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FIXERS AND DERANGEMENTS OF FINITE PERMUTATION

GROUPS

HONG YI HUANG, CAI HENG LI, AND YI LIN XIE

Abstract. Let G 6 Sym(Ω) be a finite transitive permutation group with point sta-
biliser H . We say that a subgroup K of G is a fixer if every element of K has fixed
points, and we say that K is large if |K| > |H |. There is a special interest in studying
large fixers due to connections with Erdős-Ko-Rado type problems. In this paper, we
classify up to conjugacy the large fixers of the almost simple primitive groups with so-
cle PSL2(q), and we use this result to verify a special case of a conjecture of Spiga on
permutation characters. We also present some results on large fixers of almost simple
primitive groups with socle an alternating or sporadic group.

1. Introduction

Let G 6 Sym(Ω) be a non-trivial finite transitive permutation group with point sta-
biliser H. By a classical theorem of Jordan [28], G contains a derangement, which is a
fixed-point-free permutation. Of course, subgroups of G may not contain such elements
and this leads us naturally to the following definition.

Definition. A subgroup K of G is a fixer if every element in K has fixed points on Ω.

There are two main sources of motivation for studying fixers, which arise in finite group
theory on the one hand and extremal combinatorics on the other. Let us briefly explain
these connections.

First recall that a subset of G is semiregular if every non-identity element is a derange-
ment (in addition, if the subset is transitive, then we say that it is regular). Derangements
and semiregular subgroups (or subsets) are classical concepts in permutation group the-
ory that have been widely studied for many decades (for example, see the books [6, 17]).
The concept of a fixer is complementary to the definition of a semiregular subset. More
precisely, [31, Proposition 1.1] states that if R is a semiregular subset and K is a fixer,
then |R||K| 6 |G|, with equality if and only if G = RK. From this factorisation, one can
obtain a lower bound on the proportion of derangements in G by determining the orders
of fixers. This is an intensively studied problem, and we refer the reader to [8, 15, 20] for
various results on the proportion of derangements.

In a different direction, recall that S ⊆ G is an intersecting subset if for any pair of
elements g, h ∈ S, the product gh−1 is not a derangement. Note that every fixer of G is
an intersecting subset. A well-known problem is to determine whether or not the size of
an intersecting subset of G is bounded above by the order of H, which is motivated by
the famous Erdős-Ko-Rado (EKR) theorem [13] in extremal set theory. More specifically,
there has been an intense focus on studying the finite transitive permutation groups for
which every intersecting subset has size at most |H| (a group with this property is said
to have the EKR property). This problem dates back to work of Frankl and Deza [14]
in 1977, and there have been several major advances in this direction in recent years, see
[1, 12, 32, 36, 37] for more details.

Given this connection, we focus our attention on the fixers of large order.

Definition. Let K 6 G be a fixer.

(i) K is stable if K 6 Hg for some g ∈ G, otherwise K is non-stable;
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(ii) K is large if it is non-stable and |K| > |H|.
We say that G has the weak-EKR property if every fixer has order at most |H|, andG has

the strict-weak-EKR property if it has no large fixer. As noted in [31], most permutation
groups do not satisfy the weak-EKR property; indeed, the largest order of a fixer is often
significantly larger than |H|. To measure the deficit, the following invariant

ρ0(G) := max

{
|K|

|H|
√

|Ω|
: K 6 G is a fixer

}
.

is defined in [31] (where it is denoted ρ0(G/Ω)). Note that ρ0(G) > 1/
√

|Ω|, with equality
if and only if G has the weak-EKR property.

At the other end of this spectrum, we make the following conjecture (recall that a
transitive permutation group is primitive if a point stabiliser is a maximal subgroup).

Conjecture 1. There exists an absolute constant c such that ρ0(G) < c for all finite
primitive permutation groups G.

It is shown in [31, Theorem 6] that for any number M , there exist infinitely many im-
primitive permutation groups G 6 Sym(Ω) with ρ0(G) > M , so the primitivity condition
is necessary.

In Theorem 2.10, we will show that if G is primitive, then G does not have the weak-
EKR property (and hence ρ0(G) > 1/

√
|Ω|) only if it is almost simple or of product action

type (recall that a group G is almost simple if G0 P G 6 Aut(G0) for some non-abelian
simple group G0; here G0 = soc(G) is the socle of G). In fact, by constructing a suitable
product action as in [31, Construction 3.2], one can see that Conjecture 1 is equivalent to
the following conjecture.

Conjecture 2. We have ρ0(G) 6 1 for all almost simple primitive groups G.

Our main theorem takes the first step towards a proof of Conjecture 2 by determining
the large fixers when G is an almost simple primitive group with socle PSL2(q). The
relevant table is presented at the end of the paper in Section 9 (in the table, q = pf for
some prime p and L0 = L∩ soc(G)). See Remark 9.1 for additional comments on Table 5.

Theorem 3. Suppose G is an almost simple primitive group with point stabiliser H and
socle PSL2(q). Let K be a subgroup of G with |K| > |H|. Then K is a non-stable fixer if
and only if K is G-conjugate to a subgroup of L described in Table 5.

Let us briefly outline the main techniques we use to establish Theorem 3. First, it is
not difficult to handle the case where G = PSL2(q) is simple, and this reduces the proof
to four special cases listed in Proposition 4.14. For each of these cases, we need to study
the conjugacy classes of subgroups and elements of PΓL2(q). A key ingredient here is to
work with the conjugacy classes of AΓL1(q), which is isomorphic to a maximal parabolic
subgroup of PΓL2(q). This requires some number theoretic techniques and we refer the
reader to Section 3 for more details.

In view of Theorem 3, we are able to classify all the primitive permutation groups
with socle PSL2(q) and the (strict-)weak-EKR property. The groups with q 6 61 can be
handled easily by inspecting Table 5, so we only record the result for q > 61. As in [29],
the type of H gives an approximate description of the structure of H.

Corollary 4. Suppose G is a primitive permutation group with point stabiliser H and
socle G0 = PSL2(q), where q > 61. Then G has the weak-EKR property if and only if one
of the following holds:

(i) H is of type P1, GL1(q
2), 21+2

− .O−
2 (2) or A5;

(ii) q is odd and H is of type GL1(q) ≀ S2;
(iii) f is even, q = 2f , H is a subfield subgroup of type GL2(2

f/2), and |G : G0| is even.
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Moreover, G has the weak-EKR property, but not the strict-weak-EKR property, if and
only if G = G0 is one of the final three cases presented in Table 5.

As another application of Theorem 3, we establish the best possible upper bound on
ρ0(G) for primitive groups G with socle PSL2(q), verifying Conjecture 2 in this setting.

Corollary 5. Suppose G is a primitive permutation group with socle PSL2(q). Then

ρ0(G) < 1/
√
2.

It can be deduced from Theorem 3 (also remarked in [31, Lemma 3.1]) that if q is even,

G = SL2(q) and H = D2(q−1), then ρ0(G) → 1/
√
2 as q → ∞. We can also prove that the

same bound ρ0(G) < 1/
√
2 holds for every almost simple group with sporadic socle, even

though we cannot determine all the large fixers in every case.

Theorem 6. Suppose G is a primitive permutation group with socle a sporadic simple
group. Then ρ0(G) < 1/

√
2.

Let G be a finite group, let H be a core-free subgroup and let D(G,H) be the set of
derangements in G with respect to its action on the set of cosets [G : H]. Note that K 6 G
is a fixer on [G : H] if and only if D(G,H) ⊆ D(G,K). This leads us to the more general
problem of determining when there is a containment of derangement sets with respect
to two different faithful primitive actions of a finite group, which may be of independent
interest. See Section 9 for Table 6.

Theorem 7. Let G be an almost simple sporadic group, and let H,K be core-free maximal
subgroups of G such that |K| > |H|. Suppose HG 6= KG. Then D(G,H) ⊆ D(G,K) if
and only if (G,H,K) is one of the cases listed in Table 6.

Theorem 8. Let G be an almost simple group with alternating socle, and let H be a
maximal subgroup of G that acts intransitively or imprimitively on {1, . . . , n}. Suppose
K is a core-free maximal subgroup of G with |K| > |H| and K 6∼= H. Then D(G,H) ⊆
D(G,K) if and only if (G,H,K) = (A5, S3, A4).

We refer the reader to Lemmas 8.9, 8.12 and 8.13 for partial results in the case where
soc(G) = An and H acts primitively on {1, . . . , n}.

As before, let G 6 Sym(Ω) be a finite transitive permutation group with point stabiliser
H and define

ρ1(G) := max

{
|K|

|H|
√

|Ω|
: K 6 G is a fixer and K is a maximal subgroup of G

}
.

Clearly, we have ρ1(G) 6 ρ0(G), so Conjecture 1 asserts that ρ1(G) is bounded above
by an absolute constant if G is primitive. As noted above, if q is even, G = SL2(q)
and H = D2(q−1), then ρ1(G) = ρ0(G) → 1/

√
2 as q → ∞. In addition, we anticipate

that ρ1(G) < 1/
√
2 for all almost simple primitive groups. As a corollary of Theorems 7

and 8, we establish the best possible upper bound on ρ1(G) for primitive groups G with
alternating or sporadic socle.

Corollary 9. Suppose G is an almost simple primitive group with socle an alternating or
sporadic group. Then ρ1(G) 6

√
2/5, with equality if and only if (G,H) = (A5, S3).

As a special case of the derangement containment problem highlighted above, there is
a particular interest in studying the finite groups G with core-free maximal subgroups H
and K such that D(G,H) = D(G,K). This problem arises naturally in algebraic number
theory. More specifically, it is remarked in [26, Section 1] (also see [30]) that if F/k is
a Galois extension containing subfields F1 and F2, G = Gal(F/k) is the Galois group of
F/k, H = Gal(F/F1) and K = Gal(F/F2), then F1 and F2 are Kronecker equivalent (their
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Kronecker sets differ by a finite number of primes) if and only if
⋃

g∈G

Hg =
⋃

g∈G

Kg

(if both H and K are core-free in G, then the latter condition is equivalent to D(G,H) =
D(G,K)). See [16, Section 1.1] and [41, Section 4] for more details about this connection.

The following conjecture has been proposed by Pablo Spiga (see [45, Conjecture 1]).

Conjecture 10 (Spiga). Let G be a finite group acting faithfully and primitively on
the cosets [G : H1] and [G : H2], with respective permutation characters π1 and π2. If
D(G,H1) = D(G,H2), then either π1 = π2, or one of π1 − π2 and π2 − π1 is a character
of G.

In [45], Conjecture 10 is reduced to almost simple groups (see [46, Theorem 1.2] for
an explicit statement) and it has been verified for all almost simple sporadic groups [46,
Theorem 1.3]. The latter paper also establishes some partial results towards Conjecture
10 for alternating and symmetric groups.

Our final result verifies Conjecture 10 for the groups with socle PSL2(q). This is the
first family of groups of Lie type for which the conjecture has been resolved.

Theorem 11. Conjecture 10 holds for all groups with socle PSL2(q).

The proof of Theorem 3, and also Corollaries 4 and 5, will be completed in Section 5. In
Section 6, we will establish Theorem 11, while Theorems 6 and 7 will be proved in Section
7. Finally, we complete the proofs of Theorem 8 and Corollary 9 in Section 8.

Notation. Let n be a positive integer. Then the set {1, . . . , n} is sometimes denoted [n].
If p is a prime divisor of n, then we write np for the largest p-power dividing n, and we
also write np′ = n/np. Similarly, if G is a cyclic group and p is a prime divisor of |G|, then
the unique Sylow p-subgroup and the unique Hall p′-subgroup of G are denoted Gp and
Gp′ , respectively. We adopt the standard notation for simple groups of Lie type from [29].

Acknowledgements. This work was partially supported by NNSFC grant no. 11931005.
The first author thanks the China Scholarship Council for supporting his doctoral studies
at the University of Bristol. He also thanks the Southern University of Science and Tech-
nology (SUSTech) for their generous hospitality during a visit in 2023. The authors thank
Tim Burness for his helpful comments on an earlier draft of the paper.

2. Preliminaries

Throughout, let G 6 Sym(Ω) be a finite transitive permutation group with point sta-
biliser H.

2.1. First observations. We first give some basic observations of the fixers of permuta-
tion groups.

Lemma 2.1. Let K be a subgroup of G. Then the following statements are equivalent.

(i) K is a fixer.

(ii) Kg is a fixer for some g ∈ G.

(iii) K ⊆ ⋃g∈GH
g.

(iv)
⋃
g∈GK

g ⊆ ⋃g∈GHg.

(v) Every element of K is G-conjugate to an element in H.

(vi) For any G-conjugacy class C, C ∩K 6= ∅ implies that C ∩H 6= ∅.
The spectrum of a finite group X, denoted Spec(X), is the set of the orders of the

elements of X. We also write π(X) for the set of prime divisors of |X|, so π(X) ⊆ Spec(X).
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Lemma 2.2. Let K be a fixer of G. Then

(i) Spec(K) ⊆ Spec(H);

(ii) π(K) ⊆ π(H);

(iii) K is intransitive on Ω; and

(iv) KH 6= G.

Proof. Parts (i) and (ii) are clear from Lemma 2.1. For parts (iii) and (iv), recall that any
finite transitive group has a derangement [28]. �

Lemma 2.3. Let K be a fixer of G and let G0 6 G. Then K ∩G0 is a fixer of G0.

Let ∆ be a finite set and suppose X 6 Sym(∆). Then

fpr∆(x) :=
|fix∆(x)|

|∆|
is the fixed point ratio of x ∈ X, where fix∆(x) is the set of fixed points of x on ∆. If X
is transitive on ∆, then we have

fpr∆(x) =
|xX ∩Xδ|

|xX | ,

where δ ∈ ∆ (see, for example, [5, Lemma 1.2(iii)]).

Lemma 2.4. Suppose there exists a set ∆ such that G 6 Sym(∆) and there exists x ∈ K
such that fpr∆(x) 6= fpr∆(y) for any y ∈ H. Then K is not a fixer of G.

Proof. This is given by the fact that fpr∆(x) = fpr∆(x
g) for any g ∈ Sym(∆). �

Recall that the minimal degree µ∆(X) of X is defined to be the smallest number of
points moved by any non-identity element. That is,

µ∆(X) = min
16=x∈X

(|∆| − |fix∆(x)|) = |∆| ·
(
1− max

16=x∈X
fpr∆(x)

)
.

Corollary 2.5. Suppose K is a fixer of G. Then for any set ∆ with G 6 Sym(∆), we
have µ∆(K) > µ∆(H).

Proof. If µ∆(K) < µ∆(H), then there exists x ∈ K such that fpr∆(x) > fpr∆(y) for any
y ∈ H. Now apply Lemma 2.4. �

2.2. Large fixers. Recall that a non-stable fixer K is large if |K| > |H|, and we say K
is strictly large if |K| > |H|.
Example 2.6. Let G = PGLn(q) and suppose the point stabiliser H = PGLn(q0) com-
prises the images of all the invertible matrices over Fq0 , where q

r
0 = q for some integer

r > 3. Let B = U :D be a Borel subgroup of G consisting of the images of all upper-
triangular in GLn(q), where U is a Sylow p-subgroup of G and D is a maximal split torus.
Then K := U :(D ∩ H) is a large fixer of G, and so G does not have the strict-EKR
property. To see this, first note that

|K| = qn(n−1)/2(q0 − 1)n−1 > qn
2−1

0 > |H|.
Let x ∈ K and let x̂ ∈ B be a pre-image of x. Then x̂ is an upper-triangular matrix whose
diagonal entries are all in Fq0 . Hence, the elementary divisors of x̂ are polynomials in Fq0 ,
and [23, Theorem 6.7.3] implies that x is G-conjugate to an element in H.

As introduced in Section 1, we say G has the weak-EKR property if G has no strictly
large fixer, while G is said to have the strict-weak-EKR property if G has no large fixer.
Now we list some results in the literature in the study of the EKR properties of permutation
groups, which will be helpful in the study of weak-EKR properties, noting that the EKR
property implies the weak-EKR property. The first result is [37, Theorem 1.1].
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Theorem 2.7. Any finite 2-transitive permutation group has the EKR property.

The following is [17, Lemma 14.6.1].

Lemma 2.8. If G has a regular subgroup, then G does not have the EKR property.

Corollary 2.9. If G has a regular subgroup, then G does not have a strictly large fixer.

Recall that G is called primitive if H is a maximal subgroup of G.

Theorem 2.10. Let G 6 Sym(Ω) be a primitive group with the weak-EKR property. Then
G can be embedded in a wreath product L ≀Sk, where k > 1, L 6 Sym(Σ) is almost simple,
and Ω = Σk.

Proof. If G cannot be embedded in L ≀ Sk with its product action, then one can check in
view of O’Nan-Scott theorem [33] that G has a regular subgroup. Now apply Corollary
2.9. �

The following elementary lemma will be useful to study the fixers of almost simple
primitive groups with large sizes.

Lemma 2.11. Suppose G is a primitive group with socle G0, and let K be a subgroup of
G. Then

|K ∩G0| >
|K| · |H ∩G0|

|H| .

In particular, if |K| > |H| (resp. |K| > |H|) then |K ∩G0| > |H ∩G0| (resp. |K ∩G0| >
|H ∩G0|).
Proof. Note that |H ∩G0| = |H|/|G : G0| since G0 is transitive. �

Corollary 2.12. Suppose G is a primitive group with socle G0. Then ρ0(G) 6 ρ0(G0).

Proof. Combine Lemmas 2.3 and 2.11. �

3. Conjugacy classes of AΓL1(q)

To study the fixers of two-dimensional linear groups in Sections 4 and 5, we will use the
information of conjugacy classes of AΓL1(q), noting that it is isomorphic to a maximal
subgroup of PΓL2(q) of type P1. Here we write

Γ = (F+
q :F

×
q ):〈φ〉 ∼= AΓL1(q), (1)

where q = pf for some prime p, and 〈φ〉 = Gal(Fq/Fp) is the Galois group, with the
multiplication

(a, λ)φi(b, µ)φj = (a+ λ−1bφ
−i
, λµφ

−i
)φi+j .

Recall that for a subfield Fq0 of Fq, the trace map TrFq/Fq0 : Fq → Fq0 is given by

TrFq/Fq0 (x) =
∑

σ∈Gal(Fq/Fq0 )

σ(x).

It is well-known that the trace map TrFq/Fq0 is surjective since Fq/Fq0 is a separable

extension. That is, TrFq/Fq0 (Fq) = Fq0 .

The following lemma combines [44, Lemmas 2.14 and 2.15], which describes the conju-
gacy classes of Γ.

Lemma 3.1. The elements (a, 1)φ and (b, 1)φ of Γ are conjugate in Γ if and only if
TrFq/Fp(a)TrFq/Fp(b) 6= 0 or TrFq/Fp(a) = TrFq/Fp(b) = 0.

In this section, we extend Lemma 3.1 by considering conjugacy classes in Γ with some
specific elements. Suppose q = qs1 = qr0 for some positive integers s and r, and assume r is
prime. We first record some observations on the trace maps.
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Lemma 3.2. The following properties hold.

(i) If Fq1 ⊆ Fq0 and r = p, then TrFq/Fq1 (Fq0) = {0}.
(ii) If Fq1 6⊆ Fq0 or r 6= p, then TrFq/Fq1 (Fq0) = Fq1 ∩ Fq0.

Proof. First note that if r = p then TrFq/Fq0 (Fq0) = {0}. Thus, if Fq1 ⊆ Fq0 and r = p
then

TrFq/Fq1 (x) = TrFq0/Fq1 (TrFq/Fq0 (x)) = TrFq0/Fq1 (0) = 0

for any x ∈ Fq0. This gives part (i).
Next, we consider the case where Fq1 ⊆ Fq0 and r 6= p. Assume x ∈ Fq0 , noting that

TrFq/Fq0 (x) = rx. Thus,

TrFq/Fq1 (x) = TrFq0/Fq1 (TrFq/Fq0 (x)) = TrFq0/Fq1 (rx) = rTrFq0/Fq1 (x).

This implies that TrFq/Fq1 (Fq0) = Fq1 since (r, p) = 1 and TrFq0/Fq1 (Fq0) = Fq1.
Finally, let us assume Fq1 6⊆ Fq0 , so Fq = Fq1Fq0 since Fq0 is a maximal subfield of Fq.

Hence, if TrFq/Fq1 (Fq0) = {0}, then
TrFq/Fq1 (Fq) = TrFq/Fq1 (Fq1Fq0) = {0},

a contradiction to the surjectivity of TrFq/Fq1 . It follows that there exists x ∈ Fq0 such

that TrFq/Fq1 (x) 6= 0, noting that TrFq/Fq1 (x) ∈ Fq1 ∩ Fq0 . For any y ∈ Fq1 ∩ Fq0 , we have

y(TrFq/Fq1 (x))
−1x ∈ Fq0 and

TrFq/Fq1 (y(TrFq/Fq1 (x))
−1x) = y.

This shows that Fq1 ∩ Fq0 ⊆ TrFq/Fq1 (Fq0), which completes the proof as TrFq/Fq1 (Fq0) ⊆
Fq1 ∩ Fq0 is obvious. �

Now let i be an integer such that |φi| = s.

Lemma 3.3. Let a, b ∈ Fq. Then the following properties hold.

(i) TrFq/Fq1 (a) = TrFq/Fq1 (b), then (a, 1)φi and (b, 1)φi are F+
q -conjugate.

(ii) If TrFq/Fq1 (a)TrFq/Fq1 (b) 6= 0 , then (a, 1)φi and (b, 1)φi are F+
q :F

×
q1-conjugate.

(iii) If TrFq/Fq1 (a) = 0 and TrFq/Fq1 (b) 6= 0, then |(a, 1)φi| 6= |(b, 1)φi|.

Proof. First assume TrFq/Fq1 (a) = TrFq/Fq1 (b), so TrFq/Fq1 (b − a) = 0. Note that 〈φi〉 =

Gal(Fq/Fq1). Thus, by the additive form of Hilbert 90, there exists c ∈ Fq such that

b− a = cφ
−i − c. This implies that

((a, 1)φi)(c,1) = (−c, 1)(a, 1)φi(c, 1) = (−c+ a+ cφ
−i
, 1)φi = (b, 1)φi,

which gives (i).
Next, assume both TrFq/Fq1 (a) and TrFq/Fq1 (b) are in F×

q1 . Then there exists λ ∈ F×
q1

such that λTrFq/Fq1 (a) = TrFq/Fq1 (b), and hence TrFq/Fq1 (λa) = TrFq/Fq1 (b). In view

of (i), we see that (λa, 1)φi and (b, 1)φi are conjugate in F+
q . Since λφ

i
= λ, we have

((a, 1)φi)(0,λ) = (a, 1)(0,λ)φi = (λa, 1)φi, which implies (ii).
Now assume TrFq/Fq1 (a) = 0 and TrFq/Fq1 (b) 6= 0. Then

((a, 1)φi)s = (a+ aφ
−i

+ · · ·+ aφ
−(s−1)i

, 1) = (TrFq/Fq1 (a), 1) = (0, 1)

is the identity of Γ, whereas

((b, 1)φi)s = (TrFq/Fq1 (b), 1) 6= (0, 1).

This shows (iii). �

Lemma 3.4. Suppose r ∤ s or r 6= p. Then for any a ∈ Fq, there exists b ∈ Fq0 such that
(a, 1)φi is conjugate to (b, 1)φi by an element in F+

q :F
×
q .



8 HONG YI HUANG, CAI HENG LI, AND YI LIN XIE

Proof. If TrFq/Fq1 (a) = 0, then Lemma 3.3(i) implies (a, 1)φi is F+
q -conjugate to (0, 1)φi.

If TrFq/Fq1 (a) 6= 0, then by Lemma 3.2(ii), there exists b ∈ Fq0 such that TrFq/Fq1 (b) 6= 0,

and hence (a, 1)φi is F+
q :F

×
q -conjugate to (b, 1)φi by Lemma 3.3(ii). �

Lemma 3.5. Let X 6 Γ be a subgroup such that F+
q :〈φ〉p 6 X. Suppose x ∈ X and

〈x〉 ∩ F+
q = 1. Then x is X-conjugate to an element in X ∩ (F×

q :〈φ〉).

Proof. First note that F+
q :〈φ〉p is a Sylow p-subgroup of Γ. Thus, conjugating by a suitable

element in X, we may assume 〈x〉p 6 F+
q :〈φ〉p. Let y be a generator of 〈x〉p. Then

y = (a, φi) for some a ∈ Fq and some integer i such that φi ∈ 〈φ〉p. Let |φi| = s and
q = qs1. Then we have

ys = (a+ aφ
−i

+ · · · + aφ
−(s−1)i

, 1)φi = (TrFq/Fq1 (a), 1) ∈ F+
q ∩ 〈y〉 = {(0, 1)}.

Thus, by Lemma 3.3(i), there exists b ∈ F+
q such that y(b,1) = φi, and hence

x(b,1) ∈ CΓ(y
(b,1)) = CΓ(φ

i) = (F+
q1 :F

×
q1):〈φ〉.

Note that F+
q1 6 X, so CX(φ

i) = F+
q1 :(X ∩ (F×

q1 :〈φ〉)), and X ∩ (F×
q1 :〈φ〉p′) is a Hall-p′

subgroup of CX(φ
i). Thus, 〈x〉(b,1)zp′ 6 X ∩ (F×

q1 :〈φ〉p′) for some z ∈ CX(φ
i). Therefore,

〈x(b,1)z〉 = 〈x〉(b,1)zp′ 〈y〉(b,1)z = 〈x〉(b,1)zp′ 〈φi〉 6 F×
q1 :〈φ〉

and the proof is complete by noting that (b, 1)z ∈ X. �

4. Two-dimensional linear groups

Let G 6 Sym(Ω) be a primitive group with socle G0 = PSL2(q) for some prime power
q = pf , and let H be a point stabiliser of G. Write G = G0.O for some O 6 Out(G0).
For any subgroup K of G, we write K0 := K ∩G0 (in particular, H0 := H ∩G0). In this
section, we will study the large fixers of G.

For convenience, we also set up the notation of some subgroups of G, with respect to a
fixed basis of F2

q. Let Q,D 6 PGL2(q) be the images of the subgroups of GL2(q) consisting
of all the upper-triangular unipotent matrices and all the diagonal matrices, respectively.
That is,

Q :=

{
xZ(GL2(q)) : x =

(
1 a

1

)
for some a ∈ Fq

}
(2)

and

D :=

{
xZ(GL2(q)) : x =

(
λ

µ

)
for some λ, µ ∈ F∗

q

}
. (3)

Note that Q ∼= Cfp and D ∼= Cq−1. Moreover, we have

NG(Q) = (Q:(D:〈φ〉)) ∩G = Q:(G ∩ (D:〈φ〉))
is a maximal subgroup of G of type P1. In particular,

NPΓL2(q)(Q) = (Q:D):〈φ〉 ∼= AΓL1(q),

so we define the following isomorphism ρ : NPΓL2(q)(Q) → Γ as follows (recall that Γ is
defined in (1)):

ρ :

(
1 a

1

)(
λ

µ

)
Z(GL2(q))φ

i 7→ (a, λµ−1)φi. (4)

We first establish Theorem 3 and Corollary 5 when q is small.

Proposition 4.1. The statements of Theorem 3 and Corollary 5 hold for q 6 61.

Proof. This can be done easily with the aid of Magma [2]. �
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Type M0 O Conditions Conjugates
P1 Cf

p :C(q−1)/(2,q−1)

GL1(q) ≀ S2 D2(q−1)/(2,q−1)

GL1(q
2) D2(q+1)/(2,q+1)

GL2(q0) PGL2(q0) 6 〈φ〉 q = q20 odd δ
PSL2(q0) q = qr0 odd, r odd prime

q = qr0 even, q0 6= 2, r prime
21+2
−

.O−

2 (2) S4 = 1 q = p ≡ ±1 (mod 8) δ
A4 6 〈δ〉 q = p ≡ ±3, 5,±13 (mod 40)

= 〈δ〉 q = p ≡ ±11,±19 (mod 40)
A5 A5 = 1 q = p ≡ ±1 (mod 10) δ

6 〈φ〉 q = p2, p ≡ ±3 (mod 10) δ

Table 1. Maximal subgroup M of G with soc(G) = PSL2(q) for q > 61

Thus, we assume q > 61 from now on, and we list the maximal subgroups of G up to
G-conjugacy in Table 1 (in fact, the description of the maximal subgroups in the table
holds for all q > 11).

Remark 4.2. Let us give some comments on Table 1.

(i) The definition of types of subgroups is followed from Kleidman and Liebeck [29],
which roughly describes the structure of M .

(ii) In the third column, we record the condition of O 6 Out(G0) such that M0.O
is a maximal subgroup of G0.O. We refer the reader to [3, Tables 8.1 and 8.2]
for necessary and sufficient conditions of the existence and maximality of some
subgroups.

(iii) The fifth column describes the number of conjugates of the relevant maximal sub-
groups in G. More precisely, if “δ” appears in that column, then there are exactly
two G-conjugacy classes of such maximal subgroups, namelyM andM δ, otherwise
there is a unique G-conjugacy classes of such maximal subgroups.

The following is [24, Satz 8.27].

Lemma 4.3. Any subgroup of G0 is isomorphic to one of the following groups:

(i) Cmp :Ct for some m 6 f with t | (pm − 1, pf − 1);

(ii) Cm or D2m with m | (pf ± 1)/(2, q − 1);

(iii) D8, A4, S4 or A5;

(iv) PSL2(p
m) with m | f , or PGL2(p

m) with 2m | f .
Corollary 4.4. Let K be a subgroup of G which does not contain a unipotent element of
prime order. Then K0 is isomorphic to A4, S4, A5, or a cyclic group, or a dihedral group.

The main theorem of [10] classifies the finite simple groups whose cyclic subgroups of
same order are conjugate. In particular, we have the following.

Lemma 4.5. If q is even or f is odd, then any two cyclic subgroups of G0 of same order
are G0-conjugate.

The following lemma is [24, Satz 8.5].

Lemma 4.6. Let x ∈ G0. Then either |x| = p, or x is contained in a cyclic subgroup of
G0 of order (q − 1)/(2, q − 1) or (q + 1)/(2, q − 1).

Lemma 4.7. Let m ∈ Spec(PGL2(q)). Then either m = p, or m divides q − 1 or q + 1.

Now we consider each primitive action of G in turn.
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Lemma 4.8. Suppose H is of type P1. Then G has no large fixer.

Proof. Note that G is a 2-transitive permutation group, so G has the EKR property by
Theorem 2.7. This implies that |K| 6 |H| for any fixer K of G. Hence, we only need to
consider the case where |K| = |H|. By inspecting Table 1, we deduce that K is conjugate
to H in G, which completes the proof. �

Lemma 4.9. Suppose q > 61 and H is of type 21+2
− .O−

2 (2) or A5, and let K be a large

fixer of G. Then K = Hδ and one of the following holds:

(i) G = PSL2(p), p ≡ ±1 (mod 8) and H ∼= S4;

(ii) G = PSL2(p), p ≡ ±1 (mod 10) and H ∼= A5;

(iii) G = PSL2(p
2), 3 6= p ≡ ±3 (mod 10) and H ∼= A5.

Proof. First assume H is of type 21+2
− .O−

2 (2), so q = p is a prime, and H does not contain
a unipotent element. Note that Spec(H) ⊆ {1, 2, 3, 4}, so if K0 is cyclic or dihedral, then
|K0| < |H0| and so |K| < |H| by Lemma 2.11. In view of Corollary 4.4, it suffices to
consider the cases where K0

∼= H0, so G = PSL2(p), p ≡ ±1 (mod 8) and H ∼= S4 by
inspecting Table 1. By Lemma 4.5, we see that K = Hδ is indeed a fixer of G, and this
case is recorded as in (i).

Now assume H is of type A5, so H0
∼= A5. By arguing as above, we see that the

only possibility is K = Hδ. If G = G0, then by Lemma 4.6, any cyclic subgroup of
K is conjugate to a subgroup of H, noting that there is no element of order p in K.
Thus, if G = G0 then K = Hδ is a fixer of G, as recorded in (ii) and (iii). Finally, assume
G = PΣL2(q), so H ∼= K ∼= S5. Note that x and xδ are not G-conjugate if x ∈ K \K0 is an
involution (see [6, Proposition 3.2.9]). Moreover, any involution in H \H0 are H-conjugate
to xδ ∈ H. It follows that xG ∩H = ∅, and so K is not a fixer of G. �

Lemma 4.10. Suppose q > 61 and H is of type GL1(q
2). Then G has no large fixer.

Proof. Suppose K is a large fixer of G, and let K̂ be a maximal overgroup of K in G.

Since |K| > |H|, we have K̂ is of type P1 or GL2(q
1/2) by inspecting Table 1.

First assume K̂ is of type P1, so K̂0 = (Cfp :C(q−1)/(2,q−1)). Note that
(

q − 1

(2, q − 1)
,

q + 1

(2, q − 1)

)
= 1. (5)

As K0 contains an element of order |K0|p′ , it follows that |K0|p′ ∈ Spec(H0), and so
|K0|p′ 6 2 by (5). Note that if p is odd, then H0 does not contain an element of order p,
which yields |K0|p = 1 and thus |K0| 6 2 < |H0|. If q is even, then

|K0| 6 2|K0|p 6 2q < 2(q + 1) = |H0|.
We eliminate both cases by Lemma 2.11.

Thus, to complete the proof, we may assume K̂ is of type GL2(q
1/2), so K̂0

∼= PGL2(q
1/2).

Observe that(
q1/2 ± 1,

q + 1

(2, q − 1)

)
divides

(
q − 1,

q + 1

(2, q − 1)

)
, which divides (2, q − 1).

This shows that |K0| 6 (2, q− 1)|K̂0|p 6 (2, q− 1)q1/2 < |H0|. Again, this is incompatible
with Lemma 2.11, so we conclude the proof. �

Now we turn to two primitive actions of G that need special attention. As above, let

K̂ be a maximal overgroup of K in G.

Lemma 4.11. Suppose H is of type GL1(q) ≀ S2 and q > 61. If K is a large fixer of G,

then q is even, and K̂ is of type P1 or GL2(q
1/2). Moreover, if q is even, G = G0 and K

is a maximal subgroup of type P1 or GL2(q
1/2), then K is a large fixer of G.
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Proof. First assume K is a large fixer of G, noting that |K̂| > |K| > |H|. If K̂ is of

type GL1(q
2), then K̂ is clearly not a fixer of G, and any proper subgroup of K̂ has order

strictly less than |H|. Thus, by inspecting Table 1, this implies that K̂ is of type P1 or

GL2(q
1/2).

Now assume q is odd, noting that H0
∼= Dq−1 does not contain an element of order

p. This implies that a large fixer K does not contain an element of order p. If K̂ is of
type P1, then x lies in a cyclic subgroup of G0 of order (q − 1)/2, which implies that

|K0| 6 (q − 1)/2 < |H0|, a contradiction to Lemma 2.11. If K̂ is of type GL2(q
1/2), then

K̂0
∼= PGL2(q

1/2), and by Corollary 4.4 we see that |K0| 6 max(|D2(q1/2+1)|, |A5|) < |H0|,
which is incompatible with Lemma 2.11 once again.

To complete the proof, we assume q is even and G = G0, so H ∼= D2(q−1). First assume
K is a maximal subgroup of type P1 and let x ∈ K. Note that either |x| = 2 or x lies in a
cyclic subgroup of K of order 2f − 1. By Lemma 4.5, we see that x is G-conjugate to an
element in H, so K is indeed a fixer of G. Finally, let us assume K is a maximal subgroup
of type GL2(q

1/2), so K ∼= PSL2(q
1/2). Let x ∈ K, noting by Lemma 4.6 that either x is

contained in a cyclic subgroup of K of order q1/2 ± 1, or |x| = 2. In the former case, x is
contained in a cyclic subgroup of G of order q − 1, so x is conjugate to an element in H
by Lemma 4.5, while in the latter case it is also easy to see that xG ∩H 6= ∅. It follows
that K is a fixer of G. �

Finally, let us consider the case where H is a subfield subgroup.

Lemma 4.12. Suppose H is of type GL2(q
1/2). If K is a large fixer of G, then q is even

and K̂ is of type P1. Moreover, if q is even, G = G0 and K ∼= Cf2 :C2f/2+1, then K is a
large fixer of G.

Proof. First assume K is a large fixer of G. Then by inspecting Table 1, either K̂ is of
type P1, or q is odd, G 6 PΣL2(q) and K = Hδ. Let x ∈ H0 is an element of order p. As
noted in [6, Remark 5.5.2(ii)], any element of H0 of order p is G0-conjugate to x. Thus,
if q is odd and K = Hδ, then xδ ∈ K0 is not G0-conjugate to any element in H0 (see [6,

Lemma 3.2.8]), so K is not a fixer of G by Lemma 2.3. Thus, we may assume K̂ is of type

P1. Suppose q is odd. Note that K̂0 contains a Sylow p-subgroup of G0, so

|xG0 ∩ K̂0| = |(xδ)G0 ∩ K̂0| = (q − 1)/2,

and thus |K0|p 6 (q + 1)/2. Moreover, as a Hall p′-subgroup of K̂0 is cyclic, we see that

the order of a Hall p′-subgroup of K0 lies in Spec(H0) = Spec(PGL2(q
1/2)). By Lemma

4.7, it follows that |K0|p′ 6 q1/2 + 1. This implies that

|K0| = |K0|p · |K0|p′ 6 (q1/2 + 1)(q + 1)/2 < |PGL2(q
1/2)| = |H0|,

which is incompatible with Lemma 2.11. This shows that q is even and K̂ is of type P1.

Finally, if q is even, G = G0 and K ∼= Cf2 :C2f/2+1 is a subgroup of a maximal subgroup
of type P1, then we see that K is a fixer of G by applying Lemma 4.5. �

Lemma 4.13. Suppose q > 61 and H is of type GL2(q
1/r) with r > 3 a prime. If K is a

large fixer of G, then there exists a maximal overgroup K̂ of K of type P1. Moreover, if

G = G0 and K ∼= Cfp :C(q1/r−1)/(2,q−1), then K is a large fixer of G.

Proof. First assume K is a large fixer of G, noting that(
q ± 1

(2, q − 1)
,
q1/r ∓ 1

(2, q − 1)

)
divides

(
q ± 1

(2, q − 1)
,

q ∓ 1

(2, q − 1)

)
= 1. (6)

Thus, if K̂ is of type GL1(q) ≀ S2 or GL1(q
2), then K̂0

∼= D2(q±1)/(2,q−1) and so K0 6

D2(q1/r±1)/(2,q−1) by applying (6), which implies that |K0| 6 2(q1/r + 1) < |H0|, a contra-
diction to Lemma 2.11.
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Now assume K̂ is of type GL2(q
1/s) for some prime s | f , and in view of Lemma 2.3 we

may assume G = G0. Then s 6 r as |K̂| > |K| > |H|. If s = r then K̂ is G-conjugate to

H, and so K is a stable fixer, a contradiction. Thus, we may assume s < r, and let K̃ be

the maximal overgroup of K in K̂. First note that if K̃ is of type P1 (as a subgroup of K̂)
then K has a maximal overgroup in G of type P1, so we do not need to consider this case.

Similarly, if K̃ is of type GL1(q
1/s) ≀ S2 or GL1(q

2/s), then K is contained in a maximal
subgroup of G of type GL1(q) ≀ S2 or GL1(q

2), and we note that both cases have been

handled above. If K̃ is of type 21+2
− .O−

2 (2) or A5, then q
1/s = p or p2 by inspecting Table

1, so s is the largest prime divisor of f , a contradiction to s < r. It suffices to consider

the case where K̃ is of type GL2(q
1/t) for some t with s | t. This can be done by repeating

the above argument.

This shows that K has a maximal overgroup K̂ in G of type P1. Finally, let G = G0 and

K ∼= Cfp :C(q1/r−1)/(2,q−1). Then by combining Lemma 2.3 and the argument in Example
2.6, we see that K is a fixer of G. �

To summarise, we have the following proposition.

Proposition 4.14. Let K be a large fixer of G and assume q > 61. Then one of the
following holds:

(a) q is even, H is of type GL1(q) ≀ S2 and K̂ is of type P1;

(b) q is even, H is of type GL1(q) ≀ S2 and K̂ is of type GL2(q
1/2);

(c) q is even, H is of type GL2(q
1/2) and K̂ is of type P1;

(d) H is of type GL2(q
1/r) with r odd, and K̂ is of type P1.

Each case appearing in Proposition 4.14 requires more refined treatment, and we will
work on it in Section 5. To do this, the following lemma will be useful. Here we note that
G0

∼= SL2(q) if q is even. Let

z =

(
0 1
1 0

)
∈ SL2(q) (7)

and suppose G = 〈G0, ψ〉, where ψ ∈ 〈φ〉.

Lemma 4.15. Suppose q is even. Let x ∈ G be of even order, and suppose the order of G0x
in G/G0 is odd. Then 〈x2〉 is G-conjugate to a subgroup of 〈ψ〉2′ and 〈x〉 is G-conjugate
to a subgroup of 〈z〉 × 〈ψ〉2′ .

Proof. Let t = |G0x|. Then |x| = 2t and xt is an involution in G0. Note that any element
in G0 of even order is an involution, and all involutions in G0 are conjugate. Thus, there
exists g ∈ G0 such that (xt)g = z and so xg ∈ CG(z) = P :〈ψ〉, where P is a Sylow 2-
subgroup of G0 containing z. In particular, (x2)g ∈ CG(z) is an element of odd order t. It
follows that there exists g1 ∈ CG(z) such that (x2)gg1 is contained in 〈ψ〉2′ since 〈ψ〉2′ is a
Hall 2′-subgroup of the soluble group CG(z). Therefore,

〈x〉gg1 = 〈xt〉gg1 × 〈x2〉gg1 6 〈z〉 × 〈ψ〉2′ ,

which concludes the proof. �

5. Proof of Theorem 3

In this section, we will establish Theorem 3, and we adopt the notation in Section 4.
In view of Proposition 4.1, we may also assume q > 61, so it suffices to consider the four
cases recorded in Proposition 4.14.
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5.1. Case (a). First let us consider case (a) of Proposition 4.14.

Lemma 5.1. Suppose |K| > |H| and assume Proposition 4.14(a). Then K is a fixer of

G if and only if K 6 K̂0.〈ψ〉2′ .
Proof. First assume K is a fixer of G and suppose that |K : K0| is even. Then there
exists x ∈ K \K0 such that |G0x| = 2 and |x| is a 2-power, so 〈G0, x〉 = G0.〈ϕ〉, where
ϕ is an involutory field automorphism. It follows that x is G-conjugate to an element
of H0.〈ϕ〉 ∼= Cq−1:C

2
2 , which contains no element of order 4. Thus, x is an involution,

so by [18, Proposition 4.9.1(d)], x is G0-conjugate to ϕ. With this in mind, we may
assume ϕ ∈ K by considering a suitable G-conjugate of K. By arguing as above, yϕ is
an involution for any involution y ∈ K0. This implies that CG0(ϕ)

∼= SL2(q
1/2) contains a

Sylow 2-subgroup P of K0, which yields |P | 6 q1/2 and hence |K0|p 6 q1/2. It follows from

Lemma 4.3(i) that |K0|p′ 6 q1/2 − 1. Therefore, |K0| 6 q1/2(q1/2 − 1) < 2(q − 1) = |H0|,
which is incompatible with Lemma 2.11.

It suffices to show that K = K̂0.〈ψ〉2′ is a fixer of G. To see this, we may assume
K = (Q:D):〈ψ〉2′ (recall that Q and D are defined in (2) and (3), respectively). With
a suitable conjugation of H, we may also assume that H = D:(〈z〉 × 〈ψ〉), where z is
defined as in (7). Let x ∈ K. If |x| is odd, then x is K-conjugate to an element in a Hall
2′-subgroup D:〈ψ〉2′ of K, so xG ∩H 6= ∅. If |x| is even, then we can apply Lemma 4.15
(note that |K : K0| is odd), so x is G-conjugate to an element in 〈z〉 × 〈ψ〉2′ 6 H. This
shows that K is indeed a fixer of G, which completes the proof. �

5.2. Case (b). Next, we turn to case (b) of Proposition 4.14.

Lemma 5.2. Assume Proposition 4.14(b). Then K̂ is a large fixer of G.

Proof. In view of Lemma 2.3, we may assume G = PΓL2(q), and we also assume H =

D:(〈z〉 × 〈φ〉), where z is described as in (7). For convenience, we write K = CG(φ
f/2), so

K0
∼= SL2(2

f/2) is the matrix group comprising all 2 × 2 matrices of determinant 1 over
F2f/2 .

Let x ∈ K. We first claim that there is a soluble non-cyclic subgroup of K containing
x. Let M 6 K be a minimal non-cyclic group containing x (that is, any proper subgroup
of M containing x is cyclic). To prove the claim, it suffices to show that M is soluble.
We argue by contradiction and suppose that M is insoluble. Then M0 = M ∩ G0 is
insoluble, and hence M0

∼= SL2(2
t) for some t dividing f/2 by Lemma 4.3. Note that

the finite groups with a cyclic maximal subgroup are classified in [42, Theorem 1]. Thus,
by inspecting the list of groups described in [42, Theorem 1], and with the observation
M0

∼= SL2(2
t) in mind, we see that any maximal subgroup of M is not cyclic. In other

words, there is a non-cyclic maximal subgroup of M containing x, which is incompatible
with the minimality of M . This completes the proof of the claim.

Now let M 6 K be a soluble non-cyclic group containing x (the existence of M follows
from the claim above). Observe that M0 6= 1 since M is not cyclic. Once again, by

applying Lemma 4.3, we see that either M0
∼= Cr2 :Ct with t divides (2r − 1, 2f/2 − 1), or

M0
∼= Ct or D2t with t | 2f/2 ± 1.

SupposeM0 is cyclic or dihedral. ThenM contains a normal cyclic subgroup C of order
t with t | 2f/2 ± 1. By Lemma 4.5, C is K0-conjugate to a subgroup of D, where D 6 G

is a subgroup defined in (3), noting that 2f − 1 = (2f/2 + 1)(2f/2 − 1). It follows from
Lemma 4.6 that M 6 NG(C) is conjugate to a subgroup of H = NG(D).

Therefore, it remains to consider the case where M0
∼= Cr2 :Ct. Here M has a unique

Sylow 2-subgroup. As noted in [24, Satz 8.2(c)], two distinct Sylow 2-subgroups of K0

intersect trivially, and thus M normalises a unique Sylow 2-subgroup of K0. With this
in mind, we may replace M and x with suitable K0-conjugates, and assume x ∈ M 6

NK(Q ∩K0) (recall (2) for the definition of Q). To prove that xG ∩H 6= ∅, we first note
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that

ρ(NK(Q ∩K0)) = {(a, b)φi | a ∈ F2f/2 , b ∈ F×
2f/2

, 1 6 i 6 |φ|} = (F+
2f/2

:F×
2f/2

):〈φ〉.

If 〈x〉 ∩ Q = 1, then x is NG(Q)-conjugate to an element in D:〈φ〉 6 H by Lemma 3.5.
Thus, we may assume |〈x〉 ∩ Q| = 2. If |G0x| is odd, then Lemma 4.15 implies that x is
G-conjugate to an element in 〈z〉 × 〈φ〉 6 H, and hence we may further assume |G0x| is
even. Let y ∈ 〈x〉 ∩Q be a non-identity element. Then there exists g ∈ NK0(Q∩K0) such
that ρ(yg) = (1, 1), so

ρ(xg) ∈ Cρ(NK (Q∩K0))(ρ(y
g)) = Cρ(NK (Q∩K0))((1, 1)) = F+

2f/2
:〈φ〉.

It follows that ρ(xg) = (a, 1)φi for some a ∈ F2f/2 and some integer i with s := |φi| = |G0x|,
so s is even by our assumption. Suppose qs1 = q, noting that Fq1 ⊆ F2f/2 as s is even.
Then TrFq/Fq1 (a) = 0 by Lemma 3.2(i), whence ρ(xg) is F+

q -conjugate to φi by Lemma

3.3(i). This shows that x is G-conjugate to φi ∈ H, and we conclude the proof. �

5.3. Case (c). Now we consider Proposition 4.14(c), and we write G = G0.〈ψ〉 for some

ψ ∈ 〈φ〉. Without loss of generality, we may assume K̂ = NG(Q). Let C 6 D be the
unique subgroup of order 2f/2 + 1, where D is defined in (3), and let L = Q:(C:〈ψ〉).
Lemma 5.3. Assume Proposition 4.14(c). Then K is a large fixer of G if and only if
|G : G0| is odd and K = L.

Proof. First assume G = G0. Note that K has an element of order |K|2′ , so if K is a fixer
of G then |K|2′ 6 q1/2 + 1 by Lemma 4.6. Now if |K|2′ < q1/2 + 1 then |K|2′ 6 q1/2 − 1,
which yields |K| < |H|. Thus, K is a large fixer of G only if K = L, and we note that L
is a fixer of G by Lemma 4.12.

It follows by Lemmas 2.3 and 2.11 thatK is a large fixer of G only ifK0 = L0. Moreover,
since |H : H0| = |G : G0| and

|K0|
|H0|

=
q1/2

q1/2 − 1
,

we see that |K| > |H| if and only if |K : K0| = |G : G0|.
Assume |G : G0| = |ψ| is even. Let ϕ ∈ 〈φ〉 be an involutory field automorphism.

Then ϕ ∈ G and we may assume that ϕ ∈ K and H = CG(ϕ). Here we note that

H0.〈ϕ〉 ∼= SL2(q
1/2) × C2, so it does not contain an element of order 4. Thus, by arguing

as in the proof of Lemma 5.1, we see that if K is a fixer of G, then for any x ∈ K with
2-power order and |G0x| = 2, we have x is an involution. This implies that yϕ is an
involution for any y ∈ Q 6 K0, which yields H = CG(ϕ) contains the Sylow 2-subgroup
Q of K0. This is clearly impossible.

Therefore, |K : K0| = |G : G0| is odd, and we claim that K is G-conjugate to L. To see
this, let x ∈ K be such that K = 〈K0x〉. Note that K0 = L0 is normal in NG(Q), so we
only need to show that x is NG(Q)-conjugate to an element in L. If 〈x〉∩Q 6= 1, then there
exists g ∈ NG(Q) such that 〈xg〉∩Q 6 CQ(ψ), and hence xg ∈ CG(〈xg〉∩Q) = Q:〈ψ〉 6 L.
Thus, we assume 〈x〉 ∩ Q = 1, so |x| is odd. Moreover, by replacing x with a suitable
NG(Q)-conjugate, we may assume x is contained in the Hall 2′-subgroup D:〈ψ〉 of NG(Q).
So we may write x = yψi for some element y ∈ D and integer i. Let s = |ψi| and q = qs1.
Then xs ∈ K0 = L0 implies that

|xs| = |yyψi . . . yψ(s−1)i | = |y
q−1
q1−1 |

divides (q1/2 + 1, q1 − 1) = q
1/2
1 + 1, and hence

y

(q1/2−1)(q1/2+1)

q
1/2
1

−1 = 1.
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Note that q1/2−1

q
1/2
1 −1

and q1/2 + 1 are coprime, and hence there exist two integers k1 and k2

such that k1
q1/2−1

q
1/2
1 −1

+ k2(q
1/2 + 1) = 1. Let z = y−k2(q

1/2+1). Then (yz)q
1/2+1 = 1, and

z
q−1
q1−1 = z

(q1/2−1)(q1/2+1)

(q
1/2
1 −1)(q

1/2
1 +1) = zzψ

i
. . . zψ

(s−1)i
= 1.

Thus, there exists w ∈ D such that z = w−1wψ
−i

due to Hilbert Theorem 90, and so

xw = (yψi)w = yw−1wψ
−i
ψi = yzψi ∈ L.

This verifies the claim, so K is a fixer only if |G : G0| is odd and K = L.
Finally, assume |G : G0| = |ψ| is odd, and we show that K = L is a fixer of G. To see

this, we may assume that H0 is the subgroup of SL2(q) comprising all the invertible 2× 2
matrices over Fq1/2 . Note that C:〈ψ〉 6 H and z ∈ H, where z is the element defined in

(7). Now we argue as in the proof of Lemma 5.1 and show that every x ∈ K is G-conjugate
to an element in H. If x ∈ K is of odd order, then x is K-conjugate to an element in a
Hall 2′-subgroup C:〈ψ〉 of K, and so xG ∩H 6= ∅. And if |x| is even, then by Lemma 4.15,
x is G-conjugate to an element in 〈z〉 × 〈ψ〉 6 H. This shows that K = L is a fixer of G,
which concludes the proof. �

5.4. Case (d). Finally, we deal with Proposition 4.14(d). Throughout, we write q0 = q1/r

and we recall that G = G0.O for some O 6 Out(G0) = 〈δ〉 × 〈φ〉. We may identify
H ∩ PGL2(q) with the image of the subgroup of GL2(q) consisting of all the invertible

2× 2 matrices over Fq0 . That is, H = CG(φ
f/r). Thus, we have D ∩H ∼= Cq0−1, where D

is defined in (3).

Lemma 5.4. Assume Proposition 4.14(d). Then |K0|p′ divides (q0 − 1)/(2, q − 1).

Proof. Note that
(

q0 + 1

(2, q − 1)
,

q − 1

(2, q − 1)

)
divides

(
q + 1

(2, q − 1)
,

q − 1

(2, q − 1)

)
= 1,

and K0 has an element of order |K0|p′ . Now apply Lemma 4.6 for H0
∼= PSL2(q0). �

First, we consider the case where r 6= p. Define the following group

LI := Q:(H ∩ (D:〈φ〉)) ∼= (Cfp :C q0−1
(2,q−1)

).O. (8)

Note that |LI| > |H| since r > 3.

Lemma 5.5. Assume Proposition 4.14(d), where r 6= p. Then K is a fixer of G if and
only if K is G-conjugate to a subgroup of LI.

Proof. It suffices to consider the case where G = PΓL2(q). We first show that LI is indeed
a fixer of G. Note that (H ∩D):〈φ〉 6 H, so by Lemma 3.5, if x ∈ LI and 〈x〉∩Q = 1 then
xG∩H 6= ∅. Thus, we may assume that x ∈ LI and |〈x〉∩Q| = p. Let m be an integer such
that 1 6= xm ∈ Q, and write y = xm. Then by considering a suitable NG(Q)-conjugate
of x, we may assume y ∈ CG(φ) and so x ∈ CNG(Q)(y) 6 Q:〈φ〉. That is, ρ(x) = (a, 1)φi

for some integer i and some a ∈ Fq (recall that the isomorphism ρ is defined in (4)). Let
s = |φi| and write q = qs1. Note that r 6= p, so by Lemma 3.4, there exists b ∈ Fq0 such
that (a, 1)φi is conjugate to (b, 1)φi by an element in Γ. This implies that x is conjugate
to ρ−1((b, 1)φi) by an element in NG(Q), and so x is G-conjugate to an element in H by
noting that ρ−1((b, 1)φi) ∈ H.

To complete the proof, we show that any fixer K 6 NG(Q) is G-conjugate to a subgroup
of LI. Let K1 := K ∩ PGL2(q). Then K = 〈K1, x〉 for some x ∈ K. Note that K1 6

Q:(H ∩D) P NG(Q). Thus, it suffices to show that xg ∈ LI for some g ∈ NG(Q), noting
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that Kg
1 6 Q:(H ∩D) 6 LI. If |〈x〉 ∩Q| = p, then for y ∈ 〈x〉 ∩Q of order p, yg ∈ CQ(φ)

for some g ∈ D, and hence

xg ∈ CNG(Q)(y
g) 6 Q:〈φ〉 6 LI.

Now assume |〈x〉 ∩ Q| = 1, so x is NG(Q)-conjugate to an element in D:〈φ〉 by Lemma
3.5. Thus, we may assume ρ(x) = (0, λ)φi for some integer i ∈ {0, . . . , f − 1} and some
λ ∈ F×

q . If C := 〈x〉 ∩D = 1, then i 6= 0 and xs = 1, where s = |φi|, so

(0, 1) = ρ(x)s = ((0, λ)φi)s = (0, λλφ
i · · · λφi(s−1)

) = (0,NFq/Fq1
(λ)),

where q = qs1 (recall that NFq/Fq1
(λ) is the norm of λ in the field extension Fq/Fq1). By

Hilbert 90, there exists µ ∈ F×
q such that λ = µφ

−i
µ−1, and thus

(φi)(0,µ) = (0, µ−1)φi(0, µ)φ−iφi = (0, µφ
−i
µ−1)φi = (0, λ)φi = ρ(x).

This implies that x is D-conjugate to φi ∈ LI.
Finally, assume x ∈ D:〈φ〉 and |C| 6= 1. Since K is a fixer of G and x ∈ K, there exists

g ∈ G such that xg ∈ H, so xg ∈ NG(C
g). Note that any two subgroups of H ∩ PGL2(q)

isomorphic to Cm for m > 2 are H-conjugate. In fact, if C ∼= C2, then it lies in H0 if
and only if Cg 6 H0, so they are also H-conjugate. This implies that C = Cgh1 for some
h1 ∈ H, which yields xgh1 ∈ NH(C) and gh1 ∈ NG(C). Observe that NG(C) = D:〈z, φ〉 is
a maximal subgroup of G of type GL1(q) ≀ S2, where

z =

(
0 1
−1 0

)
Z(GL2(q)),

and hence NG(C) = DNH(C) since z, φ ∈ H. This implies that there exists h2 ∈ H such
that gh1h2 ∈ D 6 NG(Q) and xgh1h2 ∈ NG(Q) ∩H 6 LI. This completes the proof. �

Next, we turn to the case where r = p and (p, |K : K0|) = 1. Here we define

LII := Q:(H ∩ (D:〈φ〉p′)) ∼= (Cfp :C q0−1
(2,q−1)

).Op′ . (9)

Remark 5.6. We remark that if r = p then |LII| > |H| for all q > 61. To see this, first
note that

|H|
|LII| =

q0(q0 + 1)

q
· |Op| 6

q0(q0 + 1)

q
· f 6

q0(q0 + 1)

q
· log2 q.

Thus, if p > 5 then we have
|H|
|LII| 6

2 log2 q

q3/5
,

which is less than 1 for all q > 61. Now assume p = 3, so q0 = q1/3 is a 3-power and

|H|
|LII| 6

3(q0 + 1)

q20
· log3 q0.

The latter term is less than 1 if q0 > 27, and one can also check that |LII| > |H| if q0 = 9.
Note that if q0 = 3 then q = 27 and |LII| < |H|.
Lemma 5.7. Assume Proposition 4.14(d), where r = p and (p, |K : K0|) = 1. Then K is
a fixer of G if and only if K is G-conjugate to a subgroup of LII.

Proof. Once again, we only need to consider the case where G = PΓL2(q), and we argue
similarly as in the proof of Lemma 5.5. First, we show that LII is a fixer of G. Note
that if x ∈ LII and 〈x〉 ∩Q = 1 then |x| is coprime to p and hence x is NG(Q)-conjugate
to an element in a Hall p′-subgroup H ∩ (D:〈φ〉p′) 6 H of LII, so xG ∩ H 6= ∅. Now

assume x ∈ LII and |〈x〉 ∩ Q| = p, so y := xm ∈ Q for some integer m < |x|. It follows
that there exists z ∈ NG(Q) such that yz ∈ CQ(φ) and x

z ∈ CNG(Q)(y
z) 6 Q:〈φ〉. Thus,

ρ(xz) = (a, 1)φi for some integer i and some element a ∈ Fq. Note that x ∈ LII implies that
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r ∤ |φi|, so we can apply Lemma 3.4 once again, which shows that xz is NG(Q)-conjugate
to ρ−1((b, 1)φi) for some b ∈ Fq0 , noting that ρ−1((b, 1)φi) ∈ H.

Now let K 6 NG(Q) be a fixer of G such that (p, |K : K0|) = 1, and we will show that
K is G-conjugate to a subgroup of LII. Let

R := NPGL2(q)(Q).〈φ〉p′ = NG(Q) ∩ (PGL2(q).〈φ〉p′).
Then K 6 R and K = 〈K1, x〉 for some x ∈ K, where K1 := K ∩ PGL2(q), noting that
K1 6 Q:(H ∩D) P NG(Q). Since Kg

1 6 Q:(H ∩D) 6 LII for any g ∈ NG(Q), it suffices
to show that x is NG(Q)-conjugate to an element of LII. If |〈x〉 ∩ Q| = p then for any
y ∈ 〈x〉 ∩Q of order p we have yg ∈ CQ(φ) for some g ∈ D, which yields

xg ∈ CR(y
g) 6 Q:〈φ〉p′ 6 LII.

This allows us to assume |〈x〉 ∩ Q| = 1, so |x| is coprime to p, and hence x is NG(Q)-
conjugate to an element in a Hall-p′ subgroup D:〈φ〉p′ of NG(Q). One can use the same
arguments as in the proof of Lemma 5.5 to show that x is D-conjugate to an element in
R ∩H 6 LII, so we omit the details. �

Remark 5.8. We remark that not every subgroup of G of the form (Cfp :C q0−1
(2,q−1)

).O is

isomorphic to LI. That is, there might exist a subgroup K of G such that K0 = LI
0

and K/K0 = LI/LI
0, while K 6∼= L. Similarly, not every subgroup of G of the form

(Cfp :C q0−1
(2,q−1)

).Op′ is isomorphic to LII. To see this, assume G = PΓL2(q), p is odd and r

is a prime divisor of p − 1. Then |φ| = r, H ∼= PGL2(p) × Cr and we have LI = LII =
Q:((D ∩H)× 〈φ〉). Let x be a generator of D, and define K = 〈Q:(D ∩H), xφ〉. Then K
is isomorphic to a group of the form (Cfp :C q0−1

(2,q−1)

).O. Note that

(xφ)r = xxφ
−1
xφ

−2 · · · xφ−(r−1)
= x(p

r−1)/(p−1),

and so |xφ| = r(p− 1). However, LI = LII does not contain an element of order r(p− 1),
whence LI 6∼= K.

Finally, let us consider the case where r = p divides |K : K0|. Define

M :=

{
xZ(GL2(q)) : x =

(
1 a

1

)
for some a ∈ Fq with TrFq/Fq0 (a) = 0

}
6 Q,

noting that M ∼= C
f−f/p
p . Let

LIII := M :(H ∩ (D:〈φ〉)) ∼= Cf−f/pp :C q0−1
(2,q−1)

.O. (10)

Remark 5.9. Note that
|H|
|LIII| =

q20(q0 + 1)

q

if r = p. Thus, it is easy to see that |LIII| > |H| if and only if p > 3.

Lemma 5.10. Assume Proposition 4.14(d), where r = p divides |K : K0|. Then K is a
fixer of G if and only if K is G-conjugate to a subgroup of LIII.

Proof. We first show that LIII is a fixer of G, and again, we may assume G = PΓL2(q).
Let x ∈ LIII. If x ∈ LII, then by arguing as in the proof of Lemma 5.7, we see that x is
NG(Q)-conjugate to an element in H. Thus, we may assume x /∈ LII. Suppose 〈x〉p 6M .
Note that 〈x〉p′ lies in a Hall p′-subgroup of CLIII(〈x〉p), which is contained in a Hall

p′-subgroup of LII. Thus, 〈x〉 = 〈x〉p〈x〉p′ 6 LII, a contradiction.
Hence, it suffices to consider the case where 〈x〉p is not a subgroup of M . Since M :〈φ〉p

is a Sylow p-subgroup of LIII, we may also assume 〈x〉p 6M :〈φ〉p. Let y be a generator of
〈x〉p. Then ρ(y) = (a, 1)φi for some a ∈ Fq with TrFq/Fq0 (a) = 0, and we see that p | |φi|
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since y ∈ M :〈φ〉p and y /∈ M . Let s = |φi| and qs1 = q. Then TrFq/Fq1 (a) = 0 by Lemma

3.2(i). Now Lemma 3.3(i) implies that ρ(y) is F+
q -conjugate to (0, 1)φi, and thus y is Q-

conjugate to φi. It follows that x is Q-conjugate to an element in CG(φ
i) 6 CG(φ

f/p) = H.
We conclude that LIII is a fixer of G.

To complete the proof, let K 6 NG(Q) be a fixer of G, and we need to show that
K is G-conjugate to a subgroup of LIII. Let x ∈ K be such that K = 〈K1, x〉, where
K1 = K ∩ PGL2(q). By our assumption, we have p divides |G0x|, which divides |x|. Let
y be a generator of the Sylow p-subgroup 〈x〉p of 〈x〉. Suppose 〈x〉 ∩ Q 6= 1. Then there
exists g1 ∈ D such that 〈xg1〉 ∩Q 6 CNG(Q)(φ), and thus

yg1 ∈ CNG(Q)(〈xg1〉 ∩Q) 6 Q:〈φ〉.
In particular, we have yg1 6 Q:〈φ〉p since |y| is a p-power. Note that y ∈ K and K
is a fixer of G, so there exists g2 ∈ G such that yg1g2 ∈ (Q ∩ H):〈φ〉p. It follows that
ρ(yg1g2) = (a, 1)φi for some a ∈ Fq0 with p | |φi| =: s. Write q = qs1, so we have Fq1 ⊆ Fq0
and TrFq/Fq1 (a) = 0 by Lemma 3.2(i). Now Lemma 3.3(i) implies that ρ(yg1g2) is F+

q -

conjugate to (0, 1)φi, and so yg1g2 is Q-conjugate to φi. Therefore, yg1g2g3 = φi for some
g3 ∈ Q, which yields

1 6= (〈x〉 ∩Q)g1g2g3 = (〈y〉 ∩Q)g1g2g3 6 (〈y〉 ∩G0)
g1g2g3 = 〈yg1g2g3〉 ∩G0 = 〈φi〉 ∩G0 = 1,

a contradiction.
This implies that 〈x〉 ∩Q = 1, and so there exists h1 ∈ NG(Q) such that yh1 ∈ 〈φ〉p by

Lemma 3.5, noting that 〈φ〉p is a Sylow p-subgroup of H ∩ (D:〈φ〉). Let yh1 = φi and let
s = |φi|. Then p | s and Fq1 ⊆ Fq0, where q

s
1 = q. It is easy to see that

ρ(xh1) ∈ ρ(CNG(Q)(y
h1)) = ρ(CNG(Q)(φ

i)) = (F+
q1 :F

×
q1):〈φ〉.

Moreover, if z is a generator of 〈x〉p′ , then ρ(zh1h2) ∈ F×
q1 :〈φ〉p′ for some h2 ∈ CNG(Q)(y

h1),
and so

〈xh1h2〉 = 〈yh1h2〉〈zh1h2〉 6 (H ∩D):〈φ〉.
Note that φf/p ∈ 〈yh1h2〉 6 Kh1h2 , and for any w ∈ Kh1h2 ∩Q, we have wφf/p ∈ Kh1h2 is
G-conjugate to an element in

H ∩ (PGL2(q).〈φf/p〉) ∼= PGL2(q0)× 〈φf/p〉.
This implies that |wφf/p| = p. Now if w /∈M , then ρ(wφf/p) = (a, 1)φf/p for some a ∈ Fq
with TrFq/Fq0 (a) 6= 0, so

|wφf/p| = |(a, 1)φf/p| 6= |(0, 1)φf/p| = p

by Lemma 3.3(iii), which gives a contradiction. It follows that Kh1h2 ∩Q 6M .
Therefore, conjugating by an element in G if necessary, we may assume x ∈ (H ∩D):〈φ〉

and K ∩Q 6 M . Once again, we write K = 〈K1, x〉, where K1 = K ∩ PGL2(q). Noting
that K1 = (K ∩M):Cg for some g ∈ Q and C 6 (D ∩H). Then we have

Cg
x−1

= Cxgx
−1

= Cx
−1xgx−1

= Cgx
−1

= Cgh = Chg

for some h ∈ K ∩M . This is because x ∈ NG(K1) implies that Cgx
−1

6 K1, and every
subgroup of K1 isomorphic to C is (K ∩M)-conjugate to Cg as Cg is a Hall p′-subgroup

of K1. Thus, g
x−1

(hg)−1 ∈ CQ(C) = 1, which yields

xg
−1

= gxg−1x−1x = g(g−1)x
−1
x = h−1x ∈ (M :C):〈φ〉.

Finally, we observe that

Kg−1

1 = (K ∩M)g
−1
:Cgg

−1
= (K ∩M):C 6 (M :C):〈φ〉.

We conclude the proof by noting that Kg−1
= 〈Kg−1

1 , xg
−1〉 6 (M :C):〈φ〉 6 LIII. �
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Lemma 5.11. Suppose q = qp0 and let K 6 G be such that K0
∼= C

f−f/p
p :C(q0−1)/2 and p

divides |K : K0|, then K is G-conjugate to a subgroup of LIII.

Proof. First note that K0 has a unique normal Sylow p-subgroup. Thus, by considering
a suitable G-conjugate, we may assume K 6 NG(Q). Let x ∈ K be such that |x| = pm

for some m and |K0x| = p. Then x ∈ G0.〈φf/p〉. It follows that x is G-conjugate to an

element in Q:〈φf/p〉p since it is a Sylow p-subgroup of G0.〈φf/p〉. This allows us to further

assume x = gφf/p ∈ K for some g ∈ Q.
Next, we show that the unique Sylow p-subgroup K ∩ Q of K0 is no other than M .

Let C be a Hall p′-subgroup of K0. Then ρ(C) = 〈(a, λ)〉 for some a ∈ F+
q and λ ∈ F×

q0 .

Moreover, observe that 〈λ〉 = F�
q0 is the group of all non-zero square elements in Fq0 under

multiplication. Note that (b, 1)(a,λ) = (λb, 1) for any b ∈ Fq, whence the set

S = {c ∈ Fq : (c, 1) ∈ ρ(K ∩Q)}
is closed under the multiplication of F�

q0 as ρ(K ∩Q) P ρ(K). In fact, one can show that

S is a (p − 1)-dimensional Fq0-subspace of Fq. Moreover, note that ρ(x) = (b, 1)φf/p for
some b ∈ F+

q , and we have

(c, 1)ρ(x) = (c, 1)(b,1)φ
f/p

= (cφ
f/p
, 1).

Thus, S is also invariant under φf/p. Since φf/p fixes a unique 1-dimensional Fq0-subspace

of Fq, it is a regular unipotent element on Fq as an Fq0-linear map. It follows that φf/p

fixes a unique (p− 1)-dimensional Fq0-subspace of Fq. Now observe that

{c ∈ Fq : TrFq/Fq0 (c) = 0}
is a (p− 1)-dimensional Fq0-subspace fixed by φf/p. Therefore, we have

S = {c ∈ Fq : TrFq/Fq0 (c) = 0}
and we conclude that K ∩Q =M .

Hence, we have K0 = M :C with |C| = (q0 − 1)/2 = |D0 ∩H|. Then there exists g ∈ Q
such that Cg = D0 ∩H, so Kg

0 = Mg:Cg = M :(D0 ∩H) =: E, whence Kg 6 NG(K
g
0 ) =

NG(E). It suffices to show that NG(E) 6 LIII, and we claim that NG(E) = LIII. To see
this, first note that Q 6 NG0(M), and the order of a Hall p′-subgroup of NG0(M) divides

|D0 ∩H| = (pf−f/p − 1, (pf − 1)/2)

by Lemma 4.3. It follows that NG0(M) = Q:(D0 ∩ H). Observe that both Q:(D0 ∩ H)
and E are Frobenius groups. Thus, we have NQ(E) =M , and hence E is self-normalising
in G0. This implies that

|NG(E)| 6 |NG0(E)| · |G : G0| = |E| · |G : G0| 6 LIII.

On the other hand, it is evident that LIII 6 NG(E), which yields LIII = NG(E) as claimed.
This shows that Kg 6 LIII as explained above. �

Now we are in the position to prove Theorem 3.

Proof of Theorem 3. We refer the reader to Proposition 4.1 for the case where q 6 61, so
we may assume q > 61. Assume H is of type 21+2

− .O−
2 (2) or A5. Then Lemma 4.9 gives a

classification of large fixers. If H is of type P1 or GL1(q
2), then G has no large fixer by

Lemmas 4.8 and 4.10.
To complete the proof, assume H is of type GL1(q) ≀ S2 or GL2(q0) with q = qr0. Then

Proposition 4.14 shows that only four cases arise, and cases (a), (b) and (c) are handled
in Lemmas 5.1, 5.2 and 5.3, respectively.

Finally, assume Proposition 4.14(d), so H is of type GL2(q
1/r) with r odd, and K is

a subgroup of a maximal parabolic subgroup of G. The case where r 6= p is treated in
Lemma 5.5. If r = p and (p, |K : K0|) = 1 then K is a fixer if and only if K is G-conjugate
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to a subgroup of LII defined as in (9) (see Lemma 5.7), and as remarked in Remark 5.6, we
see that |LII| > |H|. Now if r = p divides |K : K0|, then by Lemma 5.10, K is a fixer of G
if and only if K is G-conjugate to a subgroup of LIII defined as in (10). However, if p = 3
then |H| > |LIII| (see Remark 5.9), so this case is excluded in Table 5. The associated
condition recorded in Table 5 is sufficient in view of Lemma 5.11. �

As an immediate application, we establish Corollaries 4 and 5.

Proof of Corollary 4. If H is not of type GL2(q
1/r) then the statement is deduced straight-

forwardly by inspecting Table 5, so we may assume H is of type GL2(q
1/r).

First assume r = p = 2. By Lemma 5.3, G has a large fixer if and only if |G : G0| is
odd. Thus, G has the weak-EKR property if and only if |G : G0| is even. One can obtain
the same argument when considering the strict-weak-EKR property.

Now assume r is odd. Here if r 6= p then LI is a large fixer, while LII is a large fixer
otherwise (see Lemmas 5.5 and 5.7, respectively). Thus, in either case, G does not have
the weak-EKR property. �

Proof of Corollary 5. First note that |H|
√

|Ω| =
√

|G| · |H|. In view of Proposition 4.1,
we may assume q > 61, and so one of the cases described in Proposition 4.14 arises.

Assume Proposition 4.14(a). Then

|K|√
|G| · |H|

6
q(q − 1)√

q(q2 − 1) · 2(q − 1)
=

1√
2
·
√

q

q + 1
<

1√
2
.

Here we note that the bound is sharp. Indeed, if G = G0 and K is a maximal subgroup
of G of type P1, then the ratio in the above inequality tends to 1/

√
2 as q → ∞. One can

check the desired bound for other cases in Proposition 4.14 easily. �

6. Proof of Theorem 11

Next, we turn to the proof of Theorem 11, and we may assume q > 61 since the
conclusion to Theorem 11 with q 6 61 can be verified with the aid of Magma. Recall
that D(G,H) is the set of derangements of G in its coset action on [G : H]. The following
result follows from Theorem 3.

Lemma 6.1. Suppose soc(G) = PSL2(q), q > 61 and H,K are maximal subgroups of G
with |K| > |H|. Then D(G,H) = D(G,K) if and only if one of the following holds:

(a) q is even, H is of type GL1(q) ≀ S2, K is of type P1 and [G : G0] is odd;

(b) G = G0, q = p ≡ ±1 (mod 8), H is of type 21+2
− .O−

2 (2) and K = Hδ;

(c) G = G0, q = p ≡ ±1 (mod 10), H is of type A5 and K = Hδ;

(d) G = G0, q = p2, 3 6= p ≡ ±3 (mod 10), H is of type A5 and K = Hδ.

Proof. In view of Theorem 3, it suffice to show that D(G,K) ⊆ D(G,H) in case (a). Let
x ∈ H. If |x| is odd, then x is in a Hall 2′-subgroup of H, which is G-conjugate to a
Hall 2′-subgroup of K. Now assume |x| is even. Note that |xG0| is odd, which allows us
to apply Lemma 4.15, yielding that x is G-conjugate to an element of CG(z). It follows
that x is G-conjugate to an element of CG(u) 6 K, where u ∈ K is a unipotent element.
Therefore, H ⊆ ⋃g∈GK

g and so D(G,K) ⊆ D(G,H). �

Note that in cases (b), (c) and (d) of Lemma 6.1, the actions of G on [G : H] and
[G : K] are permutation equivalent, so their permutation characters coincide. With this
in mind, we will assume case (a) of Lemma 6.1 for the remainder of this section, so q = 2f

and G = G0:〈φj〉 for some j with f/j odd, where φ is a field automorphism with respect
to a fixed basis of F2

q. We may identify ∆ := [G : K] with the set of 1-subspaces of F2
q,

and Ω := [G : H] with the set of 2-subsets of ∆. In addition, the permutation characters
of G on ∆ and Ω are denoted π∆ and πΩ, respectively (that is, π∆(x) = |fix∆(x)| and
πΩ(x) = |fixΩ(x)|). Recall that our aim is to show that θ := πΩ − π∆ is a character (a
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I z ds,s−1 vr
1 1 1 1 1
π∆ − 1 2f 0 1 −1
ψi(1 6 i 6 2f−1 − 1) 2f + 1 1 s̄i + s̄−i 0
χi(1 6 i 6 2f−1) 2f − 1 −1 0 −(r̄i + r̄iq)

Table 2. Character table of SL2(2
f )

linear combination of complex irreducible characters with positive integer coefficients) of
G.

The irreducible characters of G0 = SL2(q) are recorded in Table 2, reproduced from [25]
(see [25, Ex 28.2]).

Remark 6.2. Let us comment on the notation of Table 2, which mainly follows from [25].

Let ǫ be a generator of F×
22f
, and let ω = e(2πi)/(2

2f−1) ∈ C be a primitive (22f − 1)-th root

of unity. For any r ∈ F×
22f

, we have r = ǫm for a unique integer m ∈ {1, . . . , 2f − 1}, and
we write r := wm, noting that ri = ri for any integer i. We write ds,s−1 for the diagonal
matrix (

s 0
0 s−1

)
∈ SL2(q),

and for any r ∈ F×
22f

\F×
2f
, the matrix

(
0 1

r1+2f r + r2
f

)
∈ GL2(q)

is denoted vr. Recall that

z =

(
0 1
1 0

)

as defined in (7). Finally, we refer the reader to [25, p. 327] for description of characters
ψi and χi.

We first determine the conjugacy classes of elements in G.

Lemma 6.3. If g ∈ G is such that 〈g〉 ∩ G0 = 1, then g is G-conjugate to an element in
〈φj〉.
Proof. By arguing as in the proof of Lemma 5.2, we see that g is contained in a non-cyclic
soluble subgroupM of G, whereM0 := M∩G0

∼= Cr2 :Ct for some t dividing (2r−1, 2t−1),
or M0

∼= Ct or D2t with t | 2f ± 1.
Here we recall the groups Q and D defined in (2) and (3), respectively. If M0

∼= Cr2 :Ct,
then M is G-conjugate to a subgroup of NG(Q) = (Q:D):〈φj〉. And if M0

∼= Ct or
D2t with t | 2f − 1, then M is G-conjugate to a subgroup of D:(〈z〉 × 〈φj〉). Note that
|g| is odd since |G : G0| is odd, and D:〈φj〉 is a Hall 2′-subgroup of both NG(Q) and
D:(〈z〉×〈φj〉). Thus, in each of the above cases, there exists x ∈ G such that gx ∈ D:〈φj〉.
Then ρ(gx) = (0, λ)φj

′

for some λ ∈ F×
2f

and some integer j′ with j | j′. Let t = |φj′ | and
f = tf ′. Then

(0,NF
2f
/F

2f
′
(λ)) = (0, λλφ

−j′ · · ·λφ−(t−1)j′

) = ρ(gx)t ∈ ρ(〈gx〉 ∩G0) = {(0, 1)}.

It follows by Hilbert Theorem 90 that there exists µ ∈ F×
2f

such that µφ
−j′

µ−1 = λ.
Therefore,

(φj
′

)(0,µ) = (0, µ−1µφ
−j′

)φj
′

= (0, λ)φj
′

= ρ(gx),

and hence (φj
′

)ρ
−1((0,µ)) = gx.
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It remains to consider the cases where M0
∼= Ct or D2t with t | 2f + 1. In this setting,

it will be helpful to identify G0 with the unitary group SU2(q). In other words,

G0 =

{(
a b

b2
f

a2
f

)
: a2

f+1 + b2
f+1 = 1, a, b ∈ F2f

}
.

Let ϕ be a standard field automorphism of SU2(2
f ) of order 2f , noting that 〈ϕ〉 ∩ G0 =

〈ϕf 〉. Then |ϕj | = 2f/j is even and |ϕjG0| = f/j is odd. In view of Lemma 4.15, it
suffices to show that g is G-conjugate to an element in 〈ϕ2j〉. To see this, first note that

G = SU2(2
f ):〈ϕ2j〉

and we see that M is contained in a maximal subgroup of G of type GU1(q) ≀ S2. Let

z =

(
0 1
1 0

)
∈ SU2(2

f ) and y =

(
λ 0

0 λ2
f

)
∈ SU2(2

f ),

where λ ∈ F×
22f

is of order 2f+1. ThenM is G-conjugate to a subgroup of 〈y〉:(〈z〉×〈ϕ2j〉).
Note that 〈y〉:〈ϕ2j〉 is a Hall 2′-subgroup of 〈y〉:(〈z〉 × 〈ϕ2j〉), there exists x ∈ G and some

integer k such that gx = ykϕℓ with 2j | ℓ. Let |ϕℓ| = t and f = tf ′. Then yϕ
−ℓ

= y2
2f−ℓ

,
and (2f, ℓ) = 2f ′, and we have

(ykϕℓ)t = (yk)(yk)ϕ
−ℓ
. . . (yk)ϕ

−(t−1)ℓ
= yk(1+22f

′

+24f
′

+···+22(t−1)f ′ )

= y
k(22f−1)

22f
′
−1 ∈ 〈gx〉 ∩G0 = 1.

Since (yk)2
f+1 = 1 and
(
22f − 1

22f ′ − 1
, 2f + 1

)
=

(
(2f + 1)(2f − 1)

(2f ′ + 1)(2f ′ − 1)
, 2f + 1

)
=

2f + 1

2f ′ + 1
,

it follows that y
k(2f+1)

2f
′
+1 = 1, and there exists y1 ∈ 〈y〉 such that y2

f ′+1
1 = yk. Note that

(2f
′ −1, 2f +1) = 1, so there exists y2 ∈ 〈y〉 such that y2

f ′−1
2 = y1, and hence y2

2f ′−1
2 = yk.

Now observe that yϕ
−ℓ

= y2
2f−ℓ

and (22f−ℓ−1, 22f −1) = 22f
′ −1, so there exists y3 ∈ 〈y〉

such that y2
2f−ℓ−1

3 = yk. Thus,

(ϕℓ)y3 = y−1
3 ϕℓy3 = y−1

3 (y3)
ϕ−ℓ

ϕℓ = y2
2f−ℓ−1

3 ϕℓ = ykϕℓ = gx,

which concludes the proof. �

Combining Lemmas 4.15 and 6.3, we deduce the following corollary.

Corollary 6.4. Let x ∈ G. Then one of the following holds:

(i) x ∈ G0;

(ii) x is G-conjugate to an element in 〈φj〉;
(iii) x is G-conjugate to zφℓ for some integer ℓ with j | ℓ;
(iv) 〈x〉 ∩G0 6= 1 and |〈x〉 ∩G0| divides 2f ± 1.

Now let us discuss the elements x ∈ G with 1 6= |〈x〉 ∩ G0| dividing 2f − 1 in more
details.

Lemma 6.5. The following statements hold.

(i) If x ∈ G is such that |〈x〉∩G0| divides 2f −1, then x is G-conjugate to an element
in D:〈φj〉.

(ii) If x ∈ D:〈φj〉 and 〈x〉 ∩D 6= 1, then CG(x) 6 D:〈φj〉.
(iii) Let y1φ

ℓ1 , y2φ
ℓ2 ∈ D:〈φj〉 with y1, y2 ∈ D and 0 6 ℓ1, ℓ2 < f . Then y1φ

ℓ1 and y2φ
ℓ2

are G-conjugate if and only if ℓ1 = ℓ2 and (y1φ
ℓ1)t is G-conjugate to (y2φ

ℓ2)t, where
t = |φℓ1 |.
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Proof. First assume x ∈ G and |〈x〉 ∩ G| divides 2f − 1. Then there exists g ∈ G such
that 〈xg〉 ∩ G 6 D. In view of Lemma 6.3, we may assume 〈xg〉 ∩ D is non-trivial, so
xg ∈ NG(〈xg〉 ∩ D) = D:(〈z〉 × 〈φj〉). Now part (i) follows by noting that D:〈φj〉 is the
unique Hall 2′-subgroup of D:(〈z〉 × 〈φj〉).

Assume x ∈ D:〈φj〉 and 〈x〉 ∩ D 6= 1. Then CG(x) 6 NG(〈x〉 ∩ D) = D:(〈z〉 × 〈φj〉).
Suppose that there is an element g ∈ CG(x) which is not in D:〈φj〉. Then g = yzφℓ for
some y ∈ D and some integer ℓ with j | ℓ. Let k be an integer such that 〈xk〉 generates

〈x〉 ∩D. Then xk = (xk)g = (x−k)φ
ℓ
, so |φℓ| is even, which is incompatible with φj being

of odd order. Thus, CG(x) 6 D:〈φj〉, which is part (̊ii).
Finally, we turn to the proof of part (iii). Let y1, y2 be two elements in D. First assume

there exists g ∈ G such that y1φ
ℓ1 = (y2φ

ℓ2)g. We write g = g0φ
k for some g0 ∈ G0 and

some integer k with j | k. Then

y1φ
ℓ1 = (y2φ

ℓ2)g = g−1y2φ
ℓ2g = φ−kg−1

0 y2φ
ℓ2g0φ

k = (g−1
0 y2)

φkgφ
k−ℓ2

0 φℓ2 ,

and hence ℓ1 = ℓ2. It is also clear that ((y2φ
ℓ2)t)g = (y1φ

ℓ1)t.
Next, assume ℓ1 = ℓ2 = ℓ and there exists g ∈ G such that ((y1φ

ℓ)t)g = (y2φ
ℓ)t, where

t = |φℓ|. Note that

(y1φ
ℓ)t = y1y

φ−ℓ

1 · · · yφ−(t−1)ℓ

1 =

t−1∏

m=0

yφ
mℓ

1 .

Suppose f = tf ′, ρ(y1) = (0, µ1) and ρ(y2) = (0, µ2). Then

ρ(y1φ
ℓ)t =

t−1∏

m=0

ρ(y1)
φmℓ = (0,NF

2f
/F

2f
′
(µ1)). (11)

If (y1φ
ℓ)t = (y2φ

ℓ)t = 1, then 〈y1φℓ〉 ∩ G = 〈y2φℓ〉 ∩ G = 1, so both y1φ
ℓ and y2φ

ℓ

are G-conjugate to φℓ by Lemma 6.3. Thus, we may assume (y1φ
ℓ)t 6= 1. Then g ∈

NG(〈y1φℓ〉 ∩G) = D:(〈z〉 × 〈φℓ〉), and hence g = y3z
kφℓ

′

for some y3 ∈ D, k ∈ {0, 1} and
integer ℓ′ with j | ℓ′. Since y3(y1φℓ)t = (y1φ

ℓ)ty3, it follows that

t−1∏

m=0

yφ
mℓ

2 = (y2φ
ℓ)t = ((y1φ

ℓ)t)g = ((y1φ
ℓ)t)z

kφℓ
′

= ((y1)
zkφℓ

′

φℓ)t =

(
t−1∏

m=0

yφ
mℓ

1

)zkφℓ′

.

Thus, we deduce by (11) that

(0,NF
2f
/F

2f
′
((µ

(−1)k

1 )φ
ℓ′

)) = ρ(((y1φ
ℓ)t)z

kφℓ
′

) = ρ((y2φ
ℓ)t) = (0,NF

2f
/F

2f
′
(µ2)).

By Hilbert Theorem 90, there exists λ ∈ F×
2f

such that λ−1λφ
−ℓ
((µ1)

(−1)k )φ
ℓ′

= µ2. There-
fore,

ρ((y1φ
ℓ)z

kφℓ
′

)(0,λ) = (0, (µ
(−1)k

1 )φ
ℓ′

φℓ)(0,λ) = (0, λ−1)(0, (µ
(−1)k

1 )φ
ℓ′

)φℓ(0, λ)φ−ℓφℓ

= (0, λ−1λφ
−ℓ
(µ

(−1)k

1 )φ
ℓ′

)φℓ = (0, µ2)φ
ℓ = ρ(y2φ

ℓ),

and hence (y1φ
ℓ)z

kφℓ
′

ρ−1((0,λ)) = y2φ
ℓ. �

We are in position to determine πΩ and π∆.

Lemma 6.6. The permutation characters πΩ and π∆ are as presented in Table 3, where
f± ∈ G \G0 is an element such that |〈f±〉 ∩G0| 6= 1 divides 2f ± 1.

Proof. Let x ∈ G. If x ∈ G0 then it is easy to compute πΩ(x) and π∆(x), and hence we
omit the details. Thus, we may assume x ∈ G \ G0, so x = x0φ

ℓ for some integer ℓ with
f | ℓ, and it suffices to discuss the cases (ii), (iii) and (iv) in Corollary 6.4. Let t = (f, ℓ).
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I z ds,s−1 , f− vr, f+ φℓ zφℓ

π∆ 2f + 1 1 2 0 2(f,ℓ) + 1 1

πΩ (2f + 1)2f−1 2f−1 1 0 (2(f,ℓ) + 1)2(f,ℓ)−1 2(f,ℓ)−1

Table 3. πΩ and π∆

First we consider the case where x0 = 1. Then a 1-subspace of F2
2f

is fixed by x if and

only if it is contained in F2
2t , which gives π∆(x) = 2t + 1. Moreover, since |x| is odd, any

2-subset of ∆ fixed by x is contained in F2
2t , whence πΩ(x) = (2t + 1)2t−1.

Next, assume x0 = z. Here we observe that fix∆(x) = fix∆(z) ∩ fix∆(φ
ℓ) and fixΩ(x) =

fixΩ(z) ∩ fixΩ(φ
ℓ), which implies that π∆(x) = 1 and πΩ(x) = 2t−1.

Now assume |〈x〉∩G0| 6= 1 divides 2f −1, and in view of Lemma 6.5(i), we may assume
that x ∈ D:〈φj〉. Thus, xt = ds,s−1 for some s ∈ F×

2f
. Note that fix∆(x) ⊆ fix∆(x

t) and

fixΩ(x) ⊆ fix∆(x
t), which gives upper bounds π∆(x) 6 2 and πΩ(x) 6 1. Indeed, it is easy

to find two 1-subspaces fixed by x, so we deduce that π∆(x) = 2 and πΩ(x) = 1.
Finally, assume |〈x〉 ∩ G0| 6= 1 divides 2f + 1, so xt is G-conjugate to an element in

the Singer cycle. This yields π∆(x
t) = 0 = πΩ(x

t) since |xt| is odd. Therefore, we have
π∆(x) = 0 = πΩ(x), as desired. �

Corollary 6.7. If G = G0, then θ =
∑2f−1−1

i=1 ψi is a character.

Recall that for complex characters χ1 and χ2 of a group X, the inner product 〈χ1, χ2〉
is defined by

〈χ1, χ2〉 =
1

|X|
∑

g∈X

χ1(g)χ2(g).

In order to determine the coefficients of θ in the linear combination of complex irreducible
characters of G, we need to compute 〈θ, θ〉, which requires determining the sizes of conju-
gacy classes in G.

Lemma 6.8. Let ℓ < f be an integer such that j | ℓ and let t = (f, ℓ). Then

|(Dφℓ)G \ (φℓ)G| = j(2t−1 − 1)|G|
f(2t − 1)

and

|(zφℓ)G| = j|G|
2tf

.

Proof. Let x = ds,s−1φℓ, where s ∈ F×
2f
. Define the norm N = NF

2f
/F2t

throughout, and

assume s′ := N(s) = s
2f−1
2t−1 6= 1. Then xf/t = ds′,(s′)−1 . Note that for any s1 ∈ F×

2t ,

∣∣{s0 ∈ F×
2f

: N(s0) = s1
}∣∣ = 2f − 1

2t − 1
.

Hence, Lemma 6.5(iii) implies that

|xG ∩D:〈φj〉| = |(ds′,(s′)−1)G ∩D| · 2
f − 1

2t − 1
.

Note that if (ds′,(s′)−1)g = ds1,(s1)−1 for some g ∈ G, then 〈ds′,(s′)−1〉 = 〈ds1,(s1)−1〉, and
hence g ∈ NG(〈ds′,(s′)−1〉) = D:(〈z〉×〈φj〉). Suppose F2j (s

′) = F2k . Then C〈φj〉(ds′,(s′)−1) =

Gal(F2f /F2k) = 〈φk〉, and so by Lemma 6.5(ii) we have CG(ds′,(s′)−1) = CD:〈φj〉(ds′,(s′)−1) =

D:〈φk〉. Thus,

|(ds′,(s′)−1)G ∩D| = |D:(〈z〉 × 〈φj〉)|
|D:〈φk〉| =

2k

j
.
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Since |D:(〈z〉 × 〈φj〉) : D:〈φj〉| = 2, we deduce that

|xD:〈φj〉| = k(2f − 1)

j(2t − 1)
.

It follows that

|xG| = |G|
|CG(x)|

=
|G|

|CD:〈φj〉(x)|
= |G : D:〈φj〉| · |xD:〈φj〉| = k|G|

f(2t − 1)
.

Now define

ak := |{s1 ∈ F2f \ F2 : F2j(s1) = F2k}| .
By Lemma 6.5, there are ak/|(ds′,(s′)−1)G ∩D| conjugacy classes of such elements in Dφℓ

with F2j(N(s)) = F2k . Thus, for a fixed k, we have
∣∣∣∣∣∣∣∣∣

⋃

s∈F
2f

\F2

F
2j
(N(s))=F

2k

(ds,s−1φℓ)G

∣∣∣∣∣∣∣∣∣
=

ak
|(ds′,(s′)−1)G ∩D| |(ds,s−1φℓ)G| = |G|akj

2(2t − 1)f
.

Therefore,

|(Dφℓ)G\(φℓ)G| =
∑

j|k,k|t

∣∣∣∣∣∣∣∣∣

⋃

s∈F
2f

\F2

F
2j
(N(s))=F

2k

(ds,s−1φℓ)G

∣∣∣∣∣∣∣∣∣

=
∑

j|k,k|t

|G|akj
2(2t − 1)f

=
|G|j

2(2t − 1)f

∑

j|k,k|t

ak =
|G|(2t−1 − 1)j

(2t − 1)f
.

Finally, note that 〈zφℓ〉 = 〈z〉 × 〈φℓ〉 for any integer ℓ with j | ℓ. Thus,
CG(zφ

ℓ) = CG(z) ∩CG(φℓ) = CSL2(2t):〈φj〉(z),

where SL2(2
t) = CG0(φ

ℓ) comprises all matrices over F2t of determinant 1. It follows that
|CG(zφℓ)| = |CSL2(2t):〈φj〉(z)| = 2tf/j, yielding the desired result. �

Lemma 6.9. Let ℓ 6 f be an integer such that j | ℓ and let t = (f, ℓ). Then

1

|G|
∑

g∈G0φℓ

θ(g)θ(g) =
(2t−1 − 1)j

f
.

Proof. By Corollary 6.7, the case where ℓ = f is clear, so we may assume ℓ < f . Let
g ∈ G0φ

ℓ. First note by Lemma 6.6 that θ(g) = 0 if |gf/t| 6= 1 divides 2f + 1. Next,
assume g ∈ (Dφℓ)G \ (φℓ)G. Then θ(g) = −1 by Lemma 6.6, and the total contribution of
such elements to 〈θ, θ〉 is

m1 :=
|(Dφℓ)G \ (φℓ)G|

|G| =
j(2t−1 − 1)

f(2t − 1)

by Lemma 6.8. Now assume g ∈ (zφℓ)G, so θ(g) = 2t−1 − 1 by Lemma 6.6. In view of
Lemma 6.8, we have

m2 :=
1

|G|
∑

g∈(zφℓ)G

θ(g)θ(g) = (2t−1 − 1)2 · |(zφ
ℓ)G|

|G| =
j(2t−1 − 1)2

2tf
.

Finally, note that

θ(φℓ) = (2t + 1)(2t−1 − 1)
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and |(φℓ)G| = j|G|
f |SL2(2t)|

, which implies that the total contribution of elements in (φℓ)G to

〈θ, θ〉 is
m3 :=

j(2t + 1)(2t−1 − 1)2

2t(2t − 1)f
.

Therefore, we have

1

|G|
∑

g∈G0φℓ

θ(g)θ(g) = m1 +m2 +m3 =
(2t−1 − 1)j

f
,

as desired. �

Suppose G0 P G1 P G and let χ be an irreducible character of G1. Then we say χ
extends to χ̃ if χ̃ is an irreducible character of G1 such that χ̃ ↓ G1 = χ. Following the
notation from [40], we define χg for any g ∈ G by setting

χg(x) = χ(gxg−1) = χ(xg
−1
) (12)

for every x ∈ G1. Consider the action of G on the irreducible characters of G1 given by
(12). The inertia subgroup of χ in G is defined to be the stabiliser Gχ = {g ∈ G | χg = χ},
and the orbit of χ under the action of G is denoted χG. Note that there exists a linear
character σ of G1 such that every linear character of G1 is equal to σm for some integer
m, where

σm(x) := σ(x)m

for every x ∈ G1. Such a character σ is referred to as a generator of the linear characters
of G1.

Lemma 6.10. Let λ be a generator of F×
2f
, assume F2j (λ

i) = F2t . Let σ be a generator of

the linear characters of G0:〈φt〉. Then the following statements hold.

(i) Gψi = G0:〈φt〉.
(ii) ψi extends to f/t irreducible characters ψ̃i, ψ̃iσ, . . . , . . . ψ̃iσ

f/t−1 of Gψi .

(iii) ψ̃iσ
k ↑ G is irreducible for all k ∈ {0, . . . , f/t− 1}.

(iv) 〈θ, ψ̃iσki ↑ G〉 = 1 for a unique ki ∈ {0, . . . , f/t− 1}.
(v) 〈θ, ψ̃iσk ↑ G〉 = 0 if k ∈ {0, . . . , f/t− 1} and k 6= ki.

(vi) If ψgi 6= ψi′ for any g ∈ G, then ψ̃i ↑ G 6= ψ̃i′ ↑ G.
Proof. To prove part (i), we first verify that ψi is stabilised by φ−t. Let g ∈ G0. If g = 1

or g is an involution, then gφ
t
and g are conjugate in G0, and hence

ψi(g) = ψi(g
φt) = ψφ

−t

i (g).

If g is G0-conjugate to vr for some r, then ψi(g) = ψφ
−t

i (g) = 0. It remains to consider the

case where g is conjugate to ds,s−1 for some s ∈ F×
2f
. Note that si ∈ F2t and (si)φ

t
= si, it

follows that

ψφ
−t

i (g) = ψi(d
φt

s,s−1) = ψi(dsφt ,(s−1)φt ) = (si)φt + (s−i)φt = s̄i + s̄−i = ψi(g).

Therefore, ψi is stabilised by φt.
Next, assume g ∈ 〈φj〉 and ψgi = ψi, we claim that g ∈ 〈φt〉. In fact, let k be an integer

with g = φ−k ∈ Gψi . Then

s̄i + s̄−i = ψi(ds,s−1) = ψgi (ds,s−1) = ψi(dsφk ,(s−1)φk
) = sφk

i
+ sφk

−i
.

Thus, we have (si)φ
k ∈ {si, s−i}, and so (si)g = si since g is of odd order. This implies

that g ∈ 〈φj〉 ∩ Gal(F2f /F2t) = 〈φt〉 as claimed. Part (i) now follows since G0 6 Gψi is
clear.
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Part (ii) follows from the proof of [40, Theorem 5.1], and part (iii) can be obtained by
combining (i) and Mackey’s Irreducibility Criterion.

By arguing as in the proof of [40, Corollary 1.24], we see that

ψi ↑ Gψi =
f/t−1∑

k=0

ψ̃iσ
k.

Therefore, by applying the Frobenius Reciprocity we have

1 = 〈θ ↓ G0, ψi〉 = 〈θ, ψi ↑ G〉 = 〈θ, (ψi ↑ Gψi) ↑ G〉 =
〈
θ,

f/t−1∑

k=0

ψ̃iσ
k ↑ G

〉
,

which gives (iv) and (v).
Finally, we consider part (vi). First note that

(ψ̃i ↑ G)(1) = |G : Gψi |ψ̃i(1) = |G : Gψi |ψi(1) = |G : Gψi |ψi′(1) =
|Gψi′ |
|Gψi |

· (ψ̃i′ ↑ G)(1),

and so we may assume Gψi = Gψi′ . Now

〈ψ̃i′ ↑ G, ψ̃i ↑ G〉 = 〈ψ̃i′ , (ψ̃i ↑ G) ↓ Gψi〉

=

〈
ψ̃i′ ,

∑

g∈G/Gψi

(ψ̃i)
g

〉

=
∑

g∈G/Gψi

〈ψ̃i′ , (ψ̃i)g〉,

(13)

where the second equality follows from [43, Proposition 22]. For any g ∈ G, we have

ψi′ 6= ψgi by our assumption, which yields ψ̃i′ 6= (ψ̃i)
g and so 〈ψ̃i′ , (ψ̃i)g〉 = 0 by noting

that both ψ̃i′ and ψ̃i are irreducible. Therefore, (13) implies that 〈ψ̃i′ ↑ G, ψ̃i ↑ G〉 = 0

and hence ψ̃i ↑ G 6= ψ̃i′ ↑ G. This gives (vi) and completes the proof. �

Let Ψ = {ψi : 1 6 i 6 2f−1 − 1}. Note that Ψ is fixed under the action of G.

Lemma 6.11. The inner product 〈θ, θ〉 is equal to the number of G-orbits on Ψ.

Proof. First note that if G = G0 then j = f and 〈θ, θ〉 = 2f−1 − 1 by Corollary 6.7, and
the statement of the lemma holds as Gψi = G0 (see Lemma 6.10(i)).

We now use induction on |G| to complete the proof. Let j1 = jr for some prime r
with j1 | f , and suppose that the number aj1 of G1-orbits on Ψ is equal to 〈θ1, θ1〉, where
G1 = G0:〈φj1〉 and θ1 = θ ↓ G1. Then

〈θ, θ〉 = 1

|G|
∑

g∈G

θ(g)θ(g) =
1

|G|
∑

g∈G0:〈φj1 〉

θ1(g)θ1(g) +
1

|G|
∑

g∈G0φℓ

(ℓ,f)=j

θ(g)θ(g)

=
aj1
r

+
1

|G|
∑

g∈G0φℓ

(ℓ,f)=j

θ(g)θ(g)

=
aj1
r

+

(
f

j
− f

j1

)
· j(2

j−1 − 1)

f

=
aj1
r

+ (1− 1/r)(2j−1 − 1),

where the fourth equality follows from Lemma 6.9.
Let λ be a generator of F×

2f
. Note that there are |F2f/j \ F2| = 2j−1 − 1 integers i such

that λi ∈ F2j . In view of Lemma 6.10(i), there are exactly 2j−1 − 1 characters in Ψ that
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is stabilised by G = G0:〈φj〉. Hence, the remaining 2f−1 − 2j−1 characters in Ψ split to
(aj1 − (2j−1− 1))/r orbits of G. Therefore, G has (2j−1− 1)+ (aj1 − (2j−1− 1))/r = 〈θ, θ〉
orbits on Ψ, which completes the proof. �

Lemma 6.12. Let I be a set of integer such that {ψi | i ∈ I} is a set of representatives

of G-orbits of Ψ. Then for each i ∈ I, there exists an irreducible character ψ̃i of Gψi such
that

θ =
∑

i∈I

ψ̃i ↑ G.

Proof. For each i ∈ I, Lemma 6.10 (parts (ii) and (iv)) implies that there exists an

irreducible character ψ̃i of Gψi such that 〈θ, ψ̃i ↑ G〉 = 1. For two distinct integers i and

i′ in I, we have ψ̃i 6= ψ̃i′ by Lemma 6.10(vi). Thus, ψ̃i ↑ G is an irreducible constitute of
θ (the irreducibility follows from Lemma 6.10(iii)). We complete the proof by noting that
〈θ, θ〉 = |I| in view of Lemma 6.10(v) and Lemma 6.11. �

Finally, we establish Theorem 11.

Proof of Theorem 11. The cases where q 6 61 can be handled usingMagma. Now assume
q > 61, and without loss of generality we may assume |K| > |H|. HereD(G,H) = D(G,K)
if and only if (G,H,K) is one of the cases recorded in Lemma 6.1. It is evident that in
each of the cases (b), (c) and (d) of Lemma 6.1, the actions of G on [G : H] and [G : K]
are permutation equivalent. Finally, case (a) is treated in Lemma 6.12. �

7. Sporadic groups

Now we turn to almost simple sporadic groups and we will establish Theorems 6 and
7 in this section. Recall that D(G,H) ⊆ D(G,K) if and only if K is a fixer of G in its
action on [G : H].

Proposition 7.1. The conclusion to Theorem 7 holds, and Corollary 9 holds for sporadic
groups.

Proof. First assume G is not the Monster group M. The conjugacy classes of G, H and
K can be read off from the character tables of G and H, which can be accessed computa-
tionally via the GAP Character Table Library [4]. In addition, apart from the special case
where G = B and (22×F4(2)):2 ∈ {H,K}, the fusion maps of H-conjugacy classes and K-
conjugacy classes in G can be obtained using the GAP function FusionConjugacyClasses,
so it is easy to check whether xG ∩H = ∅ for each x ∈ K. If G = B and (22 × F4(2)):2 ∈
{H,K} then H 6∼= K and so |H| 6= |K| since there is a unique G-class of such subgroups,
and one can check that Spec(K) 6⊆ Spec(H) whenever |K| > |H|, which is incompatible
with Lemma 2.2(i).

To complete the proof, we assume G = M, and we will show that no case arises in
this setting. The list A of maximal subgroups of G is presented in [11, Table 1], and [11,
Theorem 1] asserts that any two isomorphic maximal subgroups of G are G-conjugate,
which implies that |H| 6= |K|. Let A1 ⊆ A be the set of maximal subgroups of G
whose character table can be accessed via the GAP function NamesOfFusionSources.
Note that for any subgroup L in A1, the fusion map of L-classes can be obtained via
FusionConjugacyClasses as above. Thus, if H,K ∈ A1 then we can adopt the same
method as above.

Now we define another set A2 ⊆ A \ A1 of maximal subgroups of G, comprising the
remaining almost simple subgroups, as well as the subgroups with a permutation repre-
sentation accessible in [47]. It is easy to obtain the spectra of subgroups contained in
A1 ∪ A2, and we can use Lemma 2.2(i) to eliminate all cases where H,K ∈ A1 ∪ A2 and
at least one of these subgroups is in A2.
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Now let us turn to the maximal subgroups lying in A3 := A \ (A1 ∪ A2), noting that

A3 = {210+16.PΩ+
10(2), 2

5+10+20.(S3 × PSL5(2)), 2
3+6+12+18 .(PSL3(2)× 3S6)}.

If H ∈ A3 then one can see that π(K) 6⊆ π(H) for any K with |K| > |H|, so Lemma
2.2(ii) implies that no case arises. It suffices to consider the cases where K ∈ A3.

If K = 210+16.PΩ+
10(2), so π(K) = {2, 3, 5, 7, 17, 31} then it is routine to check that

π(K) 6⊆ π(H) for any H with |H| < |K|, which is incompatible with Lemma 2.2(ii).
Next, assume K = 25+10+20.(S3×PSL5(2)). Then π(K) ⊆ π(H) and |K| > |H| implies

that H = S3 ×Th. Note that K contains a Sylow 2-subgroup of G, and so 32 ∈ Spec(K).
However, since Th has no element of 32, we have 32 /∈ Spec(H), which is incompatible
with Lemma 2.2(i).

Finally, assumeK = 23+6+12+18.(PSL3(2)×3S6). Again, K contains a Sylow 2-subgroup
of G, so K has an element of order 32. Here if H ∈ A1 then one can check that either
|H| > |K| or 32 /∈ Spec(H) with the aid of GAP. Note that π(K) = {2, 3, 5, 7}, so if
H /∈ A1 and |K| > |H| then Lemma 2.2(ii) implies that

H ∈ {38.PΩ−
8 (3).2, (3

2:2× PΩ+
8 (3)).S4,PGL2(29)} ⊆ A2.

In each case, one can check that 32 /∈ Spec(H), which completes the proof of Theorem 7.
The statement of Corollary 9 for sporadic groups can be deduced easily. �

It might be difficult to determine all the large fixers of sporadic groups since the list of
subgroups of some sporadic groups is not easy to work out computationally. However, we
are able to establish Theorem 6, which verifies Conjecture 2 in this setting.

Proof of Theorem 6. It suffices to show that

2|K|2 < |G| · |H| (14)

for any fixer K of G. Assume K is a fixer of G and let K̂ be a maximal overgroup of K
in G. Define

|K̂|π(H) :=
∏

p∈π(H)

|K̂|p,

which is the π(H)-part of |K̂|. By Lemma 2.2(ii), we see that |K| 6 |K̂|π(H), so (14) holds
if

2(|K̂ |π(H))
2 < |G| · |H|. (15)

One can check that this inequality holds unless (G,H, K̂) is one of the cases recorded in
Table 4. Let us consider these remaining cases in turn.

First assume G = B, H = PGL2(11) and K̂ = 21+22.Co2. Here |K̂|π(H) = 241 ·36 ·53 ·11,
and we note that K̂ has two G-conjugacy classes of elements of order 5, one of which does
not meet H. This shows that |K|5 6 52, so

2|K|2 6 283 · 312 · 54 · 112 < |G| · |H|.
For the other cases listed in Table 4, we note that K 6= K̂ by Theorem 7, so K is

contained in a maximal subgroup K̃ of K̂, which can be obtained using Magma. One can
establish (14) by repeating the argument above. �

8. Alternating and symmetric groups

In this final section, we consider the groups G with soc(G) = An for some n > 5. We
seek to determine the maximal subgroups of G which are large fixers.

Proposition 8.1. The conclusion to Theorem 8 holds for n 6 24.

Proof. This can be done with the aid of Magma. �
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G H K̂

M11 S5 M10

M12 PSL2(11) M11

Co3 M23 McL.2
Co3 2×M12 McL.2
Co3 A4 × S5 McL.2

G H K̂

Co2 M23 PSU6(2).2
Fi22 M12 2.PSU6(2)
Fi22.2 M12.2 2.PSU6(2).2
Fi′24 PGL2(13) Fi23
B PGL2(11) 21+22.Co2

Table 4. The triples (G,H, K̂) such that (15) does not hold

Thus, in order to prove Theorem 8, we may assume n > 25. Note that H is naturally
of one of the following three cases:

(a) H is intransitive on [n], and thus H is a setwise stabiliser of a k-subset of [n] with
1 6 k < n/2;

(b) H is imprimitive on [n], and thus H is the stabiliser of a partition of [n] into b
parts, with each part of size a (so ab = n);

(c) H is primitive on [n].

Now we compare the orders of maximal subgroups of G. To begin with, we record a
classical result considering the sizes of primitive groups, which is [35, Corollary 1.2].

Lemma 8.2. Let X be a primitive group of degree m > 25. Then |X| < 2m if X /∈
{Am, Sm}.

The following records elementary bounds on factorials, where e is the exponential con-
stant.

Lemma 8.3. For any integer m, we have

mm

em−1
6 m! 6

mm+1

em−1
.

Using this bound, we are able to bound on the sizes of imprimitive groups.

Lemma 8.4. Suppose n > 25 and let X be a maximal subgroup of G which acts imprim-
itively on [n]. Then

2n 6 |X| 6 2 ·
(⌈n

2

⌉
!
)2
, (16)

with the second equality holds if and only if X = Sn/2 ≀ S2. Moreover, if X does not fix a
partition of [n] into 2 parts, then

|X| 6 6 ·
(⌈n

3

⌉
!
)3
. (17)

Proof. First note that

1

2
· (a!)b · b! = 1

2
· |Sa ≀ Sb| 6 |X| 6 |Sa ≀ Sb| = (a!)b · b!,

where ab = n.
Now we consider the first inequality of (16). By Lemma 8.3, we have

1

2
· (a!)b · b! > 1

2
·
(

aa

ea−1

)b
· bb

eb−1
=

1

2
· nn

en−1
· bb−n.

Hence, to prove that |X| > 2n, it suffices to show that
( n
2e

)n
> bn−b,

which is equivalent to
n

2e
>
(n
a

)1−1/a
(18)
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since ab = n. Note that this clearly holds for a > 2e > 4, and so we only need to consider
the cases where a ∈ {2, 3, 4}. One can check that (18) holds for each case in turn.

Now we establish the second inequality in (16). Using the bounds in Lemma 8.3, we
see that

(a!)b · b! 6
(
aa+1

ea−1

)b
· b

b+1

eb−1
=
an · ab · bb · b

en−1
=

nn

en−1
· nb

bn−1

and

2 ·
(⌈n

2

⌉
!
)2

> 2 ·
(
(n/2)n/2

en/2−1

)2

=
nn

en−2
· 1

2n−1
.

Thus, we only need to show that

2n−1 · e−1 6
bn−1

nb
=: f(b). (19)

for 3 6 b 6 n/2. To see this, note that

f ′(b) =
bn−2((n − 1)− b lnn)

nb
,

which implies that f(b) > min{f(3), f(n/2)}. Now it is easy to show that (19) holds for
n > 25.

To complete the proof, assume X does not fix a partition of [n] into 2 parts, and we
show that (17) holds. We first note that (17) holds for n 6 44, so we may assume n > 45.
Once again, we have |X| 6 (a!)b ·b! with ab = n and b > 3. By arguing as above, it suffices
to show that

f(b) >
3n

6e2

for 4 6 b 6 n/2. This is easy to obtain for all n > 45 by noting that f(b) > min{f(4), f(n/2)}
with the same reason as above. �

Now we are able to verify the statement of Theorem 8 when H is intransitive on [n].

Proposition 8.5. Suppose n > 25 and H is a setwise stabiliser of a k-subset of [n] with
1 6 k < n/2. Then for any maximal subgroup K of G, K is not a large fixer of G if
K 6∼= H.

Proof. For convenience, we assume G = Sn, as the proof for G = An is the same. First
note that

|H| > k!(n − k)! >
⌊n
2

⌋
! ·
⌈n
2

⌉
!.

Now we use the bounds given in Lemma 8.3, so

⌊n
2

⌋
! ·
⌈n
2

⌉
! >

(
(n/2)n/2

en/2−1

)2

=
(n/2)n

en−2

and

6 ·
(⌈n

3

⌉
!
)3

6 6n3 ·
(
(n/3)n/3+1

en/3−1

)3

= 6n3 · (n/3)
n+3

en−3
.

With these bounds, it is routine to check that
⌊n
2

⌋
! ·
⌈n
2

⌉
! > 6 ·

(⌈n
3

⌉
!
)3

for all n > 60 by arguing as in the proof of Lemma 8.4, so if K is transitive on [n] then
|K| > |H| only if K = Sn/2 ≀ S2 (one can check that this also holds if 25 6 n 6 59). Now
if K = Sn/2 ≀S2 then there exists an element of K of cycle type [n/2, n/2], which does not
fix any k-subset. Hence, K = Sn/2 ≀ S2 is not a fixer of G.
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This implies that K is intransitive on [n], and thus K fixes an ℓ-subset for some 1 6

ℓ < n/2. Note that

|K| = ℓ!(n− ℓ)! > k!(n − k)! = |H|
if and only if ℓ 6 k. Since K ∼= H if ℓ = k, we may assume ℓ < k and

K = Sym({1, . . . , ℓ})× Sym({ℓ+ 1, . . . , n}).
If ℓ > 2, then k > 2 and x = (1, 2)δ(ℓ+1, . . . , n) does not fix a k-subset of [n], where δ = 1
if n − ℓ is even, and δ = 0 otherwise (so x is an even permutation), and thus K is not a
fixer of G.

Finally, assume ℓ = 1. If k > 3 then either (2, . . . , n) or (3, . . . , n) is an even per-
mutation, and we see that each of these elements does not fix a k-subset. Now assume
k = 2. If n is odd, then we take x = (2, 3, 4)(5, . . . , n) ∈ K, while if n is even, then take
x = (2, 3, 4)(5, 6, 7, 8)(9, . . . , n) ∈ K. In either case, x is an even permutation that does
not fix any 2-subset. This completes the proof. �

To complete the proof of Theorem 8, we turn to the case where H is imprimitive on [n].

Lemma 8.6. Suppose H is imprimitive on [n], and let K be a maximal subgroup of G
which is intransitive on [n]. Then K is not a fixer of G.

Proof. Suppose H ∼= (Sa ≀ Sb)∩G and K ∼= (Sk ×Sn−k)∩G is a fixer of G, where a, b > 2
and k < n/2. Let m ∈ {n−k, n−k−1} be an odd number, noting that K has an m-cycle
and a 6 m. Then H has an m-cycle since K is a fixer of G, so we have a | m. If a 6 n/3,
then a divides m− 2 as K has an (m− 2)-cycle (note that a 6 m− 2), which yields a = 1
since (m,m − 2) = 1, a contradiction. Now if a = n/2, then m = n/2, k = n/2 − 1 and
n ≡ 2 (mod 4). In this setting, K has an element of cycle type [n/2 − 1, n/2 + 1], which
is not G-conjugate to any element in H. �

Lemma 8.7. Suppose H is imprimitive on [n], and let K be a maximal subgroup of G
which is imprimitive on [n]. If K 6∼= H, then K is not a fixer of G.

Proof. Suppose H ∼= (Sa ≀Sb)∩G and K ∼= (Sa′ ≀Sb′)∩G, where n = ab = a′b′ and a 6= a′.
We will prove that K is not a fixer of G, and we divide the proof into several cases.

Case 1. a < a′ and a is even.

In this case, K has an (a + 1)-cycle. By arguing as in the proof of Lemma 8.6, we see
that a | a+ 1, which is impossible.

Case 2. a+ 1 < a′ and a is odd.

Note thatK has an (a+2)-cycle. Thus, with the same reason as above, we have a | a+2.
But this yields a = 2, which is incompatible with our assumption.

Case 3. a+ 1 = a′ and a is odd.

Here we see that K has an element of cycle type [(a′)2, 1n−2a′ ], which is not G-conjugate
to any element in H.

Case 4. a > a′ and a′ is odd.

We have 3 6 a′ < a 6 n/2 in this setting. First assume n − a′ is odd. Then we have
a | n − a′ as K contains an (n − a′)-cycle, which yields a | a′ as a | n. However, this is
incompatible to our assumption a > a′. Now assume n− a′ is even, so both n and n− 2a′

are odd. Note that K has an (n − 2a′)-cycle and n − 2a′ > a, and thus a | n − 2a′. But
this forces a | 2a′ and hence a = 2a′ is the only possibility, which gives a contradiction
because n is odd and a is even.

Case 5. a > a′ and a′ is even.
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In this final case, we note that K has an element of cycle type [(n− a′)1, 21, 1a−2], and
it is routine to check that this element is not G-conjugate to any element in H. �

Proposition 8.8. Suppose H is imprimitive on [n]. Then for any maximal subgroup K
of G with K 6∼= H, K is not a large fixer of G.

Proof. Note by Lemmas 8.2 and 8.4 that |K| < |H| if K is primitive on [n]. Now combine
Lemmas 8.6 and 8.7. �

The proof of Theorem 8 is complete by Propositions 8.1, 8.5 and 8.8.
Finally, we consider the cases where H is primitive on [n].

Lemma 8.9. Suppose H is a primitive on [n] and K is a maximal subgroup of G which
is not primitive on [n]. Then K is not a fixer of G.

Proof. Note that K contains a 3-cycle or a product of two disjoint transpositions. Then
apply the classical theorem of Jordan [27] and a theorem of Manning [34]. �

Corollary 8.10. The conclusion to Corollary 9 holds when soc(G) = An.

Proof. In view of Theorem 8, we may assume H is primitive on [n], and by Lemma 8.9,
we only need to consider the case where K is primitive. The groups with n < 24 can be
handled easily, and we see that the required bound holds for n > 25 by combining the
inequalities |H| > n > 5/2 and |K|2 < 4n < n!/2 6 G. �

This reduces the problem to the cases where both H and K are primitive on [n]. Note
that H is of one of the following types:

HA: H = AGLd(r) ∩G, where n = rd for some prime r.

PA: H = (Sa ≀ Sb) ∩G, where n = ab with a > 5 and b > 2.

SD: H = T k.(Out(T )× Sk) for some non-abelian simple group T , where n = |T |k−1.

AS: H is an almost simple primitive group on [n].

We will prove that if K is of type HA or PA and H 6∼= K, then K is not a large fixer of
G (see Lemmas 8.12 and 8.13 below). To do this, we will repeatedly use Corollary 2.5 on
the minimal degrees of K and H on [n], and we first record [7, Theorem 4] on the study
of minimal degrees of primitive groups.

Theorem 8.11. Suppose X 6 Sym(∆) is a primitive permutation group of degree n with
point stabiliser Y . Then either µ∆(X) > 2n/3, or up to isomorphism, one of the following
holds:

(i) X = Sm or Am acting on ℓ-subsets of [m] with 1 6 ℓ < m/2 and n =
(
m
ℓ

)
.

(ii) X = Sm, Y = Sm/2 ≀ S2, n = m!
2(m/2)!2 and

µ∆(X) =
1

2

(
1 +

1

m− 1

)
n.

(iii) X = M22.2, Y = PΣL3(4), n = 22 and µ∆(X) = 14.

(iv) (X,Y, µ∆(X)) is one of the cases listed in [7, Table 2], where X is almost simple.

(v) X = V :Y is an affine group with ∆ = V = Fd2, Y 6 GLd(2) contains a transvection
and µ∆(X) = 2d−1 = n/2.

(vi) X 6 L ≀Sk with ∆ = Σk, where k > 2 and L 6 Sym(Σ) is one of the almost simple
primitive groups in parts (i)–(iv).

Lemma 8.12. Suppose H is a primitive group on [n] and K 6∼= H is a maximal subgroup
of G of type HA. Then K is not a large fixer of G.
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Proof. Suppose K = AGLd(r)∩G is a large fixer of G. First note that K has an element
g of cycle type

[(rd − 1)/2, (rd − 1)/2, 1],

which is G-conjugate to an element in H. This implies that H is of type HA or AS by
[19, Theorem 1.1]. If H is of type HA, then we have K ∼= H.

It suffices to consider the case where H is of type AS. Note that H contains a G-
conjugate of g. Thus, by inspecting the groups listed in [19, Theorem 1.1], which classifies
the finite primitive permutation groups containing a permutation having at most four
cycles, we see that either soc(H) = PSL2(p) and n = p+1 for some prime p, or soc(H) =
PSLm(2) and n = 2m − 1.

In the former case, n = 2d is even, so by Theorem 8.11, we have

µ[n](K) = n/2 < 2n/3 6 µ[n](H),

which is incompatible with Corollary 2.5. Finally, in the latter case, we have 2m− 1 = rd.
Now Catalan’s conjecture, which is proved true in [38], implies that d = 1. However,

|K| 6 r(r − 1) = (2m − 1)(2m − 2) < |PSLm(2)|/2 6 |H|,
a contradiction to the assumption that K is a large fixer. �

Lemma 8.13. Suppose H is a primitive group on [n] and K 6∼= H is a maximal subgroup
of G of type PA. Then K is not a large fixer of G.

Proof. We may write

[n] = ∆b = ∆1 × · · · ×∆b

with |∆i| = a, and

K = ((Sym(∆1)× · · · × Sym(∆b)):Sym([b])) ∩G.
The action of K on [n] is given by

(δ1, . . . , δb)
(x1,...,xb)σ =

(
δ
x1σ−1

1σ−1 , . . . , δ
xbσ−1

bσ−1

)
(20)

for any δi ∈ ∆i, xi ∈ Sym(∆i) and σ ∈ Sym([b]).
Let x = (x1, 1, . . . , 1), where x1 is a 3-cycle in Sym(∆1). Obviously, x is an even

permutation in Sym([n]), so x ∈ K. Note that

(δ1, . . . , δb)
x = (δx11 , δ2, . . . , δb)

for any (δ1, . . . , δb) ∈ [n]. This implies that

fpr[n](x) =
(a− 3)ab−1

ab
=
a− 3

a

and so µ[n](K) 6 3ab−1 = 3n/a (in fact, if G = Sn then µ[n](K) = 2n/a as noted in
[21, p. 130]). In particular, we have µ[n](K) < 2n/3, and by Corollary 2.5 we have
µ[n](K) > µ[n](H). Therefore, H is one of the primitive groups listed in Theorem 8.11.

First assume case (ii) of Theorem 8.11, so n = m!
2(m/2)!2

and

µ[n](H) =
1

2

(
1 +

1

m− 1

)
n.

Thus, µ[n](K) > µ[n](H) only if a = 5. However, 2n =
(
m
m/2

)
is clearly not a 5-power, so no

case with a = 5 arises. We do not need to consider case (iii) of Theorem 8.11 since n > 25
is assumed. By inspecting [7, Table 2] and using Catalan’s conjecture [38], one can see that
either n = ab does not have an integer solution with a > 5 and b > 2, or µ[n](H) > 3n/5,
so case (iv) of Theorem 8.11 does not arise. For example, if soc(H) = PSLd(2) with its
action on 1-subspaces of F2

d, then n = 2d − 1, and as noted above, there is no integer

solution to 2d−ab = 1 with b > 2. If H is of case (v) of Theorem 8.11, then µ[n](H) = n/2
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and a is a 2-power, which implies that a > 8 and µ[n](K) 6 3n/8, so this is incompatible
to Corollary 2.5.

Now let us consider case (i) of Theorem 8.11. Here we have soc(H) = Am and

ab =

(
m

ℓ

)
, (21)

where 2 6 ℓ 6 m/2. By [22, Theorem 2], we see that apart from the case b = ℓ = 2, the
only integer solution to (21) is (a, b,m, ℓ) = (140, 2, 50, 3). For the latter case, we have
53 ∈ π(K) \ π(H), which is incompatible with Lemma 2.2(ii). Thus, we may now assume
b = ℓ = 2, so a2 =

(m
2

)
. Recall that x = (x1, 1, . . . , 1), where x1 is a 3-cycle in Sym(∆1).

As noted above, we have fpr[n](x) = 1− 3/a. Moreover, [7, Proposition 3.4] shows that

fpr[n](y) 6 1− 6(m− 2)

m(m− 1)

for any element y ∈ H of order 3. In view of Lemma 2.4, it suffices to show that

3

a
<

6(m− 2)

m(m− 1)
.

This is equivalent to m− 2 > a, which is obvious since a2 = m(m− 1)/2.
For the remained of the proof, let us turn to case (vi) of Theorem 8.11, where H is also

a maximal subgroup of G of type PA, which requires a more detailed analysis. First note
that there exists an integer c such that a = cℓ and H = (Scm ≀Sd/m)∩G for some integers
ℓ and m with ℓ 6= m. To be precise, we may identify

[n] = Γd/m = Γ1 × · · · × Γd/m,

where |Γj| = cm, and write

H = ((Sym(Γ1)× · · · × Sym(Γd/m)):Sym([d/m])) ∩G,
with the similar componentwise action as given in (20). We divide the proof into five
cases.

Case 1. m < ℓ

In this case, we have

µ[n](H) > 2n/cm > 3n/cℓ > µ[n](K)

as discussed above, which is incompatible with Corollary 2.5.

Case 2. ℓ = 2, m > 3 is odd and c+ 1 is a 2-power

First assume c 6= 3, noting that 8 divides c + 1. Let k = (d2 )2 be the greatest 2-power

dividing d
2 . So ( dm )2 = 2k as m is odd. Let σ = σ1σ2 . . . σ d

2k
∈ Sym([d/2]), where

σi = (ik− k+1, ik − k+2, . . . , ik) is a k-cycle, and let τ ∈ Sym(∆) be a product of c− 1
disjoint (c+ 1)-cycles. We claim that

x = (τ, 1, . . . , 1︸ ︷︷ ︸
k−1

, . . . , τ, 1, . . . , 1︸ ︷︷ ︸
k−1

)σ ∈ K

is not G-conjugate to any element in H.

To see this, first note that x is the product of cd−1
k(c+1) disjoint k(c + 1)-cycles. Suppose

h ∈ H is G-conjugate to x. Then by [9, Proposition 2.1], we may assume

h = (h1, 1, . . . , 1︸ ︷︷ ︸
s1−1

, h2, 1, . . . , 1︸ ︷︷ ︸
s2−1

, , . . . , ht, 1, . . . , 1︸ ︷︷ ︸
st−1

)σ′ ∈ H

for some integers s1, . . . , st > 1, where σ′ = σ1σ2 · · · σt is such that

σi = (s1 + · · ·+ si−1 + 1, . . . , s1 + · · ·+ si).
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As |h| = |x| = k(c + 1) is a power of 2, we see that |hi| and |σi| are 2-powers. Moreover,
we note that |fix[n](h)| = |fix[n](x)| = 1 and

|fix[n](h)| = |fixΓ(h1)|s1 · · · |fixΓ(ht)|st .
This implies that |fixΓ(hi)| = 1. One can also observe that there exists 1 6 i 6 t such that
|σi| divides 2k, otherwise 4k divides |σi| for each 1 6 i 6 t and hence

|σ1|+ |σ2|+ · · ·+ |σt| =
d

m

is divisible by 4k, which is incompatible to ( dm )2 = 2k. Note that h contains a cycle of
length 2ok for some integer o if hi contains a cycle of length o. Thus, hi is a product of
2(cm−1)
c+1 disjoint c+1

2 -cycles. This is impossible, since cm − 1 is indivisible by 4.

We next assume c = 3. It follows from the main theorem of [39] that either d = 6 or
there exists a prime p such that d

m < p < d
2 . For the former, it is easy to check that

|H| > |K|. Now assume the latter case and let σ = (1, 2, . . . , p) ∈ S d
2
6 K. We claim that

σ is not G-conjugate to any element of H.
To verify the claim, we first observe that σ fixes exactly 3d−2p+2 points of [n]. Assume σ

is G-conjugate to an element h ∈ H. Then h ∈ Sym(Γ1)×· · ·×Sym(Γd/m) since p > d/m.
Thus, we may write

h = (h1, h2, . . . , hd/m),

where

hp1 = hp2 = . . . hpd/m = 1.

Since |h| = |σ| = p, there exists 1 6 j 6 d
m such that |hj | = p. Thus, |fixΓ(hj)| is coprime

to 3, a contradiction to |fixΓ(hj)| dividing |fix[n](h)| = 3d−2p+2.

Case 3. m > ℓ, ℓ does not divide m, and (c,m, ℓ) does not satisfy Case 2

By Zsigmondy’s theorem [48], there exists a prime divisor r of cℓ − 1 that does not
divide cm − 1. Let τ be an element in Sym(∆) of order r that fixes a unique point of ∆,
and let x = (τ, . . . , τ) ∈ K, noting that x fixes a unique point in [n]. We claim that x is
not G-conjugate to any element in H.

Suppose h ∈ H is G-conjugate to x. Again, by [9, Proposition 2.1], we may assume

h = (h1, 1, . . . , 1︸ ︷︷ ︸
r−1

, h2, 1, . . . , 1︸ ︷︷ ︸
r−1

, . . . , ht′ , 1, . . . , 1︸ ︷︷ ︸
r−1

, ht′+1, ht′+2, . . . , ht)σ ∈ H

for some t and t′, where σi = (ri− r+ 1, . . . , ri) and σ = σ1 · · · σt′ . Since hr = 1, we have

h1 = · · · = ht′ = hrt′+1 = · · · = hrt = 1.

Hence, t′ = 0 since h has a unique fixed point in [n], and moreover, hi fixes a unique point
in ∆ if t′ + 1 6 i 6 t, which is impossible since r does not divide cm − 1.

Now it suffices to consider the case where ℓ divides m, and thus from now we write
m = ℓt for some t > 2 (so cm = at and d/m = b/t).

Case 4. ℓ divides m and b > 2a

Let r be a prime such that b/2 < r < b (the existence follows from Bertrand postulate).
Note that r > b/2 > a. Let x be an r-cycle in Sym([b]). Then x fixes exactly ab−r+1 points
in [n]. Suppose h ∈ H is of order r, which fixes ab−r+1 points in [n]. The assumption

b/2 < r yields h ∈ S
b/t
at , so we may write h = (h1, . . . , hb/t) with hi ∈ Sym(Γi), noting that

there exists j such that |hj | = r. Now |fixΓj(hj)| = at − kr for some positive integer k.

However, |fixΓj (hj)| divides |fix[n](x)| = ab−r+1, whereas

(at, at − kr) = (at, r) = 1
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Type of H L0 Conditions
GL2(q0) Cf

p :C q0−1

(2,q−1)
q = qr0 , r odd, r 6= p, and L = LI is as defined in (8)

q = qp0 , p 6= 2, q 6= 27, (p, |K : K0|) = 1, and L = LII is as defined in (9)

C
f−f/p
p :C q0−1

2
q = qp0 , p > 3, p divides |K : K0|, and L = LIII is as defined in (10)

Cf
2 :C2f/2+1 p = 2, q = q20 and |G : G0| odd

GL1(q) ≀ S2 Cf
2 :C2f−1 p = 2 and |L : L0| odd

SL2(q
1/2) p = 2 and f even

A4 q = 13 or G = PGL2(7)
S4 q = 25 and G 6 PΣL2(q)
A5 q = 31, or q ∈ {16, 61} and G = G0

GL1(q
2) A4 q = 11 or G = PSL2(5)

S4 G = PSL2(23)
A5 q = 29 or G = PSL2(59)

21+2
−

.O−

2 (2) S4 G = G0 and q = p ≡ ±1 (mod 8)
A5 A5 G = G0 and q = p ≡ ±1 (mod 10)

G = G0, q = p2 and 3 6= p ≡ ±3 (mod 10)

Table 5. Maximal non-stable fixers of G with soc(G) = PSL2(q)

implies that |fixΓj (hj)| is coprime to a. This gives a contradiction, so x is not G-conjugate
to any element in H.

Case 5. ℓ divides m and b < 2a

In this final case, we will prove that |H| > |K|. To do this, first note that

|H|
|K| =

(at)!b/t( bt )!

(a!)b · b! =

∏at

j=a+1 j
b/t

(a!)b−b/t ·∏b
k=b/t+1 k

>

∏at

j=a+1 j
b/t−1 ·∏at−b+b/t

i=a+1 i

(a!)b−b/t
(22)

since b < 2a < at. Observe that the numerator of the last term of (22) is a product of
(at − a)b/t+ b/t− b integers strictly larger than a, so it suffices to show that

(at − a)b/t+ b/t− b > a(b− b/t).

This is given by the inequality at + 1 > t(a+ 1).
We conclude the proof since all cases have been discussed. �

9. The tables

Here we present Table 5 and 6, which arise in the statements of Theorems 3 and 7,
respectively.

Remark 9.1. Let us record some additional comments on Table 5.

(i) The type of H, recorded in the first column, gives an approximate description of
the structure of H, which is consistent with usage in [29].

(ii) We write K0 and L0 for the groups K ∩ G0 and L ∩ G0, respectively, where
G0 = soc(G).

(iii) In the second column, we record L0 up to isomorphism. Note that there might be
more than one conjugacy classes of subgroups L satisfying the condition described
in the table. But we remark that apart from the first two and the last three rows,
if K 6 G is such that K0

∼= L0 and K/K0
∼= L/L0, then K is a fixer of G. For

example, see Lemma 5.11 for an argument on the third row.

(iv) Let us turn to the first and second rows of Table 5. Then H = GL2(q0), and we
have L = LI defined in (8) in the former case, while L = LII as described in (9)
for the latter. It is worth noting that not every subgroup K with K0

∼= L0 and
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K/K0
∼= L/L0 is isomorphic to L (we refer the reader to Remark 5.8 for more

details).

(v) In the last three rows where H is of type 21+2
− .O−

2 (2) or A5, we have L = Hδ,
where δ is a diagonal automorphism of G0.

G H K

M11 GL2(3) M9:2
M22 24.S5 24.A6

A7 A7

M23 PΣL3(4) 24:A7

24:A7 PΣL3(4)
Co3 PSL3(4).D12 24.A8

J1 D6 ×D10 2×A5

7:6 23:7:3
J3 (3 ×A6):2 24:(3×A5)

PSL2(19) PSL2(19)
HS PSU3(5):2 PSU3(5):2
Suz PSL3(3):2 PSL3(3):2
He 26:3.S6 26:3.S6

G H K

McL M22 M22

24.A7 24.A7

24.A7 PΣL3(4)
PΣL3(4) 24.A7

Ru 23+8:PSL3(2) 26.PSU3(3).2
Fi22 S10 S10

Ω7(3) Ω7(3)
HN M12:2 M12:2
Fi′24 PSU3(3):2 PSU3(3):2

PGL2(13) PGL2(13)
O’N A7 A7

(32:4×A6).2 34:21+4.D10

O’N .2 (32:4×A6).2.2 34:21+4.D10.2

Table 6. Maximal subgroups of almost simple sporadic groups which are
large fixers
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