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We explore a generalization of nonrelativistic fermionic statistics that interpolates between bosons
and fermions, in which up to K particles may occupy a single-particle state. We show that it can
be mapped exactly to K flavors of fermions with imaginary polarization. In particular, for K = 2,
we use such a mapping to derive the virial coefficients and relate them to those of conventional
spin-1/2 fermions in an exact fashion. We also use the mapping to derive next-to-leading-order
perturbative results for the pressure equation of state. Our results indicate that the K=2 particles
are more strongly coupled than conventional spin-1/2 fermions, as measured by the interaction
effects on the virial expansion and on the pressure equation of state. In the regime set by the
unitary limit, the proposed K = 2 deformation represents a universal many-body system whose
properties remain largely unknown. In particular the system can be expected to become superfluid
at a critical temperature Tc higher than that of the unitary limit. We suggest it may be possible to
realize this system experimentally by engineering a polarized coupling to an electrostatic potential.
Finally, we show that the K = 2 system does not display a sign problem for determinantal Monte
Carlo calculations, which indicates that Tc can at least in principle be calculated with conventional
methods.

I. INTRODUCTION

Over the last two decades there has been considerable
interest in the exploration of universality in nonrelativis-
tic quantum many-body systems (besides the well-known
cases close to continuous phase transitions). By far the
most studied case, both in theory and experiments (see
e.g. [1–3]), is that of spin-1/2 fermions in the unitary
limit (a system of nonrelativistic spin-1/2 particles with a
zero-range interaction tuned to the threshold of two-body
bound-state formation, i.e. infinite scattering length). In
such a situation, the property of universality stems from
the lack of physical scales (and corresponding scale in-
variance) associated with the attractive interaction, as a
system in this limit presents as many dimensionful pa-
rameters as a noninteracting gas (albeit also displaying
strong pairing correlations and becoming superfluid at
low enough temperature). In practice, fermions at uni-
tarity are realized to an excellent approximation in ultra-
cold atom experiments [3] and to a lesser extent in the
dilute neutron matter layer of neutron stars [2].

Given the interest in these types of universal systems,
it becomes a relevant question whether there are other re-
lated systems that are also universal. Examples of such
cases were proposed by Nishida and Son in Refs. [4],
where they showed that there is a one-dimensional re-
alization of the unitary limit with four flavors and a fine-
tuned four-body interaction. They also showed, in a pre-
vious publication [5], that fermions at unitarity obey a
nonrelativistic conformal algebra for which anyons in two
spatial dimensions provide a representation.

Motivated in part by the above developments, we ex-
plore here a definition of yet another type of particle
statistics that presents nontrivial behavior at unitarity
and in some sense interpolates between fermions and
bosons. Generally speaking, systems of quantum par-
ticles with unconventional statistics have been studied

for many years (see e.g. [6]). The particular case we
consider here is perhaps most directly related to the so-
called Gentile statistics [7], which generalizes fermions
and bosons by allowing single-particle states to hold at
most K particles, where K → 1 recovers the fermionic
case and K → ∞ the bosonic one (see also [8]).
As detailed below, our approach consists in starting

with a fermionic system in a path-integral representa-
tion and define the generalized K statistics by modifying
the integrand in a well-defined fashion. We show that
such a prescription corresponds to K flavors of fermions
with complex chemical potentials. We then explore the
thermodynamics of the system for the case K = 2 at uni-
tarity using a perturbative approach as well as the virial
expansion.

II. FORMALISM

A. Noninteracting systems

For completeness, we briefly review the noninteracting
thermodynamics of fermions and bosons in the grand-
canonical ensemble. The grand canonical partition func-
tion is

Z0 = tr
[
e−β(T̂−µN̂)

]
, (1)

where β is the inverse temperature, µ the chemical po-
tential,

N̂ =
∑
p

â†pâp, (2)

is the particle number operator, and

T̂ =
∑
p

â†pâpϵ(p), (3)
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is the kinetic energy operator. Here, â†p, âp are, respec-
tively, the creation and annihilation operators for parti-
cles of momentum p,which satisfy the appropriate com-
mutation or anticommutation relations. We will set

ϵ(p) =
p2

2m
(4)

at the end of the calculation, but as we show below, it is
useful to keep ϵ(p) as an arbitrary function.

For noninteracting fermions (one species),

Z0,F = det[1 + zU0], (5)

where [U0]p,p′ = e−βϵ(p)δp,p′ is a diagonal matrix in mo-

mentum space and z = eβµ is the fugacity. Thus,

lnZ0,F =
∑
p

ln
[
1 + ze−βϵ(p)

]
, (6)

which in the thermodynamic limit of large volume, yields
a well-known integral expression that is commonly writ-
ten in terms of the so-called Fermi function [9].

Similarly, for noninteracting bosons (again only one
species),

Z0,B = det[(1− zU0)
−1], (7)

such that

lnZ0,B =
∑
p

ln

[(
1− ze−βϵ(p)

)−1
]
, (8)

which is also usually written in integral form in the ther-
modynamic limit.

Based on the above, it seems natural to consider defin-
ing a quantum statistics of identical particles that inter-
polates between the above two cases and is such that at
most K particles can occupy a given single-particle state.
Such a statistics has been pursued by many authors in
the past, perhaps the best known case being that of Gen-
tile [7]. For a maximum of K particles per single-particle
state, one obtains

Z0,K = det

[
K∑

n=0

znUn
0

]
, (9)

where the (single-flavor) fermionic case is recovered for
K = 1 and the bosonic case for K → ∞. As we show
below, the K = 2 is different from spin-1/2 fermions.
The polynomial in x = zU0 inside the determinant can
naturally be written as

1 + x+ x2 + · · ·+ xK =
1− xK+1

1− x
, (10)

which is an easy way to see that the roots of our poly-
nomial are K of the (K + 1)-th roots of unity, namely
αn = ei2πn/(K+1), with n = 1, 2, . . . ,K, such that

lnZ0,K =

K∑
n=1

∑
p

ln
(
ze−βϵ(p) − αn

)
, (11)

and therefore (dropping an additive constant which, in
particular, vanishes if K is even),

lnZ0,K =

K∑
n=1

∑
p

ln
(
1 + wne

−βϵ(p)
)
, (12)

where wn = −αnz which shows that the noninteract-
ing K statistics corresponds to K fermionic species with
complex fugacities.
As an example, consider the K = 2 case, where

Z0,2 =
∏
p

∣∣∣1 + e−iπ/3ze−βϵ(p)
∣∣∣2 , (13)

such that total particle number is

N (0) = z
∂ lnZ0,2

∂z
=

∑
p

2Re

[
e−iπ/3ze−βϵ(p)

1 + e−iπ/3ze−βϵ(p)

]
,

(14)
and such that the noninteracting occupation probabilities
of the single-particle momentum states are

n(0)
p (z) = 2Re

[
e−iπ/3ze−βϵ(p)

1 + e−iπ/3ze−βϵ(p)

]
. (15)

In Fig. 1 we show the momentum distribution n
(0)
p (z)

forK = 2, alongside the distributions forK = 1 andK =
3 and the spin-1/2 noninteracting Fermi gas. Notably,
there is a clear difference between the K = 2 case and
the spin-1/2 Fermi gas. The former allows for higher
occupations for x < 0 at the cost of lower occupations at
x > 0; both distributions yield the same answer at x = 0.
As we show below when discussing the virial expansion,
there is a well-defined sense in which the K = 2 case is
”more bosonic” than the spin-1/2 Fermi gas, even though
the former is effectively just a complex-z deformation of
the latter.

B. Interacting systems

While the above completely determines the thermody-
namics of the non-interacting case without further need
to invoke the algebraic properties of â and â†, the inter-
acting case requires more care, as interactions will involve
products of four or more of these operators.
In this work we will follow a different, non-algebraic

route by defining the interacting system using the field-
integral formulation of the many-body problem. [We do,
however, carry out our derivations using the spin-1/2
fermionic case as a starting point.] Using a Hubbard-
Stratonovich transformation [10, 11] (see also [12, 13]) to
decouple the interaction in the fermionic case, one ob-
tains an expression for Z that involves a field integral
over auxiliary-field configurations σ(r, t) in which the in-
tegrand takes the form of a product of two determinants:

det (1 + zU [σ]) det (1 + zU [σ])
= det(1 + 2zU [σ] + z2U 2[σ]), (16)
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FIG. 1. Momentum distribution of the noninteracting K =
1, 2, 3 gas. Here, the x axis represents x = β(p2/(2m) − µ).
For comparison, we also show the noninteracting spin-1/2
Fermi gas result.

which represent noninteracting systems immersed in the
external field σ(r, t). We then deform such a system to
our K = 2 case by replacing the fermionic determinants
as follows:

det (1 + zU [σ]) det (1 + zU [σ])
→ det(α+ zU [σ]) det(α∗ + zU [σ]), (17)

where α = −ei2π/3 = e−iπ/3 and where we have factored
out the fugacity z explicitly.

The U [σ] matrices contain the product of Nτ exponen-
tials of kinetic and potential energy operators along the
imaginary-time direction:

U [σ] = e−τT e−τV [σ] . . . e−τT e−τV [σ], (18)

where the inverse temperature is β = Nττ ; T is the
single-particle representation of the kinetic energy op-
erator; and V [σ] is the auxiliary potential resulting from
the Hubbard-Stratonovich transformation.

We therefore define the interacting K = 2 partition
function as

Z =

∫
Dσ det(zU [σ] + α) det(zU [σ] + α∗)

=

∫
Dσ det(1 + zU [σ] + z2U2[σ]), (19)

where we see that the expected K = 2 noninteracting
limit is recovered when the interaction is turned off. Re-
arranging, noting that |α|2 = 1, one obtains

Z =

∫
Dσ det(1 + wU [σ]) det(1 + w∗U [σ]), (20)

which shows once again that the K = 2 case is iden-
tical to that of spin-1/2 fermions with complex fugac-
ities w = αz and w∗ for each spin projection, respec-
tively. In spite of the appearance of a complex fugacity,

the presence of its complex conjugate indicates that this
system does not display a sign problem for conventional
auxiliary-field Monte Carlo calculations, as long as the in-
teraction is purely attractive. Notably, α is temperature-
independent, which leads to a temperature-varying com-
plex effective chemical potential, namely

βµeff = lnw = βµ± i
π

3
, (21)

for spin-up and spin-down, respectively. Thus, ourK = 2
system is equivalent to a spin-1/2 Fermi gas with imagi-
nary polarization.
It is well-known [14] that a chemical potential is equiv-

alent to an imaginary A0 gauge field. Thus, coupling to
a constant A0 gauge field is equivalent to an imaginary
chemical potential, which is our interest here. There-
fore, the above imaginary polarization can potentially be
realized by engineering a coupling of spin-1/2 fermions
in which the spins couple to an electrostatic field with
an electrostatic potential difference of 2π/3. Ideally, this
coupling would be independent from the usual Feshbach
resonance coupling that controls the inter-spin interac-
tion.
In the next sections we will focus on this K = 2 case,

tuning the interaction to the unitary limit. While it is
generally accepted that polarized unitary fermions un-
dergo a phase transition at some polarization, from a su-
perfluid phase to a normal phase (possibly going through
exotic superfluid phases), their behavior at imaginary po-
larization remains little explored (see however the semi-
nal studies of Refs. [15, 16]).
In investigating the present deformation of the Fermi

gas, we have kept the internal number of degrees of free-
dom constant, i.e. we compare K = 2 to the spin-1/2
Fermi gas. Another route could be to promote the indi-
vidual spin degrees of freedom of the Fermi gas to K = 2,
but this would result in a system with four internal de-
grees of freedom, which would be generally very difficult
to compare with its spin-1/2 counterpart and possibly
unstable depending on the form of the interaction (see
below).
For K > 2, attractive interactions make the unitary-

limit system unstable toward Thomas collapse (due
to the formation of infinitely deep three-body bound
states) [17] (see also [18]). However, one may still en-
vision an appropriate modification of the interaction at
short range along with a decoupling of the interaction to
proceed with the mapping to fermions by factorization of
the determinant as

det

[
K∑

n=0

znUn[σ]

]
=

K∏
n=1

det [1 + wnU [σ]] , (22)

where wn = αnz, and αn, n = 1, 2, . . . ,K − 1 is one of
the (non-unity) (K + 1)-th complex roots of unity. In
other words, our system maps exactly onto a system of
K fermions with complex chemical potentials wn. For K
even, the relevant roots of unity come in complex con-
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jugate pairs, such that pairing the determinants accord-
ingly one finds that there is no sign problem. For K odd,
on the other hand, there will always be a determinant
factor of the form

det(1− zU [σ]), (23)

which can be made real (in some cases, depending on
the form of the interaction), but cannot be guaranteed
in general to be positive definite (except under specific
symmetry conditions; see e.g. Ref. [19] for a review);
such a factor corresponds to the root α = −1, which is
present for all K odd.
The next few sections present our results for K = 2 for

the virial coefficients up to fourth order, and a next-to-
leading-order perturbative calculation of the pressure.

III. RESULTS: THE VIRIAL EXPANSION

The virial expansion (see e.g. [9]) is an expansion of Z
in powers of the fugacity z, such that

Z =

∞∑
n=0

Qnz
n, (24)

where Qn is the n-particle canonical partition function,
and

lnZ = Q1

∞∑
n=1

bnz
n, (25)

where bn are the virial coefficients, typically written in
terms of Qm with m ≤ n; for example, b1 = 1, while

b2 =
Q2

Q1
− Q1

2!
, (26)

and

b3 =
Q3

Q1
+ b2Q1 −

Q2
1

3!
, (27)

and so forth, where Q1 = V/λ3
T in 3D. The above ex-

pressions for b2 and b3 are independent of the quantum
statistics.

For reference, we note that the bn for noninteracting
fermions and bosons in homogeneous space are given, re-
spectively, by

b0,F,n = (−1)n+1 1

n5/2
, (28)

and

b0,B,n =
1

n5/2
. (29)

It is not difficult to calculate the virial coefficients of
the noninteracting case for arbitrary K and notice that
they are identical to those of the bosonic case, except

that for every n that is multiple of K +1 one obtains an
extra sign and an overall factor of K, i.e.

b0,K,m(K+1) = −K
1

n5/2
, (30)

where m = 1, 2, 3 . . . , which also captures the expected
results both at K = 1 and K → ∞.
It is straightforward to derive relations between the

virial coefficients of theK = 2 gas and the spin-1/2 Fermi
gas by noting that the virial expansion for the complex-
polarized Fermi gas takes the form

ln(Z/Z0) = 2QF
1,0

∞∑
n=2

∑
m+j=n

∆bFm,jz
m
↑ zj↓, (31)

where QF
1,0 = V/λ3

T = Q1, z↑ = zeiα, and z↓ = ze−iα,

and ∆bFm,j are the virial coefficients of the polarized spin-
1/2 Fermi gas. Thus, identifying the powers of z against
the K = 2 expression

ln(Z/Z0) = QF
1,0

∞∑
n=2

∆bK=2
n zn, (32)

we find

∆bK=2
2 = 2∆bF11 = 2∆bF2 , (33)

∆bK=2
3 = 2∆bF21 = ∆bF3 , (34)

∆bK=2
4 = −2∆bF31 + 2∆bF22 ̸= ∆bF4 , (35)

where for completeness we note that ∆bF4 = 2∆bF31 +
∆bF22.
Using known results at unitarity from Refs. [20–22], we

find

∆bK=2
2 =

√
2, (36)

∆bK=2
3 = −0.3551..., (37)

∆bK=2
4 = −0.435..., (38)

where we only quote enough digits for the purposes of
this work. It is evident from the above, however, that for
K = 2 at unitarity, the fourth-order coefficient is larger
in magnitude than the third-order coefficient. This is in
contrast to the conventional spin-1/2 unitary Fermi gas,
where that type of behavior shows up at one higher order
(i.e. between fourth and fifth).
For future reference, we note that the second-order

virial expansion of the pressure at unitarity reads

β∆PV = ln(Z/Z0) = QF
1,0

√
2z2, (39)

such that, using the noninteracting result βP0V = Q1(z+
b02z

2 + . . . ), we obtain

P

P0
= 1+

∆P

P0
= 1+

√
2z2

z + b02z
2 + . . .

= 1+∆bK=2
2 z (40)
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Carrying out the expansion now up to z3 order, we
obtain

P

P0
= 1 +∆bK=2

2 z +

[
−∆bK=2

2

4
√
2

+ ∆bK=2
3

]
z2

+

[
−∆bK=2

3

4
√
2

+ ∆bK=2
4 +∆bK=2

2

(
1

32
+

2

9
√
3

)]
z3.

IV. RESULTS: PERTURBATIVE APPROACH

To complement our VE results of the previous section,
we present here a second-order perturbation theory cal-
culation of the thermodynamics of our K = 2 system for
arbitrary w. To this end, our starting point is

Z =

∫
Dσ det(1 + wU [σ]) det(1 + w∗U [σ]). (41)

To expand Z perturbatively, we use a discretization of
the imaginary-time direction, as in Ref. [23], and expand
U [σ] in powers of the bare coupling constant C, such that

U [σ] = U0 + CU1[σ] + C2U2[σ] + . . . , (42)

where, we define C by

e−τV [σ] = 1 + CM [σ], (43)

and M [σ] contains all the non-trivial dependence on
σ and its form will depend on the specific choice of
Hubbard-Stratonovich transformation. Then

det(1 + wU [σ]) = det(1 + wU0) (44)

×det
[
1 + CX1[σ] + C2X2[σ]

]
,

(45)

where

Xk[σ] =
wUk[σ]

1 + wU0
. (46)

Therefore, at order C2,

det(1 + wU [σ]) = 1 + CtrX1[σ] + C2trX2[σ]

+
C2

2

[
tr2X1[σ]− trX2

1 [σ]
]
. (47)

Integrating over σ to get Z, we obtain

Z =

∫
Dσ det(1 + wU [σ]) det(1 + w∗U [σ])

= Z0

[
1 + C∆1(w,w

∗) + C2∆2(w,w
∗)
]
, (48)

where the noninteracting partition function is

Z0 = det(1 + wU0) det(1 + w∗U0), (49)

the first-order contribution in C is

∆1(w,w
∗) =

∫
Dσ (trX1[σ] + c.c.) (50)

and the second-order term is

∆2(w,w
∗) =

∫
Dσ[trX1[σ]trX

∗
1 [σ] + trX2[σ]

+
1

2

(
tr2X1[σ]− trX2

1 [σ] + c.c.
)
]. (51)

Since we assume the interaction to be only a two-body
interaction, only terms with even powers of w will con-
tribute to the final result. In the above equations, it can
be shown that, indeed, ∆1 = 0. Similarly, the X2 term
in ∆2 also vanishes. The remaining contribution in ∆2 is
what is conventionally called the first-order perturbation
theory result, which boils down to

Z/Z0 = 1 + C2V n(w)n(w∗), (52)

where

n(w) =
1

V

∑
p

np(w), (53)

and

np(w) =
we−βϵ(p)

1 + we−βϵ(p)
. (54)

In the large-volume limit,

n(w) → V

(2π)3

∫
dp np(w), (55)

and setting ϵ(p) = p2/(2m) the integral can be evaluated
and is proportional to Li 3

2
(−w).

Thus, the change in pressure is given at this order by

β∆PV = ln (Z/Z0) = C2V n(w)n(w∗), (56)

such that our final result, setting ϵ(p) = p2/(2m), is

P

P0
= 1 + C

∣∣∣Li 3
2
(−w)

∣∣∣2 [2ReLi 5
2
(−w)]−1, (57)

where C is a dimensionless coupling to be renormalized
as explained below. Note that we have used the nonin-
teracting result

βP0V = lnZ0 = 2Re
∑
p

ln
[
1 + we−βϵ(p)

]
, (58)

where the last sum, in the large-volume limit, is propor-
tional to Li 5

2
(−w).

To renormalize C, we use the VE result of the previous
section by choosing a renormalization point z0. For our
K = 2 case, with α = e−iπ/3, the second-order VE for
the pressure reads

P

P0
= 1 +

√
2z, (59)

and therefore

C =
√
2z0

∣∣∣Li 3
2
(−e−iπ/3z0)

∣∣∣−2

[2ReLi 5
2
(−e−iπ/3z0)],

(60)
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which fixes C in Eq. (57).
In Fig. 2 we show our results for the pressure P in

units of P0, comparing the second, third, and fourth-
order virial expansions with our perturbative result for
P/P0 as a function of βµ, at unitarity for K = 2.

3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.0

1.5

2.0

2.5

3.0

P/
P 0

VE2
VE3
VE4
PT
Pade-Borel

FIG. 2. Pressure P of the K = 2 gas at unitarity, in units of
its noninteracting counterpart P0 as a result of four different
calculations: virial expansion at second, third, and fourth
orders, and first-order perturbative result. We also show the
result of a Pade-Borel resummation of the fourth-order virial
expansion.

Using the above expressions, we may also access the
momentum distribution. For that purpose, we restore a
generic dispersion relation ϵ(p) instead of p2/(2m), which
allows us to reinterpret the expressions for Z as generat-
ing functionals for expectation values of the occupation
probability np. For instance, in the noninteracting limit,

n(0)
p = − 1

β

δ lnZ0

δϵ(p)
= 2Re[np(w)]. (61)

The interaction effects on the above are given by

∆np = − 1

β

δ ln(Z/Z0)

δϵ(p)

∝ Re

[
n(w)

(w∗)−1eβϵ(p)

(1 + (w∗)−1eβϵ(p))2

]
. (62)

In Fig. 3, we show the above correction ∆np relative to

its conventional spin-1/2 counterpart ∆nFermi
p , for three

different fugacities, as a function of x = β(p2/(2m)− µ).
At sufficiently low- and high-x, ∆nFermi

p tends to zero.
Thus, we note that ∆np also decreases to zero at suffi-
ciently low- and high-x. This indicates that the max-
imum occupation number (i.e. 2 for K = 2) is not
modified by the interactions, at least away from x = 0.
Around x = 0, interaction effects may violate the max-
imum occupation number for sufficiently strong interac-
tions or sufficiently high z, but those effects are beyond
our perturbative analysis.

At high fugacities, interaction effects are substantially
enhanced for K = 2 relative to the Fermi gas, which is

4 3 2 1 0 1 2 3 4
x

0.5

1.0

1.5

2.0

2.5

n p
/

nFe
rm

i
p

z = 3
z = 1
z = 0.5

z = 3
z = 1
z = 0.5

FIG. 3. Momentum distribution first-order perturbative
correction for K = 2, relative to the conventional spin-1/2
Fermi gas,. Here, the x axis represents x = β(p2/(2m) − µ).
For comparison, results are shown for various fugacities z =
0.25, 1.0, and 3.0.

important because at sufficiently high z, these systems
are expected to become superfluid. Based on our results
for ∆np, we anticipate that the critical temperature for
K = 2 will be higher than that of the spin-1/2 Fermi
gas at the same interaction strength, as the interparticle
attraction is effectively stronger for the K = 2 gas.

V. SUMMARY AND CONCLUSIONS

In this work, we have explored a generalization of non-
relativistic fermionic statistics that interpolates between
bosons and fermions, for which up to K particles can oc-
cupy a single-particle state. We have shown that it can be
mapped exactly to K flavors of fermions with a specific
temperature-dependent imaginary polarization, i.e. the
difference in density among the flavors is an imaginary
quantity. In particular, for K = 2, we use the mapping
to derive the virial coefficients and relate them to those
of conventional spin-1/2 fermions in an exact fashion.
We also use the mapping to derive next-to-leading-order
perturbative results for the pressure equation of state.
Our results indicate that the K = 2 particles are more
strongly coupled than conventional spin-1/2 fermions, as
measured by the interaction effects on the virial expan-
sion and the pressure.
At unitarity, the proposed K = 2 system is a universal

many-body system whose properties remain largely un-
known. In particular the system can be expected to be-
come superfluid at a critical temperature Tc higher than
that of the conventional, unpolarized unitary limit [24–
27]. Indeed, the mean-field study of Ref. [15] found
that, for an imaginary polarization of π/3 [see Eq. (21)],
the critical temperature is about 30% higher than in
the unpolarized case. If that percent change applies
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once all fluctuations are accounted for, one may expect
Tc/ϵF ≃ 0.2 for the K = 2 system (where ϵF is the Fermi
energy). By engineering a polarized coupling to an elec-
trostatic potential, it may be possible to realize this sys-
tem in a controlled fashion via ultracold atoms, where
the question of Tc can be explored experimentally. Fi-
nally, we showed that the K = 2 system does not display
a sign problem for determinantal Monte Carlo calcula-

tions, which indicates that the precise value of Tc can at
least in principle be determined with conventional meth-
ods.
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