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Abstract

We give a brief non-technical introduction to non-regular spacetime
geometry. In particular, we discuss how curvature, and hence gravity,
can be defined without a smooth (differential geometric) calculus.
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1 Introduction

The goal of this short note is to bring two messages across: First, that
there are other notions of curvature than the usual differential geometric
ones, which generalize to spaces without a differential structure. The second
message is the news that such a development is now also possible in the
Lorentzian setting (additionally to the Riemannian setting). Moreover, we
discuss in which way these more general notions of curvature are essential
for problems in Lorentzian geometry and mathematical General Relativity.
This should give a glimpse into a new and very active research area, and
might encourage readers to delve deeper (by following the references).

2 Curvature

What is curvature? We give a concise technical answer using differential
geometry below. However, this is not essential in what is to follow but
serves to illustrate that

(i) to classically define curvature the metric needs to be differentiated
twice, and

(ii) Einstein’s field equations are formulated in this way.

2.1 Semi-Riemannian geometry

Here we give a concise review of the differential geometric formulation of cur-
vature for (smooth) semi-Riemannian manifolds. However, this will be only
for comparison purposes and can be skipped without problems if one is not
familiar with differential geometry. For an introduction to semi-Riemannian
geometry see [O’N83], which has the advantage that it is geared towards the
main applications in General Relativity.

On a smooth manifold M we denote by X(M) the set of all (smooth)
vector fields on M , i.e., all smooth maps X : M → TM such that pr ◦X =
idM , where pr : TM → M is the canonical projection and TM is the tangent
bundle of M .

Let (M, g) be a semi-Riemannian manifold, i.e., a smooth manifold M
with a non-degenerate (0, 2)-tensor g of fixed signature. Usually g is as-
sumed to be smooth but this requirement can be relaxed, for example to
C2-regularity, which will be enough in what is to follow. In this note we
restrict to Riemannian, i.e., of signature (+++ . . .+), and Lorentzian, i.e.,
of signature (− + + · · ·+), metrics. Given a semi-Riemannian metric g we
can assign a length to curves as follows:

Lg(γ) :=

∫ √
|g(γ′, γ′)| ,
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where γ is a curve into M of sufficient regularity but can be assumed to be
smooth here.

The simplest semi-Riemannian manifolds are the n-dimensional semi-
Euclidean spaces Rn

ν of index ν ∈ {0, 1 . . . , n} with metric η on Rn given
by

η(v, w) := −
ν∑

i=0

viwi +

n∑
i=ν+1

viwi ,

where v = (v1, . . . , vn), w = (w1, . . . wn) ∈ Rn. If the index is zero, i.e.,
ν = 0, then Rn

0 is just Rn with the usual Euclidean metric and if ν = 1,
then Rn

1 is n-dimensional Minkowski spacetime — the simplest Lorentzian
manifold.

Given a semi-Riemannian manifold there is a unique Levi-Civita connec-
tion ∇ : X(M)× X(M) → X(M), which has the following properties.

(i) The map X 7→ ∇XY is C∞(M)-linear for every Y ∈ X(M).

(ii) The map Y 7→ ∇XY is R-linear for every X ∈ X(M).

(iii) It satisfies the Leibniz rule, i.e., ∇X(f Y ) = f ∇XY + (X · f)Y for all
X,Y ∈ X(M), f ∈ C∞(M). Here X · f ∈ C∞(M) is p 7→ Tpf(X(v)).

(iv) It is torsion-free, i.e., ∇X∇Y − ∇Y ∇X = [X,Y ] for every X,Y ∈
X(M), where [X,Y ](f) = X · (Y · f) − Y · (X · f) for f ∈ C∞(M) is
the commutator of X and Y .

(v) Finally, ∇ is metric, i.e., it comes from a semi-Riemannian metric:
X · g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) for all X,Y, Z ∈ X(M).

At this point it should be noted that the Levi-Civita connection involves
first derivatives of the metric, i.e., to classically make sense of the Levi-Civita
connection, the metric g must be at least once (continuously) differentiable.

The curvature of (M, g) is encoded in the Riemannian tensor R : X(M)3 →
X(M), the (1, 3)-tensor that is given by

RX,Y Z := ∇[X,Y ]Z − [∇X ,∇Y ]Z .

Note that the Riemann tensor R involves second derivatives of the metric
g, which becomes apparent if one writes it in coordinates. Moreover, the
Riemann tensor encodes all the curvature information of the semi-Riemann
manifold (M, g). In particular, (M, g) is flat, i.e., locally isometric to some
Rn if and only if R = 0.

Another way to fully characterize the curvature of (M, g) is via all the
sectional curvatures of tangent planes to M . Let p ∈ M and v, w ∈ TpM
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span a tangent plane in TpM , i.e., a non-degenerate two-dimensional linear
subspace of TpM . Then the sectional curvature Kp(v, w) is defined as

Kp(v, w) :=
g(Rv,wv, w)

g(v, v)g(w,w)− g(v, w)2
.

Note that since the tangent plane is non-degenerate the denominator is non-
zero and moreover, Kp does not depend on the choice of v, w spanning the
tangent plane.

If one averages the sectional curvatures containing a given unit vector
v ∈ TpM one obtains the Ricci curvature Ric(v, v), defined as

Ricp(v, v) := g(v, v)
n∑

i=2

Kp(v, ei) ,

where e2, . . . , en ∈ TpM are such that e1 := v, e2, . . . , en is an orthonormal
basis of TpM with respect to gp, i.e., gp(ei, ej) = ϵiδi,j . Here δi,j = 1 if i = j,
δi,j = 0 otherwise, and ϵi = gp(ei, ei) = ±1. By polarization and scaling Ric
extends to a (0, 2)-tensor field on M .

There is yet another average (trace) of the Riemann tensor (via the Ricci
tensor) that gives the scalar curvature, i.e., a scalar function on M that gives
an average of the curvatures at p ∈ M , defined as

Sp :=
∑
i ̸=j

Kp(ei, ej) ,

where e1, . . . , en is an orthonormal basis of TpM .

2.2 Gravity is curvature

Einstein’s great insight was that gravity is not a force but the curvature of
a Lorentzian manifold. Wheeler succinctly summarized this as

“Space tells matter how to move. Matter tells space how to curve.”

[MTW73, p. 5], [Whe00, p.235]. This insight is mathematically expressed
by using the Ricci and scalar curvature in the Einstein field equations

(1) Ric− 1

2
S g = 8π T ,

where T is the stress-energy tensor describing the energy and matter con-
tent of the spacetime. So on the left-hand-side of the equation we have
the curvature of spacetime, which governs how objects move, and on the
right-hand-side the matter, which governs the geometry of spacetime via its
curvature. Note that the expression on the left-hand-side, i.e., Ric − 1

2S g
is the (0, 2)-tensor containing the same information as the Ricci tensor Ric.
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In particular, if T = 0, i.e., if we consider vacuum spacetimes, then the
Einstein field equations (1) are equivalent to the vacuum Einstein equations

(2) Ric = 0 .

In conclusion, we see that there is a clear notion of curvature in the differ-
ential geometric sense, which relies on sufficient smoothness to define the
Riemann tensor, and hence also sectional curvature, Ricci curvature and
scalar curvature.

However, from an intuitive point-of-view a space can be curved even if
the semi-Riemannian metric is not sufficiently smooth. In fact, one can even
imagine spaces that do not come with a metric. So is there another way to
detect if one is in a curved space? Yes, there are actually numerous different
ways and we will focus on two specific ones in the next section.

3 Other ways to detect curvature

Let us start with alternative ways to characterize sectional curvature for Rie-
mannian manifolds (M, g). Recall that a Riemannian metric has signature
(+ + + . . .+), hence it is positive definite. In particular, the Riemannian
metric g gives rise to a canonical metric space structure on M . For x, y ∈ M
define

(3) dg(x, y) := inf{Lg(γ) : γ curve that connects x, y} .

The metric dg induces the manifold topology of M and actually captures
all the geometry of (M, g) (by a result of Calabi-Hartman [CH70], see also
[Tay06]). Another instance of this fact is Toponogov’s theorem.

3.1 Toponogov’s theorem

Toponogov’s theorem is an example of so-called comparison results in semi-
Riemannian geometry. Here, one obtains information on the manifold in
question by comparing geometric objects or quantities to simple semi-Rie-
mannian manifolds. The simplest of them are the spaces of constant cur-
vature. To be precise, it is enough to consider two-dimensional spaces of
constant sectional curvature K ∈ R. These are the plane R2 (K = 0), the
scaled sphere S2

r of radius r = 1√
K

for K > 0 and scaled hyperbolic space H2
r

of radius r = 1√
−K

for K < 0. We combine these three cases and write MK

for the two-dimensional Riemannian model space with constant curvature
K ∈ R.

Let x, y, z ∈ M be three points in M , then together with their distances
dg(x, y), dg(y, z), dg(x, z) they form a triangle △xyz in M . If these distances
are small enough compared to K (their sum is smaller than 2π√

K
if K > 0),
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Figure 1: Comparing the distance of p to q in the triangle ∆xyz in M to
the corresponding distance of p̄ and q̄ in the comparison triangle ∆̄x̄ȳz̄ in
the plane.

then there is a comparison triangle △x̄ȳz̄ in the model space MK , see Fig-
ure 1. The comparison triangle has the same side lengths as △xyz, i.e.,
dg(x, y) = dgK (x̄, ȳ), dg(y, z) = dgK (ȳ, z̄), dg(x, z) = dgK (x̄, z̄), where dgK is
the distance coming from the metric gK of MK via (3). Such a comparison
triangle is unique up to isometries of (MK , gK).

With these model geometries at hand it is possible to characterize bounds
on the sectional curvature by comparing distances in triangles. We summa-
rize this below in Toponogov’s theorem (even though Toponogov proved only
one direction of the Theorem). For a modern account see e.g. [Cha06, §IX.5].

Theorem 3.1 (Toponogov’s theorem [Top57, Top58, Top59]). A smooth
complete Riemannian manifold (M, g) has sectional curvature bounded below
by K ∈ R, i.e., for all p ∈ M : Kp ≥ K, if and only if for all △xyz with
side lengths small enough, p, q on the sides of △xyz and any comparison
triangle △x̄ȳz̄ in MK and corresponding points p̄, q̄ on △xyz we have

dg(p, q) ≥ dgK (p̄, q̄) .

Here a point p̄ on a side of △x̄ȳz̄ corresponds to p on a side of △xyz if it
has the same distance to the adjacent vertices.

An illustration for this triangle comparison is Figure 1. A similar state-
ment holds for sectional curvature bounded above.

Note that Toponogov’s theorem only involves the distances of points in
M and MK . Thus, one can turn the theorem on its head and define bounds
on sectional curvature for metric spaces — without any smooth structure!
This is the starting point for the theory of Alexandrov- and CAT(K)-spaces.
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3.2 Alexandrov- and CAT(K)-spaces

First we need to discuss lengths of curves in metric spaces. Let γ : [a, b] → X
be a curve (not necessarily continuous) into a metric space (X, d). Then the
length of γ with respect to d is defined as

(4) Ld(γ) := sup{
N∑
i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < . . . tN = b,N ∈ N} .

Now one can define a new metric d̂ analogous to (3)

d̂(x, y) := inf{Ld(γ) : γ continuous curve from x to y} ,

and we call d intrinsic or (X, d) a length space if d̂ = d. In a Riemannian
manifold (M, g) one has that Lg = Ldg , hence the metric space (M,dg)
induced by (3) is a length space. For an example of a metric space that
is not a length space consider the metric induced from R2 restricted to the
circle S1.

At this point we can define synthetic sectional curvature bounds for
length spaces by turning Toponogov’s theorem into a definition. A length
space (X, d) has curvature bounded below by K ∈ R if every point has a
neighborhood U such that for all △xyz in U with side lengths small enough,
p, q on the sides of △xyz and any comparison triangle △x̄ȳz̄ in MK and
corresponding points p̄, q̄ on △xyz we have

d(p, q) ≥ dgK (p̄, q̄) .

Similarly one defines curvature bounded above by K ∈ R. Neglecting some
technicalities the (length) metric spaces with curvature bounded below by
some K ∈ R are called Alexandrov spaces and the ones with curvature
bounded above by some K ∈ R are called CAT(K)-spaces (for Cartan-
Alexandrov-Toponogov). This is the starting point for metric geometry.
For further reading see e.g. [BBI01, AKP19, AKP23].

3.3 Synthetic Ricci curvature bounds

There is also a synthetic notion of Ricci curvature bounds in the Riemannian
setting pioneered independently by Lott-Villani and Sturm [LV09, Stu06a,
Stu06b]. Introducing this approach in more detail would go beyond the
scope of this brief article but we outline the main idea. In metric spaces with
curvature bounded below or above (Subsection 3.2) one compares geodesics
(minimizing curves) in the space to ones in the model spaces. As Ricci cur-
vature is a kind of an average of sectional curvatures one cannot expect to
control the behaviour of all the geodesics. Instead, we want to contrast the
behaviour of “almost” all geodesics with a comparison situation in model
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M

Figure 2: Positive curvature leads to a convex behaviour of the volume of
clouds of points — first they spread out and then they refocus.

spaces. Thus, we need another ingredient to quantify what “almost” should
mean and one does this by introducing a reference measure, i.e., a Radon
measure m on (X, d). This is summarized in the notion of a metric measure
space (X, d,m) and is the start of metric measure geometry. The crucial in-
gredient to make this whole theory work is optimal transport, cf. e.g. [Vil09],
which goes back more than two hundred years to the work of Monge. It was
then reinvigorated by Kantorovich in the last century and the central idea
is to find the optimal (i.e., cheapest) way of transporting goods, material
or similar from one location to another. Clearly, the cost of transporting
something is correlated with the distance of the source and the destination.
However, geometry influences the cost as well: it might be cheaper to go
around a mountain than up and down. This provides yet another way to
detect curvature! Optimal transport works on quite general metric measure
spaces — again there is no need for a manifold or smooth structure, and
thus, one can define curvature bounds by comparing how clouds of points
in the space are optimally transported to a comparison situation in model
spaces. This amounts to convexity/concavity properties of entropies of these
clouds of points, i.e., how does the volume of the clouds of points behave
when the points are moving in the optimal way, see Figure 2. This is summa-
rized in the so-called curvature-dimension condition, and a metric measure
space (X, d,m) is a CD(K,N)-space if it has Ricci curvature bounded below
by K ∈ R (in the optimal transport sense) and dimension bounded above
by N ∈ (0,∞]. In fact, a negative dimensional bound is also possible and
useful [Oht16].

8



The introduction of Alexandrov-, CAT(K)- and CD(K,N)-spaces has
had a huge impact on smooth Riemannian geometry as it allows one to
take limits of Riemannian manifolds, which might not be smooth Rieman-
nian manifolds anymore. In particular, one obtains precompactness theo-
rems [Gro99, Prop. 5.2] and this in turn allows one to say something about
smooth Riemannian manifolds, e.g. [CC97]. So, even if one is only inter-
ested in smooth classical Riemannian geometry one is led to study such
limits which are metric spaces with additional structure (e.g. length spaces
with synthetic sectional curvature bounds, metric measure spaces with syn-
thetic Ricci curvature bounds, etc.). For a recent review of synthetic Ricci
curvature bounds see [Stu24].

4 Lorentzian geometry

While the focus of Section 2 was more on the general semi-Riemannian
case, and later only on the Riemannian case, we focus here exclusively on
the Lorentzian case, as it differs significantly. Here we briefly recall its main
ingredients.

Let (M, g) be a Lorentzian manifold. Then we can classify tangent vec-
tors as follows. Let p ∈ M , then v ∈ TpM is called


timelike

null

causal

spacelike

if gp(v, v)


< 0 ,

= 0 and v ̸= 0 ,

≤ 0 and v ̸= 0 ,

> 0 or v = 0 .

What makes the Lorentzian case unique among all signatures is that the
light cone in TpM i.e., {v ∈ TpM : v causal}, consists of two connected
components, see Figure 3. Thus at every point p ∈ M we have a choice of
what we call the causal future of p and the causal past of p. When one can
make such a choice continuously and globally we say that the Lorentzian
manifold is time orientable. A time orientation is for example given by
a global timelike vector field T ∈ X(M), i.e., gp(T (p), T (p)) < 0 for all
p ∈ M . Then, we say that a causal vector v ∈ TpM is future directed
if gp(v, T (p)) < 0 and past directed if gp(v, T (p)) > 0. Analogously, one
defines future-/past-directed timelike/null/causal/spacelike curves into M
by requiring their tangent vectors to be of this class.

A connected time oriented Lorentzian manifold is called spacetime and
this is the stage and the central object of General Relativity, Einstein’s
theory of gravity. The points in a spacetime (M, g) are called events, as
they represent an instance of time and a position in space, but unlike in
Newtonian physics (or Special Relativity) there is no global notion of time
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Figure 3: Causal cone at p.

(coordinate) and spacetime does not necessarily split into space and time.
The events in the causal future of a point p can be influenced from p by
signalling or travelling with at most the speed of light. Thus, as speeds
greater than the speed of light are not possible in General Relativity, events
outside of the causal future cannot be influenced by p. Similarly, events in
the timelike future of p can only be influenced by travelling slower than light
speed (subluminal). We can capture these relations in the timelike ≪ and
causal relations ≤. We say that p ≪ q (p < q) if there is a future directed
timelike (causal) curve from p to q, and p ≤ q if p < q or p = q.

An observer γ in a spacetime is a future or past directed causal curve so
that no forces act on it, i.e., it is (up to parametrization) a causal geodesic.
This means that it solves

∇γ′γ′ = 0 ,

and consequently, it maximizes the time the observer experiences. This
can be formulated via the so-called time separation function (or sometimes
Lorentzian distance):

(5) τ(p, q) := sup{Lg(γ) : γ future directed causal from p to q} ∪ {0} .

Then a causal geodesic locally maximizes τ between points on it and if a
curve maximizes τ then it is (up to parametrization) a causal geodesic.

The definition of the time separation function is analogous to the distance
in the Riemannian case (3) but there are significant differences. First, τ is
not a metric. In fact, it satisfies the reverse triangle inequality

τ(p, q) + τ(q, r) ≤ τ(p, r) ∀p ≤ q ≤ r .

Moreover, τ is not positive definite and not symmetric. For example τ(p, q) =
0 for all points p ̸≤ q. However, τ still encodes the geometry of the space-
time as the following celebrated result of Hawking, King and McCarthy
shows (see also [BEE96, Thm. 4.17]).
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Theorem 4.1 (Hawking, King, McCarthy [HKM76]). Let (M, g), (N,h)
be two spacetimes of the same dimension and suppose that (M, g) has no
almost closed causal curves (it is strongly causal). If there exists a time
separation preserving map ϕ : M → N , i.e.

τh(ϕ(p), ϕ(q)) = τg(p, q) ∀p, q ∈ M ,

then ϕ is actually a smooth isometry of (M, g) and (N,h).

This result should be viewed as the Lorentzian counterpart of the Calabi-
Hartman [CH70] result mentioned in Section 3. So if the time separation
function τ encodes the geometry of (strongly causal) spacetimes, can we
develop a geometry built on this spacetime distance in the same way as
Alexandrov- and CAT(K)-spaces are built on the metric distance? In par-
ticular, every Riemannian manifold is canonically a metric space but a space-
time is not. So what should the analog of a metric space be in the Lorentzian
setting? We provide an answer in the next section.

5 Non-regular Lorentzian geometry

Our suggestion for an analog for metric spaces in the Lorentzian setting are
Lorentzian pre-length spaces [KS18]:

Definition 5.1 ([KS18, Def. 2.8]). Let X be a metrizable topological space,
≤ a preorder on X, ≪ a transitive relation contained in ≤, and τ : X×X →
[0,∞] lower semicontinuous. Then (X,≪,≤, τ) is a Lorentzian pre-length
space if

τ(x, z) ≥ τ(x, y) + τ(y, z) ∀x ≤ y ≤ z ,

and τ(x, y) = 0 if x ≰ y, as well as τ(x, y) > 0 if and only if x ≪ y. We
call τ the time separation function.

Natural examples of Lorentzian pre-length spaces are spacetimes with
their causal relations and time separation function (5). Moreover, directed
graphs can also be viewed as Lorentzian pre-length spaces, where the time
separation function is given by counting the maximum number of steps one
needs to take to get from one vertex to another. This provides a first example
outside of smooth Lorentzian geometry [KS18, Ex. 2.16].

Let γ be a curve from an interval I into a Lorentzian pre-length space
(X,≪,≤, τ), which need not be continuous. Then γ is called

timelike

causal

null

if


γ(s) ≪ γ(t) ,

γ(s) ≤ γ(t) ,

γ(s) ≤ γ(t) & γ(s) ̸≪ γ(t) ,
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for all s, t ∈ I with s ≤ t. Note that such curves are implicitly future
directed as they are defined via the timelike and causal relations. This
notion of causal character for curves does not necessarily agree with the
usual notion in spacetimes, but if the spacetime is strongly causal, then the
two notions of causal curves agree [KS18, Lem. 2.21]. This does not hold for
timelike curves cf. e.g. [KS18, Ex. 2.20]. However, one can define a length
Lτ of causal curves that agrees with the g-length of curves in a smooth
spacetime (M, g) [KS18, Prop. 2.32]. This length Lτ (γ) of a causal curve
γ : [a, b] → X is defined as

Lτ (γ) := inf{
N∑
i=1

τ(γ(ti−1), γ(ti)) : a = t0 < t1 < . . . tN = b,N ∈ N} .

Again, note that this is analogous to the metric case (4). Having a no-
tion of length, we can now define what causal geodesics should be: They
should maximize the τ -length between their endpoints, i.e., a causal curve
γ : [a, b] → X is a causal geodesic or a maximizer if

τ(γ(a), γ(b)) = Lτ (γ) .

Finally, we can now also say when the given time separation τ is intrin-
sic, i.e., introduce the Lorentzian analog of metric length spaces. Given a
Lorentzian pre-length space (X,≪,≤, τ) we can define a new time separa-
tion function as one would define it in spacetimes, i.e., cf. (5)

τ̂(x, y) := sup{Lτ (γ) : γ causal curve from x to y} ∪ {0} .

Then τ is intrinsic if τ̂ = τ and (X,≪,≤, τ) is a Lorentzian length space
if τ is intrinsic and some additional technical conditions hold [KS18, Def.
3.22].

To define curvature bounds for Lorentzian pre-length space we first need
to know to which model spaces we want to compare to. These are the two-
dimensional (simply connected) Lorentzian spaces of constant curvature:
Two-dimensional Minkowski space R2

1 (K = 0), the universal cover of scaled
de Sitter spacetime (K > 0), and the universal cover of scaled anti-de Sitter
spacetime (K < 0). To be precise, LK is defined as

LK :=


R2
1

S̃2
1(

1√
K
)

H̃2
1 (

1√
−K

)

if


K = 0 ,

K > 0 ,

K < 0 ,

where S̃2
1(r) is the simply connected Lorentzian covering manifold of S2

1(r) :=
{v ∈ R3

1 : η(v, v) = r2} and H̃2
1 (r) is the simply connected Lorentzian cov-

ering manifold of H2
1 (r) := {v ∈ R3

2 : η(v, v) = −r2} (for r > 0).
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We say that a Lorentzian pre-length space (X,≪,≤, τ) has timelike cur-
vature bounded below by K ∈ R if every point p ∈ X has a neighborhood U
such that

(i) the time separation function is finite-valued and continuous on U ×U ,

(ii) for all x, y ∈ U with x ≤ y there is a maximizer from x to y, and

(iii) for all x ≪ y ≪ z, x, y, z ∈ U and p, q on the sides of the timelike
triangle ∆xyz, p̄, q̄ corresponding points in the comparison triangle
∆x̄ȳz̄ of ∆xyz we have that

τ(p, q) ≤ τ̄(p̄, q̄) ,

where τ̄ is the time separation function of LK .

Note that for timelike curvature bounded below the time separation of the
points in the triangle is actually bounded above. Moreover, the first two
points only ensure that there is actually something to compare and only
the third point is the triangle comparison condition. Analogously, one de-
fines timelike curvature bounded above. Similar to Toponogov’s theorem,
this triangle comparison condition is equivalent to bounds on the timelike
sectional curvatures of smooth (strongly causal) spacetimes:

Theorem 5.2 (Beran, Kunzinger, Ohanyan, Rott [BKOR24, Thm. 3.1,
Thm. 3.2]). Let (M, g) be a smooth strongly causal spacetime. Then (M, g)
has timelike curvature bounded below (or above) by K ∈ R if and only if for
all p ∈ M , v, w spanning a timelike tangent plane at p we have

Kp(v, w) ≤ K (or Kp(v, w) ≥ K) .

So the inequalities on the sectional curvatures of the tangent planes flip
as compared to the Riemannian case. Moreover, such an equivalence of one-
sided sectional curvature bounds hold for general (smooth) semi-Riemannian
manifolds if one also includes spacelike sectional curvatures appropriately
[AB08].

This notion of curvature bounds opened up the possibility to talk about
curvature for spacetimes of low regularity, for example even for spacetimes
where the Lorentzian metric is only continuous and might not be differ-
entiable anywhere [KS18, Subsec. 5.1], [Lin23]. In fact, no differentiable
or manifold structure is needed at all, which comes up naturally in glu-
ing constructions [BR24, Rot23] and causal boundaries [ABS22]. This is a
significant advantage to classical Lorentzian geometry and General Relativ-
ity. Another advantage is that one can make sense of curvature blow-up in
situations where this is classically impossible, for example in non-smooth
extensions of spacetimes. This was leveraged in [GKS19] to extend [GLS18]
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and, in particular, to relate inextendibility with a blow-up of curvature —
which had not been possible before. This is an instance of the paradigm that
using the synthetic framework of Lorentzian length spaces one can obtain far
reaching conclusions about smooth, classical spacetimes. Moreover, we pro-
vide a large class of examples of Lorentzian length spaces in [AGKS21] and
give a first synthetic singularity theorem. Further, there are by now several
formulations of the synthetic timelike curvature bounds [BKR23], and some
of them even make sense for discrete spaces. Additionally, globalization
of these local curvature bounds was established in [BNR23, BHNR23] and
a splitting theorem for globally hyperbolic Lorentzian length spaces with
non-negative timelike curvature was given in [BORS23].

So far, we only discussed synthetic analogs of timelike sectional curva-
ture bounds, but as we have seen in Section 2 Ricci curvature is essential in
General Relativity. Independently, McCann and Mondino-Suhr character-
ized timelike Ricci curvature bounds for smooth spacetimes [McC20, MS23]
using techniques from optimal transport (as outlined in Subsection 3.3 in
the Riemannian case). Building on these works and using our framework of
Lorentzian pre-length spaces Cavalletti-Mondino introduced a notion of syn-
thetic timelike Ricci curvature bounds, TCD-spaces as an analog to the met-
ric CD-spaces, and proved a synthetic Hawking singularity theorem [CM20].
As compared to the Riemannian setting, now the “cost” is given by the
time separation function and the cloud of points can only be transported
with subluminal speed — hence along future directed timelike maximiz-
ers (geodesics). Different formulations of synthetic timelike Ricci curvature
bounds are given in [Bra23], synthetic formulations of the null energy con-
dition from General Relativity in [Ket24, McC24], and variable timelike
Ricci curvature bounds in [BM23]. Finally, Mondino-Suhr also give a syn-
thetic formulation of the vacuum Einstein equations (2) [MS23, App. B]
and Cavalletti-Mondino establish timelike isoperimetric inequalities, which
include even new ones in the smooth spacetime case [CM24].

6 Conclusion

The list of works given in the previous section is not exhaustive but for space
restrictions some choices had to be made. Therefore, let me direct you also
to the recent review [CM22]. Furthermore, the above shows that we are here
only at the beginning of a new and exciting development and that there are
many open questions in this very active field. Finally, let me point out
that non-regular spacetime geometry has found surprising applications even
outside of spacetime geometry. For example, it found use in other areas of
geometry (e.g. [Hed22]) and even in machine learning [LL23]. This seems
to indicate that Lorentzian (pre-)length spaces capture the fundamentals
of Lorentzian geometry but at the same time are sufficiently flexible to be

14



applicable to quite different settings.

Acknowledgement

The author thanks Michael Kunzinger, Argam Ohanyan and Roland Stein-
bauer for valuable comments on the draft.
C.S. is supported by the European Research Council (ERC), under the Eu-
ropean’s Union Horizon 2020 research and innovation programme, via the
ERC Starting Grant “CURVATURE”, grant agreement No. 802689.

References

[AB08] S. B. Alexander and R. L. Bishop. Lorentz and semi-Riemannian
spaces with Alexandrov curvature bounds. Comm. Anal. Geom.,
16(2):251–282, 2008. doi:10.4310/CAG.2008.v16.n2.a1.
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