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Abstract
The accurate prediction of occurrence and strength of kinetic instabilities in plasmas remains a signicant
challenge in nuclear fusion research. To accurately capture the plasma’s dynamics one is required to
solve the Vlasov equation for several species which, however, comes with a number of challenges as high
dimensionality of the model as well as turbulence and development of ne but relevant structures in
the distribution function. The predominantly employed Particle-in-Cell (PIC) method often lacks the
accuracy to resolve the dynamics correctly, which can only be remedied by going to higher resolutions
but at a prohibitorily high cost due to the high-dimensionality. Thus in this work we discuss the usage
of the Numerical Flow Iteration (NuFI) as high delity approach, in contrast to e.g. PIC or grid-based
approaches, to solve the multi-species Vlasov equation in modes leading to kinetic instabilities.

1 Introduction
The understanding of plasma dynamics in its kinetic regime is a key factor to better understand processes
in many modern high-tech applications, in particular, to produce sustained fusion reactions in a controlled
environment. Simulation of kinetic plasma physics comes with a number of challenges as turbulence and
lamentation of the solution due to the high degree of non-linearity of the involved system, as well as the
high dimensionality of the system due to modelling in the phase-space. While the former would require
high resolutions to obtain accurate results, the later makes high resolution prohibetively expensive in terms
of required resources and computation time due to the curse of dimensionality when working in the full
six-dimensional phase-space.

Particle-In-Cell methods are predominantly used in Vlasov simulations but suer from issues related to
noise production in long-time simulations.[1],[2],[3],[4],[5],[6],[7],[8],[9] Therefore there has been active research
on noise-reduction techniques[3],[4],[7],[10],[11] or combination to approaches using a mesh of the phase-space
like the δf -approach.[12],[13],[14] While approaches using a full grid of the phase-space are known to be
less prone to noise in general, they suer from other artefacts like numerical diusion which can be
problematic in long-time simulations in the collisionless limit and leads to loss of a number of conservation
properties.[15],[16],[17],[18],[19],[20],[21],[22] From a computational perspective grid-based approaches have to
deal with meshing of the phase-space which can be challenging as soon as one has to deal with more
complicated or changing geometries as well as adaptive grids to preserve accuracy. These challenges become
even more problematic when one tries to simulate both electrons and ions kinetically (and potentially more
than one species of ions). In this case one usually has to account for an even wider range of scales in the
simulation as ions are several orders of magnitudes heavier than electrons. Additionally one often assumes
dierent temperatures for electrons and ions, e.g. Te ≫ Ti in case of ion acoustic shocks appearing in laser
driven shocks.[1],[8],[9]

For these reasons there is an interest in looking into methods or models which reduce the dimensionality
of the Vlasov system.[23],[24] The authors previously suggested a novel scheme, the Numerical Flow Iteration
(NuFI), for solving the single-species Vlasov–Poisson system.[22],[25] This approach exploits the split
structure of the velocity eld in the Vlasov–Poisson equation to evaluate the distribution function f via
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the characteristic map while only storing the electric potential φ and thereby eectively reducing the
dimension of the problem from 6 to 3 dimensions in terms of storage. On the one hand, this is essentially
a shift from a memory- to a compute-bound approach using several orders of magnitude less memory
for the same resolution, eectively enabling to use higher resolutions with the same hardware, however,
at the cost of having quadratic computational complexity in the total number of time-steps instead of
linear as in PIC. On the other hand, as one employs the characteristic map to reconstruct f one avoids
additional discretization errors in f and preserves the solution structure. In particular, in previous works it
has been shown that this not only leads to exact preservation of all Lp-norms, entropy, momentum and
total energy (approximate but drift-free), but also leads to a better quality of results when comparing
to other approaches with comparable resolution.[22],[25] Note that a similar approach, the characteristic
mapping method (CMM), has been also investigated by Yin et.al. for the Vlasov–Poisson system and Euler
system.[26],[27] They report similar results in terms of accuracy and structure-preservation though to a
somewhat lesser extend as their characteristic map is directly stored leading to loss of incompressibility for
the Vlasov–Poisson equation. Overall this makes NuFI a suitable candidate for high delity simulations in
the simplied cases investigated so far, however, from a mathematical perspective it stands to reasons that
these benecial properties of NuFI in the simplied setting also carry over to more complicated settings.
To this end we want to investigate how one can extend the idea of NuFI to a multi-species setting taking
dierent types of boundary conditions on the system into account. The goal is to present the extensions
and then show their applicability in the more general setting while comparing to a particle code to verify
the results. We choose a particle-based approach to compare to NuFI due to its intrinsic adaption to both
turbulence and changing velocity support, which can occur in the multi-species Vlasov setting.
In Section 2 we rst present the Vlasov–Poisson system as well as NuFI in the periodic, single-species

setting, before we move on to discussing extension towards coupling several particle species and handling
of other boundary conditions. In Section 3 we then rst show simulation results of NuFI for ion-acoustic
waves in a periodic box, where we also compare the solution quality to results produced by PIC. Afterwards
we also show results obtained by NuFI with Dirichlet boundary conditions before we summarize and discuss
our results in Section 4.

2 Methods
In this section we present NuFI and the extension done towards eciently handling multi-species systems.
To keep the presentation comprehensive we restrict ourselves to d = 1 in this section, however, all of the
following can be applied analogously to d = 2, 3 and the algorithms were developed keeping performance
aspects in higher dimensions in mind.

2.1 Vlasov–Poisson system
In the Vlasov–Poisson system we represent each particle-species α through a corresponding distribution
function fα : Ω× Rd → R+ with Ω ⊂ Rd, following

∂tf
α + v · ∂xfα + qα

mα
E · ∂vfα = 0, (1)

where qα and mα are the corresponding charges and masses of the respective particle species.[28] The
Vlasov equations for the dierent particle species are then coupled through a Poisson equation

E = −∇xφ, (2)
−∆xφ = ρ, (3)

ρ(t, x) =


α



Rd

fα(t, x, v)dv▷ (4)

While both the Vlasov–Poisson and Poisson equations are linear by themselves, the multiplication of E
and ∂vf

α leads to non-linearity in the coupled system.
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Note that, when we consider the periodic case with a single species, commonly electrons, we assume that
the ions form a uniform background and therefore Equation (4) reduces to

ρ(t, x) = 1−


Rd

f(t, x, v)dv, (5)

where we drop the α for brevity of notation. Furthermore, in the following we will assume that the involved
quantities such as fα and E are normalized and dimensionless.[19]

2.2 Introduction to NuFI
The idea behind the Numerical Flow Iteration is to approximate the ow-map of the Vlasov–Poisson
equation instead of directly solving for the distribution function f . This can be done using the Lagrangian
perspective on the Vlasov–Poisson equation, i. e., the solution of (1) can be written as

f(t, x, v) = f0(Φ0
t (x, v)), (6)

where s → Φs
t (x, v) = (x̂(s), v̂(s)) is the solution to

d
ds x̂(s) = v̂(s), x̂(t) = x,

d
ds v̂(s) = −E (s, x̂ (s)) , v̂(t) = v▷

(7)

We call s → Φs
t the backward ow. As the Vlasov–Poisson system is non-linear due to the coupling to

Poisson’s equation, one does not know E a priori, however, it can be proven that the Vlasov–Poisson
system indeed has a unique solution pair (f,E) for suciently well-behaved initial data, which takes the
above form.[29],[30] The inverse s → Φt

s = (Φs
t )

−1 of the backwards ow will be called the forward ow.
To solve (7) numerically we can employ the fact that the the velocity eld (v,−E(t, x)) of the Vlasov–

Poisson equation can be split into two components of which only E depends on time. Thus to reconstruct
the backwards ow it is actually sucient to only know the electric eld for the previous time-steps. To be
precise, assuming for a moment that the electric eld E(ti, ·) is known for 0 = t0 < ▷▷▷ < ti = i ·∆t < ▷▷▷ < tn
with i < n ∈ N, then we can use the Störmer–Verlet time-integration scheme to solve (7) numerically.
Starting from x̂h

n = x and v̂hn = v compute

v̂hi− 1
2
= v̂hi + ∆t

2 E(ti, x̂h
i ),

x̂h
i−1 = x̂h

i − v̂hi− 1
2
,

v̂hi−1 = v̂hi− 1
2
+ ∆t

2 E(ti−1, x̂
h
i−1)

(8)

for i = 0, ▷▷▷, n. It follows that f(t, x, v) ≈ f0(x̂h
0 , v̂

h
0 ) up to an error of O


∆t2


.

As the electric eld is not known a priori, to go from tn−1 to tn one has to solve for the next electric
eld E(tn, ·), given the knowledge of the previous electric elds E(ti, ·) with i ≤ n− 1. To this end one has
to rst evaluate ρ, which involves computing the integral (5). In (8) one uses the yet unknown E(tn, ·),
however, this can be circumvented by the following transformation of variable



R
f0(Φtn

0 (x, v))dv =


R
f0


Φtn−1

0 ◦ Φ1
half ◦ Φ2

half


x, v + ∆t

2 E (tn, x)


dv

=


R
f0


Φtn−1

0 ◦ Φ1
half ◦ Φ2

half (x, v)

dv,

(9)

where Φ1
half is the step compute v̂hn−1 and Φ2

half the step to compute x̂h
n−1 from Equation (8). In the

last step we used that the term ∆t
2 E (tn, x) is independent of v thus v → v + ∆t

2 E (tn, x) has functional
determinant 1 and we integrate over the whole space R.
To solve the (3) for the electric potential, we rst sample ρ on an equi-distant grid in x and then

solve the Poisson’s equation using e.g. Fast Fourier Transformation (FFT) in the periodic case or Finite
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Dierences (FD) in the Dirichlet case. The resulting φ is then stored in a B-Spline basis, see Section 2.3.
Note that while directly using the Fourier basis to evaluate φ would have been possible, the involved
exponential or trigonometric functions are more expensive to evaluate on a computer, thus in terms of
speed of computations B-Splines are preferable over the Fourier basis.

For handling a multi-species Vlasov–Poisson system to compute ρ one has to integrate over all species,
i.e., one sums over the particle-species α

ρ(t, x) =


α



Rd

fα(t, x, v)dv▷ (10)

Note that NuFI has an advantage over other classical approaches in this case: when going from one
particle-species to two particle-species the computational and memory complexity essentially doubles for
approaches directly storing f , while for NuFI only the computational complexity doubles but the memory
complexity remains the same.
From a mathematical perspective NuFI entails several benets in terms of structure-preservation over

classical approaches.[22] Due to the use of a symplectic integrator in the backwards-in-time procedure (8)
NuFI exactly preserves the incompressibility of the Vlasov–Poisson system, i. e., there is no numerical
diusion present and as a consequence all Lp-norms, the entropy, momentum are preserved exactly as
well as total energy up to time-integration error. Additionally one is not restricted to an initially chosen
resolution for f : as f is evaluated through (6) on-the-y one in principle can zoom into f to an arbitrary
high precision. Thus the integration procedure for ρ can also be designed to be adaptive as well as account
for changes in the velocity support, see also Section 2.5 and Section 2.6.

2.3 B-Splines for storage of potentials
To correctly model ρ and E using the previously computed electric potential φ, a high degree of smoothness
is required for φ. This, together with the computational benets of employing basis functions with local
support, motivates the usage of B-Spline basis functions. For a periodic, one-dimensional domain [0, L] x
a grid s−k < ▷ ▷ ▷ < s0 = 0 < ▷ ▷ ▷ < sl+1 = L < ▷ ▷ ▷ < sl+k+1 with k ∈ N. The B-Splines Nj,k of order k are
recursively dened by

Nj,1(x) := χ[tj ,tj+1)(x), Nj,k(x) :=
x− tj

tj+k−1 − tj
Nj,k−1(x) +

tj+k − x

tj+k − tj+1
Nj+1,k−1(x)▷ (11)

The interpolant of φ is dened as

S(x) :=
k

j=1
cjNj,k(x), x ∈ [0, L], (12)

with coecients cj sought to satisfy the interpolation condition S(xj) = φ(xj) inside the domain [0, L].[31]
Due to the basis functions only being dened locally, the resulting system of equations is of sparse nature,
and thus fast iterative solver, such as LSMR, can be applied to eciently compute the desired coecients
cj .[32] An additional benet is that once the coecients are computed, the De-Boor formula allows for
fast evaluation of S(x) which does not require the evaluation for each basis function.[33] Furthermore, the
derivatives of S(x) which are required for ρ and E can be eciently obtained as these derivatives are
B-spline basis functions themselves and can be obtained in the same manner.
To impose boundary conditions, additional adjustments have to be made, depending on the type of

condition. For higher order splines, special treatment is required for the last basis splines as their support
leaves the domain [0, L]. In the case of periodic boundary conditions, this problem is solved by assigning
the required φ values outside of the domain via φ(xi) = φ(xi mod n), i = n+1, ▷▷, n+ k− 1, i. e., identifying
nodes outside the domain with their periodic counterparts inside the domain.

To accommodate Dirichlet boundary conditions, the desired Dirichlet boundary conditions are imposed
on S(s−k) = ▷▷▷ = S(s0) = φleft and S(sl+1) = ▷▷▷ = S(sl+k+1) = φright, as this removes any remaining
degrees of freedom and forces S(x) to interpolate φ exactly for both the left and the right boundary while
still keeping continuity. Analogously, the same ideas can be applied for periodic and Dirichlet boundary
conditions in higher dimensions.
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2.4 Handling of Dirichlet boundaries for f

Essentially the handling of boundary conditions with NuFI works analogously to particle methods like PIC:
In the Lagrangian framework we consider the characteristics and have to check when they hit a boundary
in x. In case of PIC one then would either remove the particle from the simulation if one has outow
conditions at that boundary or let it re-enter the domain (with a potentially modied weight) for periodic
or in-ow conditions.[34] For NuFI, in case of Dirichlet boundaries we prescribe values at the boundaries,
i. e., f∂Ω(t, x, v) for x ∈ ∂Ω. Thus when a characteristic reaches ∂Ω during the backwards iteration (8), the
scheme returns the respective value of f∂Ω.

2.5 Adaptive integration for ρ

As mentioned in Section 2.2 there is no technical restriction on where one evaluates f and how often
one evaluates f , therefore one also is not really restricted in the choice of integration algorithm for ρ.
Note, however, that in our experience the lamentation of f for long-time simulations leads to issues with
high-order integration methods due to the strong inuence of higher derivatives on the error constant
leading to large error constants. For this reason and for the sake of parallelization we suggested using
the (equi-distant) mid-point integration rule for the more simple case of the single-species Vlasov–Poisson
system in our previous work.[22]

When one is interested in long-time simulations, in particular for multi-species Vlasov systems, inhomo-
geneity of the distribution function f becomes a considerable problem if not resolved correctly in the
computation of ρ. To avoid having to run simulations with too high resolution in the beginning and
insucient resolution in later stages, one can use adaptive integration in v to compute ρ. Keep in mind
however, that we still want to avoid high-order quadrature rules and if possible re-use previous evaluations
of f as evaluating f is the most expensive operation in NuFI. To this end we suggest using a combination of
the trapezoidal and Simpson quadrature-rules. For given t and x x vmin and vmax, set vl = vmin, vr = vmin,
compute fl = f(t, x, vmin) and fr = f(t, x, vmax). Then ρ(t, x) = INTEGRATE(t, x, vmin, vmax, fl, fr, 1)
with the function Integrate from Algorithm 1.

Algorithm 1 Adaptive ρ integration
function Integrate(t, x, vl, vr, fl, fr, i)

Compute dv = vr − vl.
Compute vm = 0▷5 · (vr + vr).
Compute fm = f(t, x, vm).
Compute QT = 0▷5 · dv · (fl + fr).
Compute QS = dv

6 · (fl + 4 · fm + fr).
if QS < ϵ1 then

return QS .
end if
if |QS −QT |◁Qs < ϵ2 or i ≥ θ then

return QS .
else

return INTEGRATE(t, x, vl, vm, fl, fm, i+ 1) + INTEGRATE(t, x, vm, vr, fm, fr, i+ 1).
end if

end function

We introduced the tolerance parameters ϵ1, ϵ2 > 0 and θ ∈ N:

• ϵ1 is used as tolerance to test for QS ≈ 0 to not divide by something close to 0. Note that f ≥ 0,
thus QS ≥ 0,

• ϵ2 is the precision-tolerance for integration,

• θ is the maximum depths of renement allowed.

Remark 2.1. Starting the adaptive integration from vl = vmin and vr = vmax might be a poor choice
in practice as one runs the risk of missing ne structures due to a too coarse start grid. It is better to
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(a) f i
NuFI(0, ·, ·) (b) f i

NuFI(500, ·, ·) (c) f i
NuFI(1000, ·, ·)

Figure 1: Distribution function fi of the ions at several stages in the simulation (computed using NuFI)
shown for the ion-acoustic turbulence with a weak initial (quasi-random) perturbation, see
Section 3.2.

start from a coarse initial grid v1 = vmin < ▷▷▷ < vm = vmax with m > 1 and start Algorithm 1 in each
sub-interval [vi, vi+1] independently.

2.6 Handling of velocity-support expansion
The initial data f0 has to decay (quickly) for |v| → ∞, therefore one can eectively say that f0 has a
bounded velocity support, i. e., is contained in Ω × [vmin, vmax] up to a certain tolerance. While in many
standard-benchmarks like weak linear Landau damping or the two stream instability for the single-species
Vlasov–Poisson system the velocity support essentially remains the same even for large times, this is no
longer true when going to two-species (or general multi-species) Vlasov–Poisson systems, where the velocity
support can change drastically throughout the simulation period as can be seen in Figure 1.[8],[19]
Particle methods account for this support change by design as the particle represent the distribution

function and therefore adapt by themselves. For NuFI, however, we have to adjust the velocity support
algorithmically. Note, as the actual velocity support can vary strongly between dierent spatial positions
vmin and vmax should be chosen depending on x.
A simple line-search at each x to nd vmin and vmax would be both very expensive in terms of the

number of evaluations of f(t, x, ·) needed and will tend to be inaccurate as one might miss ne laments
outgoing from the main distribution, the like of which can be seen in Figure 1c. Instead we suggest using
that due to

d
ds v̂(s) = −E(s, x̂(s)), (13)

from Equation (7), the velocity support can only change at most by

Ẽ = max
s∈[t,t+∆t]

|E(s, x̂(s))| (14)

during one time-step. Therefore if f(t+∆t, x, vmax) is larger than a given tolerance one can set

vnewmax = vmax + β|E(t, x)|, (15)

where β ≥ 1 is introduced as safety-factor to account for numerical errors as well as potential underestimation
due to |E(t, x)| only being a rough estimate to Ẽ. Analogously one would set

vnewmin = vmin − β|E(t, x)|▷ (16)

From Figure 1b to Figure 1c one can observe the ‘folding’ of outgoing laments back towards the main
distribution. Such ‘holes’ might be left unaccounted for when only using Equation (16) and Equation (15).
Therefore one should additionally check for large gradients along x in min(supp(f(t, x, ·))) as well as
max(supp(f(t, x, ·))) and locally smooth them out if needed.
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3 Numerical Experiments
In the following we will present results computed by NuFI in some benchmarks modelling both ions and
electrons through a Vlasov equation with periodic boundary conditions. As a comparison for the quality
of results we use an implementation of the Particle-in-Fourier (PIF) approach, which we chose due the
auto-adaptive character of the underlying particle method and the reasonably good robustness with respect
to noise of PIF in contrast to a classical PIC approach.[10]

This work’s main focus lies on robustness and accuracy of NuFI in the multi-species setting rather than
computational performance, therefore we restrict ourselves to the d = 1 case, where high resolutions can be
achieved even using moderate hardware.

To investigate the suitability of NuFI for simulation of multi-species kinetic turbulences, which occur in
e.g.laser driven shock waves, we, as a rst step, want to consider the reproduction of ion acoustic waves.
To this end we rst look at a periodic setting and trigger ion acoustic waves by two dierent types of
perturbations. The setup is taken from the work of Arber and Vann, where it was suggested as a benchmark
for kinetic solvers.[19] The initial data is

fe
0 (x, v) =

1√
2π

p(x) exp

−1
2 (v − Ue)2


(17)

for electrons and

f i
0(x, v) =


Mr

2π exp

−Mr

2 v2


(18)

for ions. Here Ue = −2 is the bulk velocity of the electrons, the mass ration between electrons and ions is
set to Mr = 1000 and p(x) is the perturbation for the electron distribution function.
Note that when we plot distribution functions computed by PIF one might encounter overshoots, i. e.,

regions where f > ∥f0∥L∞ , which is unphysical. Thus to avoid this, in a sense, plotting artefact, we set all
plotted values of the distribution function, which are larger than allowed to the largest ∥f0∥L∞ .

3.1 Strong pertubation by a single mode
First we look at a perturbation by a single strong mode, similar to a setup which might be produced by a
laser impulse. To this end we set

p(x) = α cos(kx) (19)

with α = 0▷5, k = 0▷5 and x ∈ [0, L] with L = 4π.
As for NuFI the there is no intrinsic restriction on the time-step size (like a CFL condition for grid-based

approaches) the time-step could be chosen as large as ∆t = 1◁4 while still remaining suciently accurate.
To compute the integral for ρ we employ the schemes presented in Section 2.5 and Section 2.6, where
the maximum depth of renement is set to θi = 3 for the ions and to θe = 5 for the electrons, while the
minimal resolution is set to Ne

v = N i
v = 32 for both. As the ion dynamics set in at later stage and tend to

be less complicated during the simulated time period it was sucient to use the lower depth to integrate
over the ion distribution.

In Figure 2 the evolution of the electric energy over time is shown for both NuFI and PIF. While in the
long run both methods seem to overall capture the right level of electric energy after the initial increase
when choosing a sucient resolution, the low-resolution PIF tends to somewhat under-predict the electric
energy. Additionally in Figure 2a one can observe that PIF struggles to capture the right timings during
the initial phase for lower resolutions. This is in good agreement with results previously observed in
single-species benchmarks:[25] In the initial phase the electrons dominate the overall dynamics, resulting
in what essentially is non-linear Landau damping. Intrinsic noise in a particle-based scheme complicates
capturing the right timings, while NuFI reproduces these even with low resolutions, which we attribute to
the structure preserving nature of NuFI.

This can be also observed when considering the convergence of NuFI and PIF respectively for E and ρ at
xed points in time: In Figure 3c and Figure 3d we display ρe and in Figure 3e and Figure 3f ρi for t = 100
and 300 computed using NuFI and PIF with a range of dierent resolutions. When fe becomes lamented
one can see this in ρe, however, PIF seems to be less robust towards the lamentation resulting in more
noise in ρe. To a lesser extend one can also observe this eect in ρi. For NuFI the overall behaviour is
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Figure 2: Electric energy for ion acoustic waves induced by strong initial perturbation compared between
NuFI and PIF. Left is the electric energy displayed for the initial phase (until t = 200) and on
the right is the electric energy over a longer period (until t = 2000).

captured correctly even with low resolution and the resulting ρe and ρi computed by NuFI seem smoother
than for PIF. This then also reects in the reproduction quality of E, see Figure 3a and Figure 3b.

In Figure 4c we display fe at t = 2000: ne structures are neither smeared nor completely overridden by
noise and thus can still be clearly made out even for late times. This is not the case for PIF, see Figure 4f,
where one can only qualitatively make out the shape of the distribution, while most details are lost to
particle noise. Furthermore in Figure 4 the location of the vortex does not agree between NuFI and PIF.
In Figure 5 we make the comparison between f i computed by NuFI and PIF and observe a similar

tendency as for f e in Figure 4, where while both methods are able to capture the dynamics qualitatively,
the results of PIF are less accurate due to particle noise. Additionally for late times, after t = 1000,
artefacts seem to appear in f i computed using PIF, see Figure 5e and Figure 5f.

3.2 Weak pertubation by background noise
Next we consider a perturbation by a superposition of several modes with less strength than in Section 3.1.
This is similar to a quasi-random perturbation in the initial plasma state, however, we x the modes and
strength for reproducibility of the benchmark as suggested by Arber and Vann.[19] Set p to

p(x) =α

sin(x) + sin(0▷5x) + sin(0▷1x) + sin(0▷15x) + sin(0▷2x)

+ cos(0▷25x) + cos(0▷3x) + cos(0▷35x)
 (20)

with α = 0▷01 and x ∈ [0, L] with L = 40π.
As the initial perturbation is signicantly smaller in this benchmark inducing dynamics in the ions takes

longer here, thus it also takes the ions longer to start eecting the electrons. The perturbation consists
of a number of modes, which in turn leads to a rather ‘chaotic’ dynamic with strong lamentation in fe.
For PIF the lamentation manifests as numerical noise in the simulation, leading to strong deviations in
computing E even for early times, while NuFI is less prone to numerical noise, which can be observed
in Figure 6b. Note that due to the high amount of excited modes in the solution one requires higher
resolutions in x to accurately capture the dynamics for longer times than in Section 3.1.
In Figure 6a, one can also observe that PIF struggles more than NuFI to capture the dynamics in the

electric energy for comparable resolutions in the initial phase (until t ≈ 200) of the simulation. However,
when choosing ‘insucient’ resolution in either x or v for NuFI it tends to over predict the electric energy
for late times, thereby potentially introducing unphysical dynamics. We think that this might be caused
by incorrectly predicting the velocity support and thereby missing parts of the distribution function when
integrating. Even if initially severely over predicting the electric energy, PIF seems to allows relax back to
approximately the right level of electric energy for large t. This eect needs to be further investigated.
In Figure 6c and Figure 6d we compare the electron distributions computed using NuFI and PIF

respectively. In phase space both use Nx = 128 and for NuFI we allowed up to 128 ≤ Ne
v ≤ 2048 for

electrons and 32 ≤ N i
v ≤ 128 for ions, while for PIF we set Ne

v = N i
v = 1024. The time step was chosen
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Figure 3: The gure shows E (top), ρe (middle) and ρi (bottom) for the times t = 100 and 300 for an ion
acoustic wave induced by a single, strong perturbation. The results of low and high resolution
NuFI (continuous line) and PIF (dotted line) simulations are compared.

∆t = 1◁4 for NuFI and ∆t = 1◁16 for PIF. Even though the resolutions were comparable in phase space
and PIF was allowed to use smaller time-steps, the electron distribution function produced by PIF was
very noisy practically not allowing to observe any structural details, which is not the case for the solution
computed via NuFI where one can still clearly make out the vortices as well as some structure in the bulk
of the electron distribution.

4 Conclusion
In this work we have shown that NuFI can be used as a high delity simulation tool for multi-species
plasma simulations in the electro-static, collisionless limit. It has been shown that when implementing
adaptative integration and automatic tracking of the velocity support one can indeed run long-time stable
simulations. This enables the user to prot from the noise-free character of grid-based approaches while
also maintaining the adaptivity and conservation properties of particle-based approaches, resulting in a
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Figure 4: Distribution function fe of the electrons at times t = 500, 1000 and 2000 for an ion acoustic wave
induced by a single, strong perturbation. The upper 3 gures display the respective fe computed
using (adaptive) NuFI with Nx = 32, 32 ≤ Nv ≤ 512 and ∆t = 1◁4. The lower 3 gures display
the respective f e computed using PIF with Nx = 128, Nv = 512 and ∆t = 1◁8.

(a) f i
NuFI(500, ·, ·) (b) f i

NuFI(1000, ·, ·) (c) f i
NuFI(2000, ·, ·)

(d) f i
PIF(500, ·, ·) (e) f i

PIF(1000, ·, ·) (f) f i
PIF(2000, ·, ·)

Figure 5: Distribution function f i of the ions at times t = 500, 1000 and 2000 for an ion acoustic wave
induced by a single, strong perturbation. The upper 3 gures display the respective f i computed
using (adaptive) NuFI with Nx = 32, 32 ≤ Nv ≤ 128 and ∆t = 1◁4. The lower 3 gures display
the respective f i computed using PIF with Nx = 128, Nv = 512 and ∆t = 1◁8.

structure-preserving and accurate scheme for the Vlasov–Poisson system. In particular this leads to NuFI
requiring lower resolutions and potentially enabling larger time steps while maintaining a good solution
quality compared to other solvers.
While it has been shown in previous works that NuFI benets from its low memory consumption and

high degree of parallelism allowing for almost optimal scaling,[22] for very long simulations this approach
becomes again slower than e.g. PIF due to its quadratic scaling in the number of time-steps. Therefore we
think that at the moment NuFI is best suited to simulate critical phases in plasma dynamics like transition
regimes or formation of shocks where high precision is essential, after which one can switch back to models
with less computational complexity. Additionally one can also use NuFI as ‘cheap but accurate alternative’
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Figure 6: Results of simulating the ion acoustic benchmark provided by Arber and Vann.[19] Top left gure
shows the evolution of electric energy over time. The top right gure compares the electric eld
for time t = 100 computed by NuFI and PIF respectively. The bottom gures compare the
electron distribution computed by NuFI and PIF with comparable resolution in phase space and
smaller time-steps for PIF.

to storing the dynamics, i. e., instead of storing expensive snapshots of the distribution functions over time
it suces to only store the electric potentials over time.

In this work we focussed purely on solution quality, however, to be feasible for practical simulations it is
also important to consider performance in terms of time-to-solution. While previous work suggested that
for short to medium-long simulations NuFI is at least on par with PIF in terms of computation time to
reach a required accuracy,[25] the question remains whether this also remains true for higher dimensions
and more complicated setups. As the memory complexity of NuFI remains independent of the number
of considered particle species, we think that NuFI might scale better than PIF in a multi-species setting.
This should, however, be investigated in future research.
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