
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

ICMarks: A Robust Watermarking Framework for
Integrated Circuit Physical Design IP Protection

Ruisi Zhang, Rachel Selina Rajarathnam, David Z. Pan, Farinaz Koushanfar

Abstract—Physical design watermarking on contemporary in-
tegrated circuit (IC) layout encodes signatures without con-
sidering the dense connections and design constraints, which
could lead to performance degradation on the watermarked
products. This paper presents ICMarks, a quality-preserving
and robust watermarking framework for modern IC physical
design. ICMarks embeds unique watermark signatures during
the physical design’s placement stage, thereby authenticating the
IC layout ownership. ICMarks’s novelty lies in (i) strategically
identifying a region of cells to watermark with minimal impact
on the layout performance and (ii) a two-level watermarking
framework for augmented robustness toward potential removal
and forging attacks. Extensive evaluations on benchmarks of
different design objectives and sizes validate that ICMarks
incurs no wirelength and timing metrics degradation, while
successfully proving ownership. Furthermore, we demonstrate
ICMarks is robust against two major watermarking attack
categories, namely, watermark removal and forging attacks; even
if the adversaries have prior knowledge of the watermarking
schemes, the signatures cannot be removed without significantly
undermining the layout quality.

Index Terms—Physical Design, Watermarking, IP Protection

I. INTRODUCTION

In the modern very-large-scale integrated circuit (VLSI)
supply chain, companies across multiple countries collaborate
to design, fabricate, assemble, and verify integrated circuits
(ICs) [1], [2]. The final product integrates intellectual prop-
erty (IP) components from various stakeholders, including
design [3], [4], [5], [6] and fabrication houses [7], along the
global supply chain. With the confluence of diverse inputs,
safeguarding IP emerges as an undeniable critical necessity,
particularly to preempt IP piracy threats [8], [9], [10]. The
physical design of the supply chain bridges the logic design
with the VSLI layout for manufacturing. It strategically op-
timizes the positioning and connectivity of components on
the chip canvas and enhances power-performance-area (PPA)
metrics. The optimizations not only translate into million-
dollar manufacturing cost savings for chip producers [11] but
also establish invaluable IPs. However, they are vulnerable
to unauthorized use, like forging attacks by malicious third
parties in the supply chain [12], and require robust protective
measures.

Watermarking [13], [14], [15] has emerged as a viable
methodology to safeguard physical design IP by embedding
unique and confidential signatures into the IC layout. To au-
thenticate ownership, the design houses verify the watermark

Ruisi Zhang and Farinaz Koushanfar are with the Department of Electrical
and Computer Engineering, University of California, San Diego, CA. (e-mail:
ruz032@ucsd.edu; fkoushanfar@ucsd.edu)
Rachel Selina Rajarathnam and David Z. Pan are with the Department of
Electrical and Computer Engineering, The University of Texas at Austin,
Austin, TX. (e-mail: rachelselina.r@utexas.edu; dpan@ece.utexas.edu)

signatures by decoding the watermarks from the IC layout.
Existing physical design watermarking frameworks [12] pro-
posed to insert watermarks from two directions: (i) constraint-
based watermarking [16], [17], [18], [19], [20], and, (ii)
invasive watermarking [5], [21], [6]. Constraint-based water-
marking encodes signatures by setting cell position/topology
as optimization constraints during the physical design. Such
frameworks, primarily designed for partition-based placement
algorithms [22], [23], do not consider new design constraints
in modern IC layouts, such as fence regions, leading to qual-
ity degradation. The invasive watermarking adds redundant
cells [5], [6] or wires [21] as watermarks. However, the
signatures could be forged if the adversary has knowledge of
the watermarking algorithms.

Inserting watermarks into modern IC layouts is non-trivial
and exhibits several challenges. First, large-scale designs have
dense standard cell connections, and slight perturbations of the
cell locations/topologies can degrade the overall performance.
Second, modern ICs often have additional design constraints
like fence regions and macros. Developing watermarking algo-
rithms without considering these additional design constraints
will negatively affect overall performance on certain layouts.
Finally, the watermarks should be robust against potential
removal and forging attacks from the supply chain.

This paper devises ICMarks, a novel and robust water-
marking framework to safeguard IC layout IP. It consists of
two consecutive steps, namely, Global Watermarking (GW)
and Detailed Watermarking (DW), and targets the watermark
insertion at the global and detailed placement stages, respec-
tively. Global Watermarking (GW) leverages a novel scoring
scheme to identify a region to watermark that does not vio-
late the design constraints and ensures minimal performance
deterioration. The identified watermarked region, along with
the associated cells inside it, encodes the GW signature by co-
optimizing the placement such that only the associated cells in-
tersect the watermarked region. Next, Detailed Watermarking
(DW) selects cells that do not overlap with nearby cells when
moving along the x/y axis within GW’s watermarked region.
The cells are watermarked by shifting in the x/y directions to
encode DW signature in the detailed placement. As such, the
strategically inserted watermarked region and cells ensure the
signature insertion satisfies the modern IC design constraints
and incurs minimal quality degradation. The design company
proves ownership by reverse engineering [24], [25] the logic
netlist and all standard cell locations from an IC layout in
GDSII format, and employ ICMarks to decode signature for
ownership verification.
ICMarks is robust against threats from the supply chain

that aim to remove or forge the watermarks. By encoding
signatures as placement co-optimization objectives, it can

ar
X

iv
:2

40
4.

18
40

7v
1

 [
cs

.C
R

]
 2

9
A

pr
 2

02
4

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

withstand a spectrum of watermark removal attacks [12].
Extensive targeted watermark removal attacks in different
layout regions validate that ICMarks still maintains over 90%
watermark extraction rates when the adversaries compromise
a maximum of ∼2% wirelength/timing quality. In addition,
the two-level augmented GW and DW signatures make the
watermark strength ∼ 1031× stronger compared with the best
prior practice [20], [19], and forging the signatures becomes
exceedingly harder.

In brief, our contributions are as follows:
• We present ICMarks, the first watermarking scheme

with both region and position constraints for the modern
VLSI layouts, which does not degrade the layout quality
while being robust against watermark removal and forg-
ing attacks.

• Our watermark framework features: (i) a novel search
algorithm to identify the watermarked region that adheres
to design constraints and incurs minimal performance
degradation in Global Watermarking; (ii) an innovative
encoding mechanism for quality-preserving signature in-
sertion and augmented robustness in Detailed Watermark-
ing.

• We conduct experiments on benchmarks of different
design objectives and sizes: (i) ICMarks introduces no
degradations on the wirelength-driven ISPD’2015 [26]
and ISPD’2019 [27] benchmarks, whereas the best prior
method [5] degrades the average routed wirelength by up
to 1.4%; (ii) ICMarks shows no degradations on the
timing-driven ICCAD’2015 [28] benchmarks, whereas
the best prior method [20], [19] degrades the total and
worst negative slack by 1.14% and 1.51% respectively 1.

• We perform comprehensive robustness analysis: (i)
ICMarks withstands watermark removal attacks target-
ing different layout regions and maintains over 90% wa-
termark extraction rates; (ii) ICMarks resists watermark
forging attacks and the watermark strength is 1031×
stronger compared with best prior practice [20], [19],
making it hard to counterfeit the signatures.

Paper Organization: The rest of the paper is organized as
follows: Section II provides backgrounds on VLSI placement
and VLSI watermarking. Section III describes the problem
definition, including watermarking goals and threat models.
Section IV introduces the proposed watermarking framework
ICMarks, including global watermarking and detailed wa-
termarking schemes, and how these two techniques can be
combined to strengthen the overall ICMarks. Section V
presents extensive experiments on various benchmarks and
demonstrates the effectiveness of ICMarks. Section VI eval-
uates ICMarks’s robustness. Finally, Section VII summarizes
the work.

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background for VLSI
placement and IC design watermarking.

1The IC physical design is fragile that 0.5% performance degradation can
compromise the additional efforts from the design company for quality metrics
optimization [29].

A. VLSI Placement

The integrated circuit (IC) design flow starts with design
specifications that are converted to register transfer level (RTL)
using a hardware description language (HDL). As depicted
in Fig. 1, the physical design process synthesizes the design
HDL to generate a logic-level netlist comprising macros and
standard cells from the technology library. A floorplanning
step determines regions and locations for the design’s macros
and the IO (input-output) ports. Typically, the standard cells
are placed during the placement stage, followed by routing all
the design connectivity. The routed design is verified to ensure
manufacturability and the physical layout is generated in
GDSII format to send to the fabrication unit for manufacturing.

Synthesis IC Layout

Physical Design

RoutingFloorplanning
& Placement

Design

HDL

Fig. 1: The VLSI physical design process. It generates the IC
layout from a design RTL through synthesis, placement, and
routing stages.

With fixed macro locations, placement is an essential step
in the physical design flow to determine the locations of
all the standard cells in the design [29], [30], [31], [32]. It
significantly impacts the quality and efficiency of the subse-
quent stages, including routing and manufacturing. The VLSI
placement typically consists of three stages: Global Placement,
Legalization, and Detailed Placement.

1) Global Placement: In the global placement stage, the
placer aims to achieve roughly legal cell locations by dis-
tributing the cells across the chip area to minimize overlaps.
In addition, the placer also targets other objectives, such as
minimizing wirelength and ensuring timing constraints are
met.
Wirelength-driven Placement: A wirelength-driven placer
aims to minimize the overall wirelength W while ensuring
minimal cell overlap, as specified in Eqn. 1 [33].

minx,yW (x, y) s.t. D(x, y) < D (1)

where (x, y) is the location of cells in the placement, and
W (x, y) denotes the total wirelength of all cells in the design.
D(x, y) is a density measure of the overlaps among the cells,
and it should be below the threshold D.
Timing-driven Placement: A timing-driven placer prioritizes
optimizing timing critical paths in the design while ensuring
the overlaps among the cells are minimum [34]. Given a timing
endpoint t (a primary output port or an input pin of memory
element) with an arrival time of tAT(t) and a required arrival
time tRAT(p), the slack of t is calculated as follows,

slack(t) = tRAT(t)− tAT(t)

TNS =
∑

t∈Pend

min(0, slack(t))

WNS = min
t∈Pend

slack(t)

(2)

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

With the timing endpoints Pend in the design, the total negative
slack TNS and the worst negative slack WNS are computed as
shown in Eqn. 2. A timing-driven placer optimizes either the
WNS or the TNS to meet the timing constraint of the design.

2) Legalization: The legalization stage moves cells to
eliminate the cell overlaps, ensure the row alignments, and
guarantee the the design constraints are met [35], [36], [37].
The multi-row height cells are prioritized for legalization
before the single-row height cells.

3) Detailed Placement: The detailed placement stage re-
fines the legalized placement to improve design metrics such
as wirelength or timing constraints [38], [39]. The refinement
can be achieved by operations like (i) Swapping the positions
of two cells to improve the objectives without causing legality
or timing violations and (ii) Window-based approaches to find
optimal cell locations within the specified region.

B. Watermarking in IC Design
Watermarking [13], [14], [15] encodes unique and confi-

dential signatures into the IC layouts to assist product owners
in proof of ownership. Design houses leverage this technique
to enhance IP rights protection in the chip supply chain and
detect unauthorized usages or replications. These watermarks
are typically inserted in the logic design or physical design
level.

1) Logic Design Watermarking: The watermarking at the
logic design level focuses on safeguarding the Register Trans-
fer Level (RTL) or netlist ownership. Designers embed unique
signatures into the RTL or netlist that do not impact the core
functionality and are invisible upon adversaries’ inspection.
The signature insertion can be categorized as follows: (i)
modifying the finite state machine (FSM) to add additional
inputs or unused components as watermarks [3], [4]; (ii)
adding additional power components as side-channel signa-
tures [40], [41]; and (iii) introducing unique triggers during
netlist design that induces the malfunctions when the triggers
are detected [42].

More recent works introduce logic locking to add additional
logic gates and circuits that alter the original design’s function-
ality when the incorrect key is applied [43], [44]; obfuscation
to adding dummy logic gates or additional circuit connections
to make the logic design appear differently from the original
one [45], [46]. These techniques are orthogonal to the logic
design watermarking, which can be combined to establish
more robust intellectual property protection (IPP) frameworks.

2) Physical Design Watermarking: The watermarking at
the physical design level encodes signatures onto the IC layout
from two directions: (i) constraint-based watermarking [16],
[17], [18], [19], [20] that uses cell position/topology as the
additional constraints during physical design; (ii) invasive
watermarking [5], [21], [6] that adds redundant cells or wires
as the watermark signatures.

It is beneficial to watermark at the physical design stage
instead of the logic design for these reasons. (i) Adding
additional watermarks into the logic design needs to consider
physical design criteria like timing to maintain chip quality.
However, watermarking after these constraints have been opti-
mized at the physical design stage reduces such discrepancies.

(ii) In logic design, if the logic circuits are not performing
correctly after watermark insertion, designers need to revisit
the RTL design in the previous stage. Physical watermarking,
however, does not modify the circuits’ functionalities and only
changes how cells are placed or connected on the canvas.

3) Comparison: The watermarking frameworks’ quality is
evaluated by the following metrics.
Criteria 1 - Fidelity: The watermarked layouts shall incur
minimal quality degradation compared with non-watermarked
ones on metrics like wirelength and timing. Besides, the
watermarked layouts should adhere to the layouts’ design
constraints, such as fence regions and row alignments.
Criteria 2 - Efficiency: The watermarking framework shall
be efficient with minimal overheads for watermark insertion.
Criteria 3 - Robustness: The watermarked layout shall be
robust against various attacks targeting to remove or forge the
signature.

Note that there are other metrics like stealthiness, where
watermarked layouts are invisible upon inspection, and ef-
fectiveness, in which the watermark shall be successfully
extracted. The watermarking frameworks above all possess
such properties. Therefore, we skip the evaluations in Table I.

Stage WM Method Fidelity Efficiency Robustness

Logic
Design

Logic Design
WM [3], [40], [42]

Physical
Design

Invasive WM
[5], [21], [6]

Constraint-based WM
[19], [20], [16], [17], [18]

ICMarks

TABLE I: Comparison of IC watermarking (WM) frameworks.
framework does not meet criteria; framework partially

meets criteria; framework completely meets criteria.

As listed in Table I, during the logic design watermark-
ing [3], [40], [42], the impact of layout quality and robustness
depends on the design of the signature insertion algorithms.
The watermark encoding also has to consider the physical
design criteria in the later stages, and if certain requirements
or design specifications are not met, the designers need to
revisit the logic design for updates. Such alignments make it
less efficient to insert watermarks at the logic design stage.

The constraint-based watermarking frameworks [19], [20],
[16], [17], [18] encodes signatures during the placement stage
of physical design. The watermarking frameworks did not
consider the new design constraints, such as macros and fence
regions could lead to performance degradation. In addition, the
overhead of watermark insertion remains negligible compared
to the time required to optimize the IC layout. The water-
marks are embedded as part of the layout. By encoding the
constraints into the layout, constraint-based watermarking are
robust against removal or forging attacks.

By adding redundant cells/wires, the invasive watermark [5],
[21], [6] is efficient for watermark insertion, and the quality
degradation depends on how the corresponding algorithm
designs the insertion mechanism. Nevertheless, the encoded
watermarks can be forged if the adversaries have knowledge
of the watermarking algorithm.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

In this work, we propose a layout watermarking scheme
ICMarks that combines region and position constraints. It
can be seamlessly integrated into the physical design pipeline
without degrading the layout performance or violating IC
design constraints. Besides, its two-level strategic watermark
insertion augments its watermarking strength and makes it
exceedingly hard for the adversary to remove or counterfeit
the signature.

III. PROBLEM FORMULATION

In this section, we introduce ICMarks’s goal and its threat
model.

A. Watermarking Goal

In the physical design stage, the IC design company in-
vests huge efforts in identifying and fine-tuning optimization
objectives for better cell placement and net routing. The
optimization and customization are infused into different levels
of the final layout, including (but not limited to) blocks and
cells, to boost IC performance and reduce manufacturing
expenses. As such, the final IC layouts constitute invaluable
intellectual property, emphasizing the need to safeguard it.
ICMarks establishes ownership proof for the VLSI phys-

ical design by inserting watermarks into the placement stage,
thereby authenticating the IP for the final layout. Fig. 2 depicts
a typical scenario within the supply chain. The IC design
company D uses highly customized and optimized placement
and routing algorithms to enhance physical design quality.
The layout LD from the physical design stage is watermarked
and sent to the fabrication company for manufacturing. The
manufactured ICs are verified for their functionalities in the
test company. The design company D can employ reverse
engineering approaches [24], [25] to extract the logic netlist
and all standard cell locations from an IC layout in GDSII
format, and employ ICMarks to decode the signature for
ownership verification.

Design Company D

WM

GDSII Layout LD Fabricate Company Test Company

Fig. 2: IC layout watermark scenario in the supply chain. The
design company watermarks the IC layout manufacturing and
testing.

B. Threat Model

The adversary A in the fabricate or test company aims to
steal the layout and stop D from claiming its ownership by
executing different attacks.
Adversary’s Locations: We consider the adversary A to be in
the fabrication or test company and has access to the layouts
produced by the design company.
Adversary’s Objective: Adversary A’s objective is to (i)
prevent design company D from ownership proof by removing

or forging the encoded signature; (ii) the attacked layout
performance, such as wirelength or timing metrics shall not
be significantly compromised.
Adversary’s Capacities: We consider an adversary A with
the following capacities: (i) The adversary A has access to
the layout LD. However, he cannot reverse-engineer the opti-
mizations and customizations to reproduce LD because they
are infused into every level of the design. (ii) The adversary A
has access to open-source physical design tools to remove or
forge the watermark. He also knows the general algorithms to
watermark the layout. However, the random seeds, signatures,
and insertion parameters are beyond his reach.

IV. ICMARKS DESIGN

This section presents the proposed layout watermarking
ICMarks, a two-level scheme that inserts watermarks during
multiple stages of VLSI placement. In Section IV-A, we
introduce the Global Watermarking method. Next, we propose
an independent embedding of the watermark signatures as
Detailed Watermarking in Section IV-B. While Global and
Detailed Watermarking can be used independently for IP pro-
tection, ICMarks combines both techniques to take advantage
of their best properties.

A. Global Watermarking (GW)
Global Watermarking embeds watermarks during the global

placement stage. The watermarks, including a pre-defined
watermarked region and associated cells in the region, are
embedded as a co-optimization term during global placement.
The co-optimization objective is to ensure only those associ-
ated cells are placed in the watermarked region.

1) GW Watermark Selection: Given the original, optimized
placement denoting the position of all cells as Pori, we
employ a sliding window-based algorithm that traverses the
placement to search for a region to watermark as in Fig. 3.
An ideal watermarked region should meet three criteria: (i) the
number of cells Nc within the region should be sufficient to
accommodate the required number of signature bits Nw; (ii)
the total cell area Scell within the watermark region are S shall
be small, thereby providing ample space for watermarked cells
to maneuver; and (iii) the cells area Soverlap overlap on the
watermarked region boundary shall be minimized, such that
their displacement from the watermarked region has minimal
impact on the layout performance. These requirements are
incorporated into an evaluation function f , as illustrated in
Eqn. 3, to evaluate each region of the original placement Pori.

f = α
Nw

Nc
+ β

Scell

S
+ γ

Soverlap

S
(3)

The scoring function is balanced by adjusting the weights α,
β, γ, where α, β, γ ∈ [0, 1]. The scores of the traversed regions
are then normalized into a range of [0, 1]. For regions that are
nested within macros or other fence regions and any region
where Nc < Nw, the evaluation function f yields the highest
evaluation scores as 1.0, rendering the regions not suitable for
inserting GW watermarks. The region with the minimum score
is chosen as our target watermarked region Rw, and the set of
associated cells within the region is denoted as Cw1.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

.43 .82
.99

1.0
1.0

1.0
1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0
1.0

1.0
1.0
1.0

1.0
1.0
1.0

1.0

.90

.96

.97

.92

.95

.98

.95

.95

.93

.92

.91

.98

.93

.92

.89

.78

.83

.89
.70
.63

.69

.75

.73
.60
.53

.49

.59

.63

.58

.60

.59

.69

.62

.76

.52
.79
.58

.72

.47
.73
.55

.65

.54
.50
.45

.48

.46

.47

.45

.78

.61

.50

.82

.63

.49

.63

.57

.50

.59

.64

.79

.86

.80
Evaluate RegionsOriginal Placement

Remove
Boundary Cells

Watermarked
Region

Best Region

Insert Watermark

Fig. 3: Global watermarking pipeline with stride = sliding
window size.

2) GW Watermark Insertion: The watermarked region Rw

and its associated cells Cw1 is formulated as the additional
watermarked region constraint in the placement objective. It
enforces the associated cells Cw1 to be in the watermarked
region Rw and other cells to be out of Rw. For a design with
K fence regions, the placement formulation includes water-
marked region Rw as the additional optimization constraints,
as specified in Eqn. 4 [47].

minv
∑

e∈E W (e; v) + λD(v),
s.t. vk = (xk, yk) ∈ Rk, k = 0, · · · , RK , Rw,

(4)

W is the wirelength term and D is the cell density term
with density multiplier λ. v denotes the (x, y) location of cell
and e ∈ E is the design net. The watermarked region Rw is
added as an additional region constraint with associated cells
Cw1 to obtain a watermarked placement Pw.
GW Watermark Strength: Different hyperparameter settings
α, β, γ result in different minimum-scored watermarked
regions and associated cells. The p-value denoted as Pc in
statistical Null Hypothesis test [48] measures the probability
of a layout carrying the watermark purely by coincidence. A
smaller Pc means a stronger watermark signature insertion.
The probability that an overlapping cell is out of the water-
marked region Rw is denoted as p, and the probability that the
overlapping cell is in or overlaps Rw is 1 − p. We measure
the probability that x or more cells match the watermarking
condition, that is, they are out of the watermarked region,
as the probability of Pc in Eqn. 5. Here, C is the number
of combinations of selecting i elements from |No| distinct
elements. The placement algorithms tend to place cells more
compactly, which means the probability of a cell being away
from its original place p < 0.5. In Eqn. 5, Pc is an increasing
function of p when p ∈ [0, 0.5]. For simplicity of computation,
we set p = 0.5 as an upper bound for Pc. In reality, Pc is
even smaller because the position and size of the watermarked
region are not revealed to the adversary, and it introduces more
randomness to strengthen Pc.

Pc =
∑|No|

i=x

(
C(|No|, i) · (1− p)|No|−i · (p)i

)
(5)

3) GW Watermark Extraction: The design owner asserts
ownership by employing the watermarked region Rw to extract
cells C ′

w1 within the region and comparing these with the
associated cells Cw1 and non-associated cells Cw1o. The

extraction rate of the watermark, denoted as WERGW , is
calculated in Eqn. 6.

%WERGW = 100× |(C′
w1∩Cw1)−(C′

w1∩Cw1o)|
|Cw1|

(6)

B. Detailed Watermarking (DW)

In Detailed Watermarking, the watermarked cells are em-
bedded by moving them slightly along the x- or y-axis after le-
galization. A follow-up detailed placement stage compensates
for the performance degradation from the watermark insertion.

1) DW Watermark Selection: The Detailed Watermarking
moves cells along the x- or y-axis to insert watermarks into
the design. Randomly selecting watermarked cells and moving
them without considering the dense interconnection could lead
to significant performance degradation. To avoid this, Detailed
Watermarking only selects cells that will not overlap with their
neighbors after cell movements as the watermark as shown in
Fig. 4.

Select Cells to Watermark Insert WatermarkOriginal Placement

Fig. 4: Detailed watermarking pipeline with Candidate cells
from which Watermarked cells are selected.

Algorithm 1 outlines how Detailed Watermarking identifies
cells that will not overlap with neighbors during watermarking
movements and subsequently inserts the signature. It starts
by comparing the positions of cells within each row and
identifying the cell indices that can move |dx| along the x-
axis. Then, the algorithm compares cells across adjacent rows
to determine if they can be moved up or down for |dy|. The
cells Cx with room along the x-axis and Cy with room along
the y-axis are identified as candidate cells for watermarking.
Dx and Dy are associated with these candidate cells to retain
a record of their movement directions and distances.

2) DW Watermark Insertion: At the end of legalization
with placement Plg = (Xlg, Ylg), cells are moved along the
x- or y-axis to insert unique watermark signatures hashed
as N bit sequences BN . If the i-th bit in the signature
BN is 1, the cell ci randomly selected from the candidate
watermarked cell set Cx is moved along the x-axis for Dx[ci].
If the i-th signature bit is 0, the cell ci is randomly chosen
from the candidate watermarked cell set Cy and moved along
the y-axis for Dy[ci]. The resulting placement is denoted as
intermediate placement Pitr = (Xitr, Yitr), and the indices of
the cells moved along the x- or y-axis form the watermarked
cells Cw2. These movements are performed before detailed
placement, allowing possible performance degradation to be
compensated during the subsequent detailed placement phase
and yield a watermarked solution Pwm = (Xwm, Ywm).
The selected watermarked cells Cw2, and their corresponding
position distance Dist = Pitr(Cw2) − Pwm(Cw2) between

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

Algorithm 1: DW Watermark Selection and Insertion
Require: Legalized placement (Xlg, Ylg), Signature BN , Unit

distance |dx| and |dy|
Ensure: Watermarked cells Cw2, Placement (Xwm, Ywm)

1: Initialize empty sets Cx, Cy, Dx, Dy

2: for r = 0 to total num rows do
3: for c in cells in row(r) do
4: if is movable x(c) then
5: Append c to Cx

6: s = get direction x(c) // left: -1; right: 1
7: Add (s× |dx|) to Dx

8: if is movable y(c) then
9: Add c to Cy

10: s = get direction y(c) // down: -1; up: 1
11: Add (s× |dy|) to Dy

12: Random shuffle Cx and Cy

13: Xitr, Yitr = Xlg, Ylg

14: for i = 0 to |BN | do
15: if BN [i] == 1 then
16: ci = random choose(Cx) // no replacement
17: Xitr[ci] = Xlg[ci] +Dx[ci]
18: else
19: ci = random choose(Cy) // no replacement
20: Yitr[ci] = Ylg[ci] +Dy[ci]
21: Add ci to Cw2

22: Xwm, Ywm = detailed placement(Xitr, Yitr)
23: return Cw2, Xwm, Ywm

intermediate placement Pitr(Cw2) and the watermarked place-
ment Pwm(Cw2) constitute the watermark.
DW Watermark Strength: The p-value Pc to measure the
probability of a layout carrying the watermark purely by
coincidence can be formulated by Eqn. 7. Pcx is the probability
of cells moving along the x-axis being the same as the
watermarked cells, and Pcy is the probability of cells moving
along the y-axis being the same as the watermarked cells.

Pc = Pcx · Pcy (7)

In Eqn. 8, Pcx is the probability of x or more cells match the
watermarked cells along x-axis as Cwx, and the px = |Cwx|

|Cx| is
the probability of the watermarked cells Cwx are chosen from
all of the candidate cells Cx. Similarly, Pcy is the probability
of y or more cells match the watermarked cells along the y-
axis, and the py =

|Cwy|
|Cy| . Given |Cx| ≫ |Cwx| and |Cy| ≫

|Cwy|, the above px and py can be viewed as the approximate
probability for no replacement watermarked cell selection.

Pcx =
∑|Cwx|

i=x ·C(|Cwx|, i) · (px)i · (1− px)
X−i

Pcy =
∑|Cwx|

j=y ·C(|Cwy|, j) · (py)j · (1− py)
Y−j

(8)

3) DW Watermark Extraction: The design owner detects
watermarks in the placement P ′ by comparing the water-
marked cell Cw2 position with the intermediate placement Pitr

and calculates the new distance Dist′ as Pitr(Cw2)−P ′(Cw2).
If C ′

w2 cells in the extracted Dist′ matches the Dist both along
x- and y-axis, the watermark extraction rate is calculated as
Eqn. 9.

%WERDW = 100× |C ′
w2|

|Cw2|
(9)

C. ICMarks Watermarking

As a combination of both the GW and the DW, ICMarks
applies global watermarking during its global placement stage
and detailed watermarking on top of the watermarked region
before its detailed placement stage. By combining these two
watermarking schemes, the inserted watermark strength is
further augmented.

Original Placement Global Watermarking Detailed Watermarking

Insert WatermarkSelect Cells to WM

Fig. 5: ICMarks framework. ICMarks first applies global
watermarking during its global placement and then applies
detailed watermarking on top of the watermarked region before
the detailed placement.

1) ICMarks Watermark Insertion: As in Fig. 5,
ICMarks employs a hybrid approach that combines Global
and Detailed Watermarking to produce stronger watermarks.
Initially, ICMarks searches for a watermarked region using
the strategy akin to Global Watermarking, yielding a wa-
termarked region Rw and associated cells Cw1. ICMarks
runs global placement and legalization with such watermark
constraints. Then, it perturbs cells along the x- and y-axis
within the watermarked region Rw, following the approach
of Detailed Watermarking and obtain an intermediate place-
ment Pitr. Afterward, the detailed placement proceeds to
compensate for watermarking degradation and produce the
watermarked placement Pwm. The perturbed distance Dist and
cells Cw2 are the watermarks in the second step.
ICMarks Watermark Strength: Due to the combination of
global and detailed watermarking, the watermark strength Pc

of ICMarks is further augmented. To coincidentally carry
the watermark, one has to overcome both the signatures from
the global and detailed watermarking. Given the watermark
strength of the global watermarking to be Pcg and the detailed
watermarking to be Pcd, where the |Cx| and |Cy| are changed
to the number of cells available to move in the watermarked
region. We get the ICMarks’s Pc as in Eqn. 10, further
minimizing the coincidental probability.

Pc = Pcg · Pcd (10)

2) ICMarks Watermark Extraction: To claim ownership
of the layout, given the cell positions P ′, the watermark holder
can use the following two steps. (i) The extraction of the
watermarks C ′

w1 from the watermarked region Rw, with the
global extraction rate denoted as in Eqn. 6. (ii) Afterwards,
the inserted signatures are extracted by comparing P ′ − Pitr

with Dist at the watermarked cell indices Cw2. The number
of cells successfully matched is denoted as C ′

w2, from which
the detailed extraction rate is calculated as in Eqn. 9. The final
WER is calculated in Eqn. 11.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

%WERICMarks = 100× WERGW+WERDW

2
(11)

V. EXPERIMENTS

In this section, we first introduce the experiment setups
in Section V-A. Then, we evaluate the performance of
wirelength-driven and timing-driven design watermarking in
Section V-B. Next, we show the robustness of ICMarks under
attacks in Section VI.

A. Experimental Setup

Datasets: We evaluate the watermarking impact on
wirelength-driven benchmark suites: ISPD’2015 [26] and
ISPD’2019 [27]; and the timing-driven ICCAD’2015 [28]
benchmark suite. All designs in the ICCAD’2015 benchmark
suite are large and contain more than 700k cells. The statistics
of these designs are summarized in Table II, with designs
having fence regions marked in blue. The macros, fence
regions, and IO pin locations in the benchmarks are fixed.

Suite Design Cells Nets Size Stride α β γ

perf a 108K 115K 10 5 0.1 0.1 1
perf b 113K 113K 10 5 0.1 0.1 1
dist a 127K 134K 20 5 0.1 0.1 1
mult b 146K 152K 10 5 0.1 0.1 1
mult c 146K 152K 20 5 0.1 0.1 1
pci a 30K 34K 10 5 0.1 0.1 1
pci b 29K 33K 20 5 0.1 0.1 1

superblue11 926K 936K 100 40 0.1 0.5 1
superblue16 680K 697K 50 10 0.1 0.1 1

perf 1 113K 113K 50 10 0.1 0.5 1
fft 1 35K 33K 10 5 0.1 0.1 1
fft 2 35K 33K 10 5 0.1 0.1 1
fft a 34K 32K 10 5 0.1 0.1 1
fft b 34K 32K 20 5 0.1 0.1 1

mult 1 160K 159K 50 10 0.1 0.5 1
mult 2 160K 159K 50 10 0.1 0.5 1
mult a 154K 154K 50 10 0.1 0.5 1

superblue12 1293K 1293K 50 10 0.1 0.1 1
superblue14 634K 620K 50 10 0.1 0.1 1

ISPD
2015
(WL)

superblue19 522K 512K 100 10 0.1 0.5 1
ispd19test1 9K 3K 10 5 0.1 0.1 1
ispd19test2 73K 72K 10 5 0.1 0.1 1
ispd19test3 8K 9K 20 5 0.5 0.1 1
ispd19test4 151K 146K 10 5 0.1 0.1 1
ispd19test5 29K 29K 10 5 0.1 0.1 1
ispd19test6 181K 180K 50 10 0.1 0.1 1
ispd19test7 362K 359K 100 10 0.1 0 1
ispd19test8 543K 538K 50 10 0.1 0.5 1
ispd19test9 903K 895K 200 20 0.1 0.1 1

ISPD
2019
(WL)

ispd19test10 903K 895K 200 20 0.1 0.5 1
superblue1 1209k 1215k 100 50 0.1 0 1
superblue3 1213k 1224k 100 30 0.1 0 1
superblue4 795k 802k 100 50 0.1 0 1
superblue5 1086k 1100k 100 50 0.1 0.1 1
superblue7 1931k 1933k 100 30 0.1 0 1
superblue10 1876k 1898k 100 30 0.1 0.1 1
superblue16 981k 999k 100 30 0.1 0 1

ICCAD
2015

(Timing)

superblue18 768k 771k 100 50 0.1 0 1

TABLE II: Benchmark statistics and hyperparameters. The
designs with fence regions are in blue. The sliding window’s
size and stride are multiples of the adjacent row-height.

Experiment Setup: ICMarks is implemented with Python
3.9 and benchmarked on a Linux Ubuntu system equipped
with NVIDIA TITAN XP GPUs, each with 12 GB RAM,
and 48 Intel(R) Xeon(R) CPUs, accompanied by 128 GB

RAM. The watermarking methodology of ICMarks can be
integrated into any VLSI physical design framework, and we
chose to build upon the open-source placement framework,
DREAMPlace [47] to demonstrate its viability. The DREAM-
Place [47] accelerates the state-of-the-art placement algorithm
ePlace [49]/RePlAce [50] on a GPU and maintains the same
level of performance. For routing, we employ the open-
source state-of-the-art framework CUGR [51]. For timing-
driven benchmark suite, we use DREAMPlace 4.0 [34] where
the timing metrics are measured by OpenTimer [52].

Hyperparameters: For the hyperparameters, we perform a
grid search for the GW phase. In the search of Eqn. 3, the α =
{0.1, 0, 0.5}, β={0.1, 0, 0.5}, and γ = 1. The search terminates
when the watermarked layout quality is not compromised.
For all the considered benchmark suites, we report the GW
hyperparameters in Table II. In the DW phase, dx = 1, and
dy is set to one adjacent row-height.

Baseline: We choose the following state-of-the-art water-
marking frameworks as our baselines: (i) topology constraint-
based Row Parity [20], [19] that inserts unique bit sequences
as watermarks by shifting cells to different rows in the
placement stage. Cells with a 1-bit are moved to an odd
row, while cells with a 0-bit are moved to an even row; (ii)
position constraint-based Cell Scattering [5] that employs
pseudorandom coordinate transformation (PRCT) algorithms
to scatter the watermarked cells on the chip canvas as water-
marks. Cells with 1-bit are moved along the y-axis, and cells
with 0-bit are moved along the x-axis if they do not overlap
with their neighbors; (iii) invasive Buffer Insertion [6] that
adds additional buffers as watermarks without affecting timing
critical paths during the placement stage. Two buffers are
inserted to represent 0-bit, and one buffer is inserted to
represent 1-bit.

We skip the baselines that: (i) have different watermarking
targets. [18], [17] are designed for smaller full-custom IC
designs, [53], [54] are designed for FPGAs, whereas our
watermarking targets are modern digital VLSI designs; (ii)
have similar watermarking approaches as our baselines, and
we use the baselines as a proof-of-concept. [16] inserts flip-
flops instead of buffers into the layouts as watermarks. The
signature length is set to 50-bit for all frameworks.

Evaluation Metrics: For the wirelength-driven benchmark
suites, whose quality is measured by the layout wirelength,
we use three metrics to evaluate the watermark performance:(i)
Placement WireLength Rate (PWLR): The rate of estimated
half-perimeter wirelength (HPWL) of watermarked layout
compared to the original one; (ii) Routing WireLength Rate
(RWLR): The rate of routed wirelength of watermarked layout
compared to the original one; (iii) Watermark Extraction
Rate (WER): The percentage of signatures extracted from
the watermarked layout. For the timing-driven benchmark
suite, whose quality is measured by the timing slack, we use
three metrics to evaluate the performance under static timing
analysis [52]: (i) Total Negative Slack Rate (TNSR): The rate
of total negative slack (TNS) of watermarked layout compared
to original one; (ii) Worst Negative Slack Rate (WNSR):The
rate of worst negative slack (WNS) of watermarked layout
compared to original one; (iii) Watermark Extraction Rate

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

Row Parity [20], [19] Cell Scattering [5] Buffer Insertion [6] ICMarks: GW ICMarks: DW ICMarks: GW+DWDesign PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓
perf a ⋆ 1.0045 1.0155 0.9978 0.9967 1.5289 2.3270 0.9976 0.9873 0.9994 1.0003 0.9972 0.9873
perf b 1.0058 1.0267 1.0020 1.0001 1.0176 1.0745 0.9930 0.9901 0.9990 1.0002 0.9890 0.9901
dist a 1.0015 0.9999 0.9984 0.9965 1.0995 1.1072 1.0004 1.0052 0.9998 1.0005 1.0004 1.0052

mult b ⋆ 1.0047 1.0199 0.9991 0.9923 1.8966 2.9374 1.0010 1.0028 1.0002 1.0044 0.9994 1.0028
mult c ⋆ 1.0031 1.0252 0.9980 1.0023 1.6003 2.7459 1.0017 0.9979 0.9990 1.0020 0.9963 0.9979
pci a ⋆ 1.0080 1.0340 0.9931 0.9846 1.6269 1.6849 1.0361 1.0048 1.0011 1.0021 0.9997 0.9950
pci b ⋆ 1.0069 1.1173 0.9912 0.9977 1.2239 1.8207 0.9951 1.0026 0.9997 1.0008 0.9951 1.0026

superblue11 ⋆ 1.0052 1.0344 1.0278 1.0358 1.6930 3.7086 0.9992 0.9992 0.9995 1.0005 0.9986 0.9992
superblue16 1.0030 1.0210 0.9988 0.9989 1.1023 1.1377 1.0018 1.0204 1.0000 1.0000 1.0017 1.0204

perf 1 1.0035 1.0199 0.9985 0.9983 1.0150 1.0642 1.0031 0.9973 1.0042 1.0019 0.9964 0.9973
fft 1 1.0017 1.0260 1.0167 1.0156 1.0680 1.1457 0.9671 0.9673 1.0026 0.9975 0.9671 0.9673

fft 2 ⋆ 1.0050 1.0260 1.0148 1.0114 1.4603 1.4476 0.9767 0.9770 1.0027 0.9996 0.9767 0.9770
fft a ⋆ 1.0121 1.0200 1.0024 0.9933 1.8203 2.1923 0.9939 0.9895 1.0075 1.0094 0.9939 0.9895
fft b ⋆ 1.0018 1.0075 0.9961 1.0030 1.9859 2.5615 0.9909 0.9890 0.9991 1.0036 0.9909 0.9890
mult 1 1.0050 1.0238 1.0077 1.0065 1.0464 1.0631 0.9753 0.9744 1.0004 1.0008 0.9753 0.9744
mult 2 1.0033 1.0199 0.9984 0.9967 1.0736 1.1147 0.9867 0.9900 0.9990 0.9992 0.9852 0.9900

mult a ⋆ 1.0037 1.0105 0.9995 0.9968 1.3862 1.6738 0.9973 0.9916 1.0005 0.9958 0.9973 0.9916
superblue12 1.0031 1.0067 0.9979 0.9956 1.0683 1.1044 1.0036 0.9732 0.9994 0.9942 0.9854 0.9732
superblue14 1.0020 1.0057 0.9991 0.9981 1.0212 1.0286 0.9851 0.9867 1.0001 1.0000 0.9887 0.9867
superblue19 1.0025 1.0077 1.0001 1.0005 1.0295 1.0672 0.9881 0.9809 1.0003 1.0001 0.9814 0.9809
Average: FR 1.0047 1.0322 1.0006 1.0005 1.0724 1.1061 1.0028 1.0011 0.9997 1.0012 0.9975 1.0000
Average: All 1.0043 1.0231 1.0018 1.0012 1.0536 1.0901 0.9946 0.9913 1.0007 1.0006 0.9908 0.9908

TABLE III: Performance on the ISPD’2015 benchmarks [26]. All the design watermarks are successfully extracted, i.e., WER
= 100%. The PWLR and RWLR are the placement and routed wirelength rates over the original designs. FR is fence region.
The results in gray fail buffer insertion WM with significant degradation on the high-utilized designs (denoted with ⋆).

Row Parity [20], [19] Cell Scattering [5] Buffer Insertion [6] ICMarks: GW ICMarks: DW ICMarks: GW+DWDesign PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓ PWLR ↓ RWLR ↓
ispd19test1 1.0060 1.0129 0.9978 0.9998 1.0394 1.0619 0.9995 1.0015 1.0023 1.0043 0.9955 1.0015
ispd19test2 1.0184 1.0201 1.0096 1.0016 1.0127 1.0408 0.9981 0.9999 1.0021 1.0003 0.9988 0.9999
ispd19test3 1.0130 1.0475 1.0180 1.0193 1.0582 1.0801 1.0059 1.0045 0.9961 0.9976 1.0059 1.0045
ispd19test4 1.0017 1.0050 0.9999 0.9998 1.1452 1.2494 0.9957 0.9907 0.9998 1.0028 0.9957 0.9907
ispd19test5 1.0102 1.0556 1.0998 1.0975 0.9859 1.0121 1.0013 0.9998 0.9996 0.9968 1.0013 0.9998
ispd19test6 1.0032 1.0106 0.9994 0.9993 1.0044 1.1108 1.0023 1.0026 1.0001 0.9997 1.0023 1.0026
ispd19test7 1.0028 1.0160 1.0136 1.0109 1.0003 1.0717 1.0050 1.0054 1.0000 0.9997 1.0050 1.0054
ispd19test8 1.0001 1.0082 0.9966 0.9958 1.0118 1.0806 0.9961 0.9929 0.9999 0.9996 0.9961 0.9929
ispd19test9 1.0072 1.0108 1.0108 1.0095 1.0164 1.0814 1.0023 1.0023 1.0009 0.9999 1.0023 1.0023
ispd19test10 1.0025 1.0090 1.0043 1.0108 1.0378 1.0982 0.9972 0.9967 0.9999 1.0002 0.9972 0.9966

Average 1.0065 1.0194 1.0060 1.0140 1.0304 1.0871 1.0003 0.9996 1.0001 1.0001 1.0000 0.9996

TABLE IV: Performance on ISPD’2019 benchmarks [27]. All the design watermarks are successfully extracted, i.e., WER =
100%. The PWLR and RWLR are the placement and routed wirelength rates over the original designs.

Row Parity [20], [19] Cell Scattering [5] Buffer Insertion [6] ICMarks: GW ICMarks: DW ICMarks: GW+DWDesign TNSR ↓ WNSR ↓ TNSR ↓ WNSR ↓ TNSR ↓ WNSR ↓ TNSR ↓ WNSR ↓ TNSR ↓ WNSR ↓ TNSR ↓ WNSR ↓
superblue1 1.0053 1.0094 1.0119 1.0026 1.0083 1.0020 0.9001 0.8514 1.0256 1.0249 0.8283 1.0021
superblue3 1.0053 1.0176 1.0066 0.9891 1.1035 1.0988 0.9302 0.9029 1.0035 0.9884 0.9363 0.9047
superblue4 1.1299 0.9914 0.9698 1.0191 1.1954 1.1995 0.9037 0.9370 0.9554 0.9930 0.9221 1.0094
superblue5 0.9801 0.9887 1.0126 0.9977 1.0932 1.1174 0.9159 1.0001 0.9922 0.9959 0.9159 1.0508
superblue7 0.9801 0.9932 0.9979 1.0212 0.9933 1.0199 0.9584 0.9758 0.9934 1.0199 0.9636 0.9727

superblue10 1.0099 1.0041 1.0218 1.0141 1.0194 1.2918 1.0069 1.0072 1.0058 1.0068 1.0069 1.0072
superblue16 0.9814 1.1271 0.9067 1.3274 1.0109 1.0877 1.0166 1.0473 0.9060 1.3485 1.0069 1.0072
superblue18 1.0068 0.9965 0.9981 1.0064 1.0438 1.0613 0.9337 0.9403 1.0014 1.0002 0.9254 0.9449

Average 1.0114 1.0151 0.9900 1.0424 1.0566 1.1063 0.9448 0.9559 0.9848 1.0418 0.9366 0.9867

TABLE V: Performance on ICCAD’2015 benchmarks [28]. All the design watermarks are successfully extracted, i.e., WER =
100%. The TNSR and WNSR are the total and worst negative slack rates over the original designs.

(WER): The percentage of signatures extracted from the lay-
out. The rate average is calculated by the geometric mean [55]
of designs’ metrics.

To preserve the optimized outcomes from the physical
design algorithms, we set a threshold of layout quality degra-
dation to not exceed 0.5%. Because surpassing this threshold
would counteract the benefits derived from the performance
enhancement efforts in physical design [29].

B. Experimental Results

1) Wirelength-driven Watermarking Fidelity: The perfor-
mance of different watermarking schemes is tabulated in
Table III for the ISPD’2015 benchmarks [26], and in Table IV
for the ISPD’2019 benchmarks [27]. For all the layouts in
Table III-Table IV, their inserted watermarks can be suc-
cessfully extracted. Therefore, we evaluate how much layout
performance is compromised to accommodate such watermark
insertion among these watermarking frameworks.

Comparison with Prior Constraint-based Watermark-
ing [20], [19], [5]: Among the two benchmark suites,
ICMarks results in no PWLR and RWLR degradation for

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

accommodating the 50-bit signature. In contrast, the topology
constraint-based Row Parity [20], [19] changes the row index
of the cells to encode watermarks but does not consider
potential design constraints (e.g., fence regions and macros)
in VLSI design. As a result, it results in 2.31% and 1.94%
routed wirelength (RWLR) degradation on ISPD’2015 [26]
and ISPD’2019 [27], respectively. The position constraint-
based Cell Scattering [5] perturbs cell locations in the op-
timized layout for signature insertion. However, randomly
selecting and moving watermarked cells after the optimization
is done results in quality degradation, as reflected by the
0.12% and 1.4% RWLR degradation over the original design
on ISPD’2015 [26] and ISPD’2019 [27].

Comparison with Invasive Watermarking [6]: The inva-
sive watermarking Buffer Insertion [6] overlooks the additional
design constraints, like fence regions and macros, in the
modern VLSI design. The additional 50 buffers might be
added close to such design constraints and result in significant
cell displacement, as the design has to accommodate the
buffers while satisfying the design constraints. As in Table III-
Table IV, Buffer Insertion [6] introduced 9.01% and 8.71%
routed wirelength (RWLR) degradation on ISPD’2015 [26]
and ISPD’2019 [27] benchmarks. ICMarks, however, has no
wirelength degradation on both benchmarks. Besides, for the
highly-utilized designs, where most of the layout space is filled
with standard cell and fixed marcos/fence regions/IO pins, to
accommodate the additional buffers, cells have to be displaced
significantly from their non-watermarked position for buffer
insertion. As such, it introduced significant PWLR and RWLR
degradations as the grey numbers in Table III.

DW Insertion Before/After Detailed Placement: After the
placement stage is finished, the baseline Cell Scattering [5]
moves cells in the layout along the x/y axis if there is space.
The key difference is Cell Scattering [5] performs the move-
ment after detailed placement, whereas the ICMarks: DW
is performed before detailed placement. As seen in Table III-
IV, ICMarks: DW improves the RWLR quality from Cell
Scattering [5] by 0.06% and 1.39%, respectively.

Comparison with the GW and DW submodules: As
a combination of GW and DW, ICMarks takes advan-
tage of their strength and further reduces the performance
degradation from accommodating watermarks. In contrast to
GW, ICMarks slightly improves the placement quality. This
improvement stems from modifying cell positions within a
designated region, either across different rows or along the
x-axis. Such modifications inherently disturb solutions formu-
lated during global placement. Given that these disturbances
occur in less compact regions, they provide different inputs
to the detailed placement process, thereby offering potential
optimization trajectories to minimize overall wirelength. The
optimization to GW depends on the quality of the perturba-
tions introduced, where the refinement on ISPD’2019 [27] is
marginal, and the improvement on ISPD’2015 [26] is 0.05%
over GW.

Compared with DW, ICMarks watermarks upon the place-
ment solution from GW, whereas DW watermarks the original
solution. The additional co-optimization of the GW water-
marked region makes the placer further refine the cell po-

sitions in the watermarked region and, thus, improves the
watermarked layout quality. By encoding DW signature on
the GW layout, ICMarks introduced no quality degradations.
In contrast, DW watermarks upon the original placement
solution, which could introduce more performance degradation
when inserting DW signatures. It is reflected by the 0.06%
and 0.01% RWLR improvement over the original design on
ISPD’2015 [26] and ISPD’2019 [27] benchmarks, respec-
tively.

2) Timing-driven Watermarking Fidelity: As depicted in
Table V, ICMarks continuously preserves the layout quality
in timing-driven watermarking benchmark ICCAD’2015 [28].
By strategically searching for the watermarked region and cells
with minimal impact on the performance, ICMarks results in
no WNS and TNS degradation. On the opposite, the constraint-
based Row Parity [20], [19] and Cell Scattering [5] overlook
design constraints in modern VLSI design and did not design
the watermarking algorithms with the timing optimization
objectives. It results in 1.51% and 4.24% WNSR degradation
over the original designs, respectively. Furthermore, while
Buffer Insertion [6] encodes additional buffers on the non-
timing critical path, the inserted buffers still result in 5.66%
TNSR and 10.63% WNSR timing metrics degradation.

3) Watermarking Capacity: The watermarking capacity is
measured by the maximum length of watermark bits that can
be inserted into the layout without significantly degrading the
layout quality. For Row Parity [20], [19], Cell Scattering [5],
and ICMarks: DW, the signature length corresponds to the
moved/inserted cell number. For Buffer Insertion [6], the
length is the number of buffer-inserted nets. For ICMarks:
GW, the signature length corresponds to the Nw in Eqn. 3. For
ICMarks, the signature length corresponds to the Nw cells in
global watermarking and moves Nw cell over the watermarked
region in the detailed watermarking.

We use ISPD’2019 [27] as the benchmarking target and
display the results in Fig. 6. As seen, the maximum bits that
can be inserted by Row Parity and Cell Scattering are both
less than 30 bits. Both methods move the cells across rows
after the detailed placement as watermarks, which leads to
worse RWLR than PWLR, as the router has to cross rows
to connect the cells. Buffer Insertion [6] inserts signatures
without considering the design constraints, leading to signif-
icant cell displacement after signature insertion. Therefore, it
exhibits low watermarking capacity on ISPD’2019 [27]. The
ICMarks: DW’s capacity is larger and reaches ∼ 100 bits.
Because it moves the cells before detailed placement and the
subsequent detailed placement compensates for the watermark
insertion. ICMarks: GW and ICMarks further outperform
the scheme. They both demonstrate a capacity of more than
200 bits by exploring the less compact region for watermark
encoding. Since ICMarks builds the watermarking scheme
on top of ICMarks: GW, the two PWLR and RWLR lines
are close in Fig. 6.

4) Watermarking Strength: To successfully prove owner-
ship, the owner not only needs to provide the signatures but
also the exact distance information for ICMarks: DW; cell
ID, and region positions for ICMarks: GW. The watermark-
ing strength, if all watermarks are successfully extracted, is

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

30 50 100 200 500 1000
Signature Length1.0

00
1.0

10
1.0

20
1.0

30
1.0

40
1.0

50
PWLR

30 50 100 200 500 1000
Signature Length

RWLR

Row Parity
ICMarks: GW

Cell Scattering
ICMarks: DW

Buffer Insertion
ICMarks

Fig. 6: Watermarking capacity for different frameworks on
ISPD’2019 benchmarks [27]. We consider the threshold for
acceptable degradation layout quality as 0.5%. The red ⬢⬢
indicates PWLR and RWLR are higher than the 5% limit.

∼ 10−15 for Row Parity [20], [19], but will be 1.25×10−46 for
ICMarks following Eqn. 10. As in Table VI, 50-bit signature
provides sufficient protection to the layout.

Signature ICMarks: GW ICMarks: DW ICMarks: GW + DW
30 bits 5.68×10−14 1.91 ×10−55 4.93×10−32

50 bits 1.69×10−21 7.88×10−81 1.25×10−46

100 bits 1.50×10−36 7.88×10−131 1.43×10−74

TABLE VI: Watermarking strength for different signature
lengths by the proposed ICMarks watermarking framework.

5) Watermarking Efficiency: The watermarking efficiency
is benchmarked by the fraction of the additional time takes for
ICMarks’s watermark insertion compared to the overall phys-
ical design stage, primarily placement and routing. We include
the average time takes to encode 50-bit signatures onto the
ISPD’2015 benchmark [26] and ISPD’2019 benchmark [27]
in Table VII. The non-WM time and WM time is the average
(geometric-mean) time it takes for placement and routing
on the non-watermarked and watermarked layout. The Slow
Down is the percentage overhead ICMarks introduced to the
overall placement and routing phase. As seen, the time taken
for watermark insertion is ∼10% compared with the overall
placement and routing stage, making ICMarks efficient for
watermarking. Besides, no additional computation resources
or external tools are required for the signature insertion.

Design non-WM Time (s) WM Time (s) Slow Down (%)
ISPD’2015 [26] 141.37 157.96 11.73%
ISPD’2019 [27] 946.23 996.18 9.21%

TABLE VII: ICMarks’s efficiency on different benchmarks.

6) Watermarking Stealthiness: We display the layout water-
marked by ICMarks with various sizes and different design
constraints in Fig. 7. As seen, the watermarks are embedded
as part of the layout, and invisible upon inspection while
maintaining 100% WERs.

7) Ownership Proof in Real-World Settings: To prove own-
ership, the design company obtains the suspicious layout and
employs reverse-engineering approaches [24], [25] to acquire
the logic netlist and all standard cell locations. Such methodol-
ogy [24], [25] recovers large layouts netlists (over 7000k cells)
from the GDSII layout with over 98% accuracy and efficiency.
Then, the design company uses the netlists to recover the stan-
dard cells’ and macros’ locations. The watermark extraction

(a) test5(WM) (b) test5(non-WM) (c) perf a(WM) (d) perf a(non-WM)

Fig. 7: Watermarked Design Examples. The blue cells are the
standard cells, and the red cells are the macros.

algorithms in Section IV are subsequently used for ownership
proof. While the reverse-engineering misalignment might de-
grade the watermark extraction rates slightly, ICMarks still
provides sufficient ownership proof for the design companies
benefiting from two aspects: (i) high watermarking strength
of 1.25×10−46 for 50-bit signature and 1.43×10−74 for 100-
bit signature, as in Table VI; (ii) high watermarking capacity
that can accommodate more than 200-bit signatures without
significant quality degradation, as in Fig. 6. As a result, even
if only 88% signatures are extracted (10% lost from attacks
in Section VI and 2% lost from reverse engineering [24],
[25]), ICMarks still provides the watermarking strength at
the level of 10−27 and 10−43 for 50-bit and 100-bit signatures,
respectively. In Null Hypothesis [56], a watermarking strength
(p-value) of smaller than 0.05 indicates the statistically sig-
nificant presence of a watermark. Given the much lower
watermarking strength than 0.05 after reverse-engineering, the
design company can thereby confidently claim ownership of
the design layout.

VI. ATTACK EVALUATION

In this section, we evaluate ICMarks’s robustness under
watermark removal and forging attacks.

1) Watermark Removal Attack: A successful watermark
removal attack shall meet two criteria: (i) the encoded sig-
natures are removed as reflected by the watermark extraction
rate (WER) below 90% [20], [19]; (ii) the layout quality
is not compromised, where the Placement Half-Perimeter
WireLength Rate (PWLR), Routed Wirelength Rate (RWLR),
Total Negative Slack Rate (TNSR), and Worst Negative Slack
Rate (WNSR) do not exceed 1.005 [29]. The thresholds are
reflected by the black dotted lines in Fig. 8 and Fig. 9.

For an IC layout watermarked by ICMarks, the watermarks
are inserted by constraining the cell positions and cells’
region. To remove the signature, the adversary perturbs the cell
positions/regions for watermark removal attacks. We compare
four types of attacks aiming to erase the signatures at different
levels of watermarking and prevent the owner from claiming
ownership: (i) swap location attacks (SLA) [19], which target
to attack Row Parity framework by random swapping cell
locations, (ii) constraint perturbation attacks (CPA), which
target to attack Cell Scattering and ICMarks: DW by moving
cells along x/y axis if there is space; (iii) Optimization attacks
(OA), which target to attack all watermarking frameworks by
running another round of detailed placement; and (iv) adaptive
region attacks (ARA), which target to attack ICMarks: GW

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

(a) Swap location attack (0.1%)

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

(b) Swap location attack (0.5%)

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

(c) Constraint perturbation attack (0.1%)

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

(d) Constraint perturbation attack (1%)

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

(e) Constraint perturbation attack (10%)

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

(f) Optimization attack

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

Row Parity Cell Scattering ICMarks: GW ICMarks: DW ICMarks
ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

(g) Adaptive region attack (top-1)

ISPD2015 ISPD20191.0
0

1.0
1

1.0
2

1.0
3

1.0
4

1.0
5

PWLR

ISPD2015 ISPD2019

RWLR

ISPD2015 ISPD2019 0

20

40

60

80
10

0
WER(%)

Row Parity Cell Scattering ICMarks: GW ICMarks: DW ICMarks

(h) Adaptive region attack (top-5)

Fig. 8: Watermarking performance under different attacks for wirelength-driven placement on the ISPD’2015 [26] and
ISPD’2019 [27] benchmarks. The black dotted line in the two left subfigures denotes the quality degradation threshold of
1.005, and the black dotted line in the rightmost subfigure denotes the watermark extraction threshold of 90%.

and ICMarks framework by searching for less compacted re-
gions and perturb cells around the region. We show ICMarks
is robust against all removal attacks, and the results are
summarized in Fig. 8 and Fig. 9 for wirelength-driven and
timing-driven placements respectively.

We skip Buffer Insertion [6] and the corresponding wa-
termark removal attacks because (i) Buffer Insertion’s [6]
watermarked layout quality degradation is significantly higher
than the considered threshold of 0.5% as in Table III-V;
(ii) Other watermarking frameworks insert signatures without
modifying the netlist, whereas Buffer Insertion [6] encodes
adding buffers into the netlist as watermarks. While the buffer
removal attacks, which remove multiple cascaded buffers,
can potentially erase Buffer Insertion’s signature, our primary
goal is evaluating the robustness of ICMarks under attacks.
Therefore, we did not include the attacks at the netlist level
in this section.

Swap Location Attacks (SLA): In SLA [19], cells ran-
domly exchange their locations with another set of cells.
Then, a follow-up legalization and external detailed placement
engine NTUPlace4dr [57] compensate for the performance
degradation and ensure the cells follow the design rules. In
Fig. 8a and Fig. 8b, we randomly choose 0.1% and 0.5% cells
from the layout and pair them to exchange their locations. As
seen, even small location swaps result in huge performance
degradation on modern IC layouts. In terms of the watermark
extraction, Row Parity [20], [19], Cell Scattering [5], and
ICMarks: DW get WERs below 90% and failed to verify
their ownership. Those watermarking frameworks spread the
watermarks across the layout, where minor changes will subse-
quently modify most cell locations within the compact region.
By embedding cells in the less compact region, ICMarks:
GW and ICMarks are less sensitive to such changes. As
a result, ICMarks: GW and ICMarks still maintain high

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

1.0
0

1.0
2

1.0
4

TNSR WNSR

0

25

50

75
10

0
WER(%)

(a) Swap location attack (0.1%)

1.0
0

1.0
2

1.0
4

TNSR WNSR

0

25

50

75
10

0
WER(%)

(b) Swap location attack (0.5%)

1.0
0

1.0
2

1.0
4

TNSR WNSR

0

25

50

75
10

0
WER(%)

(c) Constraint perturbation attack (0.1%)

1.0
0

1.0
2

1.0
4

TNSR WNSR

0

25

50

75
10

0
WER(%)

(d) Constraint perturbation attack (1%)

1.0
0

1.0
2

1.0
4

TNSR WNSR

Row Parity Cell Scattering 0

25

50

75
10

0
WER(%)

(e) Constraint perturbation attack (10%)

1.0
0

1.0
2

1.0
4

TNSR WNSR

ICMarks: GW ICMarks: DW ICMarks0
25

50

75
10

0
WER(%)

(f) Optimization attack

1.0
0

1.0
2

1.0
4

TNSR WNSR

0

25

50

75
10

0
WER(%)

Row Parity Cell Scattering ICMarks: GW

(g) Adaptive region attack (top-1)

1.0
0

1.0
2

1.0
4

TNSR WNSR

0

25

50

75
10

0
WER(%)

ICMarks: DW ICMarks

(h) Adaptive region attack (top-5)

Fig. 9: Watermarking performance under different attacks for timing-driven placement on the ICCAD’2015 benchmarks [28].
The black dotted line in the two left subfigures denotes the quality degradation threshold of 1.005, and the black dotted line
in the rightmost subfigure denotes the watermark extraction threshold of 90%.

WERs.
Constraint Perturbation Attacks (CPA): In CPA, cells

shift their location along the x-axis for δx = 1 or y-axis for δy
set to one adjacent row-height if such movements do not result
in overlapping with their neighbors. In Fig. 8c, Fig. 8d, and
Fig. 8e, we move the positions of 0.1%, 1%, 10% of the cells
have space to move in the layout. From here, we find that under
CPA 0.1% attack, layout performance hit the boundary of the
wirelength degradation (PWLR and RWLR) threshold. For the
watermark extraction, ICMarks, ICMarks: GW, and Row
Parity [20], [19] achieve over 90% WER. However, the WER
of Cell Scattering [5] and ICMarks: DW are subsequently
lower than 90% because the constraint perturbation targets to
remove the potential watermarked cell positions.

For the CPA 1% and 10% cell performance, however,
the PWLR and RWLR degradations are greater than 1.005,
meaning the attack failed to maintain the layout quality
improvement from the design company’s physical design op-
timizations. But ICMarks: GW and ICMarks still maintain
higher than 90% WER and successfully help the design
company to claim ownership of the layout.

Optimization Attacks (OA): This attack employs an ad-
ditional optimization stage to remove the watermarks. The
optimization is implemented through another round of de-
tailed placement from an external open-source placer NTU-
Place4dr [57]. It aims to change cell locations slightly for sig-
nature removal while maintaining the layout quality. As shown
in Fig. 8f, the layout wirelength degradation in Cell Scatter-
ing [5], ICMarks: GW, ICMarks: DW, and ICMarks are
all below 1.005, indicating the attack preserves the layout
quality. The WER of Cell Scattering [5] and ICMarks:
DW are below 90%, meaning OA successfully removed their
signatures. In contrast, ICMarks: GW and ICMarks have
over 90% WER, demonstrating their resiliency.

Adaptive Region Attacks (ARA): This attack targets to
remove watermarks in ICMarks:GW. The adversary has prior
knowledge of how ICMarks:GW performs the watermarking
and has access to the hyperparameters used to search the
watermarked region. The adversary operates on top of the
watermarked layout. He tries to remove the inserted water-

marks by moving cells within the searched top-1 or top-5
regions if there is room. In Fig. 8g and Fig. 8h, the PWLR
and RWLR degradation for ICMarks: GW, ICMarks: DW,
and ICMarks are around the threshold of 0.5% degradation,
and the attacks do not significantly degrade the layout quality.
The WER of ICMarks: GW and ICMarks remain over
90%. As the watermark insertion is performed on a non-
watermarked layout, and the attack regions searched by ARA
are on a watermarked layout, the watermark signatures are not
the same. Therefore, ARA fails to remove ICMarks: GW and
ICMarks’s signature, even if the same region watermarking
algorithm is employed. In contrast, the watermarks of Row
Parity [20], [19], Cell Scattering [5], and ICMarks:DW are
spread across the layout, where minor changes in the com-
pact area will subsequently modify the inserted watermarks.
Therefore, these frameworks have compromised WER.

Attacks on Timing-driven Placement: In Fig. 9, the attack
performance on timing-driven placement follows a similar
trend as the wirelength-driven placement results in Fig. 8.
ICMarks and ICMarks: GW remain resilient under all the
removal attacks with a WER over 90%. Row Parity [20], [19]
is also resilient to the attacks and has WER of over 90%.
However, the watermarked layouts degrade the timing metrics
(TNSR and WNSR) by ≥ 1% in Table V for timing-driven
placement. The signatures in the baseline Cell Scattering [5]
and ICMarks:DW are removed with WER < 90%.

2) Watermark Forging Attack: Instead of removing the
watermarked signature, the adversary in a watermark forg-
ing attack counterfeits another set of watermarks on the
watermarked layout and falsely claims his ownership. Row
Parity [20], [19] and Buffer Insertion [6] techniques are not re-
silient to forging attacks. If the adversary has prior knowledge
of the watermarking algorithm, they can easily counterfeit
a different set of forged signatures from the row index ID
of cells or add additional buffers into the layout for false
ownership proof. For Cell Scattering [5], signatures are harder
to counterfeit because forging the signature requires both
random seeds and a non-watermarked layout. However, the
inserted signatures can be easily erased by different watermark

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

removal techniques in Section VI-1.
ICMarks: GW is resilient to forging attacks because the re-

gion with the minimal evaluation score is unique to the original
non-watermarked placement. The non-watermarked layout and
the scoring parameters are kept confidential. The ICMarks:
GW signature verification requires the owner to provide that
information to reproduce the watermark region Rw. Therefore,
the adversary cannot counterfeit the watermarks without access
to the non-watermark layout. ICMarks: DW also exhibits
similar properties, where the signatures are encoded before
detailed placement on the intermediate placement Pitr. As
such, the adversary with only access to the watermarked layout
cannot reproduce the watermarked cells or distance to forge the
signature. ICMarks, as a combination of ICMarks: GW and
ICMarks: DW is also resilient to watermark forging attacks.

VII. CONCLUSION

We present ICMarks, a robust watermarking framework
for integrated circuits physical design IP protection in the
supply chain. We first introduce a Global Watermarking
method that identifies the watermarked region with insignif-
icant performance degradation; then, we propose an inde-
pendent Detailed Watermarking technique to select cells that
do not overlap with neighbors after perturbation to encode
watermarks. Based on these methods, we develop ICMarks,
which combines the best attributes of both Global and Detailed
Watermarking, thereby achieving minimal quality degrada-
tion with augmented robustness. Extensive experiments on
ISPD’2015 [26], ISPD’2019 [27], and ICCAD’2015 [28]
benchmarks demonstrate that ICMarks successfully inserts
watermarks without compromising layout quality. Further-
more, we showcased ICMarks’s resiliency against watermark
removal and forging attacks through comprehensive attack
evaluations.

REFERENCES

[1] B. Liu and G. Qu, “VLSI supply chain security risks and mitigation
techniques: A survey,” Integration, vol. 55, pp. 438–448, 2016.

[2] L. Pawar, R. Kumar, and A. Sharma, “Risks analysis and mitigation
technique in eda sector: VLSI supply chain,” in Analyzing the Role of
Risk Mitigation and Monitoring in Software Development. IGI Global,
2018, pp. 256–265.

[3] A. Cui, C.-H. Chang, and L. Zhang, “A hybrid watermarking scheme for
sequential functions,” in 2011 IEEE International Symposium of Circuits
and Systems (ISCAS), 2011, pp. 2333–2336.

[4] D. Divyanshu, R. Kumar, D. Khan, S. Amara, and Y. Massoud, “Fsm
inspired unconventional hardware watermark using field-assisted sot-
mtj,” IEEE Access, vol. 11, pp. 8150–8158, 2023.

[5] X. Cai, Z. Gao, F. Bai, and Y. Xu, “A watermarking technique for
hard ip protection in post-layout design level,” in 2007 7th International
Conference on ASIC, 2007, pp. 1317–1320.

[6] G. Sun, Z. Gao, and Y. Xu, “A watermarking system for ip protection by
buffer insertion technique,” in 7th International Symposium on Quality
Electronic Design (ISQED’06). IEEE, 2006, pp. 5–pp.

[7] D. Saha and S. Sur-Kolay, “Watermarking in hard intellectual property
for pre-fab and post-fab verification,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 23, no. 5, pp. 801–809, 2014.

[8] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin,
“Ip protection and supply chain security through logic obfuscation:
A systematic overview,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 24, no. 6, pp. 1–36, 2019.

[9] J. Knechtel, S. Patnaik, and O. Sinanoglu, “Protect your chip design
intellectual property: An overview,” in Proceedings of the International
Conference on Omni-Layer Intelligent Systems, 2019, pp. 211–216.

[10] P. SLPSK, S. Ray, and S. Bhunia, “Treehouse: A secure asset manage-
ment infrastructure for protecting 3dic designs,” IEEE Transactions on
Computers, 2023.

[11] S. Sutardja, “1.2 the future of ic design innovation,” in 2015 IEEE In-
ternational Solid-State Circuits Conference-(ISSCC) Digest of Technical
Papers. IEEE, 2015, pp. 1–6.

[12] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proceedings of the IEEE, vol.
102, no. 8, pp. 1283–1295, 2014.

[13] M. Rathor and G. P. Rathor, “Hard-sign: A hardware watermarking
scheme using dated handwritten signature,” IEEE Design & Test, 2023.

[14] H. Chen, C. Fu, B. D. Rouhani, J. Zhao, and F. Koushanfar, “Intellectual
property protection of deep learning systems via hardware/software co-
design,” IEEE Design & Test, 2023.

[15] A. Tauhid, L. Xu, M. Rahman, and E. Tomai, “A survey on security
analysis of machine learning-oriented hardware and software intellectual
property,” High-Confidence Computing, p. 100114, 2023.

[16] D. Saha, P. Dasgupta, S. Sur-Kolay, and S. Sen-Sarma, “A novel scheme
for encoding and watermark embedding in vlsi physical design for ip
protection,” in 2007 International Conference on Computing: Theory
and Applications (ICCTA’07). IEEE, 2007, pp. 111–116.

[17] F. Bai, Z. Gao, Y. Xu, and X. Cai, “A watermarking technique for hard
ip protection in full-custom ic design,” in 2007 International Conference
on Communications, Circuits and Systems. IEEE, 2007, pp. 1177–1180.

[18] M. Ni and Z. Gao, “Watermarking system for ic design ip protection,”
in 2004 International Conference on Communications, Circuits and
Systems (IEEE Cat. No. 04EX914), vol. 2. IEEE, 2004, pp. 1186–
1190.

[19] A. B. Kahng, J. Lach, W. H. Mangione-Smith, S. Mantik, I. L. Markov,
M. Potkonjak, P. Tucker, H. Wang, and G. Wolfe, “Constraint-based
watermarking techniques for design ip protection,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 20,
no. 10, pp. 1236–1252, 2001.

[20] A. B. Kahng, S. Mantik, I. L. Markov, M. Potkonjak, P. Tucker,
H. Wang, and G. Wolfe, “Robust ip watermarking methodologies for
physical design,” in Proceedings of the 35th annual Design Automation
Conference, 1998, pp. 782–787.

[21] T. Nie, T. Kisaka, and M. Toyonaga, “A watermarking system for ip
protection by a post layout incremental router,” in Proceedings of the
42nd annual Design Automation Conference, 2005, pp. 218–221.

[22] A. E. Dunlop, B. W. Kernighan et al., “A procedure for placement
of standard cell VLSI circuits,” IEEE Transactions on Computer-Aided
Design, vol. 4, no. 1, pp. 92–98, 1985.

[23] R.-S. Tsay and E. Kuh, “A unified approach to partitioning and
placement (VLSI layout),” IEEE Transactions on Circuits and Systems,
vol. 38, no. 5, pp. 521–533, 1991.

[24] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan, “Regds: A reverse
engineering framework from gdsii to gate-level netlist,” in 2020 IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2020, pp. 154–163.

[25] L. Alrahis, A. Sengupta, J. Knechtel, S. Patnaik, H. Saleh, B. Moham-
mad, M. Al-Qutayri, and O. Sinanoglu, “Gnn-re: Graph neural networks
for reverse engineering of gate-level netlists,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 41,
no. 8, pp. 2435–2448, 2021.

[26] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “ISPD 2015
benchmarks with fence regions and routing blockages for detailed-
routing-driven placement,” in Proceedings of the 2015 Symposium on
International Symposium on Physical Design, 2015, pp. 157–164.

[27] W.-H. Liu, S. Mantik, W.-K. Chow, Y. Ding, A. Farshidi, and G. Posser,
“ISPD 2019 initial detailed routing contest and benchmark with ad-
vanced routing rules,” in Proceedings of the 2019 International Sympo-
sium on Physical Design, 2019, pp. 147–151.

[28] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “Iccad-2015 cad con-
test in incremental timing-driven placement and benchmark suite,” in
2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2015, pp. 921–926.

[29] Y. Qiu, Y. Xing, X. Zheng, P. Gao, S. Cai, and X. Xiong, “Progress of
placement optimization for accelerating vlsi physical design,” Electron-
ics, vol. 12, no. 2, p. 337, 2023.

[30] S. Pawanekar, G. Trivedi, and K. Kapoor, “A nonlinear analytical
optimization method for standard cell placement of vlsi circuits,” in
2015 28th International Conference on VLSI Design. IEEE, 2015, pp.
423–428.

[31] A. Agnesina, K. Chang, and S. K. Lim, “VLSI placement parameter
optimization using deep reinforcement learning,” in Proceedings of the
39th International Conference on Computer-Aided Design, 2020, pp.
1–9.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

[32] J.-M. Lin, C.-W. Huang, L.-C. Zane, M.-C. Tsai, C.-L. Lin, and C.-F.
Tsai, “Routability-driven global placer target on removing global and
local congestion for VLSI designs,” in 2021 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 2021, pp.
1–8.

[33] Y. Lin, S. Dhar, W. Li, H. Ren, B. Khailany, and D. Z. Pan, “DREAM-
Place: Deep learning toolkit-enabled gpu acceleration for modern vlsi
placement,” in Proceedings of the 56th Annual Design Automation
Conference 2019, 2019, pp. 1–6.

[34] P. Liao, S. Liu, Z. Chen, W. Lv, Y. Lin, and B. Yu, “Dreamplace 4.0:
Timing-driven global placement with momentum-based net weighting,”
pp. 939–944, 2022.

[35] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Abacus: Fast legal-
ization of standard cell circuits with minimal movement,” in Proceedings
of the 2008 international symposium on Physical design, 2008, pp. 47–
53.

[36] R. Netto, S. Fabre, T. A. Fontana, V. Livramento, L. L. Pilla, L. Behjat,
and J. L. Güntzel, “Algorithm selection framework for legalization
using deep convolutional neural networks and transfer learning,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 5, pp. 1481–1494, 2021.

[37] H. Yang, K. Fung, Y. Zhao, Y. Lin, and B. Yu, “Mixed-cell-height legal-
ization on cpu-gpu heterogeneous systems,” in 2022 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2022, pp.
784–789.

[38] M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective de-
tailed placement algorithm,” in ICCAD-2005. IEEE/ACM International
Conference on Computer-Aided Design, 2005. IEEE, 2005, pp. 48–55.

[39] W.-K. Chow, J. Kuang, X. He, W. Cai, and E. F. Young, “Cell density-
driven detailed placement with displacement constraint,” in Proceedings
of the 2014 on International symposium on physical design, 2014, pp.
3–10.

[40] G. T. Becker, M. Kasper, A. Moradi, and C. Paar, “Side-channel
based watermarks for integrated circuits,” in 2010 IEEE International
Symposium on Hardware-Oriented Security and Trust (HOST). IEEE,
2010, pp. 30–35.

[41] U. Das, M. S. Rahman, N. N. Anandakumar, K. Z. Azar, F. Rahman,
M. Tehranipoor, and F. Farahmandi, “Psc-watermark: Power side channel
based ip watermarking using clock gates,” in 2023 IEEE European Test
Symposium (ETS). IEEE, 2023, pp. 1–6.

[42] M. Shayan, K. Basu, and R. Karri, “Hardware trojans inspired ip
watermarks,” IEEE Design & Test, vol. 36, no. 6, pp. 72–79, 2019.

[43] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu,
“Truly stripping functionality for logic locking: A fault-based per-
spective,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 39, no. 12, pp. 4439–4452, 2020.

[44] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor, “Ad-
vances in logic locking: Past, present, and prospects,” Cryptology ePrint
Archive, 2022.

[45] P. Santikellur, R. S. Chakraborty, and S. Bhunia, “Hardware ip protection
using register transfer level locking and obfuscation of control and data
flow,” in Behavioral Synthesis for Hardware Security. Springer, 2021,
pp. 57–69.

[46] P. Bagul, V. Inamdar et al., “Hardware obfuscation based watermarking
technique for ipr ownership identification,” International Journal of
Reconfigurable Computing, vol. 2023, 2023.

[47] J. Gu, Z. Jiang, Y. Lin, and D. Z. Pan, “DREAMPlace 3.0: Multi-
electrostatics based robust VLSI placement with region constraints,” in
Proceedings of the 39th International Conference on Computer-Aided
Design, 2020, pp. 1–9.

[48] J. O. Berger and T. Sellke, “Testing a point null hypothesis: The
irreconcilability of p values and evidence,” Journal of the American
statistical Association, vol. 82, no. 397, pp. 112–122, 1987.

[49] J. Lu, P. Chen, C.-C. Chang, L. Sha, D. J.-H. Huang, C.-C. Teng,
and C.-K. Cheng, “eplace: Electrostatics-based placement using fast
fourier transform and nesterov’s method,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), vol. 20, no. 2, pp. 1–34,
2015.

[50] C.-K. Cheng, A. B. Kahng, I. Kang, and L. Wang, “Replace: Advancing
solution quality and routability validation in global placement,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 38, no. 9, pp. 1717–1730, 2018.

[51] J. Liu, C.-W. Pui, F. Wang, and E. F. Y. Young, “Cugr: Detailed-
routability-driven 3d global routing with probabilistic resource model,”
in 2020 57th ACM/IEEE Design Automation Conference (DAC), 2020,
pp. 1–6.

[52] T.-W. Huang, G. Guo, C.-X. Lin, and M. D. Wong, “Opentimer v2: A
new parallel incremental timing analysis engine,” IEEE transactions on
computer-aided design of integrated circuits and systems, vol. 40, no. 4,
pp. 776–789, 2020.

[53] D. Saha and S. Sur-Kolay, “Fast robust intellectual property protection
for vlsi physical design,” in 10th International Conference on Informa-
tion Technology (ICIT 2007). IEEE, 2007, pp. 1–6.

[54] W. Liang, X. Sun, Z. Xia, D. Sun, and J. Long, “A chaotic ip
watermarking in physical layout level based on fpga,” Radioengineering,
vol. 20, no. 1, pp. 118–125, 2011.

[55] J. D. Lawson and Y. Lim, “The geometric mean, matrices, metrics, and
more,” The American Mathematical Monthly, vol. 108, no. 9, pp. 797–
812, 2001.

[56] D. R. Anderson, K. P. Burnham, and W. L. Thompson, “Null hypothesis
testing: problems, prevalence, and an alternative,” The journal of wildlife
management, pp. 912–923, 2000.

[57] C.-C. Huang, H.-Y. Lee, B.-Q. Lin, S.-W. Yang, C.-H. Chang, S.-
T. Chen, Y.-W. Chang, T.-C. Chen, and I. Bustany, “Ntuplace4dr:
A detailed-routing-driven placer for mixed-size circuit designs with
technology and region constraints,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 3, pp.
669–681, 2018.

	Introduction
	Background and Related Work
	VLSI Placement
	Global Placement
	Legalization
	Detailed Placement

	Watermarking in IC Design
	Logic Design Watermarking
	Physical Design Watermarking
	Comparison

	Problem Formulation
	Watermarking Goal
	Threat Model

	ICMarks Design
	Global Watermarking (GW)
	GW Watermark Selection
	GW Watermark Insertion
	GW Watermark Extraction

	Detailed Watermarking (DW)
	DW Watermark Selection
	DW Watermark Insertion
	DW Watermark Extraction

	ICMarks Watermarking
	ICMarks Watermark Insertion
	ICMarks Watermark Extraction

	Experiments
	Experimental Setup
	Experimental Results
	Wirelength-driven Watermarking Fidelity
	Timing-driven Watermarking Fidelity
	Watermarking Capacity
	Watermarking Strength
	Watermarking Efficiency
	Watermarking Stealthiness
	Ownership Proof in Real-World Settings

	Attack Evaluation
	Watermark Removal Attack
	Watermark Forging Attack

	Conclusion
	References

