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ABSTRACT. Shallow water waves phenomena in nature attract the attention of scholars and play
an important role in fields such as tsunamis, tidal waves, solitary waves, and hydraulic engineering.
Hereby, for the shallow water waves phenomena in various natural environments, we study the KdV-
Calogero-Bogoyavlenskii-Schiff (KdV-CBS) equation. Based on the binary Bell polynomial theory, a
new general bilinear Bäcklund transformation, Lax pair and infinite conservation laws of the KdV-
CBS equation are derived, and it is proved that it is completely integrable in Lax pair sense. Various
types of mixed solutions are constructed by using a combination of Homoclinic test method and
symbolic computations. These findings have important significance for the discipline, offering vital
insights into the intricate dynamics of the KdV-CBS equation. We hope that our research results could
help the researchers understand the nonlinear complex phenomena of the shallow water waves in
oceans, rivers and coastal areas. Furthermore, the present work can be directly applied to other
nonlinear equations.

1. INTRODUCTION

Nonlinear evolution equations (NLEEs) are widely used in several fields [1–3], including fluid
mechanics, solid physics, plasma bulk wave, biology, quantum mechanics, heat flow phenomena
and optical fabrics [4, 5]. The broad range of applications indicated above has piqued the cu-
riosity of researchers, leading to substantial investigation of NLEEs. In order to understand the
complex physical phenomena simulated by these NLEEs, it is very important to find their exact
solutions [6, 7]. Unlike linear equations, there is no general analytical method and system the-
ory to obtain exact solutions of NLEEs. Over the years, researchers have proposed some effective
methods to study the exact solutions of NLEEs [8, 9], including the inverse scattering transform
method [10, 11], Darboux transformation [12–14], Hirota bilinear method [15], Bäcklund trans-
formation method [16], long wave limit method [17], symmetry analysis method [18] and many
more methods [19]. Based on these methods, many works have been done to study the analytical
solutions of NLEEs [20, 21].

Lambert [22] and colleagues proposed a combination of Hirota bilinear method and Bell poly-
nomial method to obtain the bilinear Bäcklund transformations and Lax pair for soliton equations.
Applying the binary Bell polynomial method, researchers have not only provided the process
of constructing bilinear forms, but also systematically constructed bilinear Bäcklund transforma-
tions, Lax pair and infinite conservation laws of NLEEs [23, 24]. The study of conservation laws
is very important. Wang [25] used the zero-curvature equation and Lenard recursive operators to
derived the extended Merola-Ragnisco-Tu lattice equation and the infinite conservation laws.

Recently, Wazwaz introduced a new (3+1)-dimensional KdV-Calogero-Bogoyavlenskii-Schiff
equation [26], which describes the shallow water waves and fluid flow phenomena in various

Date: May 13, 2024.
Key words and phrases. KdV-Calogero-Bogoyavlenskii-Schiff equation; Bell polynomial theory; Bäcklund transfor-
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natural environments including oceans, rivers and coastal areas, and has been widely used in
physics, mathematics and engineering.

4ut + λ1(uxxy + 4uuy + 2ux∂−1
x uy) + λ2(uxxz + 4uuz + 2ux∂−1

x uz)
+ λ3(uxxx + 6uux) + λ4ux + λ5uy + λ6uz = 0,

(1.1)

where u = u(x, y, z, t), with λ1, λ2, λ3, λ4, λ5 and λ6 are real constants. Lump solutions and local-
ized wave solutions of Eq. (1.1) are constructed by the symbolic computational method [27]. A set
of auto-Bäcklund transformations for Eq. (1.1) is obtained using truncated Painlevé expansions,
and N-soliton solutions for the equation [28] are derived on a non-zero background. Eq. (1.1) is
simplified into a variety of nonlinear equations with different physical properties by changing its
coefficients.

● When λ1 = λ2 = λ4 = λ5 = λ6 = 0 and λ3 = 4. Equation (1.1) has been reduced to the
ubiquitous Korteweg-de Vries equation [29]

ut + uxxx + 6uux = 0.(1.2)

● When λ2 = λ3 = λ4 = λ5 = λ6 = 0 and λ1 = 4. Equation (1.1) has been reduced to the
Calogero-Bogoyavlenskii-Schiff equation [30]

ut + uxxy + 4uuy + 2ux∂−1
x uy = 0.(1.3)

● When λ1 = −h1, λ3 = −h2 and λ2 = λ4 = λ5 = λ6 = 0. Equation (1.1) has been reduced to the
generalized (2+1)-dimensional Korteweg-de Vries equation [31]

4ut − h1(uxxy + 4uuy + 2ux∂−1
x uy) − h2(uxxx + 6uux) = 0.(1.4)

● Setting λ1 = 4h1, λ2 = 4h2, λ3 = 4h3 and λ4 = λ5 = λ6 = 0 in Eq. (1.1) gives the (3+1)-
dimensional KdV-like model equation [32]

ut + h1(uxxy + 4uuy + 2ux∂−1
x uy) + h2(uxxz + 4uuz + 2ux∂−1

x uz) + h3(uxxx + 6uux) = 0.(1.5)

In recent year, mathematicians have worked hard to develop unique approaches for numerical
and analytical solutions to the problems posed by NLEEs. It is worth pointing out that the soliton
solutions of other interesting nonlinear integrable flows involving reflection points of coordinates
are generated in detail by Riemann-Hilbert problems [33] or Darboux transformations [34]. Very
recently, various coupled and combined integrable models have been successfully generated from
4 × 4 matrix spectral problems and carefully studied from a bi-Hamiltonian point of view [35,
36]. These interesting integrable models have significant integrability properties and have rich
applications in physics, mechanical engineering, and materials science, including plasma physics,
condensed state physics and atmospheric oceanography.

Hirota’s bilinear method is to study bilinear Bäcklund transformations and some soliton so-
lutions of NLEEs [37]. The key of Hirota bilinear method is to construct the bilinear form of
NLEEs through appropriate variable transformation, and then study its properties. However, for
nonlinear evolution equations that cannot be converted into bilinear equations, this method has
limitations. Homoclinic test method [38] can be used to construct mixed solutions of many differ-
ent functions. By directly assuming different forms to solve with the help of appropriate variable
transformation, this method makes up for the deficiency that it cannot be converted into bilinear
form. One major benefit of the Homoclinic test method is that it has the potential to generate a
greater number of the mixed wave solutions. This enables researchers to get a better understand-
ing of the physical events underpinning the system under consideration and make more precise
predictions regarding its behavior.

The paper is organized as follows. In Section 2, the integrability of Eq. (1.1) is studied by means
of Bell polynomial theory, the Bäcklund transformation, Lax pair and infinite conservation laws of
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the equation are constructed. In Section 3, the interactions between lump solutions and multiple
functions of Eq. (1.1) are studied by Homoclinic test method. In Section 4, the mixed solutions of
exponential functions and different functions are presented on our analytic results. The conclusion
section gives a few comments and remarks.

2. INTEGRABILITY OF THE KDV-CBS EQUATION

In this section, we propose a new general bilinear Bäcklund transformation Lax pair and infinite
conservation laws of new (3+1)-dimensional KdV-CBS equation Eq. (1.1), which are obtained from
the binary Bell polynomials approach [39, 40].

2.1. Bäcklund transformation and Lax pair. Firstly, we substitute the variable transformation
u = qxx into Eq. (1.1), the resulting equation can be written as

4qxxt + λ1(qxxxxy + 4qxxqxxy + 2qxxxqxy) + λ2(qxxxxz + 4qxxqxxz + 2qxxxqxz)
+ λ3(qxxxxx + 6qxxqxxx) + λ4qxxx + λ5qxxy + λ6qxxz = 0.

(2.1)

After integrating once with respect to x. Eq. (2.1) can be written as

E(q) = 4qxt +
2
3

λ1(qxxxy + 3qxxqxy) +
1
3

λ1∂−1
x ∂y(qxxxx + 3q2

xx) +
1
3

λ2∂−1
x ∂z(qxxxx + 3q2

xx)

+ 2
3

λ2(qxxxz + 3qxxqxz) + λ3(qxxxx + 3q2
xx) + λ4qxx + λ5qxy + λ6qxz = 0.

(2.2)

Assuming q = 2 ln f and q̃ = 2 ln g are two different solutions to Eq. (2.2), then we export the
following two-field condition:

E(q̃) − E(q) = 4(q̃ − q)xt + λ1[(q̃ − q)xxxy + (q̃ − q)xx(q̃ + q)xy + (q̃ + q)xx(q̃ − q)xy]
+ λ1∂−1

x [(q̃ − q)xx(q̃ + q)xxy + (q̃ + q)xx(q̃ − q)xxy] + λ4(q̃ − q)xx

+ λ2[(q̃ − q)xxxz + (q̃ − q)xx(q̃ + q)xz + (q̃ + q)xx(q̃ − q)xz]
+ λ2∂−1

x [(q̃ − q)xx(q̃ + q)xxz + (q̃ + q)xx(q̃ − q)xxz] + λ5(q̃ − q)xy

+ λ3[(q̃ − q)xxxx + 3(q̃ + q)xx(q̃ − q)xx] + λ6(q̃ − q)xz = 0.

(2.3)

By taking q̃ − q = 2v and q̃ + q = 2w, the expression (2.3) can be rewritten as

E(q̃) − E(q) = 8vxt + 2λ3(vxxxx + 6vxxwxx) + 2λ4vxx + 2λ5vxy + 2λ6vxz

+ λ1[2vxxxy + 4(vxxwxy +wxxvxy) + 4∂−1
x (vxxwxxy +wxxvxxy)]

+ λ2[2vxxxz + 4(vxxwxz +wxxvxz) + 4∂−1
x (vxxwxxz +wxxvxxz)]

= 2∂x[4Yt(v) + λ1Yxxy(v, w) + λ2Yxxz(v, w) + λ3Y3x(v, w) + λ4Yx(v)
+ λ5Yy(v) + λ6Yz(v)] +R(v, w) = 0,

(2.4)

where

R(v, w) = 4λ1[wxxvxy − vxwxxy + ∂−1
x (wxxvxxy + vxxwxxy)] − 2λ1∂x[vy(v2

x +wxx)]
+ 4λ2[wxxvxz − vxwxxz + ∂−1

x (wxxvxxz + vxxwxxz)] − 2λ2∂x[vz(v2
x +wxx)]

− 6λ3W [Yx(v), Yxx(v, w)],
(2.5)

with W is Wronskian.
We set v2

x +wxx = M, then

R(v, w) = 6M∂x[λ1Yy(v) + λ2Yz(v) + λ3Yx(v)].(2.6)
3



Eq. (2.4) can be rewritten as a pairs of linear combinations about Y -polynomials

Yxx(v, w) −M = 0,

∂x[4Yt(v) + λ1Yxxy(v, w) + λ2Yxxz(v, w) + λ3Yxxx(v, w) + (3Mλ3 + λ4)Yx(v)
+ (3Mλ1 + λ5)Yy(v) + (3Mλ2 + λ6)Yz(v)] = 0,

(2.7)

the system (2.7) leads to the bilinear Bäcklund transformation

(D2
x −M) f ⋅ g = 0,

[4Dt + λ3D3
x + λ1D2

xDy + λ2D2
xDz + (3Mλ3 + λ4)Dx

+ (3Mλ1 + λ5)Dy + (3Mλ2 + λ6)Dz] f ⋅ g = 0.

(2.8)

Based on the Hopf-Cole transformation v = ln ψ, w = q + ln ψ, and linearizing the system (2.7),
the linear differential equations are obtained as

ψxx + qxxψ −Mψ = 0,

λ1(ψxxy + qxxψy + 2qxyψx) + λ2(ψxxz + qxxψz + 2qxzψx) + λ3(ψxxx + 3qxxψx)
+ 4ψt + (3Mλ3 + λ4)ψx + (3Mλ1 + λ5)ψy + (3Mλ2 + λ6)ψz = 0.

(2.9)

With the compatibility condition ψxxt = ψtxx, we can derive Eq. (1.1) from Eq. (2.9), which means
Eq. (1.1) is completely integrable in Lax pair sense.

2.2. Infinite conservation laws. By introducing a new potential function η = (q̃x − qx)/2, then Eq.
(2.7) become

ηx + η2 + qxx −M = 0,

∂t(4η) + ∂x[λ3(ηxx − 2η3) + (6Mλ3 + 2λ1qxy + 2λ2qxz + λ4)η]
+ ∂y[λ1ηxx + 2λ1ηηx + (4Mλ1 + λ5)η] + ∂z[λ2ηxx + 2λ2ηηx + (4Mλ2 + λ6)η] = 0.

(2.10)

The function η and arbitrary parameter M are expanded as the following series

M = ε2, η = ε +
∞

∑
n=1

In(q, qx, . . .)ε−n.(2.11)

Inserting series (2.11) into the first equation of (2.10) and equating each coefficient for the power
of ε−n(n = 1, 2, . . .), we obtain the following recursions:

I1 = −
qxx

2
= −u

2
, I2 = −

I1,x

2
= qxxx

4
= ux

4
, In+1 = −

1
2
(In,x +

n
∑
k=1

IkIn−k), (n = 2, 3, . . .).

(2.12)

Considering the second equation of (2.10) in the same way, we can get the infinite conservation
laws

Gn,t +Mn,x +Nn,y +Fn,z = 0. (n = 1, 2, 3, . . .).(2.13)
4



The Gn takes the form Gn = 4In, and the first fluxes Mn are given explicitly by the recursion
formulas

M1 = −
1
2
(λ3uxx + 3λ3u2 + λ4u − λ1uxy − λ2uxz + 2λ1u∂−1

x uy + 2λ2u∂−1
x uz),

M2 =
1
4
[λ3(uxxx + 6uux) + λ4ux − λ1(uxxy + 2uuy − 2ux∂−1

x uy) − λ2(uxxz + 2uuz − 2ux∂−1
x uz)],

Mn = λ3In,xx + 6λ3In+2 + λ4In − 2λ3 ∑
i+j+k=n

IiIjIk + 2λ1In+1,y

+ 2λ2In+1,z + 2λ1∂−1
x uyIn + 2λ2∂−1

x uzIn, (n = 3, 4, . . .).

(2.14)

The second fluxes Nn are given explicitly by the recursion formulas

N1 = −
1
2
(2λ1uxx + λ1u2 + λ5u), N2 =

1
2
(λ1uxxx + 3λ1uux +

λ5

2
ux),

Nn = λ1In,xx + 2λ1

n
∑
k=1

In−kIk,x + 4λ1In+2 + λ5In, (n = 3, 4, . . .).
(2.15)

And Fn are given by

F1 = −
1
2
(2λ2uxx + λ2u2 + λ6u), F2 =

1
2
(λ2uxxx + 3λ2uux +

λ6

2
ux),

Fn = λ2In,xx + 2λ2

n
∑
k=1

In−kIk,x + 4λ2In+2 + λ6In, (n = 3, 4, . . .).
(2.16)

With the recursion formulas Gn = 4In, (2.14), (2.15) and (2.16) given above, we can construct the
infinite conservation laws for Eq. (1.1).

3. INTERACTIONS BETWEEN LUMP SOLUTIONS AND MULTIPLE FUNCTIONS

In this section, we analyze the dynamics of interactions between lump solutions and multiple
functions to Eq. (1.1).

3.1. Lump solutions. Considering the variable transformation

u = 2(ln f )xx + u0,(3.1)

where u0 is a non-zero real constant. Eq. (1.1) has been converted into the following form

λ1[(ln f )xxxxy + 8(ln f )xx(ln f )xxy + 4(ln f )xxx(ln f )xy] + (4u0λ1 + λ5)(ln f )xxy

+ λ2[(ln f )xxxxz + 8(ln f )xx(ln f )xxz + 4(ln f )xxx(ln f )xz] + (4u0λ2 + λ6)(ln f )xxz

+ 4(ln f )xxt + λ3[(ln f )xxxxx + 12(ln f )xx(ln f )xxx] + (6u0λ3 + λ4)(ln f )xxx = 0.
(3.2)

In order to search for the test function composed of N-quadratic functions for Eq. (3.2), we
assume that

fA = m0 +
N
∑
i=1
(mix + niy + piz + qit)2,(3.3)

where mi, ni, pi, qi are all the real constants, m0 > 0 is required, with N is a positive integer.
Substituting the expression (3.3) into Eq. (3.2), the following six cases are obtained.

Case 1.1:

mi =
pi(λ2λ5 − λ1λ6) − 4λ1qi

2u0λ1λ3 + λ1λ4 − λ3λ5
, ni =

pi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3qi

2u0λ1λ3 + λ1λ4 − λ3λ5
,(3.4)

where 2u0λ1λ3 + λ1λ4 − λ3λ5 ≠ 0.
5



Case 1.2:

mi =
ni(λ1λ6 − λ2λ5) − 4λ2qi

2u0λ2λ3 + λ2λ4 − λ3λ6
, pi =

ni(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3qi

2u0λ2λ3 + λ2λ4 − λ3λ6
,(3.5)

where 2u0λ2λ3 + λ2λ4 − λ3λ6 ≠ 0.
Case 1.3:

mi = −
λ1ni + λ2 pi

λ3
, qi =

ni(2u0λ1λ3 + λ1λ4 − λ3λ5) + pi(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

,(3.6)

where λ3 ≠ 0.
Case 1.4:

ni =
mi(λ3λ6 − λ2λ4 − 2u0λ2λ3) − 4λ2qi

λ2λ5 − λ1λ6
, pi =

mi(λ3λ5 − λ1λ4 − 2u0λ1λ3) − 4λ1qi

λ1λ6 − λ2λ5
,(3.7)

where λ2λ5 − λ1λ6 ≠ 0.
Case 1.5:

ni = −
λ3mi + λ2 pi

λ1
, qi =

mi(λ3λ5 − λ1λ4 − 2u0λ1λ3) + pi(λ2λ5 − λ1λ6)
4λ1

,(3.8)

where λ1 ≠ 0.
Case 1.6:

pi = −
λ1ni + λ3mi

λ2
, qi =

mi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + ni(λ1λ6 − λ2λ5)
4λ2

,(3.9)

where λ2 ≠ 0.
Substituting relational formula fA (3.3) and the expression (3.8) into transformation (3.1), corre-

sponding lump solutions for Eq. (1.1) appear as

uA = 2(ln fA)xx + u0, fA = m0 +
N
∑
i=1
(mix + niy + piz + qit)2,

ni = −
λ3mi + λ2 pi

λ1
, qi =

mi(λ3λ5 − λ1λ4 − 2u0λ1λ3) + pi(λ2λ5 − λ1λ6)
4λ1

.

(3.10)

When N = 3 is selected among the lump solutions (3.10), we noticed that uA1 has an upward
peak and two downward valleys in Fig. 1. This form of the lump structure is called bright lump
structure, it can be seen from Fig. 1 that the energy distribution of bright solitons is obvious. The
amplitude and shape did not change during this process.

3.2. Multiple mixed function solutions. The mixed solutions of different functions can describe
the nonlinear phenomena in nature, so we study the solutions formed by the combination of many
different functions.

fB =
M
∑
j=1

k j∆
ρj
j (ajx + bjy + cjz + djt),(3.11)

where k j, aj, bj, cj, dj are all the real constants, ρj is an integer. ∆j is any elementary function,
including the trigonometric function, hyperbolic function, Jacobian elliptic function and inverse
trigonometric function. Substituting expressions (3.11) into Eq. (3.2), we get the following six
cases:

Case 2.1:

bj =
aj(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2dj

λ1λ6 − λ2λ5
, cj =

aj(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1dj

λ2λ5 − λ1λ6
,(3.12)

where λ1λ6 − λ2λ5 ≠ 0.
6



FIGURE 1. Profile of uA1 in the lump solutions (3.10) with parameters: u0 = λ1 = λ3 = λ5 =
m0 = 1, λ2 = λ4 = λ6 = m1 = 2, m2 = 0.6, m3 = −0.8, p1 = −1.5, p2 = 1.2, p3 = −0.5. (a) z = 6,
t = 2, (b) z = t = 4, and (c) z = 2, t = 6.

Case 2.2:

bj = −
λ3aj + λ2cj

λ1
, dj =

aj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + cj(λ2λ5 − λ1λ6)
4λ1

,(3.13)

where λ1 ≠ 0.
Case 2.3:

cj = −
λ1bj + λ3aj

λ2
, dj =

aj(λ3λ6 − λ2λ4 − 2u0λ2λ3) + bj(λ1λ6 − λ2λ5)
4λ2

,(3.14)

where λ2 ≠ 0.
Case 2.4:

aj = −
λ1bj + λ2cj

λ3
, dj =

bj(2u0λ1λ3 + λ1λ4 − λ3λ5) + cj(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

,(3.15)

where λ3 ≠ 0.
Case 2.5:

aj =
cj(λ2λ5 − λ1λ6) − 4λ1dj

2u0λ1λ3 + λ1λ4 − λ3λ5
, bj =

cj(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3dj

2u0λ1λ3 + λ1λ4 − λ3λ5
,(3.16)

where 2u0λ1λ3 + λ1λ4 − λ3λ5 ≠ 0.
Case 2.6:

aj =
bj(λ1λ6 − λ2λ5) − 4λ2dj

2u0λ2λ3 + λ2λ4 − λ3λ6
, cj =

bj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3dj

2u0λ2λ3 + λ2λ4 − λ3λ6
,(3.17)

where 2u0λ2λ3 + λ2λ4 − λ3λ6 ≠ 0.
Combining expression (3.17) and (3.11), we get the multiple mixed function solutions of Eq.

(1.1).

uB = 2(ln fB)xx + u0, fB =
M
∑
j=1

k j∆
ρj
j (ajx + bjy + cjz + djt),

aj =
bj(λ1λ6 − λ2λ5) − 4λ2dj

2u0λ2λ3 + λ2λ4 − λ3λ6
, cj =

bj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3dj

2u0λ2λ3 + λ2λ4 − λ3λ6
.

(3.18)

Taking M = 3, ρ1 = ρ2 = ρ3 = 1, ∆1 = cosh, ∆2 = cos and ∆3 = exp in the multiple mixed function
solutions (3.18), we derive the solutions which can describe the interactions between one curved

7



FIGURE 2. Interactions between one curved bell shaped wave and one breather soliton
via the multiple mixed function solutions (3.18) with u0 = λ1 = λ3 = λ5 = k3 = 1, λ2 = λ4 =
λ6 = k1 = 2, k2 = 1.5, b1 = 3, b2 = d1 = 0.3, d2 = 0.8, b3 = −1.5, d3 = −2. (a) y = 6, t = 2, (b)
y = t = 4, and (c) y = 2, t = 6.

bell shaped wave and one breather soliton. In the process of collision with breather soliton, the
bell shaped wave deforms and the bending angle of the bell shaped wave increases. It can be
seen from Fig. 2 that the curved bell shaped wave and the breather soliton propagate steadily in a
straight line along the negative direction of the z-axis, and the amplitude and shape of the curved
bell shaped wave and the breather soliton remain unchanged during the movement.

Taking ρj = 1 and ∆j = cosh in expressions (3.11) and (3.15), we discuss the multiple-cosh soliton
solutions formed by a combination of M-cosh expressions:

uB = 2(ln fB)xx + u0, fB =
M
∑
j=1

k j cosh(ajx + bjy + cjz + djt),

aj = −
λ1bj + λ2cj

λ3
, dj =

bj(2u0λ1λ3 + λ1λ4 − λ3λ5) + cj(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

.

(3.19)

FIGURE 3. One bell shaped wave solution (a) with parameters: u0 = λ1 = λ3 = λ5 = 1,
λ2 = λ4 = λ6 = 2, k1 = 1, b1 = 0.5, c1 = −0.6, x = 6, t = 2. Two bell shaped waves solution (b)
with parameters: u0 = λ1 = λ3 = λ5 = 1, λ2 = λ4 = λ6 = 2, k1 = 1, b1 = 0.5, c1 = −0.6, k2 = 1.2,
b2 = −1.6, c2 = −1.2, x = 6, t = 2. Three bell shaped waves solution (c) with parameters:
u0 = λ1 = λ3 = λ5 = 1, λ2 = λ4 = λ6 = 2, k1 = 1, b1 = 0.5, c1 = −0.6, k2 = 1.2, b2 = −1.6, c2 = −1.2,
k3 = 1.5, b3 = −1.3, c3 = −0.1, x = 6, t = 2.

8



In Fig. 3 (a), the bell shaped wave determined by the multiple-cosh soliton solutions (3.19) at
M = 1 is shown, which presents a smooth surface. Fig. 3 (b) shows the two bell shaped waves de-
termined by the multiple-cosh soliton solutions (3.19) at M = 2, and the unimodal soliton formed
by the collision of the two bell shaped waves. Fig. 3 (c) simulates three bell shaped waves de-
termined by the multiple-cosh soliton solutions (3.19) at M = 3, and the collision produces the
unimodal soliton. The peak value produced by three bell waves is significantly smaller than that
produced by two bell waves. Through comparison, it can be found that the peak value of the
unimodal soliton produced by the collision of multiple bell waves decreases gradually.

3.3. Hybrid solutions composed of lump solitons and multiple functions. To derive the hybrid
solutions composed of lump solitons and multiple functions for Eq. (1.1), we set

fC = m0 +
N
∑
i=1
(mix + niy + piz + qit)2 +

M
∑
j=1

k j∆
ρj
j (ajx + bjy + cjz + djt),(3.20)

where mi, ni, pi, qi, k j, aj, bj, cj, dj are all the real constants, m0 > 0 is required, with ρj is an integer,
∆j is any elementary function.

Theorem 1. Hybrid solutions composed of lump solitons and multiple functions fC (3.20) are composed
of N quadratic functions (3.3) and multiple mixed function solutions (3.11). If the hybrid test function fC
(3.20) is the solution of the Eq. (3.2), then any term in conditions (3.4), (3.5), (3.6), (3.7), (3.8), (3.9) and
any term in conditions (3.12), (3.13), (3.14), (3.15), (3.16), (3.17) must be satisfied. There are 36 cases
holds, we only choose the following two cases.

Case 3.1:

pi = −
λ1ni + λ3mi

λ2
, qi =

mi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + ni(λ1λ6 − λ2λ5)
4λ2

,

bj = −
λ3aj + λ2cj

λ1
, dj =

aj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + cj(λ2λ5 − λ1λ6)
4λ1

,
(3.21)

where λ1λ2 ≠ 0.
Case 3.2:

mi =
pi(λ2λ5 − λ1λ6) − 4λ1qi

2u0λ1λ3 + λ1λ4 − λ3λ5
, ni =

pi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3qi

2u0λ1λ3 + λ1λ4 − λ3λ5
,

bj =
aj(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2dj

λ1λ6 − λ2λ5
, cj =

aj(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1dj

λ2λ5 − λ1λ6
,

(3.22)

where λ1λ6 − λ2λ5 ≠ 0 and 2u0λ1λ3 + λ1λ4 − λ3λ5 ≠ 0.
Combining expression (3.20) and (3.21), we get the hybrid solutions composed of lump solitons

and multiple functions of Eq. (1.1).

uC = 2(ln fC)xx + u0, fC = m0 +
N
∑
i=1
(mix + niy + piz + qit)2 +

M
∑
j=1

k j∆
ρj
j (θj),

pi = −
λ1ni + λ3mi

λ2
, qi =

mi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + ni(λ1λ6 − λ2λ5)
4λ2

,

θj = ajx −
λ3aj + λ2cj

λ1
y + cjz +

aj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + cj(λ2λ5 − λ1λ6)
4λ1

t.

(3.23)

Taking N = M = 2, ρ1 = ρ2 = 1 and ∆1 = ∆2 = exp in the hybrid solutions composed of lump
solitons and multiple functions (3.23), we derive the solutions which can describe the interactions
between two bell shaped waves and the lump soliton. It can be seen from Fig. 4 that the lump
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FIGURE 4. Interactions between two bell shaped waves and the lump soliton via the hy-
brid solutions composed of lump solitons and multiple functions (3.23) with u0 = λ1 = λ3 =
λ5 = k2 = c1 = 1, λ2 = λ4 = λ6 = k1 = n2 = 2, m0 = 2.5, m1 = 0.6, n1 = 2.1, m2 = −1.4, a1 = −1.3,
a2 = 1.3, c2 = −1. (a) z = 8, t = 0, (b) z = t = 4, and (c) z = 0, t = 8.

soliton is distributed at the intersection of two bell shaped waves. Under the interaction of lump
soliton, two bell shaped waves deform at the intersection.

Substituting relational formula fC (3.20) and the expression (3.22) into transformation (3.1), an-
other hybrid solutions composed of lump solitons and multiple functions for Eq. (1.1) appear
as

uC = 2(ln fC)xx + u0, fC = m0 +
N
∑
i=1
(mix + niy + piz + qit)2 +

M
∑
j=1

k j∆
ρj
j (ajx + bjy + cjz + djt),

mi =
pi(λ2λ5 − λ1λ6) − 4λ1qi

2u0λ1λ3 + λ1λ4 − λ3λ5
, ni =

pi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3qi

2u0λ1λ3 + λ1λ4 − λ3λ5
,

cj =
aj(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1dj

λ2λ5 − λ1λ6
, bj =

aj(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2dj

λ1λ6 − λ2λ5
.

(3.24)

Taking N = M = 2, ρ1 = ρ2 = 1, ∆1 = cosh and ∆2 = cos in the hybrid solutions composed of lump
solitons and multiple functions (3.24), we derive the solutions which can describe the interactions
between two bell shaped waves and two lump solitons. In Fig. 5, it is observed that two lump
solitons have two upward peaks and four downward valleys, and distributed at the intersection
of two bell shaped waves.

4. MIXED SOLUTIONS OF EXPONENTIAL FUNCTIONS AND DIFFERENT FUNCTIONS

We will study the interaction between exponential functions and different functions, as well as
the interaction between the products of different functions.

4.1. Interaction solutions of exponential functions and multiple mixed functions. In order to
obtain the interaction solutions of exponential functions and multiple mixed functions can be
given as follows:

fD = r0 exp(ξ) + r5 exp(−ξ) +
N
∑
i=1

kiΛ
ρi
i (φi),

ξ = r1x + r2y + r3z + r4t, φi = αix + βiy + γiz +ωit,
(4.1)
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FIGURE 5. Interactions between two bell shaped waves and two lump solitons via the
hybrid solutions composed of lump solitons and multiple functions (3.24) with u0 = λ3 =
λ5 = k1 = 1, λ1 = 3, λ2 = λ4 = λ6 = 2, m0 = 1.5, p1 = 1.1, q1 = 0.3, p2 = −1.8, q2 = 0.5, k2 = 1.3,
a1 = 0.8, d1 = −0.6, a2 = −0.8, d2 = 0.9. (a) y = 12, t = −4, (b) y = t = 4, and (c) y = −4, t = 12.

where r0, r1, r2, r3, r4, r5, ki, αi, βi, γi, ωi are all the real constants to be determined, ρi is an integer,
Λi is any elementary function. Substituting expressions (4.1) into Eq. (3.2), we give the following
results:

Case 4.1:

r1 =
r3(λ2λ5 − λ1λ6) − 4λ1r4

2u0λ1λ3 + λ1λ4 − λ3λ5
, r2 =

r3(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3r4

2u0λ1λ3 + λ1λ4 − λ3λ5
,

γi = −
λ1βi + λ3αi

λ2
, ωi =

αi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + βi(λ1λ6 − λ2λ5)
4λ2

.
(4.2)

Case 4.2:

r1 =
r2(λ1λ6 − λ2λ5) − 4λ2r4

2u0λ2λ3 + λ2λ4 − λ3λ6
, r3 =

r2(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3r4

2u0λ2λ3 + λ2λ4 − λ3λ6
,

βi = −
λ3αi + λ2γi

λ1
, ωi =

αi(λ3λ5 − λ1λ4 − 2u0λ1λ3) + γi(λ2λ5 − λ1λ6)
4λ1

.
(4.3)

Case 4.3:

r1 = −
λ1r2 + λ2r3

λ3
, r4 =

r2(2u0λ1λ3 + λ1λ4 − λ3λ5) + r3(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

,

βi =
αi(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2ωi

λ1λ6 − λ2λ5
, γi =

αi(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1ωi

λ2λ5 − λ1λ6
.

(4.4)

Case 4.4:

r2 =
r1(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2r4

λ1λ6 − λ2λ5
, r3 =

r1(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1r4

λ2λ5 − λ1λ6
,

αi = −
λ1βi + λ2γi

λ3
, ωi =

βi(2u0λ1λ3 + λ1λ4 − λ3λ5) + γi(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

.
(4.5)

Case 4.5:

r2 = −
λ3r1 + λ2r3

λ1
, r4 =

r1(λ3λ5 − λ1λ4 − 2u0λ1λ3) + r3(λ2λ5 − λ1λ6)
4λ1

,

αi =
βi(λ1λ6 − λ2λ5) − 4λ2ωi

2u0λ2λ3 + λ2λ4 − λ3λ6
, γi =

βi(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3ωi

2u0λ2λ3 + λ2λ4 − λ3λ6
.

(4.6)
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Case 4.6:

r3 = −
λ1r2 + λ3r1

λ2
, r4 =

r1(λ3λ6 − λ2λ4 − 2u0λ2λ3) + r2(λ1λ6 − λ2λ5)
4λ2

,

αi =
γi(λ2λ5 − λ1λ6) − 4λ1ωi

2u0λ1λ3 + λ1λ4 − λ3λ5
, βi =

γi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3ωi

2u0λ1λ3 + λ1λ4 − λ3λ5
.

(4.7)

Expressions (4.2) and (4.7) satisfy the constraint condition λ2(2u0λ1λ3 + λ1λ4 − λ3λ5) ≠ 0. Expres-
sions (4.3) and (4.6) satisfy the constraint condition λ1(2u0λ2λ3 + λ2λ4 − λ3λ6) ≠ 0. Expressions
(4.4) and (4.5) satisfy the constraint condition λ3(λ2λ5 − λ1λ6) ≠ 0.

Combining expressions (4.5) and (4.1), we get the interaction solutions of exponential functions
and multiple mixed functions.

uD = 2(ln fD)xx + u0, fD = r0 exp(ξ) + r5 exp(−ξ) +
N
∑
i=1

kiΛ
ρi
i (φi),

ξ = r1x + r1(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2r4

λ1λ6 − λ2λ5
y + r1(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1r4

λ2λ5 − λ1λ6
z + r4t,

φi = −
λ1βi + λ2γi

λ3
x + βiy + γiz +

βi(2u0λ1λ3 + λ1λ4 − λ3λ5) + γi(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

t.

(4.8)

N = ρ1 = 1 and Λ1 = cos are selected in the mixed solutions (4.8) to analyze the interaction
phenomenon of different functions, we get some conclusions about the nonlinear effect. Fig. 6
shows that one breather solution is composed of an upward hump and two downward valleys
with periodicity on both sides of the horizontal plane.

FIGURE 6. Breather solution via the interaction solutions of exponential functions and
multiple mixed functions (4.8) with u0 = λ3 = λ5 = r4 = 1, λ1 = 3, λ2 = λ4 = λ6 = k1 = 2, r0 =
1.5, r5 = 1.2, r1 = −1, β1 = 1.4, γ1 = −2.2. (a) z = 6, t = 2, (b) z = t = 4, and (c) z = 2, t = 6.

We will take expressions (4.7) and (4.1) as an example to study the dynamics of the interaction
solutions of exponential functions and multiple mixed functions.

uD = 2(ln fD)xx + u0, fD = r0 exp(ξ) + r5 exp(−ξ) +
N
∑
i=1

kiΛ
ρi
i (φi),

ξ = r1x + r2y − λ1r2 + λ3r1

λ2
z + r1(λ3λ6 − λ2λ4 − 2u0λ2λ3) + r2(λ1λ6 − λ2λ5)

4λ2
t,

φi =
γi(λ2λ5 − λ1λ6) − 4λ1ωi

2u0λ1λ3 + λ1λ4 − λ3λ5
x + γi(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3ωi

2u0λ1λ3 + λ1λ4 − λ3λ5
y + γiz +ωit.

(4.9)
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N = 2, ρ1 = ρ2 = 1, Λ1 = cosh and Λ2 = cos are selected in the mixed solutions (4.9) to analyze
the interaction phenomenon of different functions. Fig. 7 shows that the interactions between two
kink waves and two rogue waves, and two rogue waves are distributed at the intersection of the
two kink waves. Two rogue waves collide with each other, resulting in two upward peaks and
four downward valleys. It can be seen that the fusion between rogue waves leads to the change of
their shape.

FIGURE 7. Interactions between two kink waves and two rogue waves via the interaction
solutions of exponential functions and multiple mixed functions (4.9) with u0 = λ3 = λ5 =
k1 = 1, λ1 = k2 = 3, λ2 = λ4 = λ6 = r0 = r5 = ω2 = 2, r1 = −0.2, r2 = 1.5, γ1 = 0.3, ω1 = 1.4,
γ2 = −0.5. (a) y = 6, t = 2, (b) y = t = 4, and (c) y = 2, t = 6.

4.2. Interaction solutions between products of different functions. In order to obtain the inter-
action solutions between products of different functions can be given as follows:

fE =
M
∑
j=1

sjΘ
τj
j (ϕj)∆

σj
j (δj), ϕj = ajx + bjy + cjz + djt, δj = mjx + njy + pjz + qjt,(4.10)

where sj, aj, bj, cj, dj, mj, nj, pj, qj are all the real constants to be determined, τj and σj are integers,
Θj and ∆j are any elementary functions. Substituting expressions (4.10) into Eq. (3.2), we give the
following results:

Case 5.1:

aj =
bj(λ1λ6 − λ2λ5) − 4λ2dj

2u0λ2λ3 + λ2λ4 − λ3λ6
, cj =

bj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3dj

2u0λ2λ3 + λ2λ4 − λ3λ6
,

pj = −
λ1nj + λ3mj

λ2
, qj =

mj(λ3λ6 − λ2λ4 − 2u0λ2λ3) + nj(λ1λ6 − λ2λ5)
4λ2

,
(4.11)

where λ2(2u0λ2λ3 + λ2λ4 − λ3λ6) ≠ 0.
Case 5.2:

bj = −
λ3aj + λ2cj

λ1
, dj =

aj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + cj(λ2λ5 − λ1λ6)
4λ1

,

mj =
pj(λ2λ5 − λ1λ6) − 4λ1qj

2u0λ1λ3 + λ1λ4 − λ3λ5
, nj =

pj(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3qj

2u0λ1λ3 + λ1λ4 − λ3λ5
,

(4.12)

where λ1(2u0λ1λ3 + λ1λ4 − λ3λ5) ≠ 0.
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Case 5.3:

aj = −
λ1bj + λ2cj

λ3
, dj =

bj(2u0λ1λ3 + λ1λ4 − λ3λ5) + cj(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

,

pj =
nj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3qj

2u0λ2λ3 + λ2λ4 − λ3λ6
, mj =

nj(λ1λ6 − λ2λ5) − 4λ2qj

2u0λ2λ3 + λ2λ4 − λ3λ6
,

(4.13)

where λ3(2u0λ2λ3 + λ2λ4 − λ3λ6) ≠ 0.
Case 5.4:

nj = −
λ3mj + λ2 pj

λ1
, qj =

mj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + pj(λ2λ5 − λ1λ6)
4λ1

,

bj =
aj(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2dj

λ1λ6 − λ2λ5
, cj =

aj(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1dj

λ2λ5 − λ1λ6
,

(4.14)

where λ1(λ1λ6 − λ2λ5) ≠ 0.
Case 5.5:

aj =
cj(λ2λ5 − λ1λ6) − 4λ1dj

2u0λ1λ3 + λ1λ4 − λ3λ5
, bj =

cj(λ3λ6 − λ2λ4 − 2u0λ2λ3) + 4λ3dj

2u0λ1λ3 + λ1λ4 − λ3λ5
,

nj =
mj(2u0λ2λ3 + λ2λ4 − λ3λ6) + 4λ2qj

λ1λ6 − λ2λ5
, pj =

mj(2u0λ1λ3 + λ1λ4 − λ3λ5) + 4λ1qj

λ2λ5 − λ1λ6
,

(4.15)

where (λ1λ6 − λ2λ5)(2u0λ1λ3 + λ1λ4 − λ3λ5) ≠ 0.
Case 5.6:

cj = −
λ1bj + λ3aj

λ2
, dj =

aj(λ3λ6 − λ2λ4 − 2u0λ2λ3) + bj(λ1λ6 − λ2λ5)
4λ2

,

mj = −
λ1nj + λ2 pj

λ3
, qj =

nj(2u0λ1λ3 + λ1λ4 − λ3λ5) + pj(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

,
(4.16)

where λ2λ3 ≠ 0.
Substituting relational formula (4.10) and the expression (4.13) into transformation (3.1), corre-

sponding interaction solutions between products of different functions for Eq. (1.1) appear as

uE = 2(ln fE)xx + u0, fE =
M
∑
j=1

sjΘ
τj
j (ϕj)∆

σj
j (δj),

ϕj = −
λ1bj + λ2cj

λ3
x + bjy + cjz +

bj(2u0λ1λ3 + λ1λ4 − λ3λ5) + cj(2u0λ2λ3 + λ2λ4 − λ3λ6)
4λ3

t,

δj =
nj(λ1λ6 − λ2λ5) − 4λ2qj

2u0λ2λ3 + λ2λ4 − λ3λ6
x + njy +

nj(λ3λ5 − λ1λ4 − 2u0λ1λ3) + 4λ3qj

2u0λ2λ3 + λ2λ4 − λ3λ6
z + qjt.

(4.17)

M = 2, τ1 = τ2 = σ1 = σ2 = 1, Θ1 = Θ2 = cosh, ∆1 = exp and ∆2 = sech are selected in the interaction
solutions between products of different functions (4.17) to analyze collisions between multiple
waves. Fig. 8 analyzes the mutual collision between three bell shaped waves, forming two upward
bell shaped waves and one downward bell shaped waves. It can be seen from Fig. 8 that the
downward bell shaped wave is linear and does not change, but the two upward bell shaped waves
change due to collision. Two upward bell shaped waves tilt in the opposite direction respectively,
and a peak soliton is generated at the intersection of the three bell shaped waves.
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FIGURE 8. Interactions between three bell shaped waves via the interaction solutions be-
tween products of different functions (4.17) with u0 = λ3 = λ5 = 1, λ1 = 3, λ2 = λ4 = λ6 = 2,
s1 = 1.2, s2 = 1.5, b1 = −1, c1 = 1.4, n1 = 0.6, q1 = 0.2, b2 = −1.4, c2 = 0.75, n2 = −1.2, q2 = −0.1.
(a) z = 6, t = 2, (b) z = t = 4, and (c) z = 2, t = 6.

5. CONCLUSION

In this paper, the integrability of (3+1)-dimensional KdV-CBS equation is studied by means of
Bell polynomial theory, and it is found that it is completely integrable in Lax pair sense. Then
the Bäcklund transformation, Lax pair and infinite conservation laws of the equation are con-
structed. Some new formal solutions of Eq. (1.1) are studied by the Homoclinic test method and
symbolic computations, including the lump solutions, multiple mixed function solutions, hybrid
solutions composed of lump solitons and multiple functions, interaction solutions of exponential
functions and multiple mixed functions, interaction solutions between products of different func-
tions. We graphically illustrate the obtained results with specific parameters. The successfully
derived mixed wave solutions are visually represented in the images, which proves the effective-
ness of the method and provides important results for analysis and practical application. The
corresponding work extends the types of mixed solutions, these analytical solutions can provide
shallow water wave models for some nonlinear phenomena in physics. These solutions are im-
portant because they have the ability to improve our knowledge of wave behavior and provide
insightful information to disciplines like tsunami modeling and coastal engineering.
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