψT ζ. The sesquilinear H –inner-product is given by 〈ψ, ϕ〉1,2 = 〈∇ψ·∇ϕ〉
with associated norm ‖ · ‖1,2 given by ‖ψ‖1,2 = 〈|∇ψ|2〉1/2. We emphasize that in the case of a time-
dependent fluid velocity field, it is necessary that ψ ∈ H satisfy 〈ψ〉V = 0, as required by the definition of
H

1,2
V in (14). Otherwise, ‖·‖1,2 = |T ×V|−1

∫

T ×V
dt dx |∇ · |2 is not a norm, since a strictly positive function

ψ(t,x) = ψ(t) on T × V satisfies ‖ψ‖1,2 = 0, where |T × V| denotes Lebesgue measure of the set T × V . In

the case of a time-independent fluid velocity field u = u(x) we set H ≡ F ≡ H
1,2
V , and 〈·〉 = 〈·〉V .

2.2 Integral representations for the effective diffusivity

In this section we summarize the results of [15], which provides Stieltjes integral representations for both
the symmetric S∗ and antisymmetric A∗ parts of D∗. Since the analysis in this section involves only the
fast variables (τ, ξ) defined in equation (5), for notational simplicity, we will drop the subscripts ξ shown in
equation (8) and use ∂t to denote ∂τ .

Inserting the expression for uj on the right side of (8) into equation (9) leads to the following functional
representations for the components S∗

jk and A∗
jk, j, k = 1, . . . , d, of S∗ and A∗ [18]

S
∗
jk = ε(δjk + 〈χj , χk〉1,2), A

∗
jk = 〈Aχj , χk〉1,2 , A = (−∆)−1(∂t − u·∇) . (16)

Here, 〈f, h〉1,2 = 〈∇f ·∇h〉 is a Sobolev-type sesquilinear inner-product [14] and the operator (−∆)−1 is
based on convolution with respect to the Green’s function for the Laplacian ∆ [22, 8]. Since the function
χj is real-valued we have 〈χj , χk〉1,2 = 〈χk, χj〉1,2, which implies that S∗ is a symmetric matrix. The
function Aχj is also real-valued. The operator A is skew-adjoint on the Hilbert space H [15], which implies
that A∗

kj = 〈Aχk, χj〉1,2 = −〈χk, Aχj〉1,2 = −〈Aχj , χk〉1,2 = −A∗
jk which, in turn, implies that A∗ is an

antisymmetric matrix, hence A∗
kk = 〈Aχk, χk〉1,2 = 0.

Applying the linear operator (−∆)−1 to both sides of the cell problem in equation (8) yields the following
resolvent formula for χj

χj = (ε+A)−1gj , gj = (−∆)−1uj . (17)

From equations (16) and (17) we have the following functional formulas for S∗
jk and A∗

jk involving the
skew-adjoint operator A

S
∗
jk = ε

(

δjk + 〈(ε+A)−1gj , (ε+A)−1gk〉1,2
)

, (18)

A
∗
jk = 〈A(ε+A)−1gj , (ε+A)−1gk〉1,2.

Since A is a skew-adjoint operator, it can be written as A = ıM where M is a symmetric operator [23].
In [15] it is shown that M is self-adjoint on the Hilbert space H .

The spectral theorem for self-adjoint operators states that there is a one-to-one correspondence between
the self-adjoint operator M and a family of self-adjoint projection operators {Q(λ)}λ∈Σ — the resolution of
the identity — that satisfies limλ→ inf ΣQ(λ) = 0 and limλ→ supΣQ(λ) = I [23]. Here, Σ is the spectrum of
the operator M , while 0 and I denote the null and identity operators. Define the complex valued function
µjk(λ) = 〈Q(λ)gj , gk〉1,2, j, k = 1, . . . , d, where gj = (−∆)−1uj is defined in (17). The real, Reµjk(λ),
and imaginary, Imµjk(λ), parts of the function µjk(λ) are of bounded variation, and therefore have Stieltjes
measures Reµjk and Imµjk associated with them [23]. The function µkk(λ) is positive hence µkk is a positive
measure, while Reµjk and Imµjk, j 6= k, are signed measures. Given certain regularity conditions [15] on
the components uj of the fluid velocity field u, the functional formulas for S∗

jk and A∗
jk in (18) have the
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following Radon–Stieltjes integral representations, for all 0 < ε <∞

S
∗
jk = ε

(

δjk +

∫ ∞

−∞

dRe µjk(λ)

ε2 + λ2

)

, A
∗
jk = −

∫ ∞

−∞

λdIm µjk(λ)

ε2 + λ2
. (19)

The integration in (19) is over the spectrum Σ ⊆ R of the self-adjoint operator M = −ıA [23, 20]. In the
setting of a time-independent flow, u = u(x), the operator A = (−∆)−1[u·∇] and the self-adjoint operator
M = −ıA is compact [4]. Therefore, the spectrum Σ is discrete outside a neighborhood of λ = 0 with a
limit point at λ = 0 [22]. In the setting of a time-dependent flow, u = u(t,x), M = −ıA is an unbounded
operator [15, 23]. Therefore, in general, the spectrum Σ can be an unbounded subset of R, it can have
discrete and continuous components, and can even coincide with R itself [23].

3 Iterative moment method

In this section we provide an iterative method which may be used to calculate, in principle, an arbitrary
number of moments for spectral measures associated with the effective diffusivity for spatially and space-
time periodic fluid velocity fields. The spectral theorem shows that the mass µ0

jk and the moments µn
jk,

n = 1, 2, 3, . . ., of the spectral measure µjk are given by

µ0
jk =

∫ ∞

−∞

dµjk(λ) = 〈gj , gk〉1,2, µn
jk =

∫ ∞

−∞

λn dµjk(λ) = 〈Mngj , gk〉1,2, n = 1, 2, 3, . . . ,

where M = −ıA and the operator Mn is defined through composition. Integration by parts and properties
of the operator (−∆)−1 show that the mass µ0

jk of the measure µjk is given by [15]

µ0
jk = 〈gj , gk〉1,2 = 〈∇(−∆)−1uj·∇(−∆)−1uk〉 = 〈(−∆)−1uj, uk〉2 = 〈gj , uk〉2, (20)

where we have denoted 〈·, ·〉2 the sesquilinear L2(T × V) inner-product. Similarly, denoting the material

derivative Dt = ∂t+u·∇ for time-dependent u and Dt = u·∇ for time-independent u, with A = (−∆)−1Dt,
integration by parts and the anti-symmetry of A yield [15]

µ1
jk = 〈Mgj, gk〉1,2 = −ı 〈Dtgj , gk〉2 , (21)

µ2
jk = 〈M2gj , gk〉1,2 = 〈Agj , Agk〉1,2 = 〈Dtgj , Agk〉2 .

Higher moments are found in a similar way, for n = 1, 2, 3, · · · ,

µ2n+1
jk = 〈M2n+1gj , gk〉1,2 = −ı 〈An+1gj , A

ngk〉1,2 = −ı 〈DtA
ngj , A

ngk〉2 , (22)

µ2n+2
jk = 〈M2n+2gj , gk〉1,2 = 〈An+1gj, A

n+1gk〉1,2 = 〈DtA
ngj , A

n+1gk〉2 .

From equation (22) and the asymmetry of A, we have µ2n+1
jk = 0 for all n = 0, 1, 2, . . . [15]. Moreover,

µ2n
kj = µ2n

jk as gk, Dtgk, A
ngk, and DtA

ngk are real-valued functions for all n = 1, 2, . . .. In summary,

µ2n
kj = µ2n

jk , µ2n+1
jk = 0 . (23)

A key property of the operators (−∆)−1, Dt, and A = (−∆)−1Dt is that they are linear. In order to take
advantage of this property in our calculation of the moments µn

jk of the measure µjk, we take T = [0, 2π] and

V = [0, 2π]2, and write the fluid velocity field u in the complex, orthonormal Fourier basis for L2(T ×V) [9]

u =
∑

ℓ,k

aℓ,k φℓ,k, φℓ,k(t,x) = exp[ı(ℓt+ k·x)] , aℓ,k = 〈u, φℓ,k〉2 , (24)

where ℓ ∈ Z, k ∈ Zd, aℓ,k = (a1ℓ,k, . . . , a
d
ℓ,k), and the average 〈u, φℓ,k〉2 is understood to be component-wise,

so (aℓ,k)i = 〈ui, φℓ,k〉2. The orthonormal basis vectors satisfy

〈φℓ,k, φℓ′,k′〉2 = 〈φℓ−ℓ′,k−k′〉 = δℓ,ℓ′ δk,k′ , (25)
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where 〈·〉 denotes averaging over T ×V and δi,j is the Kronecker delta, with δk,k′ =
∏

i δki,k′

i
. For simplicity,

we assume that there are a finite number of terms in the Fourier expansion of u. In the setting of a time-
independent flow, u = u(x), the basis function φℓ,k is replaced by φk(x) = exp(ık·x), so that aℓ,k = a0,k =
ak. The basis functions {φℓ,k}ℓ,k are eigenfunctions of the operators ∂t, ∇, and (−∆)−1, with [15]

∂tφℓ,k = ıℓ φℓ,k , ∇φℓ,k = ık φℓ,k , (−∆)−1φℓ,k = |k|−2φℓ,k . (26)

It follows from equations (24) and (26), and the linearity of the operator (−∆)−1 that gj = (−∆)−1uj
satisfies

gj =
∑

ℓ,k

|k|−2 a j
ℓ,k φℓ,k . (27)

Moreover, from equation (26), Dt = ∂t + u·∇, and A = (−∆)−1Dt, we have

Dtφℓ′,k′ = (∂t + u·∇)φℓ′,k′ (28)

= ıℓ′ φℓ′,k′ + [u · ık′]φℓ′,k′

= ıℓ′ φℓ′,k′ −
∑

ℓ,k

ı[aℓ,k ·k
′ ]φℓ′+ℓ,k′+k

Aφℓ′,k′ = ıℓ′|k′|−2 φℓ′,k′ −
∑

ℓ,k

ı[aℓ,k ·k
′ ] |k′ + k|−2 φℓ′+ℓ,k′+k ,

where the −ı comes from the sesquilinearity of the dot product. Consequently, equations (27) and (28), and
the linearity of the operators Dt and A yield

Dtgj =
∑

ℓ,k

|k|−2a j
ℓ,kDtφℓ,k , Agj =

∑

ℓ,k

|k|−2a j
ℓ,kAφℓ,k . (29)

The mass and moments of the spectral measure µjk can be expressed explicitly in terms of just the Fourier
coefficients aℓ,k of u, using the orthonormality of the basis {φℓ,k} and equations (20)–(24), (27) and (29).
For example equations (20), (24), and (27), and the orthonormality of the φℓ,k yield

µ0
jk = 〈(−∆)−1uj, uk〉2 =

∑

ℓ,k

|k|−2 a j
ℓ,k ā

k
ℓ,k , (30)

where ā j
ℓ,k is the complex conjugate of a j

ℓ,k. Similarly, the first µ1
jk and second µ2

jk moments of the measure
µjk can be expressed explicitly in terms of just the Fourier coefficients aℓ,k of u. However, these equations
expressed in terms of the aℓ,k are complicated and those for higher moments µn

jk, n = 3, 4, . . ., expressed in
terms of the aℓ,k become unmanageable. However, the form of the formulas for µn

jk in equations (21) and
(22) show that an arbitrary number of the moments can be found iteratively.

The key to doing so is determining how the operators (−∆)−1, Dt = u·∇, and A = (−∆)−1Dt map one
iterate to the next. By linearity, it suffices to understand how these operators transform a single Fourier
mode pℓ,kφℓ,k to potentially multiple modes

∑

ℓ′,k′ p′ℓ′,k′φℓ′,k′ . By equations (24), (26) and (28), we have

(−∆)−1φℓ′,k′ = |k′|−2φℓ′,k′ , (31)

Dtφℓ′,k′ = ıℓ′φℓ′,k′ −
∑

ℓ,k

ı[aℓ,k ·k
′ ]φℓ′+ℓ,k′+k ,

Aφℓ′,k′ = ıℓ′|k′|−2φℓ′,k′ −
∑

ℓ,k

ı[aℓ,k ·k
′ ]|k′ + k|−2 φℓ′+ℓ,k′+k ,

To make this explicit, we write

uj =
∑

ℓ,k

a j
ℓ,k φℓ,k , gj =

∑

ℓ,k

b jℓ,k φℓ,k , Dtgj =
∑

ℓ,k

c jℓ,k φℓ,k , Agj =
∑

ℓ,k

d j
ℓ,k φℓ,k . (32)
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Therefore, equations (20), (21), and (32), and the orthonormality of the φℓ,k yield

µ0
jk =

∑

ℓ,k

b jℓ,k ā
k
ℓ,k , µ1

jk = −ı
∑

ℓ,k

c jℓ,k b̄
k
ℓ,k , µ2

jk =
∑

ℓ,k

c jℓ,k d̄
k
ℓ,k . (33)

In a similar way, for each n = 1, 2, 3, . . . , denote

DtA
ngj =

∑

ℓ,k

c j , nℓ,k φℓ,k , Angj =
∑

ℓ,k

d j , n
ℓ,k φℓ,k , (34)

with d j , 1
ℓ,k = d j

ℓ,k and d j , n
ℓ,k = |k|−2c j , nℓ,k . Then, from equation (22) we have

µ2n+1
jk = −ı

∑

ℓ,k

c j , nℓ,k d̄ k , n
ℓ,k , µ2n+2

jk =
∑

ℓ,k

c j , nℓ,k d̄ k , n+1
ℓ,k . (35)

In the next section we will use the iterative mappings in (31) and formulas for the spectral measure mass and
moments in equations (33) and (35) to calculate many moments for some steady and space-time periodic
fluid flows.

4 Moment calculations

In this section we analytically and numerically calculate moments µ2n
jk , for n = 0, 1, 2, . . ., and j, k = 1, . . . , d,

for each of the spectral measures µjk. For shear flow we analytically calculate all of the moments. These
results show that each of the spectral measures is a δ-function centered at the spectral origin. For 2D steady
BC-flow and a related time-dependent 2D flow, we implement the iterative moment method developed in
Section 3 using Maple’s symbolic math toolbox and calculate several moments analytically in closed form.
We also implement the iterative moment method in Matlab and compute many more moments to floating
point precision. In Section 5, we incorporate the positive moment values µ2n

kk in Padé approximant bounds
for the diagonal components D∗

kk of the effective diffusivity matrix D
∗ for these 2D fluid velocity fields.

4.1 Moments of shear flow

We now consider the special case of shear flow. The fluid velocity field for shear flow is time-independent. In
2D shear flow in the x-direction has a fluid velocity u = (0, ζ(x)) and u = (ξ(y), 0) for flow in the y-direction,
where in the current context ξ and ζ are arbitrary mean-zero functions which are expressible by finite Fourier
series, as shown in equation in (24). Examples of 3D shear flow fluid velocity fields are u = (ξ(y, z), 0, 0),
u = (0, ζ(x, z), 0), and u = (0, 0, γ(x, y)), where γ is also an arbitrary function of the same type as ξ and ζ.

The key property of these simple shear flows is that only one component of the fluid velocity field is non-
zero, the ith component say, and that component is a function which is independent of xi, the ith component
of x. This property and equations (26) and (27) imply ∇gj = 0 for all j = 1, . . . , d, hence Dtgj = u·∇gj = 0
for all j = 1, . . . , d which, in turn, implies that Agj = (−∆)−1Dtgj = 0 for all j = 1, . . . , d which, in turn,
implies that Angj = 0 and DtA

ngj = 0 for all j = 1, . . . , d and n = 1, 2, . . . . Therefore, by equations (20)–
(22) we have

µ0
jk = 〈gj , uk〉2 , µn

jk = 0 , j, k = 1, . . . , d , n = 1, 2, 3, . . . . (36)

Let’s first focus on the spectral measure µkk for some k = 1, . . . , d, which is a positive measure. It’s clear
that the only positive Stieltjes measure with all moments having value zero is a δ-measure concentrated at
λ = 0, δ0(dλ), where δa(dλ) is the δ-measure concentrated at λ = a. We therefore have the following result
regarding the positive measure µkk for simple shear flow,

µkk = µ0
kk δ0(dλ) . (37)

We now show the signed measures Reµjk and Imµjk, j 6= k, also satisfy (37) in a weak sense. By
the Jordan decomposition theorem [9] there exist unique positive measures Reµ+

jk and Reµ−
jk such that

8



Reµjk = Reµ+
jk − Reµ−

jk and Reµ+
jk ⊥ Reµ−

jk, and similarly for the signed measure Imµjk. This and (36)
imply the moments of these measures satisfy

[Reµ+
jk]

n = [Reµ−
jk]

n , [Imµ+
jk]

n = [Imµ−
jk]

n , n = 1, 2, 3, . . . , (38)

where [Reµ+
jk]

n and [Reµ−
jk]

n are the nth moments of the measures Reµ+
jk and Reµ−

jk, for example. Con-
sequently, (36) implies for all polynomials P (λ) satisfying P (0) = 0 that

∫

Σ

P (λ) dRe µjk(λ) = 0 , j 6= k . (39)

Since Reµ+
jk ⊥ Reµ−

jk, it is clear that this can only be the case if Reµjk = Reµ0
jk δ0(dλ). A similar argument

establishes that Imµjk = Imµ0
jk δ0(dλ). Hence, we have that

µjk = µ0
jk δ0(dλ) , j 6= k . (40)

This argument can be strengthened for the setting of a time-independent fluid velocity field, u = u(x).
In this case, the self-adjoint operator M has bounded spectrum Σ ⊆ [−‖M‖, ‖M‖] [20, 23]. The Stone
Weierstrass theorem [9] then extends the result in (39) to functions ξ(λ) continuous on the closed interval
[−‖M‖, ‖M‖] satisfying ξ(0) = 0, thus (40) holds in this strengthened sense.

4.2 Moments for BC-flow

In this section we demonstrate how the iterative method developed in Section 3 can be used to compute an
arbitrary number of moments for the spectral measure µjk associated with BC-flow, which is given by the
fluid velocity field [15]

u = (C cos y,B cosx) . (41)

In particular, we implement the iterative method using Maple’s symbolic math toolbox to calculate the mass
µ0
jk and the moments µ2n

jk , 2n = 2, 4, . . . , 12 analytically in closed form. We then discuss how higher order
moments can be numerically computed to floating point precision.

In terms of the Fourier basis {φm,n} for HV [9], where φm,n(x, y) = exp(ı(mx + ny)), the components
uj , j = 1, 2, of the fluid velocity field u = (C cos y,B cosx) are given by

u1 = (C/2) (φ0,1 + φ0,−1) , (42)

u2 = (B/2) (φ1,0 + φ−1,0) .

From equations (26), (27), and (42) we have

gj = uj , j = 1, 2 . (43)

The operator Dt = u·∇ = u1∂x + u2∂y is given by

Dt = (C/2) [φ0,1 + φ0,−1] ∂x + (B/2) [φ1,0 + φ−1,0] ∂y . (44)

Since ∂xu1 = 0 and ∂yu2 = 0, equations (26) and (42)–(44) yield

Dt g1 = (C/2)(ıB/2)(φ1,1 + φ−1,1 − φ1,−1 − φ−1,−1), (45)

Dt g2 = (B/2)(ıC/2)(φ1,1 + φ1,−1 − φ−1,1 − φ−1,−1) .

Since A = (−∆)−1Dt, it follows from equations (26) and (45) that

Agj = Dt gj/2 , j = 1, 2 . (46)

We now use equations (42)–(46) to compute the mass and the first two moments of the spectral measure
µjk. From equations (32) and (43) we have bjm,n = ajm,n, where a

1
0,1 = a10,−1 = C/2 and a21,0 = a2−1,0 = B/2,

9



2n µ2n
kk

0 1
2

2 1
8

4 3
80

6 381
32000

8 26277
6800000

10 47519559
37570000000

12 2960164002865793
7127269448000000000

14 56807418712571064717219
416027270403097600000000000

16 845725433928943189960402643663087
18830209775901005048070400000000000000

18 2652281628393653311493590026036436288914383079
179505850850574462175090974199721600000000000000000

20 404455666246342112121617203918794294909069461346892222329513233
83202120549989484527334438746964410459680581766400000000000000000000

22 61678397622238580001722366830219450097176873936306735282205457266492841578250541
38564719930926020344578565530438076789148157444429069162842585600000000000000000000000

24 24295131630327856551337800584398454447680582549232596740141494261473890932914297972532742346690937057
46170636927742076288794326714045567306816555799878186559451173786860303947656387400000000000000000000000000

Table 1: Exact values of the spectral measure moments µ2n
kk for BC- flow with fluid velocity field in equation

(41) with B = C = 1, computed using Maple’s symbolic math toolbox. Off-diagonal moments satisfy
µ2n
jk = 0, j 6= k.

and all other coefficients ajm,n = 0. Consequently, from equation (20), µ0
jk = 〈gj , uk〉2, or the first formula

in (33), µ0
jk =

∑

m,n b
j
m,nā

k
m,n, we have

µ0
11 =

C2

2
, µ0

22 =
B2

2
, µ0

12 = 0 . (47)

Similarly, from the formulas in equation (21) µ1
jk = −ı 〈Dtgj , gk〉2 and µ2

jk = 〈Dtgj, Agk〉2 or the last two

formulas in equation (33), µ1
jk = −ı

∑

ℓ,k c
j
ℓ,k b̄

k
ℓ,k , and µ

2
jk =

∑

ℓ,k c
j
ℓ,k d̄

k
ℓ,k , we have µ1

jk = 0 and

µ2
11 = µ2

22 =
B2C2

8
, µ2

12 = 0 . (48)

While the calculations of the mass and the first two moments are quite transparent, calculations of
higher order moments become complicated quickly. Analytical closed form expressions can be obtained
using Maple’s symbolic math toolbox. These calculations indicate that µ2n

12 = 0 for all 2n = 0, 2, 4, 6, . . . and

µ4
11 = (1/320)B2C4 + (11/320)B4C2 , (49)

µ6
11 =

3B2C2(101B4 + 25B2C2 + C4)

32000
,

µ8
11 =

B2C2(567567B6 + 233070B4C2 + 39610B2C4 + 617C6)

217600000
,

µ10
11 =

C2B2(567567B6 + 233070B4C2 + 39610B2C4 + 617C6)

217600000
,

µ12
11 =

C2B2(3455217211B8 + 1985186775B6C2 + 556637120B4C4 + 85049835B2C6 + 412611C8)

4808960000000
,

where µ2n
22 as a function of B and C, µ2n

22 (B,C) satisfies µ
2n
22 (B,C) = µ2n

11 (C,B). We were able to calculate
the moments µ2n

ij (B,C) for BC-flow in closed form up to 2n = 26 for arbitrary B,C ∈ (0, 1], given the
computational resources used. Some of these are displayed in Table 1 for B = C = 1.
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Figure 1: Spectral measure moment computations for BC-cell-flow. (a) Numerical computation
of the moments µ2n

11 displayed in log-10 scale for BC-flow in (41) with B = C = 1 using the iterative
scheme shown in equations (50)–(52). The linear fit to the data log10(µ

2n
11 ) suggests the power law behavior

µ2n
11 ∼ 10−0.24(2n) for n≫ 1. (b) Error of the floating point computations in (a) relative to the exact values,

i.e., |µ2n
float − µ2n

exact|/µ
2n
exact, showing excellent agreement with error values . 10−15 for 2n = 0, 2, . . . , 26.

Numerically computing higher order moments using floating point arithmetic can be accomplished using
the mapping in equation (31) as follows. The action of the inverse Laplacian on a Fourier mode φm,n(x, y) =
exp(ı(mx+ ny)) is given by,

(−∆)−1φm,n = φm,n/(m
2 + n2) , m2 + n2 6= 0 . (50)

Also, since φi,jφk,l = φi+k,j+l , from equations (26) and (44) we have

Dtφm,n = (ımC/2)φm,n+1 + (ımC/2)φm,n−1 + (ınB/2)φm+1,n + (ınB/2)φm−1,n , m2 + n2 6= 0 , (51)

with Aφm,n = (−∆)−1Dtφm,n. Equations (33) and (35) together with (50) and (51) define an iterative
method that can be used to compute Fourier coefficients for the functions in the iterative mapping chain:

uj 7→ gj 7→ Dt gj 7→ Agj 7→ DtAgj 7→ A2gj 7→ DtA
2gj 7→ A3gj 7→ . . . . (52)

This can be used to numerically compute an arbitrary number of moments µn
jk for BC-flow, the maximum

number limited only by numerical accuracy and computational resources.
We have used this iterative method to calculate hundreds of spectral measure moments µ2n

11 for BC-cell-
flow with fluid velocity field in equation (41) and B = C = 1 using Matlab — shown in Fig. 1. Since the
operator A is bounded for this 2D steady flow, the moments decrease exponentially for large n, and Fig. 1(a)
suggests the power law behavior µ2n

11 ∼ 10−0.24(2n) for n ≫ 1. Fig. 1(b) shows the error of the computed
values of µ2n

11 using Matlab, relative to the exact values in Table 1, with error values . 10−15 indicating quite
accurate numerical computation of the µ2n

11 .

4.3 Moments for a 2D time-periodic flow

In this section we demonstrate how the iterative method developed in Section 3 can be used to compute an
arbitrary number of moments for the spectral measure µjk associated with the space-time periodic flow [15, 5]

u = (C cos y,B cosx) + θ cos t (sin y, sinx). (53)

In particular, we implement the iterative method using Maple’s symbolic math toolbox to calculate the
first few moments analytically in closed form. We then demonstrate how higher order moments can be
numerically computed to floating point precision.
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Dynamic BC flow

2n µ2n
kk µ2n

jk

0 3/4 0
2 35/64 0
4 1069/1280 5/32
6 282223/163840 473/800
8 15778075321/3481600000 83952089/51200000

Table 2: Exact values of the spectral measure moments µ2n
kk and µ2n

jk , j 6= k, for the fluid velocity field in
equation (53) with B = C = θ = 1, calculated using Maple’s symbolic math toolbox.

Denote u = uBC + uθ, where uBC = (C cos y,B cosx) is the fluid velocity field in equation (42) and
uθ = θ cos t (sin y, sinx). The components uj , j = 1, 2, of the fluid velocity field u in (53) expressed in terms
of the Fourier basis {φℓ,m,n} for HT V [9], where φℓ,m,n(x, y, t) = exp(ı(ℓt+mx+ ny)), are given by

[uBC ]1 = (C/2) (φ0,0,1 + φ0,0,−1) , (54)

[uBC ]2 = (B/2) (φ0,1,0 + φ0,−1,0) ,

[uθ]1 = (θ/4ı)(φ1,0,1 + φ−1,0,1 − φ1,0,−1 − φ−1,0,−1) ,

[uθ]2 = (θ/4ı)(φ1,1,0 + φ−1,1,0 − φ1,−1,0 − φ−1,−1,0) .

Writing g = gBC + gθ with g = (−∆)−1u, using the notation that (−∆)−1 operates component-wise on u,
we have from (54)

g = uBC + uθ . (55)

In this time-independent setting, Dt = ∂t + u·∇, hence by linearity

Dt = ∂t + uBC ·∇+ ubc·∇ . (56)

From equation (26), we have

∂tφℓ,m,n = ıℓφℓ,m,n , ℓ 6= 0. (57)

We have the following analogue of equation (51), for m2 + n2 6= 0,

uBC ·∇φℓ,m,n = (ımC/2)φℓ,m,n+1 + (ımC/2)φℓ,m,n−1 + (ınB/2)φℓ,m+1,n + (ınB/2)φℓ,m−1,n . (58)

From equation (54) we have, for m2 + n2 6= 0,

uθ·∇φℓ,m,n = (ımc/4ı)φℓ+1,m,n+1 + (ımc/4ı)φℓ−1,m,n+1 − (ımc/4ı)φℓ+1,m,n−1 (59)

− (ımc/4ı)φℓ−1,m,n−1 + (ınb/4ı)φℓ+1,m+1,n + (ınb/4ı)φℓ−1,m+1,n

− (ınb/4ı)φℓ+1,m−1,n − (ınb/4ı)φℓ−1,m−1,n .

Similarly, we have the following analogue of equation (50)

(−∆)−1φℓ,m,n = φℓ,m,n/(m
2 + n2) m2 + n2 6= 0. (60)

Equations (33) and (35) together with equations (58)–(60) enable all the Fourier coefficients in the iterative
sequence shown in equation (52) to be obtained analytically in closed form.

Using Maple’s symbolic math toolbox, this yields the spectral measure masses

µ0
11 =

C2

2
+
θ2

4
, µ0

22 =
B2

2
+
θ2

4
, µ0

12 = 0. (61)
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Figure 2: Spectral measure moment computations for a 2D time-periodic flow. (a) Numerical
computation of moments µ2n

11 displayed in log-10 scale for the time-periodic flow in (53) with B = C = θ = 1
using the iterative scheme shown in equations (57)–(60). The linear fit to the data log10(µ

2n
11 ) suggests the

power law behavior µ2n
11 ∼ 101.07(2n) for n ≫ 1. (b) Error of the numerical moment computations in (a)

relative to the exact values, showing excellent agreement with error values . 10−14.8 for 2n = 0, 2, 4, 6, 8.

Recall that all odd moments are identically zero. The second, fourth, and sixth moments are given by

µ2
11 =

3θ4

64
+

(B2 + C2 + 4)θ2

16
+
B2C2

8
, (62)

µ2
12 = 0,

µ4
11 =

5θ6

3072
+

(323B2 + 705C2 + 1090)θ4

92160
+

(180 + 22B4 + (366C2 + 245)B2 + 8C4 + 80C2)θ2

11520

+
11B4C2

320
+
C4B2

320
,

µ4
12 = −

13BCθ4

5760
−
(18(B3C +BC3) + 35BC

11520

)

θ2,

µ6
11 =

20701θ8

49152000
+
( 31583

4608000
+

4861B2

3686400
+

3119C2

1228800

)

θ6 +
( 49

2304
+

163871B2

9216000
+

4343B4

3072000

+
48329C2

3072000
+

108793B2C2

9216000
+

161C4

204800

)

θ4 +
( 1

64
+

337B2

9216
+

33191B4

2304000
+

101B6

192000
+
C2

576

−
2569B2C2

2304000
+

773B4C2

48000
+

11C4

16000
+

137B2C4

36000
+

C6

48000

)

θ2 +
303B6C2

32000
+

3B4C4

1280
+

3B2C6

32000
,

µ6
12 =

437BCθ6

4608000
+
(6509BC

1536000
+

521B3C

576000
+

521BC3

576000

)

θ4 +
(65BC

9216
−

12841B3C

2304000
−

9B5C

32000
−

12841BC3

2304000

+
91B3C3

28800
−

9BC5

32000

)

θ2 ,

where µ2n
22 as a function of B, C, and θ, µ2n

22 (B,C, θ) satisfies µ2n
22 (B,C, θ) = µ2n

11 (C,B, θ). Exact rational
values for 2n = 0, 2, . . . , 8 are displayed in Table 2 for B = C = θ = 1.

We have used this iterative method to calculate hundreds of spectral measure moments µ2n
11 for the 2D

time-periodic fluid velocity field in equation (53) with B = C = θ = 1 using Matlab — shown in Fig. 2.
Since the operator A is unbounded for this time-periodic flow, the moments increase exponentially for large
n, and Fig. 2(a) suggests the power law behavior µ2n

11 ∼ 100.54(2n) for n≫ 1. Fig. 1(b) shows the error of the
numerically computed values of µ2n

11 using Matlab relative to the exact values in Table 2, with error values
. 10−14.8 indicating quite accurate numerical computation of the µ2n

11 .
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5 Bounds for effective diffusivity

In the advection dominated regime, where ε≪ 1, it is known [6] that the asymptotic behavior of the effective
diffusivity for BC-cell flow discussed in Section 4.2 is given by D∗

kk ∼ ε1/2 as ε→ 0. The physical idea for this
vanishing behavior of D∗

kk as ε→ 0 is as follows. For ε = 0, passive tracers are trapped in closed streamlines
of the cell flow [16, 15] and without the presence of molecular diffusivity ε there can be no large scale,
macroscopic transport. However, for ε > 0, molecular diffusion can move tracers to neighboring streamlines
and ultimately to neighboring period cells, giving rise to macroscopic transport on large spatial scales, with
D∗

kk ∼ ε1/2 as ε→ 0. In [5] it was conjectured that, due to the chaotic dynamics of the time-dependent fluid
velocity field u in (53), the effective diffusivity D∗

kk has the asymptotic behavior D∗
kk ∼ 1 for ε ≪ 1, which

is a phenomenon known as residual diffusivity.
Both of the asymptotic behaviors D∗

kk ∼ ε1/2 for BC- flow and D∗
kk ∼ 1 for the dynamic flow in (53) were

numerically verified in [15, 16]. This was accomplished in [15] by developing Fourier methods for computing
the effective diffusivity D∗

kk by directly computing the spectral measure µ. The cell problem in equation
(17) was represented as an infinite system of equations involving the Fourier coefficients of the fluid velocity
field u. Truncating the system of equations results in a Hermitian matrix representation for the operator
M = −ıA in equations (17) and (18). The spectral measure of the matrix is given by a finite sum of weighted
Dirac-δ functions dµ(λ) =

∑

imi δλi
(dλ), for i = 0, 1, 2, . . .. Here, the spectral weightsmi are given explicitly

in terms of the eigenvectors of the matrix and λi are the eigenvalues of the matrix.
In this section, we describe these and other phenomena in terms of Padé approximants of the diagonal

coefficients D∗
kk, k = 1, . . . , d, of the effective diffusivity matrix which involve the moments µn

kk of the positive
measure µkk. For simplicity, let’s focus on one diagonal coefficient and set µn

kk = µn. With this notation,
equation (19) can be written as D∗

kk = ε(1+ ε−2f(ε−2)), where f(z) is a Stieltjes function [3] of the variable
z = ε−2 involving the positive measure µ.

Padé approximants {[N−1/N ]}∞N=1 and {[N/N ]}∞N=1 form rigorous, converging lower and upper bounds
for the Stieltjes function f(z) [3]

[N − 1/N ](z) ≤ f(z) ≤ [N/N ](z) , f(z) =

∫ ∞

−∞

dµ(λ)

1 + zλ2
. (63)

Since all of the terms of the expression in D∗
kk = ε(1+ε−2f(ε−2)) are positive, we therefore have the following

rigorous lower and upper bounds for D∗
kk

ε(1 + ε−2[N − 1/N ](ε−2)) ≤ D
∗
kk(ε) ≤ ε(1 + ε−2[N/N ](ε−2)) . (64)

The theory of Padé approximants for f(z) follows by expanding 1/(1+zλ2) in a geometric series and writing
f(z) as a series of Stieltjes

f(z) =

∞
∑

n=0

cn z
n , cn = (−1)n µ2n, µn =

∫ ∞

−∞

λn dµ(λ) . (65)

The L, N Padé approximant of f(z) is given by

[L/N ](z) =
P [L/N ](z)

Q[L/N ](z)
, (66)

where P [L/N ](z) is a polynomial of degree of at most L and Q[L/N ](z) is a polynomial of degree of at most N .
The formal power series for f(z) in equation (65) and the condition f(z)−P [L/N ](z)/Q[L/N ](z) = O(zL+N+1)
determines the coefficients of P [L/N ](z) and Q[L/N ](z) and these polynomials can be written in terms of
determinants involving the cn [3].

5.1 Numerical implementation

Given the moments µ2n obtained in Section 4.3, it might seem that Padé approximants for D∗
kk of any order

could be attainable. However, even in the absence of rounding errors on a computer, the theoretical treat-
ment of Padé approximants is subject to the appearance of seemingly spurious pole-zero pairs or “Froissart
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Figure 3: Padé bound orders for effective diffusivity. Attempted and actual numerator and denomina-
tor polynomial orders for [N/N ] upper and [N−1/N ] lower bounds for various values of N . These bounds for
Stieltjes functions associated with the effective diffusivity D∗

kk are for (a) BC-flow and (b) 2D time-periodic
flow with fluid velocity fields in equations (41) and (53). The actual numerator and denominator polyno-
mial orders returned for the attempted [N/N ] upper and [N − 1/N ] lower bounds are [αupper/βupper] and
[αlower/βlower].

doublets” in arbitrary locations that prevent pointwise convergence [10]. Such anomalies become common
in the presence of rounding errors or other forms of noise [10]. Hence, computing the Padé approximants
directly in terms of the determinants is essentially ill-posed and becomes unreliable for large polynomial
degree. Padé approximation uses information about the series of Stieltjes f(z) in (65) at a single point z = 0
in the complex plane to gain information about regions of the complex plane away from z = 0 — similar
to analytic continuation — and becomes more ill-posed further away from z = 0. This is a fundamental
limitation of using Padé approximant bounds to study the effective diffusivity in the advection dominated
regime, where ε≪ 1, i.e., z ≫ 1. Despite this, we will show for the case of BC-flow that Padé approximants
capture the known asymptotic behavior D∗

kk ∼ ε1/2 for ε≫ 1 [6].
Such issues associated with numerical computation of Padé approximants are addressed in [10], where a

Matlab function padeapproxwas released, which is freely available as part of Chebfun, which provides robust
Padé approximants via singular value decomposition (SVD) [10]. This numerical method does not enable
Padé approximants of an arbitrary order to be computed, but instead truncates the Padé approximants to an
order that ensures numerical stability, hence numerically dependable results — incorporating any additional
moments typically results in the same truncated Padé order. This automatic truncation is accomplished by
introducing a tolerance tol that is used to zero out singular values less than tol. For most purposes involving
problems perturbed just by rounding errors, tol = 10−14 is a reasonable value [10]. This regularization can
be circumvented by setting tol=0 [10]. The desired degrees of the numerator/denominator polynomials, in
our case N/N and N − 1/N , are provided along with a vector of the coefficients cn and tol; Numerator and
denominator polynomials of actual degree α and β are returned, as shown in Figure 3.

The numerical computation of Padé approximants can be further stabilized by scaling the cn in (65) by
picking a γ > 0 so that f(z) =

∑

n(cnγ
n)(z/γ)n has scaled coefficients cnγ

n. The goal is to obtain scaled
coefficients that have roughly comparable orders of magnitude, neither decreasing nor increasing at a rapid
geometric rate, for which the algorithm padeapprox is most effective [10]. Figure 4a shows this rescaling is
effective for BC-flow, with the variation in the moments decreasing from ∼ 7 orders of magnitude to ∼ 1
order of magnitude. Figure 4b shows the moment scaling for the time-periodic flow is less effective but does
decrease the variation in the moments from ∼ 14 orders of magnitude to ∼ 10 orders of magnitude. Once
Padé approximants are calculated using these scaled moments the original approximants are recovered by
simply using the scaled parameter z 7→ z/γ.
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Figure 4: Scaled spectral measure moments. Unscaled and scaled spectral measure moments for (a)
BC-flow and (b) space-time periodic flow. (a) The scaled moments µ2n
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n for BC-flow with γ = 3.0387

reduces the variation of the moments from ∼ 7 orders of magnitude to ∼ 1 order of magnitude. (b) The
scaled moments µ2n

11γ
n for space-time periodic flow with γ = 0.0342 reduces the variation of the moments

from ∼ 14 orders of magnitude to ∼ 10 orders of magnitude.

5.2 Bounds for BC-flow

In this section we discuss our results for Padé approximant upper [N/N ] and lower [N − 1/N ] bounds
for the effective diffusivity D∗

kk for BC-flow with fluid velocity field given in equation (41). In particular,
we incorporated into the Matlab function padeapprox the moments µ2n, 2n = 0, . . . , 26, for the spectral
measure µ for BC-cell-flow with B = C = 1. Figures 5(a) and (b) display, in linear and log-log scale
respectively, progressively higher order Padé approximants [N/N ] and [N − 1/N ] for the effective diffusivity
D∗

kk as a function of ε for N = 1, . . . , 7. Here, the maximum order N = 7 corresponds to the upper [6/6]
and lower [6/7] Padé approximants due to the truncation which occurs as illustrated in Figure 3(a). From
D∗

kk = ε(1+ε−2f(ε−2)) with f ≥ 0 we see the global lower bound is D∗
kk ≥ ε, which is shown in Figures 5(a)

and (b) in black-dash line style. The global upper bound is attained by shear flow [2], discussed in Section
4.1, where the spectral measure is given by a delta measure at the spectral origin, µ = µ0 δ0(dλ), yielding
the global upper bound D∗

kk ≤ ε(1 + µ0/ε2), also shown in Figures 5(a) and (b) in black-dash line style.
The difference [N/N ]− [N − 1/N ] of upper and lower bounds are displayed in Figure 5(c), showing that the
bounds are quite accurate for large ε, i.e., small z, and they become less accurate as ε → 0, as anticipated
and discussed in Section 5.1.

The bounds in Figures 5(a) and (b) get progressively tighter with increasing N , as indicated by the
bound differences in Figure 5(c). Figures 5(a), (b), and (c) show that for ε & 1 all the bounds but the global
upper and lower bounds lie virtually right on top of each other. The highest order bounds shown in Figure
5 incorporate the moments 2n = 0, . . . , 24 and 2n = 0, . . . , 26 for the upper and lower bounds, respectively.
They capture the behavior of D∗

kk in the advection dominated regime where ε≪ 1. Linear polynomial fits to
the bounds [6/6] and [6/7] in log-log scale capture the asymptotic behavior of the effective diffusivity D∗

kk ∼
ε1/2 discussed in Section 5, with estimated critical exponents 0.49916 and 0.50166, respectively, as shown in
Figure 5(d). The bound differences shown in Figure 5(c) indicate that the highest order bounds are accurate
to within 0.01 for ε ' 0.053 and within 0.1 for ε ' 0.025 with D

∗
kk(0.053) ≈ 0.35 and D

∗
kk(0.025) ≈ 0.24 —

demonstrating ≈ 6.6 and ≈ 9.6 times the enhancement of the effective diffusivity above ε even for the small
values of ε = 0.053 and ε = 0.025, respectively.

When more than 2n = 26 moments are supplied to the function padeapprox, in order to ensure numerical
accuracy and stability, the function just truncates the Padé order toN = 7, as shown in Figure 3(a); supplying
more moments just leads to the same repeated maximum order N = 7 of the Padé bounds. A tolerance
value tol= 10−14 was used for all bounds in Figure 5. Reducing this value does lead to bounds of a higher
order than N = 7 when more moments than 2n = 26 are supplied, at the expense of numerical accuracy of
the Padé bounds.
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Figure 5: Effective diffusivity bounds for BC-flow. Padé approximant upper [N/N ] and lower [N−1/N ]
bounds forD∗

kk(ε) as a function of ε for N = 1, . . . , 7 in (a) linear scale and (b) log-log scale. (c) Differences of
upper and lower bounds [N/N ]− [N−1/N ] for various values of N in log-log scale. (d) Linear polynomial fits
to the highest order upper and lower bounds with N = 7 demonstrating the asymptotic behavior D∗

kk ∼ ε1/2

as ε→ 0.

5.3 Bounds for space-time periodic flow

In this section we discuss our results for Padé approximant upper [N/N ] and lower [N − 1/N ] bounds for
the effective diffusivity D∗

kk for the space-time periodic flow with fluid velocity field given in equation (53)
with B = C = θ = 1. In particular, we incorporated into the Matlab function padeapprox the moments
µ2n, 2n = 0, . . . , 32, for the associated spectral measure µ. Similar to Figure 5, Figures 6(a) and (b) display
progressively higher order Padé approximants [N/N ] and [N − 1/N ] for the effective diffusivity D∗

kk as a
function of ε, with global lower and upper bounds displayed in black-dash line style.

The bounds in Figures 6(a) and (b) get progressively tighter with increasing N . For ε & 1 all bounds but
the global upper and lower bounds lie virtually right on top of each other, as demonstrated quantitatively
by the bound differences in Figure 6(c). The highest order bounds shown in Figure 6 correspond to N = 8
which incorporates the moments 2n = 0, . . . , 32. Figure 6(c) indicates the highest order bounds are accurate
within a difference of 0.01 for ε ' 0.59 and within a difference of 0.1 for ε ' 0.36 with D∗

kk(0.59) ≈ 1.22 and
D∗

kk(0.36) ≈ 1.06, indicating ≈ 2.07 and ≈ 2.94 times the enhancement of the effective diffusivity above ε
when ε = 0.59 and ε = 0.36, respectively.

Comparing this to the value of the effective diffusivity for BC-flow for ε = 0.59 and ε = 0.36 shows
the addition of the time dependent term uθ = θ cos t (sin y, sinx) with θ = 1 leads to a ≈ 5% and ≈ 16%
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Figure 6: Effective diffusivity bounds for space-time periodic flow. Padé approximant upper [N/N ]
and lower [N − 1/N ] bounds for N = 1, . . . , 8 in linear scale (a) with corresponding absolute differences (b),
and upper and lower bounds in log-log scale (c) in the variable ε. (d) Linear polynomial fits to the highest
order upper and lower bounds with N = 8.

increase in the effective diffusivity, respectively — hence an even greater enhancement above the molecular
diffusivity value. In [5, 15] numerical results indicate the addition of the time dependent term gives rise to
an additional D∗

kk enhancement of ≈ 101.5 times that for BC-flow when ε ≈ 10−4, with D∗
kk flattening out

into a D∗
kk ∼ 1 behavior for ε ≈ 0.1 with D∗

kk(10
−4) ≈ 10−1/2, compared to D∗

kk(10
−4) ≈ 10−2 for BC-flow.

6 Conclusions

The effective diffusivity D∗ associated with both spatially and space-time periodic fluid flows has a Stieltjes
function representation involving a spectral measure µ of a self-adjoint operator and the Péclet number Pe
of the flow. We considered a non-dimensionalization that separates the geometry and dynamics of the fluid
velocity field — encoded in µ— from the strength of the fluid velocity field in Pe, which leads to the following
simple relationship between the molecular diffusivity ε and Pe: Pe = 1/ε. The theory of Padé approximants
for Stieltjes functions provides rigorous nested upper and lower bounds for D∗ that incorporate the moments
of µ. The parameter separation property makes µ and the bounds independent of the geometry and dynamics
of the fluid velocity field. As more moments are incorporated the bounds get tighter and can converge to the
true value of D∗ for certain values of Pe near Pe = 0. Fundamental theoretical and numerical limitations of
calculating Padé approximants far away from Pe = 0 limit the accuracy of bounds for D∗ in the advection
dominated regime, where Pe ≫ 1, i.e., ε ≪ 1. These limitations also limit the number of bounds that can
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be stably computed.
An iterative method was introduced that enables an arbitrary number of moments of µ to be calculated.

This method was implemented in Maple to calculate several moments of both a steady and space-time
periodic flow, in closed form as a function of flow parameters. This method was also implemented in Matlab
to compute hundreds of moments to floating point precision, having excellent agreement with the exact
values. These moments were incorporated into an existing numerical algorithm padeapprox [10] which
computes Padé approximants in a robust, stable way.

Despite the fundamental limitations of calculating Padé approximants far away from Pe = 0, for the
steady cell flow, BC-cell-flow, the known [6, 7] asymptotic behavior D∗ ∼ ε1/2, for ε ≪ 1, in the advection
dominated regime was accurately captured by high order upper and lower bounds for D∗, for values of ε
down to ε ≈ 0.053. Bound differences for these highest order bounds indicate D∗ was accurately computed
within 0.01 for ε ' 0.053 and within 0.1 for ε ' 0.025.

For the space-time periodic flow, which is BC-cell-flow with an additional space-time periodic term, the
operator underlying the spectral measure µ is unbounded which makes the computation of Padé approximant
bounds forD∗ less stable than the bounds for BC-cell-flow. This restricted our analysis ofD∗ in the advection
dominated regime. Bound differences for the highest order bounds indicate the bounds are accurate to within
0.01 for ε ' 0.59 and within 0.1 for ε ' 0.36. Comparing the values ofD∗ for BC-cell-flow and the space-time
periodic flow for ε = 0.59 and ε = 0.36 shows the addition of the time dependent term to BC-cell-flow leads
to a ≈ 5% and ≈ 16% increase in D∗, respectively.

The bounds for D∗ for the space-time periodic flow are not accurate for small enough ε to capture the
residual diffusivity phenomenon suggested by direct numerical computations of D∗. In particular, in [5, 15]
numerical results indicate the addition of the time dependent term to BC-cell-flow gives rise to an additional
D∗ enhancement of ≈ 101.5 ≈ 31.62 times that for BC-cell-flow when ε ≈ 10−4, with D∗ flattening out into
a D

∗ ∼ 1 behavior when ε / 0.1 with D
∗
kk(10

−4) ≈ 10−1/2, compared to D
∗
kk(10

−4) ≈ 10−2 for BC-flow.
The iterative moment method developed in this manuscript enables analytic calculation of the moments

of µ in closed form for a large class of fluid velocity fields u, namely spatially and space-time periodic u with
finite Fourier series, which are dense in the associated spaces of square integrable periodic functions [9]. This
and the theory of Padé approximants for Stieltjes functions provide a remarkable advance in estimating the
effective diffusivity, even in the advection dominated regime where ε is small for some u.
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